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Motivation

There is one class of string backgrounds for which an exact
nonperturbative solution is available.

These are the noncritical type 0 strings. They have a Liouville
formulation as well as a random matrix formulation.

The latter has been used to derive, for example, the
nonperturbative free energy – which we will study in this talk.
This can probably be extended to correlation functions.

This seems like the best place to test basic properties of string
theory including for example string field theory, open-closed
string duality and flux backgrounds.
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Since noncritical strings are dual to topological strings, this
provides an opportunity to understand the latter using the
powerful techniques of random matrices.

This in turn can help us understand superstring theory (of
which topological strings are a sector).

In this talk we will study some issues related to disc
amplitudes and fluxes in type 0A string theory, and their
counterparts in topological string theory..
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Introduction

It has been known for some time that noncritical string theory
in two spacetime dimensions corresponds to a critical
(ctop = 9) topological string (Witten 1992, Mukhi-Vafa 1993).

Analysis of the ground ring of the c = 1 string at self-dual
radius (Witten 1991, Ghoshal: Ph.D. thesis 1993) led to the
prediction that the dual topological string lives on a deformed
conifold (Ghoshal-Vafa 1995).

Because the bosonic c = 1 string is nonperturbatively
unstable, it has not been possible to extend this equivalence
to the nonperturbative level.
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Such an extension can be explored in the case of the
nonperturbatively stable Type 0 string theories in two
dimensions.
For these too, a description has been proposed in terms of
topological string theory (Ita et al 2004, Danielsson et al 2004,

Hyun et al 2005).
The Calabi-Yau dual to noncritical type 0A strings at a special
radius (R = 1 in suitable units) was proposed to be a ZZ2

orbifold of the conifold:
Orbifolded Conifold

S3
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One of the most interesting aspects of noncritical type-0
strings is the possibility of turning on background
Ramond-Ramond fluxes (Takayanagi-Toumbas 2003, Douglas et

al 2003, Gukov et al 2003, Maldacena-Seiberg 2005).

In what follows, we discuss the role of these fluxes in the
noncritical-topological correspondence, with emphasis on
effects related to D-branes and nonperturbative contributions.

Our main result is an improved correspondence in which the
topological string reproduces the exact nonperturbative
partition function of the type 0A string.

This includes some subtle flux-dependent terms discovered
recently by Maldacena and Seiberg.
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Noncritical-topological duality

Let us review some relevant aspects of topological string
theory on noncompact Calabi-Yau spaces.

The simplest example is the deformed conifold, described by
the equation

zw − px = µ

where z ,w , p, x are complex coordinates of IC4.

Here µ is complex and its modulus determines the size of the
S3 that deforms the conifold.

The topological B model is a theory of quantised deformations
of the complex structure of the Calabi-Yau.
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The original noncritical-topological duality Ghoshal and Vafa
says that if µM is the cosmological constant of the noncritical
string:

SLiouville → SLiouville + µM

∫
d2ξ e2φ

then the noncritical string is dual to the topological B-model
with:

µ = igsµM

This requires the genus-g partition functions of the two
theories to coincide. Let:

Fc=1(µM) =
∞∑

g=0

Fc=1
g (−1)g−1(gsµM)2−2g

F top,DC (µ) =
∞∑

g=0

F top,DC
g µ2−2g
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The claim then amounts to:

Fc=1
g = F top,DC

g , all g

for which ample evidence has been found (Antoniadis et al

1995, Morales et al 1997).

There is also expected to be a 1-1 correspondence between
the physical observables (tachyons in the c = 1 case and
deformations of S3 in the B-model case) and their correlators
(e.g. “S3 cosmology” of Gukov-Saraikin-Vafa 2005).
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For integer multiples of the self-dual radius, the corresponding
topological theory lives on a ZZn orbifold of the conifold
geometry. This too follows from the ground ring
(Ghoshal-Jatkar-Mukhi 1992).

The deformed version of this space is described by the
equation:

zw −
n∏

k=1

(px − µk) = 0

which has n homology 3-spheres of size µ1, µ2, . . . , µn, each
concealing one of the singularities.

The geometry develops a conifold singularity if any of the µi ’s
become zero, and a line singularity if µi = µj for i 6= j .
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Consider the noncritical string at radius R = n with only the
cosmological perturbation µM turned on.

The n parameters of the deformed conifold must be
determined in terms of µM . In fact it was shown that:

µk = igs
µM + ik

n
, k = −n−1

2 ,−n−1
2 + 1, · · · , n−1

2

(Gopakumar-Vafa 1998).

These authors also argued that the free energy factorises into
a sum of contributions:

FR=n
c=1 (µ) = F top,DOCn({µk}) =

n−1
2∑

k=− n−1
2

F top,DC (µk)

In type 0A strings we will find a nonperturbatively exact
version of this result.
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This factorisation, among other things, can be understood in
the Riemann surface formulation (Aganagic et al 2003).

In this approach one thinks of the following class of
noncompact Calabi-Yaus:

zw − H(p, x) = 0

as a fibration described by the pair of equations:

zw = H, H(p, x) = H

The fibre is zw = H, a complex hyperbola, and the base is the
complexified p, x plane.
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Above points in the base satisfying H(p, x) = 0, the fibre
degenerates to zw = 0, a pair of complex planes intersecting
at the origin.

Such points in the base form a Riemann surface which
governs the physics of the topological string theory. The
function H(p, x) plays the role of a Hamiltonian and is related
to integrability.
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For the orbifolded conifold, the Hamiltonian is:

H(p, x) =
n∏

k=1

(px − µk)

so the Riemann surface H(p, x) = 0 factorises into disjoint
branches.

This is the physical reason for the factorisation of the free
energy into a sum of contributions, one for each branch of the
Riemann surface.

As we already said, the above statements are meaningful only
at the level of string perturbation theory.
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Type 0 noncritical strings

The type 0A string has, besides the cosmological constant
µM , two additional (quantised) parameters q and q̃
(Takayanagi-Toumbas 2003, Douglas et al 2003, Gukov et al 2003,

Maldacena-Seiberg 2005).

In the Liouville description these are the fluxes of two distinct
Ramond-Ramond 2-form field strengths, Ftφ, F̃tφ.

The theory has a symmetry, labelled S-duality:

µM → −µM , F ↔ F̃

In the matrix quantum mechanics (MQM) description, the
fluxes have an asymmetric origin. For µM < 0:

q = #(D0)−#(D0), q̃ = Chern-Simons coefficient

and the opposite for µM > 0.
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Special radius

The Euclidean type 0A theory has a special value of the
radius, R = 1 (in units where α′ = 2).

At this radius the topological correspondence is simplest. The
dual geometry is a ZZ2 orbifold of the conifold:

Orbifolded Conifold

S3

µ = igs(µM − i q̂
2 ) =

gs

2
y

µ′ = −igs(µM + i q̂
2 ) =

gs

2
ȳ

(1)

where y = q̂ + 2iµM , q̂ = |q|+ |q̃|.
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The equation of the deformed, orbifolded conifold is:

zw + (px − µ)(px − µ′) = 0

Notice that complex conjugation exchanges the moduli of the
two S3’s and acts as S-duality of the noncritical string.
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Following Hyun et al, it is convenient to use a duality that
takes us to the topological B-model on a resolved orbifolded
conifold with D-branes (Gopakumar-Vafa 1998).

On this space there are two 2-spheres (P1’s) which have
respectively N1,N2 2-dimensional B-branes wrapped over
them, where:

N1 =
y

2
=

q̂

2
+ iµM

N2 =
ȳ

2
=

q̂

2
− iµM

The number of branes in this correspondence is complex,
though remarkably N1 + N2 = q̂ is real and integer.
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Now we have:

F top,DOC
(
µ, µ′

)
= F top,ROC

(
N1 =

y

2
,N2 =

ȳ

2

)
= F top,RC

(
N =

y

2

)
+ F top,RC

(
N =

ȳ

2

)

Here, factorisation of the B-brane contributions has been
assumed. This will be justified later.

On an ordinary resolved conifold, the free energy of N
D-branes is given by the log of the matrix integral:

e−F
top,RC (N) =

1

vol(U(N)

∫
dMe−

1
2
trM2

=
(2π)

N2

2

vol(U(N)
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Next we use (Ooguri-Vafa 2002):

vol(U(N)) =
(2π)

1
2
(N2+N)

G2(N + 1)

where G2(x) is the Barnes double-Γ function defined by:

G2(z + 1) = Γ(z)G2(z), G2(1) = 1

Thus we find

−F top,RC
(
N =

y

2

)
−F top,RC

(
N =

ȳ

2

)
=

(
log G2

(y

2
+ 1

)
− y

4
log 2π

)
+ c .c .
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Let us compare the above with what we know about the
noncritical string starting from the matrix model.

A complete nonperturbative solution for the free energy of
Type 0A noncritical strings at arbitrary radius R is given by
(Maldacena-Seiberg 2005):

−F0A(µM , q, q̃,R) = Ω(y ,R) + Ω(ȳ ,R) +
πµMR

2
(|q| − |q̃|)

where:

Ω(y ,R) ≡ −
∫ ∞

0

dt

t

[ e−
yt
2

4 sinh t
2 sinh t

2R

− R
t2 + Ry

2t

+
(

1
24

(
R + 1

R

)
− Ry2

8

)
e−t

]
The integral is convergent for Re y > −

(
1 + 1

R

)
.
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At the special radius R = 1 it is easily shown from the integral
form that:

Ω(y ,R = 1) = log G2

(y

2
+ 1

)
− y

4
log 2π

where G2 is the Barnes function discussed above.

If we temporarily ignore the last term, we see that the free
energy obeys holomorphic factorisation.

Moreover, each factor is the (complexified) free energy of the
bosonic c = 1 string at radius R. This justifies our
assumption that the two B-brane contributions factorise.
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Note that from the 0A point of view, holomorphic
factorisation follows from the answer for the free energy.

From the topological point of view, however, it is an
assumption which must be true for the correspondence to
hold.
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Rational radius

Continuing to ignore the last term, we provide a simple,
general and nonperturbatively exact derivation that the free
energy of type 0A at any rational radius factorises into unit
radius contributions.
Let R = p

p′ , with p and p′ co-prime.
Inserting this into the integral representation for Ω, and
defining:

yk,k ′ = y−p′+(2k ′−1)
p′ + −p+(2k−1)

p ,

k = 1, 2, . . . , p; k ′ = 1, 2, . . . , p′

one can show that:

Ω
(
y ,R = p

p′

)
=

∑
k,k ′

Ω(yk,k ′ ,R = 1)−
(

1
24

(
p
p′+

p′

p

)
−py2

8p′

)
log p′
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The proof relies only on manipulating convergent integral
representations.

We see that the free energy at rational radius factorises into
2pp′ distinct contributions, of which pp′ are holomorphic in y
and the remaining are anti-holomorphic.

Each of the contributions corresponds to a theory at R = 1,
or equivalently to the contribution of topological B-branes.

The factorisation is exact upto an analytic and therefore
non-universal term.

This strongly suggests that the noncritical-topological
correspondence is nonperturbatively exact.
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Again, from the topological point of view it remains a puzzle
why the correspondence is exact. It means the 2pp′ different
B-branes do not seem to communicate with each other, e.g.
by open strings!
Perhaps this is due to factorisation of the underlying Riemann
surface as well as the topological nature of the theory.
In the deformed orbifolded conifold picture, the total space is:

zw −
∏
k,k ′

(px − µk,k ′)
∏
k,k ′

(px − µ̄k,k ′)

where
µk,k ′ =

gs

2
yk,k ′

and therefore the associated Hamiltonian is:

H(p, x) =
∏
k,k ′

(px − µk,k ′)
∏
k,k ′

(px − µ̄k,k ′)
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Disc amplitudes and noncompact branes

We now return to the puzzle about the extra term in the free
energy.

The noncritical string depends on three parameters, q, q̃, µM ,
which in the continuum Liouville description arise as the two
independent RR fluxes and the cosmological constant.

However, the topological dual only depends on the complex
number y = |q|+ |q̃|+ 2iµM , and therefore on only two of
these three parameters.

It reproduces most of the free energy, which indeed depends
only on two parameters and is the sum of mutually complex
conjugate terms.
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But as we saw, the extra term in the free energy:

Fdisc,2 = −πR

2
µM(|q| − |q̃|)

remains unaccounted for.

This term is responsible for an important effect
(Maldacena-Seiberg 2005):

From the factorised part of the free energy, the following disc
contribution arises in the limit of large µM and fixed q̂:

Fdisc,1 = +
πR

2
|µM |(|q|+ |q̃|)

Hence the total disc amplitude is:

Fdisc = Fdisc,1+Fdisc,2 =
πR

2

[(
|µM |−µM

)
|q|+

(
|µM |+µM

)
|q̃|

]
Anindya Mukherjee (TIFR, Mumbai) Noncritical-Topological Correspondence: Disc Amplitudes and Noncompact Branes



Motivation
Introduction

Noncritical-topological duality
Type 0 noncritical strings

Conclusions

Special radius
Rational radius
Disc amplitudes and noncompact branes

This can be written as:

Fdisc = (2πR)
µM

2
|q̃|, µM > 0

= (2πR)
|µM |

2
|q|, µM < 0

The physical interpretation is that for µM > 0 the RR flux of
q̃ units associated to the gauge field Ã is supported by |q̃| ZZ
branes in the vacuum.

The contribution per brane to the free energy is given by the
product of its extent in Euclidean time 2πR and its tension
|µM |

2 . The other flux of q units associated to the gauge field A
has no source.

For µM < 0 the situation is reversed.
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In the absence of the term Fdisc,2 there is no satisfactory
physical interpretation of the disc amplitude in terms of ZZ
branes. This makes the term extremely important for a
consistent noncritical string theory.

We now propose that the missing term is supplied, on the
topological side, by additional topological branes.

These are noncompact B-branes wrapping a degenerate fibre
of the Calabi-Yau over the Riemann surface H(p, x) = 0.
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First consider the case R = 1 for which the Riemann surface
has two branches.

Place a single noncompact B-brane along one branch of the
degenerate fibre over a point x on the Riemann surface.

The brane is asymptotically at x∗ but its interior region has
been moved to x . Such branes are BPS.

The action of such a brane is a reduction of holomorphic
Chern-Simons theory and has been shown to be (Aganagic-Vafa

2000, Aganagic et al 2003):

S(x) =
1

gs

∫ x

x∗

p(z) dz
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For the case of interest to us, the Riemann surface consists of
two disjoint factors:

xp =
gs

2
y , xp =

gs

2
ȳ

Thus a brane on the first branch contributes:

S(x) =
µ

gs
ln

x

x∗

Let us now place one noncompact brane above each of the
two branches, and take their asymptotic positions to be at
x∗, x

′
∗ which will both be sent to infinity.

Then their total contribution to the free energy is:

S(x , x ′) =
1

2

(
y ln

x

x∗
+ ȳ ln

x ′

x ′∗

)
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Now we will choose our branes such that x , x ′ are also at
infinity, but rotated by angles θ, θ′ respectively along the circle
at infinity relative to the original points x∗, x

′
∗:

x = x∗ e iθ, x ′ = x ′∗ e iθ′

p = ∞

x∗

x
′

∗
x = ∞

x
′

x
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It follows that:

S(x1, x2) =
i

2
(y θ + ȳ θ′)

= −µM(θ − θ′) + i
q̂

2
(θ + θ′)

The factors of gs have conveniently cancelled out, and the
real part of the above contribution is proportional to µM .

Now if we choose:

θ = −θ′ =
π

4
(|q| − |q̃|)

we find that the noncompact branes give a contribution:

S = −π

2
µM(|q| − |q̃|)

to the free energy, precisely equal to the desired disc term at
R = 1.
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These considerations can be extended to other rational radii.

For a radius R = p
p′ , we have 2pp′ branches for the Riemann

surface. So noncompact branes can be placed with:

xk,k ′ = x∗ k,k ′ e
iθk,k′

on the first pp′ asymptotic regions, and the opposite phases
on the remaining pp′ regions. Here:

θk,k ′ =
π

4p′2
(|q| − |q̃|) , all k, k ′

The net contribution of these to the free energy is then:

−2µM

p∑
k=1

p′∑
k ′=1

θk,k ′ = − πp

2p′
µM(|q| − |q̃|)

in accordance with the extra disc term for R = p
p′ .
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It is quite nontrivial that we were able to reproduce the subtle
disc term by a simple configuration of noncompact branes in
every case.

The 1
gs

factor in front of the holomorphic Chern-Simons
action, and the gs in the complex-structure moduli

µk,k ′ = gs

2

(
q̂+2iµM−p′+(2k ′−1)

p′ + −p+(2k−1)
p

)
exactly cancel out.

Moreover, µk,k ′ all have a common imaginary part
proportional to µM . These facts were important in allowing us
to obtain the desired contribution from noncompact branes.
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Conclusions

One of our main results has been that the
noncritical-topological correspondence for type 0 noncritical
strings has to include noncompact branes on the topological
side.

This introduces a dependence on a new parameter which we
interpret as |q| − |q̃| on the noncritical side, and renders the
duality consistent with the dependence of the noncritical
theory on three parameters: µM , q and q̃.
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For the future:
(i) understand the dictionary more precisely. What are ZZ
branes on the topological side?
(ii) the noncritical side is physically inconsistent without the
subtle disc term. Is the topological side inconsistent without
noncompact branes?
(iii) what is the origin of exact factorisation on the topological
side?
(iv) generalise 0A exact solution to correlators and a
nonperturbatively defined Normal Matrix Model.
(v) topological-anti-topological point of view.
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