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Introduction and Motivation

Non-relativistic (NR) fermions in 1-d appear in many
situations in string theory and quantum field theory.
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Introduction and Motivation

Non-relativistic (NR) fermions in 1-d appear in many
situations in string theory and quantum field theory.

Non-critical string theory in 2-d → NR fermions in an
inverted harmonic potential
Half-BPS sector of N = 4 SYM theory in 4-d → NR
fermions in a harmonic potential
YM theory on a cylinder → Free NR fermions on a
circle

Its partition function counts certain D0 −D2 −D4
brane black holes
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Introduction and Motivation

A common feature of all these examples is that the
fermionic system arises from an underlying matrix
quantum mechanics problem

S =

∫

dt {1

2
Ṁ2 − V (M)}
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Introduction and Motivation

A common feature of all these examples is that the
fermionic system arises from an underlying matrix
quantum mechanics problem

S =

∫

dt {1

2
Ṁ2 − V (M)}

M is an N ×N matrix
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Introduction and Motivation

A common feature of all these examples is that the
fermionic system arises from an underlying matrix
quantum mechanics problem

S =

∫

dt {1

2
Ṁ2 − V (M)}

In the U(N) invariant sector, the matrix model is
equivalent to a system of N NR fermions a

Jevicki and Sakita b used this equivalence to develop a
bosonization in the large-N limit - collective field theory

aBrezin, Itzykson, Parisi and Zuber, Comm. Math. Phys.59, 35, 1978
bNucl.Phys.B165, 511, 1980
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Introduction and Motivation

Bosonization in terms of Wigner phase space density a

u(p, q, t) =

∫

dx e−ipx
N
∑

i=1

ψ†
i (q − x/2, t)ψi(q + x/2, t)

u(p, q, t) satisfies two constraints:
∫ dpdq

2π u(p, q, t) = N

u ∗ u = u

aDhar, Mandal and Wadia, hep-th/9204028; 9207011; 9309028
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Introduction and Motivation

Bosonization in terms of Wigner phase space density a

u(p, q, t) =

∫

dx e−ipx
N
∑

i=1

ψ†
i (q − x/2, t)ψi(q + x/2, t)

u(p, q, t) satisfies two constraints:
∫ dpdq

2π u(p, q, t) = N

u ∗ u = u

Many more variables than are necessary

aDhar, Mandal and Wadia, hep-th/9204028; 9207011; 9309028
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Exact Bosonization

The Setup:

each fermion can occupy a state in an
infinite-dimensional Hilbert space Hf

there is a countable basis of Hf : {|m〉,m = 0, 1, · · · ,∞}

creation and annihilation operators ψ†
m, ψm create and

destroy particles in the state |m〉, {ψm, ψ
†
n} = δmn

total number of fermions is fixed:
∑

n

ψ†
nψn = N
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Exact Bosonization

The N -fermion states are given by (linear combinations
of)

|f1, · · · , fN 〉 = ψ†
fN

· · ·ψ†
f2
ψ†

f1
|0〉F ,

|0〉F is Fock vacuum
fk are ordered 0 ≤ f1 < f2 < · · · < fN

Repeated applications of the bilinear ψ†
m ψn gives any

desired state
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Exact Bosonization
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Exact Bosonization

Bosonization: a

Introduce the bosonic operators

σk, k = 1, 2, · · · , N

and their conjugates

σ†k, k = 1, 2, · · · , N

aDhar, Mandal and Suryanarayana, hep-th/0509164
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Exact Bosonization
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Exact Bosonization
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Exact Bosonization

By definition:

σkσ
†
k = 1

σ†kσk = 1, if σk does not annihilate the state
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Exact Bosonization

By definition:

σkσ
†
k = 1

σ†kσk = 1, if σk does not annihilate the state

σ
k 0

fN

fN−1

fN−k+2
fN−k+1
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Exact Bosonization

By definition:

σkσ
†
k = 1

σ†kσk = 1, if σk does not annihilate the state

For k 6= l, [σk, σ
†
l ] = 0
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Exact Bosonization

Introduce creation (annihilation) operators a†k (ak) which
satisfy the standard commutation relations

[ak, a
†
l ] = δkl, k, l = 1, · · · , N

The states of the bosonic system are given by (a linear
combination of)

|r1, · · · , rN 〉 =
(a†1)

r1 · · · (a†N )rN

√
r1! · · · rN !

|0〉
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Exact Bosonization

Now, make the following identifications

σk =
1

√

a†kak + 1
ak; σ†k = a†k

1
√

a†kak + 1

together with the map a

rN = f1; rk = fN−k+1 − fN−k − 1, k = 1, 2, · · · N − 1

For the Fermi vacuum, fk+1 = fk + 1 and so rk = 0 for
all k => Fermi vacuum = Bose vacuum

aSuryanarayana, hep-th/0411145
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Exact Bosonization

The σk, k = 1, 2, · · · , N are necessary and sufficient

Any bilinear ψ†
nψm can be built out of σk’s
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Exact Bosonization

The σk, k = 1, 2, · · · , N are necessary and sufficient

Any bilinear ψ†
nψm can be built out of σk’s

f 1

f

f

f

f

2

N

N−1

N−2

f 3

+ψψ
n m

m

n

= fN−k+1
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Exact Bosonization

The σk, k = 1, 2, · · · , N are necessary and sufficient

Any bilinear ψ†
nψm can be built out of σk’s

+
n

ψ  ψ
m

N−1

N−3

0
1

 2

m

n

N−2

(−1)
N−m−1σ     σ N

+

n

N−1

2
1
 0

m−m 1

+ n−N N−2
N−3
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Exact Bosonization

Generic properties of the bosonized theory:

Each boson can occupy only a finite number of different
states, as a consequence of a finite number of fermions
=> a cut-off or graininess in the bosonized theory!
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Exact Bosonization

Generic properties of the bosonized theory:

Each boson can occupy only a finite number of different
states, as a consequence of a finite number of fermions
=> a cut-off or graininess in the bosonized theory!

There is no natural “space” in the bosonic theory - in
the examples we will discuss, a spatial direction will
emerge in the low-energy large-N limit.
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Exact Bosonization

The non-interacting fermionic Hamiltonian:

H =
∑

n

E(n)ψ†
nψn
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Exact Bosonization

The non-interacting fermionic Hamiltonian:

H =
∑

n

E(n)ψ†
nψn

The bosonized Hamiltonian:

H =
N
∑

k=1

E(n̂k), n̂k =
N
∑

i=k

a†iai +N − k
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Exact Bosonization

The non-interacting fermionic Hamiltonian:

H =
∑

n

E(n)ψ†
nψn

The bosonized Hamiltonian:

H =
N
∑

k=1

E(n̂k), n̂k =
N
∑

i=k

a†iai +N − k

What about fermion interactions? These can also be
included since the generic bilinear ψ†

nψm has a
bosonized expression
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Half-BPS states and LLM geometries

SYM - half-BPS states are described by a holomorphic
sector of quantum mechanics of an N ×N complex
matrix Z in a harmonic potential

This system can be shown a to be equivalent to the
quantum mechanics of an N ×N hermitian matrix Z in
a harmonic potential

aTakayama and Tsuchiya, hep-th/0507070

Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory – p. 19/37



Half-BPS states and LLM geometries

Gauge invariance => physical observables on boundary
are U(N)-invariant traces:

trZk, k = 1, 2, · · · , N

Physical states <=> operators

(trZk1)l1(trZk2)l2 · · ·

Total number of Z ’s is a conserved RR charge
Q =

∑

i kili. BPS condition => E = Q
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Half-BPS states and LLM geometries

At large N there is a semiclassical picture of the states
of this system in terms of droplets of fermi fluid in phase
space
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Half-BPS states and LLM geometries

At large N there is a semiclassical picture of the states
of this system in terms of droplets of fermi fluid in phase
space

q

p

ground state distribution
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Half-BPS states and LLM geometries

At large N there is a semiclassical picture of the states
of this system in terms of droplets of fermi fluid in phase
space

p

q

small fluctuations around the ground state
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Half-BPS states and LLM geometries

By explicitly solving equations of type IIB gravity, LLM
showed that there is a similar structure in the classical
geometries in the half-BPS sector!

LLM solutions - two of the space coordinates are
identified with the phase space of a single fermion =>
noncommutativity in two space directions in the
semicalssical description a

Small fluctuations around AdS space, i.e low-energy
graviton excitations b c ≡ low-energy fluctuations of the
fermi vacuum d

aMandal, hep-th/0502104
bGrant, Maoz, Marsano, Papadodimas and Rychkov, hep-th/0505079
cMaoz and Rychkov, hep-th/0508059
dDhar, hep-th/0505084
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Half-BPS states and LLM geometries

Motivation for our work a - on the CFT side the half-BPS
system can be quantized exactly in terms of our bosons
=> window of opportunity to learn about aspects of
quantum gravity.

At finite N , only the low-energy excitations on the
boundary can be identified with low-energy (<< N )
gravitons in the bulk

The single-particle graviton excitations are related to
our bosons. On the boundary, these states are:

β†m|0〉 =
m
∑

n=1

(−1)n−1

√

(N +m− n)!

2m(N − n)!
σ†1

m−n
σ†n|0〉

aDhar, Mandal and Smedback, hep-th/0512312Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory – p. 23/37



Half-BPS states and LLM geometries

On the boundary, single-particle giant graviton states
map to linear combinations of multi-graviton states a.
Example:

|giant graviton of energy 2〉 = (β†1
2 − β†2)|0〉

aBalasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119
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Half-BPS states and LLM geometries

On the boundary, single-particle giant graviton states
map to linear combinations of multi-graviton states a.
Example:

|giant graviton of energy 2〉 = (β†1
2 − β†2)|0〉= a†2|0〉

aBalasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119
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Half-BPS states and LLM geometries

Boundary states corresponding to single-particle bulk
giant states are our single-particle bosonic states:

|giant graviton of energy k〉 = a†k|0〉
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Half-BPS states and LLM geometries

Boundary states corresponding to single-particle bulk
giant states are our single-particle bosonic states:

|giant graviton of energy k〉 = a†k|0〉

Hamiltonian: HF =
∑

n E(n)ψ†
nψn=>HB =

∑N
k=1 ka

†
kak
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Half-BPS states and LLM geometries

Boundary states corresponding to single-particle bulk
giant states are our single-particle bosonic states:

|giant graviton of energy k〉 = a†k|0〉

Hamiltonian: HF =
∑

n E(n)ψ†
nψn=>HB =

∑N
k=1 ka

†
kak

Discrete space?

φ(θn) =

N
∑

k=1

(eikθnak + e−ikθna†k), θn =
2πn

N

Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory – p. 24/37



Black holes and 2-d YM on a circle

Vafa a has argued that the partition function of U(N) 2-d
YM on a circle counts certain BPS D-brane black hole
configurations in a CY compactification of type IIA string
theory.

The rank of the gauge group, N , maps to the number of
D4-branes and combinations of the YM coupling and
the theta-angle map to chemical potentials for D2 and
D0-branes.

aVafa, hep-th/0406058
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Black holes and 2-d YM on a circle

In the leading large N limit, the partition function
satisfies the OSV a relation, Zbh = |ψ|2. But at finite N
there are nonperturbative O(e−N ) corrections to this
relation b which can be attributed to multi-center black
holes.

2-d YM on a circle can be mapped to free NR fermions
on a circle c. This relation was exploited by DGOV to
obtain the nonperturbative corrections.

aOoguri, Strominger and Vafa, hep-th/0405146
bDijkgraaf, Gopakumar, Ooguri and Vafa, hep-th/0504221
cMinahan and Polychronakos, hep-th/9303153

Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory – p. 26/37



Free fermions and 2-d YM on a circle

In the gauge the gauge A0 = 0, one solves the Gauss
law constraint in terms of the Wilson line

Wab = P

(

exp[ig

∫ b

a
dxA1]

)

One gets
E(x) ≡ Ȧ1(x) = Wx0VWLx.

This expression for E(x) and its periodicity on the circle
lead to the constraint

[W, Ẇ ] = 0, W ≡W0L.
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Free fermions and 2-d YM on a circle

The 2-d YM hamiltonian becomes

H =
1

2

∫ L

0
dxTrE2 = − 1

2g2L
Tr(W−1Ẇ )2.

The constraint and the canonical structure implied by
the original Poisson bracket of the potential A1 with its
conjugate field E give the standard matrix model
structure for the dynamics. Thus, this hamiltonian
desribes the singlet sector of a unitary matrix quantum
mechanics.

Quantum mechanics of a unitary matrix is well-known to
map to fermions on a circle.
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Free fermions on a circle

We will only discuss a the free fermion problem.
Interactions can be taken into account once the free
part has been dealt with properly.

The free hamiltonian:

H = − ~
2

2m

∫ L

0
dx χ†(x)∂2

xχ(x)

aDhar and Mandal, hep-th/0603154
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Free fermions on a circle

We will only discuss a the free fermion problem.
Interactions can be taken into account once the free
part has been dealt with properly.

Hamiltonian in terms of fourier modes:

H = ω~

∞
∑

n=−∞

n2χ†nχn, ω ≡ 2π2
~

mL2

aDhar and Mandal, hep-th/0603154
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Free fermions on a circle

We will only discuss a the free fermion problem.
Interactions can be taken into account once the free
part has been dealt with properly.

Hamiltonian in terms of fourier modes:

H = ω~

∞
∑

n=−∞

n2χ†nχn, ω ≡ 2π2
~

mL2

To apply our bosonization rules, need to introduce an
ordering in the spectrum. For example, replace
n2 → (n+ ǫ)2

aDhar and Mandal, hep-th/0603154
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Free fermions on a circle

0

1
2
3 
4
5
6

7
8

9
10

0

+1
−1

+5
−5

+4
−4     

+3
−3

+2
−2

2n−1
2n

−n
+n
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Free fermions on a circle

Effectively, we have set χ+n = ψ2n and χ−n = ψ2n−1
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Free fermions on a circle

Effectively, we have set χ+n = ψ2n and χ−n = ψ2n−1

Fermionic hamiltonian:

H = ω~

∞
∑

n=1

(

n+ e(n)

2

)2

ψ†
nψn
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Free fermions on a circle

Effectively, we have set χ+n = ψ2n and χ−n = ψ2n−1

Fermionic hamiltonian:

H = ω~

∞
∑

n=1

(

n+ e(n)

2

)2

ψ†
nψn

Bosonized hamiltonian:

H = ω~

N
∑

k=1

(

n̂k + e(n̂k)

2

)2

where n̂k =
∑N

i=k a
†
iai +N − k
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Free fermions on a circle

Large-N low energy limit: H = HF +H0 +H1
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Free fermions on a circle

Large-N low energy limit: H = HF +H0 +H1

H0 =
~ωN

2

( N
∑

k=1

k a†kak + ν̂

)

Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory – p. 32/37



Free fermions on a circle

Large-N low energy limit: H = HF +H0 +H1

H0 =
~ωN

2

( N
∑

k=1

k a†kak + ν̂

)

ν̂ = N− −N−F =
∑N

k=1(e(n̂k) − e(N − k)) is the
number of excess fermions in negative momentum
states over and above the number in fermi vacuum
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Free fermions on a circle

Large-N low energy limit: H = HF +H0 +H1

H0 =
~ωN

2

( N
∑

k=1

k a†kak + ν̂

)

ν̂ = N− −N−F =
∑N

k=1(e(n̂k) − e(N − k)) is the
number of excess fermions in negative momentum
states over and above the number in fermi vacuum

H1 is order one on excited states whose energy is
low compared to N
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Free fermions on a circle

The operator ν̂ commutes with both H0 and H1

separately. States can therefore be labeled by the
quantum number ν, the eigenvalue of this operator.

These states can be explicitly constructed:

|ν〉 =











σ†2ν−1σ
†
2ν−2 · · · σ

†
1|0〉, ν > 0

σ†
2|ν|

σ†
2|ν|−1

· · · σ†1|0〉, ν < 0.

These states satisfy

ν̂|ν〉 = ν|ν〉, H0|ν〉 = ~ωNν2|ν〉, H1|ν〉 = 0
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Free fermions on a circle

Generalized partition function (H0 part only), which
keeps track of ν as well, is

ZN (q, y) =

∞
∑

r1,r2,··· ,rN=0

q
1

2

P

N

k=1
krk y

P

N

k=1
(−1)N−ke(

P

N

i=k
ri),

where q = e−~ωNβ, y = e−µ.
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Free fermions on a circle

Generalized partition function (H0 part only), which
keeps track of ν as well, is

ZN (q, y) =

∞
∑

r1,r2,··· ,rN=0

q
1

2

P

N

k=1
krk y

P

N

k=1
(−1)N−ke(

P

N

i=k
ri),

where q = e−~ωNβ, y = e−µ.

The following recursion relation can be easily derived:

ZN (q, y) = (1 − qN )−1[ZN−1(q, y
−1) + qN/2ZN−1(q, y)].
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Free fermions on a circle

Exact partition function for finite N :

ZN (q, y) =

N+1

2
∑

ν=−N−1

2

yνqν(ν− 1

2
)

N+1

2
−ν

∏

n=1

(1−qn)−1

N−1

2
+ν

∏

n=1

(1−qn)−1

Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory – p. 35/37



Free fermions on a circle

Exact partition function for finite N :

ZN (q, y) =

N+1

2
∑

ν=−N−1

2

yνqν(ν− 1

2
)

N+1

2
−ν

∏

n=1

(1−qn)−1

N−1

2
+ν

∏

n=1

(1−qn)−1

Setting y = q1/2, we get

ZN (q) =

N+1

2
∑

ν=−N−1

2

qν
2

N+1

2
−ν

∏

n=1

(1 − qn)−1

N−1

2
+ν

∏

n=1

(1 − qn)−1.
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Free fermions on a circle

Nonperturbative corrections for large but finite N :

ZN (q) =
∑

N+1

2

ν=−N−1

2

qν
2

×
[

∏∞
n=1(1 − q

N+1

2
−ν+n)

∏∞
n=1(1 − q

N−1

2
+ν+n)

]

×
[

∏∞
n=1(1 − qn)−1

∏∞
n=1(1 − qn)−1

]
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SUMMARY

We have developed a simple and exact bosonization of
a finite number of NR fermions; we discussed here
applications to problems in string theory, but our
techniques are applicable in other areas of physics as
well, e.g. to problems in condensed matter physics.

Our bosonization trades finiteness of the number of
fermions for finite dimensionality of the single-particle
boson Hilbert space

The bosonized theory is inherently grainy; in the specific
applications we discussed, a local space-time field
theory emerges only in the large-N and low-energy limit

Bosonization of finite number of fermions in higher
dimensions?
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