Exact Bosonization of Nonrelativistic Fermions and Applications in String Theory

Avinash Dhar

Tata Institute of Fundamental Research, Mumbai

Indian Strings Meeting, Toshali Sands, Puri,
December 12, 2006

References

hep - th/0505084 A. D. hep - th/0509164 A. D., G. Mandal and N.V. Suryanarayana hep - th/0512312 A. D., G. Mandal and M. Smedback hep - th/0603154 A. D., G. Mandal

Contents

- Introduction and Motivation
- Exact bosonization of nonrelativistic fermions in 1-dim.
- Applications to problems in string theory
- Summary

Introduction and Motivation

- Non-relativistic (NR) fermions in 1-d appear in many situations in string theory and quantum field theory.

Introduction and Motivation

- Non-relativistic (NR) fermions in 1-d appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-d \rightarrow NR fermions in an inverted harmonic potential

Introduction and Motivation

- Non-relativistic (NR) fermions in 1-d appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-d \rightarrow NR fermions in an inverted harmonic potential
- Half-BPS sector of $\mathcal{N}=4$ SYM theory in 4-d \rightarrow NR fermions in a harmonic potential

Introduction and Motivation

- Non-relativistic (NR) fermions in 1-d appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-d \rightarrow NR fermions in an inverted harmonic potential
- Half-BPS sector of $\mathcal{N}=4$ SYM theory in 4-d \rightarrow NR fermions in a harmonic potential
- YM theory on a cylinder \rightarrow Free NR fermions on a circle

Introduction and Motivation

- Non-relativistic (NR) fermions in 1-d appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-d \rightarrow NR fermions in an inverted harmonic potential
- Half-BPS sector of $\mathcal{N}=4$ SYM theory in 4-d \rightarrow NR fermions in a harmonic potential
- YM theory on a cylinder \rightarrow Free NR fermions on a circle

Its partition function counts certain $D 0-D 2-D 4$ brane black holes

Introduction and Motivation

- A common feature of all these examples is that the fermionic system arises from an underlying matrix quantum mechanics problem

$$
S=\int d t\left\{\frac{1}{2} \dot{M}^{2}-V(M)\right\}
$$

Introduction and Motivation

- A common feature of all these examples is that the fermionic system arises from an underlying matrix quantum mechanics problem

$$
\underbrace{S=\int d t\left\{\frac{1}{2} \dot{M}^{2}-V(M)\right\}}_{\text {matrix }}
$$

Introduction and Motivation

- A common feature of all these examples is that the fermionic system arises from an underlying matrix quantum mechanics problem

$$
S=\int d t\left\{\frac{1}{2} \dot{M}^{2}-V(M)\right\}
$$

- In the $U(N)$ invariant sector, the matrix model is equivalent to a system of N NR fermions ${ }^{\text {a }}$
- Jevicki and Sakita ${ }^{b}$ used this equivalence to develop a bosonization in the large- N limit - collective field theory

[^0]
Introduction and Motivation

- Bosonization in terms of Wigner phase space density ${ }^{\text {a }}$

$$
u(p, q, t)=\int d x e^{-i p x} \sum_{i=1}^{N} \psi_{i}^{\dagger}(q-x / 2, t) \psi_{i}(q+x / 2, t)
$$

- $u(p, q, t)$ satisfies two constraints:

$$
\begin{aligned}
& \text { - } \int \frac{d p d q}{2 \pi} u(p, q, t)=N \\
& \text { - } u * u=u
\end{aligned}
$$

[^1]
Introduction and Motivation

- Bosonization in terms of Wigner phase space density ${ }^{\text {a }}$

$$
u(p, q, t)=\int d x e^{-i p x} \sum_{i=1}^{N} \psi_{i}^{\dagger}(q-x / 2, t) \psi_{i}(q+x / 2, t)
$$

- $u(p, q, t)$ satisfies two constraints:
- $\int \frac{d p d q}{2 \pi} u(p, q, t)=N$
- $u * u=u$

Many more variables than are necessary

Exact Bosonization

The Setup:

- each fermion can occupy a state in an infinite-dimensional Hilbert space \mathcal{H}_{f}
- there is a countable basis of $\mathcal{H}_{f}:\{|m\rangle, m=0,1, \cdots, \infty\}$
- creation and annihilation operators $\psi_{m}^{\dagger}, \psi_{m}$ create and destroy particles in the state $|m\rangle, \quad\left\{\psi_{m}, \psi_{n}^{\dagger}\right\}=\delta_{m n}$
- total number of fermions is fixed:

$$
\sum_{n} \psi_{n}^{\dagger} \psi_{n}=N
$$

Exact Bosonization

- The N-fermion states are given by (linear combinations of)

$$
\left|f_{1}, \cdots, f_{N}\right\rangle=\psi_{f_{N}}^{\dagger} \cdots \psi_{f_{2}}^{\dagger} \psi_{f_{1}}^{\dagger}|0\rangle_{F},
$$

- $|0\rangle_{F}$ is Fock vacuum
- f_{k} are ordered $0 \leq f_{1}<f_{2}<\cdots<f_{N}$
- Repeated applications of the bilinear $\psi_{m}^{\dagger} \psi_{n}$ gives any desired state

Exact Bosonization

Exact Bosonization

Bosonization: ${ }^{\text {a }}$

- Introduce the bosonic operators

$$
\sigma_{k}, k=1,2, \cdots, N
$$

- and their conjugates

$$
\sigma_{k}^{\dagger}, k=1,2, \cdots, N
$$

${ }^{\text {a }}$ Dhar, Mandal and Suryanarayana, hep-th/0509164

Exact Bosonization

Exact Bosonization

Exact Bosonization

- By definition:
- $\sigma_{k} \sigma_{k}^{\dagger}=1$
- $\sigma_{k}^{\dagger} \sigma_{k}=1$, if σ_{k} does not annihilate the state

Exact Bosonization

- By definition:
- $\sigma_{k} \sigma_{k}^{\dagger}=1$
- $\sigma_{k}^{\dagger} \sigma_{k}=1$, if σ_{k} does not annihilate the state

Exact Bosonization

- By definition:
- $\sigma_{k} \sigma_{k}^{\dagger}=1$
- $\sigma_{k}^{\dagger} \sigma_{k}=1$, if σ_{k} does not annihilate the state
- For $k \neq l,\left[\sigma_{k}, \sigma_{l}^{\dagger}\right]=0$

Exact Bosonization

- Introduce creation (annihilation) operators $a_{k}^{\dagger}\left(a_{k}\right)$ which satisfy the standard commutation relations

$$
\left[a_{k}, a_{l}^{\dagger}\right]=\delta_{k l}, \quad k, l=1, \cdots, N
$$

- The states of the bosonic system are given by (a linear combination of)

$$
\left|r_{1}, \cdots, r_{N}\right\rangle=\frac{\left(a_{1}^{\dagger}\right)^{r_{1}} \cdots\left(a_{N}^{\dagger}\right)^{r_{N}}}{\sqrt{r_{1}!\cdots r_{N}!}}|0\rangle
$$

Exact Bosonization

- Now, make the following identifications

$$
\sigma_{k}=\frac{1}{\sqrt{a_{k}^{\dagger} a_{k}+1}} a_{k} ; \quad \sigma_{k}^{\dagger}=a_{k}^{\dagger} \frac{1}{\sqrt{a_{k}^{\dagger} a_{k}+1}}
$$

- together with the map ${ }^{\text {² }}$

$$
r_{N}=f_{1} ; \quad r_{k}=f_{N-k+1}-f_{N-k}-1, \quad k=1,2, \cdots N-1
$$

- For the Fermi vacuum, $f_{k+1}=f_{k}+1$ and so $r_{k}=0$ for all $k=>$ Fermi vacuum = Bose vacuum

Exact Bosonization

- The $\sigma_{k}, k=1,2, \cdots, N$ are necessary and sufficient
- Any bilinear $\psi_{n}^{\dagger} \psi_{m}$ can be built out of σ_{k} 's

Exact Bosonization

- The $\sigma_{k}, k=1,2, \cdots, N$ are necessary and sufficient
- Any bilinear $\psi_{n}^{\dagger} \psi_{m}$ can be built out of σ_{k} 's

Exact Bosonization

- The $\sigma_{k}, k=1,2, \cdots, N$ are necessary and sufficient
- Any bilinear $\psi_{n}^{\dagger} \psi_{m}$ can be built out of σ_{k} 's

Exact Bosonization

Generic properties of the bosonized theory:

- Each boson can occupy only a finite number of different states, as a consequence of a finite number of fermions => a cut-off or graininess in the bosonized theory!

Exact Bosonization

Generic properties of the bosonized theory:

- Each boson can occupy only a finite number of different states, as a consequence of a finite number of fermions => a cut-off or graininess in the bosonized theory!
- There is no natural "space" in the bosonic theory - in the examples we will discuss, a spatial direction will emerge in the low-energy large- N limit.

Exact Bosonization

- The non-interacting fermionic Hamiltonian:

$$
H=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}
$$

Exact Bosonization

- The non-interacting fermionic Hamiltonian:

$$
H=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}
$$

- The bosonized Hamiltonian:

$$
H=\sum_{k=1}^{N} \mathcal{E}\left(\hat{n}_{k}\right), \quad \hat{n}_{k}=\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}+N-k
$$

Exact Bosonization

- The non-interacting fermionic Hamiltonian:

$$
H=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}
$$

- The bosonized Hamiltonian:

$$
H=\sum_{k=1}^{N} \mathcal{E}\left(\hat{n}_{k}\right), \quad \hat{n}_{k}=\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}+N-k
$$

- What about fermion interactions? These can also be included since the generic bilinear $\psi_{n}^{\dagger} \psi_{m}$ has a bosonized expression

Half-BPS states and LLM geometries

- SYM - half-BPS states are described by a holomorphic sector of quantum mechanics of an $N \times N$ complex matrix Z in a harmonic potential
- This system can be shown ${ }^{a}$ to be equivalent to the quantum mechanics of an $N \times N$ hermitian matrix Z in a harmonic potential

[^2]
Half-BPS states and LLM geometries

- Gauge invariance => physical observables on boundary are $U(N)$-invariant traces:

$$
\operatorname{tr} Z^{k}, \quad k=1,2, \cdots, N
$$

- Physical states <=> operators

$$
\left(\operatorname{tr} Z^{k_{1}}\right)^{l_{1}}\left(\operatorname{tr} Z^{k_{2}}\right)^{l_{2}} \ldots
$$

- Total number of Z 's is a conserved RR charge $Q=\sum_{i} k_{i} l_{i}$. BPS condition $=>E=Q$

Half-BPS states and LLM geometries

- At large N there is a semiclassical picture of the states of this system in terms of droplets of fermi fluid in phase space

Half-BPS states and LLM geometries

- At large N there is a semiclassical picture of the states of this system in terms of droplets of fermi fluid in phase space

Half-BPS states and LLM geometries

- At large N there is a semiclassical picture of the states of this system in terms of droplets of fermi fluid in phase space

small fluctuations around the ground state

Half-BPS states and LLM geometries

- By explicitly solving equations of type IIB gravity, LLM showed that there is a similar structure in the classical geometries in the half-BPS sector!
- LLM solutions - two of the space coordinates are identified with the phase space of a single fermion => noncommutativity in two space directions in the semicalssical description ${ }^{2}$
- Small fluctuations around AdS space, i.e low-energy graviton excitations ${ }^{b c} \equiv$ low-energy fluctuations of the fermi vacuum ${ }^{d}$

[^3]
Half-BPS states and LLM geometries

- Motivation for our work ${ }^{\text {® }}$ - on the CFT side the half-BPS system can be quantized exactly in terms of our bosons => window of opportunity to learn about aspects of quantum gravity.
- At finite N, only the low-energy excitations on the boundary can be identified with low-energy ($\ll N$) gravitons in the bulk
- The single-particle graviton excitations are related to our bosons. On the boundary, these states are:

$$
\beta_{m}^{\dagger}|0\rangle=\sum_{n=1}^{m}(-1)^{n-1} \sqrt{\frac{(N+m-n)!}{2^{m}(N-n)!}} \sigma_{1}^{\dagger^{m-n}} \sigma_{n}^{\dagger}|0\rangle
$$

Half-BPS states and LLM geometries

- On the boundary, single-particle giant graviton states map to linear combinations of multi-graviton states ${ }^{a}$. Example:

$$
\mid \text { giant graviton of energy } 2\rangle=\left(\beta_{1}^{\dagger^{2}}-\beta_{2}^{\dagger}\right)|0\rangle
$$

[^4]
Half-BPS states and LLM geometries

- On the boundary, single-particle giant graviton states map to linear combinations of multi-graviton states ${ }^{a}$. Example:

$$
\mid \text { giant graviton of energy } 2\rangle=\left(\beta_{1}^{\dagger^{2}}-\beta_{2}^{\dagger}\right)|0\rangle=a_{2}^{\dagger}|0\rangle
$$

[^5]
Half-BPS states and LLM geometries

- Boundary states corresponding to single-particle bulk giant states are our single-particle bosonic states:

$$
\mid \text { giant graviton of energy } k\rangle=a_{k}^{\dagger}|0\rangle
$$

Half-BPS states and LLM geometries

- Boundary states corresponding to single-particle bulk giant states are our single-particle bosonic states:

$$
\mid \text { giant graviton of energy } k\rangle=a_{k}^{\dagger}|0\rangle
$$

- Hamiltonian: $H_{F}=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}=>H_{B}=\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}$

Half-BPS states and LLM geometries

- Boundary states corresponding to single-particle bulk giant states are our single-particle bosonic states:

$$
\mid \text { giant graviton of energy } k\rangle=a_{k}^{\dagger}|0\rangle
$$

- Hamiltonian: $H_{F}=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}=>H_{B}=\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}$
- Discrete space?

$$
\phi\left(\theta_{n}\right)=\sum_{k=1}^{N}\left(e^{i k \theta_{n}} a_{k}+e^{-i k \theta_{n}} a_{k}^{\dagger}\right), \quad \theta_{n}=\frac{2 \pi n}{N}
$$

Black holes and 2-d YM on a circle

- Vafa ${ }^{\circledR}$ has argued that the partition function of $U(N)$ 2-d YM on a circle counts certain BPS D-brane black hole configurations in a CY compactification of type IIA string theory.
- The rank of the gauge group, N, maps to the number of $D 4$-branes and combinations of the YM coupling and the theta-angle map to chemical potentials for $D 2$ and D0-branes.

Black holes and 2-d YM on a circle

- In the leading large N limit, the partition function satisfies the OSV ${ }^{\text {a }}$ relation, $Z_{\text {bh }}=|\psi|^{2}$. But at finite N there are nonperturbative $\mathrm{O}\left(e^{-N}\right)$ corrections to this relation ${ }^{6}$ which can be attributed to multi-center black holes.
- 2-d YM on a circle can be mapped to free NR fermions on a circle ${ }^{\varsigma}$. This relation was exploited by DGOV to obtain the nonperturbative corrections.

[^6]
Free fermions and 2-d YM on a circle

- In the gauge the gauge $A_{0}=0$, one solves the Gauss law constraint in terms of the Wilson line

$$
W_{a b}=P\left(\exp \left[i g \int_{a}^{b} d x A_{1}\right]\right)
$$

- One gets

$$
E(x) \equiv \dot{A}_{1}(x)=W_{x 0} V W_{L x} .
$$

- This expression for $E(x)$ and its periodicity on the circle lead to the constraint

$$
[W, \dot{W}]=0, \quad W \equiv W_{0 L} .
$$

Free fermions and 2-d YM on a circle

- The 2-d YM hamiltonian becomes

$$
H=\frac{1}{2} \int_{0}^{L} d x \operatorname{Tr} E^{2}=-\frac{1}{2 g^{2} L} \operatorname{Tr}\left(W^{-1} \dot{W}\right)^{2} .
$$

- The constraint and the canonical structure implied by the original Poisson bracket of the potential A_{1} with its conjugate field E give the standard matrix model structure for the dynamics. Thus, this hamiltonian desribes the singlet sector of a unitary matrix quantum mechanics.
- Quantum mechanics of a unitary matrix is well-known to map to fermions on a circle.

Free fermions on a circle

- We will only discuss ${ }^{\text {a }}$ the free fermion problem. Interactions can be taken into account once the free part has been dealt with properly.
- The free hamiltonian:

$$
H=-\frac{\hbar^{2}}{2 m} \int_{0}^{L} d x \chi^{\dagger}(x) \partial_{x}^{2} \chi(x)
$$

[^7]
Free fermions on a circle

- We will only discuss ${ }^{\text {a }}$ the free fermion problem. Interactions can be taken into account once the free part has been dealt with properly.
- Hamiltonian in terms of fourier modes:

$$
H=\omega \hbar \sum_{n=-\infty}^{\infty} n^{2} \chi_{n}^{\dagger} \chi_{n}, \quad \omega \equiv \frac{2 \pi^{2} \hbar}{m L^{2}}
$$

${ }^{\text {a }}$ Dhar and Mandal, hep-th/0603154

Free fermions on a circle

- We will only discuss ${ }^{\text {a }}$ the free fermion problem. Interactions can be taken into account once the free part has been dealt with properly.
- Hamiltonian in terms of fourier modes:

$$
H=\omega \hbar \sum_{n=-\infty}^{\infty} n^{2} \chi_{n}^{\dagger} \chi_{n}, \quad \omega \equiv \frac{2 \pi^{2} \hbar}{m L^{2}}
$$

- To apply our bosonization rules, need to introduce an ordering in the spectrum. For example, replace $n^{2} \rightarrow(n+\epsilon)^{2}$
${ }^{\text {a }}$ Dhar and Mandal, hep-th/0603154

Free fermions on a circle

Free fermions on a circle

- Effectively, we have set $\chi_{+n}=\psi_{2 n}$ and $\chi_{-n}=\psi_{2 n-1}$

Free fermions on a circle

- Effectively, we have set $\chi_{+n}=\psi_{2 n}$ and $\chi_{-n}=\psi_{2 n-1}$
- Fermionic hamiltonian:

$$
H=\omega \hbar \sum_{n=1}^{\infty}\left(\frac{n+e(n)}{2}\right)^{2} \psi_{n}^{\dagger} \psi_{n}
$$

Free fermions on a circle

- Effectively, we have set $\chi_{+n}=\psi_{2 n}$ and $\chi_{-n}=\psi_{2 n-1}$
- Fermionic hamiltonian:

$$
H=\omega \hbar \sum_{n=1}^{\infty}\left(\frac{n+e(n)}{2}\right)^{2} \psi_{n}^{\dagger} \psi_{n}
$$

- Bosonized hamiltonian:

$$
H=\omega \hbar \sum_{k=1}^{N}\left(\frac{\hat{n}_{k}+e\left(\hat{n}_{k}\right)}{2}\right)^{2}
$$

where $\hat{n}_{k}=\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}+N-k$

Free fermions on a circle

- Large- N low energy limit: $H=H_{F}+H_{0}+H_{1}$

Free fermions on a circle

- Large- N low energy limit: $H=H_{F}+H_{0}+H_{1}$

$$
H_{0}=\frac{\hbar \omega N}{2}\left(\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}+\hat{\nu}\right)
$$

Free fermions on a circle

- Large- N low energy limit: $H=H_{F}+H_{0}+H_{1}$

$$
H_{0}=\frac{\hbar \omega N}{2}\left(\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}+\hat{\nu}\right)
$$

- $\hat{\nu}=N_{-}-N_{-F}=\sum_{k=1}^{N}\left(e\left(\hat{n}_{k}\right)-e(N-k)\right)$ is the number of excess fermions in negative momentum states over and above the number in fermi vacuum

Free fermions on a circle

- Large- N low energy limit: $H=H_{F}+H_{0}+H_{1}$

$$
H_{0}=\frac{\hbar \omega N}{2}\left(\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}+\hat{\nu}\right)
$$

- $\hat{\nu}=N_{-}-N_{-F}=\sum_{k=1}^{N}\left(e\left(\hat{n}_{k}\right)-e(N-k)\right)$ is the number of excess fermions in negative momentum states over and above the number in fermi vacuum
- H_{1} is order one on excited states whose energy is low compared to N

Free fermions on a circle

- The operator $\hat{\nu}$ commutes with both H_{0} and H_{1} separately. States can therefore be labeled by the quantum number ν, the eigenvalue of this operator.
- These states can be explicitly constructed:

$$
|\nu\rangle= \begin{cases}\sigma_{2 \nu-1}^{\dagger} \sigma_{2 \nu-2}^{\dagger} \cdots \sigma_{1}^{\dagger}|0\rangle, & \nu>0 \\ \sigma_{2|\nu|}^{\dagger} \sigma_{2|\nu|-1}^{\dagger} \cdots \sigma_{1}^{\dagger}|0\rangle, & \nu<0\end{cases}
$$

- These states satisfy

$$
\hat{\nu}|\nu\rangle=\nu|\nu\rangle, \quad H_{0}|\nu\rangle=\hbar \omega N \nu^{2}|\nu\rangle, \quad H_{1}|\nu\rangle=0
$$

Free fermions on a circle

- Generalized partition function (H_{0} part only), which keeps track of ν as well, is

$$
\begin{aligned}
& Z_{N}(q, y)=\sum_{r_{1}, r_{2}, \cdots, r_{N}=0}^{\infty} q^{\frac{1}{2} \sum_{k=1}^{N} k r_{k}} y^{\sum_{k=1}^{N}(-1)^{N-k} e\left(\sum_{i=k}^{N} r_{i}\right)}, \\
& \text { where } q=e^{-\hbar \omega N \beta}, y=e^{-\mu} .
\end{aligned}
$$

Free fermions on a circle

- Generalized partition function (H_{0} part only), which keeps track of ν as well, is

$$
\begin{aligned}
& Z_{N}(q, y)=\sum_{r_{1}, r_{2}, \cdots, r_{N}=0}^{\infty} q^{\frac{1}{2} \sum_{k=1}^{N} k r_{k}} y^{\sum_{k=1}^{N}(-1)^{N-k} e\left(\sum_{i=k}^{N} r_{i}\right)}, \\
& \text { where } q=e^{-\hbar \omega N \beta}, y=e^{-\mu} .
\end{aligned}
$$

- The following recursion relation can be easily derived:

$$
Z_{N}(q, y)=\left(1-q^{N}\right)^{-1}\left[Z_{N-1}\left(q, y^{-1}\right)+q^{N / 2} Z_{N-1}(q, y)\right] .
$$

Free fermions on a circle

- Exact partition function for finite N :

$$
Z_{N}(q, y)=\sum_{\nu=-\frac{N-1}{2}}^{\frac{N+1}{2}} y^{\nu} q^{\nu\left(\nu-\frac{1}{2}\right)} \prod_{n=1}^{\frac{N+1}{2}-\nu}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\frac{N-1}{2}+\nu}\left(1-q^{n}\right)^{-1}
$$

Free fermions on a circle

- Exact partition function for finite N :

$$
Z_{N}(q, y)=\sum_{\nu=-\frac{N-1}{2}}^{\frac{N+1}{2}} y^{\nu} q^{\nu\left(\nu-\frac{1}{2}\right)} \prod_{n=1}^{\frac{N+1}{2}-\nu}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\frac{N-1}{2}+\nu}\left(1-q^{n}\right)^{-1}
$$

- Setting $y=q^{1 / 2}$, we get

$$
Z_{N}(q)=\sum_{\nu=-\frac{N-1}{2}}^{\frac{N+1}{2}} q^{\nu^{\nu}} \prod_{n=1}^{\frac{N+1}{2}-\nu}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\frac{N-1}{2}+\nu}\left(1-q^{n}\right)^{-1} .
$$

Free fermions on a circle

- Nonperturbative corrections for large but finite N :

$$
\begin{aligned}
Z_{N}(q)= & \sum_{\nu=-\frac{N-1}{2}}^{\frac{N+1}{2}} q^{\nu^{2}} \\
& \times\left[\prod_{n=1}^{\infty}\left(1-q^{\frac{N+1}{2}-\nu+n}\right) \prod_{n=1}^{\infty}\left(1-q^{\frac{N-1}{2}+\nu+n}\right)\right] \\
& \times\left[\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1}\right]
\end{aligned}
$$

SUMMARY

- We have developed a simple and exact bosonization of a finite number of NR fermions; we discussed here applications to problems in string theory, but our techniques are applicable in other areas of physics as well, e.g. to problems in condensed matter physics.
- Our bosonization trades finiteness of the number of fermions for finite dimensionality of the single-particle boson Hilbert space
- The bosonized theory is inherently grainy; in the specific applications we discussed, a local space-time field theory emerges only in the large- N and low-energy limit
- Bosonization of finite number of fermions in higher dimensions?

[^0]: ${ }^{a}$ Brezin, Itzykson, Parisi and Zuber, Comm. Math. Phys.59, 35, 1978
 ${ }^{b}$ Nucl.Phys.B165, 511, 1980

[^1]: ${ }^{a}$ Dhar, Mandal and Wadia, hep-th/9204028; 9207011; 9309028

[^2]: ${ }^{\text {a }}$ Takayama and Tsuchiya, hep-th/0507070

[^3]: ${ }^{a}$ Mandal, hep-th/0502104
 ${ }^{\text {b/ Grant, Maoz, Marsano, Papadodimas and Rychkov, hep-th/0505079 }}$
 ${ }^{c}$ Maoz and Rychkov, hep-th/0508059
 ${ }^{d}$ Dhar, hep-th/0505084

[^4]: ${ }^{a}$ Balasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119

[^5]: ${ }^{a}$ Balasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119

[^6]: ${ }^{\text {a }}$ Ooguri, Strominger and Vafa, hep-th/0405146
 ${ }^{\text {b }}$ Dijkgraaf, Gopakumar, Ooguri and Vafa, hep-th/0504221
 ${ }^{c}$ Minahan and Polychronakos, hep-th/9303153

[^7]: ${ }^{a}$ Dhar and Mandal, hep-th/0603154

