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Main Objective of the talk
To discuss different measures of non-

classical correlations:- entanglement and as 
well beyond entanglement scenario.

 To begin with, we first explain some of the 
background materials.



Non-locality: a discovery! Or…
 The term non-locality is one of the most important 

and debatable word in the last century.

 If we break the whole period in some parts in the sense 
that due to non-local (!) behavior someone may 
consider quantum mechanics is not a complete theory 
or we may think or try to understand the word  in 
some operational way through the results from 
quantum mechanics. 

 For the first part we usually look for hidden variable 
approaches and for the second part we find some 
fascinating results almost counterintuitive in nature.



Understanding Quantum 
Correlations

 If we restrict ourselves with the results from 
quantum mechanics only, we find the 
behavior of quantum systems is not fully 
understood whenever there are more 
number of parties involved.

 In other words, there exist a peculiar type 
correlation between the parties involved 
which is not explainable by classical 
scenario.



Understanding……contd.
 Naturally, one may ask, how one could formalise the 

concept of correlations in quantum mechanical 
systems? 

 Is quantum correlation quantifiable?

 Is there any procedure to detect such correlation? 

 Or, how to characterize quantum correlations?

 All the above issues are very much fundamental in 
nature and they have immense importance in 
quantum information theory.

 There are several ways to describe correlations in 
composite quantum systems.



This is possibly the most wonderful invention of 
quantum mechanics.

Initially everyone thinks the correlation which is 
responsible for non-local behavior of quantum 
systems is nothing but the entanglement. 

However, findings in different quantum systems 
show there are other candidates also.



Some Basic Notions about 
Quantum Systems
 Physical System- associated with a separable complex 

Hilbert space

 Observables are linear, self-adjoint operators acting on 
the Hilbert space

 States are represented by density operators acting on 
the Hilbert space

 Measurements are governed by two rules

 1. Projection Postulate:- After the measurement of an 
observable A on a physical system represented by the 
state ρ, the system jumps into one of the eigenstates of 
A.



 2. Born Rule:- The probability of obtaining the system 
in an eigen state         is given by 

Tr(ρP[        ]).

 The evolution is governed by an unitary operator or in 
other words by Schrodinger’s evolution equation.



States of a Physical System
 Suppose H be the Hilbert space associated with the 

physical system.

 Then by a state ρ we mean a linear, hermitian 
operator acting on the Hilbert space H such that 

 It is non-negative definite and

 Tr(ρ)= 1.

 A state is pure iff ρ2 = ρ and mixed iff ρ2 < ρ

 Pure state has the form ρ=|, |H.



 Consider physical systems consist of two or more 
number of parties A, B, C, D, ……

 The associated Hilbert space is  HAHB HC HD … 

 States are then classified in two ways

 (I) Separable:- have the form,

 ρABCD =wi ρi
Aρi

Bρi
Cρi

D with 0 wi 1,

 and wi =1.

 (II) All other states are entangled.                               

Composite Systems



Bipartite Pure States
 Pure bipartite states have the Schmidt 

decomposition form, 

 |AB = i |iA |iB where

 {|iA} and { |iB } are the Schmidt bases of the 
parties A and B and 1, 2 ,…, are the Schmidt 
coefficients that satisfies 0 i 1, and i =1. 

 Pure product states have only one Schmidt 
coefficient and entangled states have more than 
one.



Some Use of Quantum 
Entanglement

 Quantum Teleportation,(Bennett et.al., PRL, 1993)

 Dense coding, (Bennett et.al., PRL, 1992)

 Quantum cryptography, (Ekert, PRL, 1991)



Physical Operation
Suppose a physical system is described by a state

Krause describe the notion of a physical operation

defined on        as a completely positive map 

, acting on the system and described by

where each         is a linear operator that

satisfies the relation
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If                                  then the operation          is 

trace preserving. When the state is shared between a 

number of parties, say, A, B, C, D,. .... 

and each           has the form

with all of  

are linear operators then the operation         is said to 

be a separable super operator.
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Local operations with classical 
communications (LOCC)

Consider a physical system shared between a 

number of parties situated at distant laboratories. 

Then the joint operation performed on this system 

is said to be a LOCC if it can be achieved by a set 

of some local operations over the subsystems at 

different labs together with the communications 

between them through some classical channel.



Result : Every LOCC is a separable

superoperator.

But whether the converse is
also true or not ? 

It is affirmed that there are 
separable superoperators which cannot 
be expressed by finite LOCC.



Is entanglement quantifiable?
Qualitative equivalence of different entangled 

states:

2 copies of 

(1/√2)|00> +(1/2)|11> +(1/2)|22> 

is equivalent to 

3 copies of (1/√2)(|00> +|11>)



How massive a given object is?

 Mass = lim{(no. of standard masses)/ (no. of actual 
objects)}



The standard in entanglement
 The Bell states
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Pure Bipartite Entanglement
 Entanglement of pure state is uniquely measured by 

von Neumann entropy of its subsystems,

 States are locally unitarily connected if and only if 
they have same Schmidt vector, hence their 
entanglement must be equal.
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Bipartite Entanglement…. 

Now, as far as bipartite 
entanglement is concerned we have 
at least some knowledge how to 
deal with entangled states.
For pure bipartite states 

entanglement is a properly 
quantifiable.



 However for mixed entangled states 
there is no unique measure of 
entanglement. One has to look on 
different ways to quantify entanglement

Some of the measures of entanglement 
are distillable entanglement, 
entanglement cost, entanglement of 
formation, relative entropy of 
entanglement, logarithmic negativity, 
squashed entanglement, etc.



Difficulty
 In most of the cases it is really 
hard to calculate exactly the 
measures of entanglement. Only 
for some few classes of states, 
actual values are available. 
 A similar problem is that it is 
hard to find whether a mixed 
bipartite state is entangled or 
not.



Some Comments
 There are several key issues when we are dealing with 

entanglement. 

 Whether entanglement dynamics is reversible or not?

 In other words, the amount required to create an 
entangled state is equal to the amount extracted from 
it or not?

 If we consider only LOCC then the answer is negative. 
Even if we consider PPT(positive under partial 
transposition) operations, then also the answer is 
negative. 



Contd…
 However, if we consider asymptotically non-entangling 

operations, the answer is positive.

 All the issues are in asymptotic region, i.e., whenever 
infinite copies are available and if we consider any 
bipartite states, pure or mixed. 

 However, for pure bipartite states entanglement 
dynamics is reversible under LOCC.

 Another important aspect in entanglement theory is 
the concept of bound entanglement, like bound 
energy in general physics.

 Actually, existence of bound entangled states provide 
us the irreversibility in entanglement dynamics under 
LOCC.



Contd…
 By bound entangled states we mean states with zero 

distillable entanglement. i.e., no entanglement could 
be extracted from the states under LOCC.

 There exist PPT bound entangled states, however, the 
question of existence of NPT bound entanglement is 
still a unsolved problem.

 A quite related problem from mathematical point of 
view is the characterization of positive maps.

 One must aware of the fact that:

 Thermo-dynamical law of Entanglement : Amount 
of Entanglement of a state cannot be increased by 
any LOCC.



Some other issues:
Local conversion of States:

 Given a pure/mixed entangled state our aim is to 
convert it to another specified/required state by LOCC 
with certainty or with some probability (SLOCC).

Local-distinguishibility/indistinguishibility of set of 
states, entangled or product.

 e.g.,The local-indistinguishibility of a complete  set of 
orthonormal product states in 3x3 system. (non-
locality without entanglement)



Multipartite Entanglement
But the situation in multipartite case is 

more complex than that of bipartite 
case. e.g., how could we define a measure 
of entanglement for multipartite states 
at least for pure states are concerned. 
It is also very difficult to define 
maximally entangled states in 
multipartite systems.



Consider a mixed entangled state in a 
multipartite system with the property 
that it has maximal entanglement 
w.r.t. any bipartite cut (i.e., reduced 
density matrices corresponding to the 
cut is proportional to the identity 
operator), then we observe that for 
n-qubit (n≥ 3) system, there does not 
exist any maximally entangled states 
for n=4 and n ≥ 8.



Therefore one has to think how to
define maximally entangled states
for such situations. Gour and others
have defined maximally entangled
states in 4-qubit system considering
some operational interpretation.
A possible way: the average
bipartite entanglement w.r.t. all
possible bipartite cuts the state is

maximal.



Depending upon different 
entanglement measures, such as, tangle, 
Tasllis and Renyi α-entropies one could 
find different states which are maximally 
entangled w.r.t. the entangled measures 
considered.
Another attempt to quantify entanglement  
of a multipartite state, through the 
distance measures. e.g.,  geometric 
measure.



How to deal with multipartite 
entanglement!
 Recently, we find some attempts to look into the 

problem of quantifying multipartite entanglement. 
e.g., see arxiv: 1510:09164, prl, 115, 150502 (2015), prl, 111, 
110502 (2013) by B. Kraus et al.

 The basic aim in all the works is to understand LOCC 
further to probe entanglement behaviour of composite 
quantum systems. 

 Firstly, LOCC provides us the possible protocols with 
which entangled states can be manipulated.

 2ndly, LOCC induces a operationally meaningful 
ordering of entangled states.



Contd..
 i.e., if the state |ψ> can be transformed to |φ> by 

LOCC, then any task that can be implemented by the 
later, are also amenable by using former. So |ψ> is 
more (or equally) useful than |φ> and consequently 
have the more (or same) amount of entanglement. 
(ordering possible). 

 However, understanding the nature of LOCC is not 
always easy at all, rather it is a very difficult task in 
quantum information theory.

 For pure bipartite case we have definite result 
regarding convertibility under LOCC. We will now 
describe  it in brief, to understand our task in 
multipartite case.



Local conversion of States

Basic task:

 Given a pure/mixed entangled state our aim is to 
convert it to another specified/required state by LOCC 
with certainty or with some probability (SLOCC).

 Consider here mainly pure bipartite entangled states.

 Asymptotically, it is always possible to convert any 
pure bipartite state to other. For mixed state it is not 
the case always. (irreversibility in entanglement 
manipulation:- think about bound entangled states.



Contd…
 Therefore, the whole strategy for pure bipartite states 

is on finite regime. i.e., either single copy or multiple 
copies of a state are given and our aim is to convert it to 
another by deterministic or stochastic LOCC.

 In this respect, for single copy case, Lo and 
Popescu(Phys. Rev. A 63, 022301 (2001)) have obtained some 
results:

 For entanglement manipulation of pure bipartite 
states 1-way communication is necessary and 
sufficient.

 1-way communication is always better than no 
communications.

 The no. of Schmidt coefficients can never be increased 
under LOCC.



Nielsen’s criteria
Let           and           be any two bipartite pure 

states of Schmidt rank d with Schmidt vectors, 

and                                    

respectively, where 

,                            and 

(PRL, 83, 436 (1999))

Then the state           can be deterministically transformed to 
the state          by LOCC if and only if         majorizes

(denoted by                   ).
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Are all pure states convertible 
by LOCC?
 Nielsen’s result provide us the necessary and sufficient 

condition for deterministic local conversion of pure 
bipartite states. But all states are not convertible to 
each other by LOCC with certainty. e.g., consider a pair 

(│Ψ ,│Φ) with Schmidt vectors (.4,.3,.2,.1) and 
(.50,.18,.16,.16). According to the above criteria the 
states are not locally convertible. It violets a necessary 
condition.

 There are several issues relating to convertibility. viz., 
catalysis, assistance by entanglement, SLOCC 
convertibility, etc.



Multipartite entanglement-
contd…
 For multipartite case, convertibility by LOCC is known 

for only few classes of states. For this reason, we 
consider another two classes of transformations, LU 
and SLOCC.

 It provides us mathematically more tractable way and 
provides also operationally meaningful classification.

 We call two multipartite states are LU equivalent if 
there is unitary operator for each subsystem sothat one 
is obtained from the other.(see prl,104, 020504(2010), 
pra, 82, 032121(2010))

 We call two pure multipartite states are SLOCC-
equivalent, if there is a locally invertible operator so



 that one in convertible to other by applying that 
operator.

 For three qubit system there are two SLOCC- in 
equivalent classes of states, viz., W and GHZ class. 
However, for four qubit system there are infinitely 
many. This is one of the major difficulty to characterize 
multipartite entanglement.

 To define an operationally meaningful entanglement 
measure, we first describe some notions: (see, prl, 115, 
150502(2015)).

 We call a multipartite pure state |ψ> can reach a 
multipartite pure state |φ>, if there exists a LOCC 
protocol that transforms |ψ> into |φ> 
deterministically, i.e., |φ> is accessible from |ψ>.



Contd..
 Consider two sets corresponding to a given state |ψ>, 

say, Ma(|ψ>) and Ms(|ψ>), where first one denotes set 
of all states accessible by LOCC from |ψ> and later 
denotes the set of all states that can reach |ψ>.

 Now consider two volumes Va(|ψ>) and Vs(|ψ>) 
corresponding to the accessible states and source 
states under LOCC with suitable volume measure in 
the set of LU equivalent classes.

 Clearly if Ms is very large, then the state is not very 
powerful, however if Ma is very large, then the state is 
definitely more valuable. This enables us to define 
operationally meaningful entanglement measures.



Contd..
 Now if a state is accessible from another state, then any 

state that can reach via LOCC to the later state will also 
reach the former, i.e, the set Ms of the former is 
contains the set Ms of other state. The reverse is for 
Ma.

 Therefore a possible choice would be,              

 Ea(|ψ>)=Va(|ψ>)/ Sup(Va)    and 

 Es(|ψ>) =1- Vs(|ψ>)/Sup(Vs), where sup denotes the 
maximally accessible or source volume according to 
the choice measure.

 Clearly, Ms(|ψ>) = null set implies Vs =0. and we call 
such states as maximally entangled states (MES).



Contd.
 In the work (prl, 115, 150502(2015)), for three qubit case, 

complete analysis for genuine three qubit states is 
given and it is found that both W and GHZ states act 
as MES.

 In arxiv: 1510.09164, you will find more elaborate 
analysis of considering the notion of multipartite 
entanglement and complete analysis for four qubit
MES.

 The above analysis enables us to rethink the notion of 
multipartite entanglement again with a possible 
resolution. However, there are lot of things to do, e.g. 
what about multipartite mixed states?



An interesting issue
 One of the most interesting issue in entanglement 

theory is that entanglement is monogamous. 

 e.g., if a pure state is shared between three parties 
A,B,C in such a way that two parties(say, A,B) shared a 
maximally entangled state then there must not be any 
entanglement between A with C and B with C. 

 However, for other measures of non-classical 
correlations, it is not always the case.



Correlation measures beyond 
entanglement:

Consider first the measures of 
correlation:

Quantum Discord

H.Ollivier and W.H. Zurek, PRL, 88,017901(2001)



Quantum Discord
 Consider the following state:

 The above state is separable. However, it has non-zero 
quantum discord which is defined by difference of 
measuring mutual information in two different ways, 
viz.,    D(A,B)= I(A:B)-J(A:B)    where, 

 I(A:B)= S(A)-S(A|B)    and

 J(A:B)=S(A)-min   pj S(A|j)

 {j}  j

  11001100
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The above quantity is a measure 
of non-classical correlation. It has 
zero value if and only if there exists a 
von Neumann-measurement  
such that the bipartite state  

States of the above kind are known as 
classical-quantum state.
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Some Observations
 One could interpret Discord in terms of 

consumption of entanglement in an 
extended quantum state merging protocol 
thus enabling it to be a measure of 
genuine quantum correlation. 

 Physically, discord quantifies the loss of 
information due to the measurement. 

 This correlation measure is invariant 
under LU but may change under other 
local operation. It is asymmetric w.r.t the 
parties.



 The set of Classical-Quantum states is non 
convex. 

 Due to the optimization problem, it is in 
general very hard to find analytic expression 
for discord. Exact analytical result is available 
only for a few classes of states.

 It was found that Quantum discord is always 
non-negative and it reduces to Von Neumann 
Entropy of the reduced density matrix for pure 
bipartite states. 



There are other variations of 
discord and their extensions to 
multipartite systems have also 
been proposed. e.g.,

Geometric discord:

D(ρ)= min ||ρ-|| where the 
minimum is taken over all zero 
discord state .                                                                                                                  



Exact analytical formula for geometric 
discord is also available for only a few class 
of states. A tight lower bound is found 
recently.

One could also define discord in terms of 
relative entropy:      D(ρ)= min S(ρ||)

The correlation measure discord actually 
generates the possibility of research 
beyond entanglement.



Understanding Discord!
 Dakic et al, Nature Physics, 8, 666(2012); Horodecki et 

al, PRL 112, 140507(2014); Giorgi, PRA 88, 022315(2013).

 Is quantum discord a  useful resource  for remote state 
preparation?

 The claim of the nature paper was: presence of discord 
is necessary and sufficient  for RSP for a broad class of 
quantum channels. However, recent results show the 
property is not universal. 

 One must aware of the fact that discord could be 
increased by LOCC.



Understanding Discord…..
 Streltsov and Zurek, Quantum discord cannot be 

shared, PRL, 111, 040401(2013); Zwolak and Zurek, 
Complementarity of quantum discord and classically 
accessible information, Sci Rep. 2013; 3: 1729.

 If a state of a composite system can be assembled by 
LOCC only then we call such states as separable, i.e., 
states which are not entangled.

 Now consider the situation where one attempts to pull 
apart a quantum state so that all the ingredients are 
classical and can be communicated classically to 



 distant recipients. The cost of such operation is 
actually given by quantum discord. 

 Thus one could consider discord as the information 
lost when a composite quantum state is disassembled.

 S                                                     S

 A                                         LOCC   A                R

 R



 Initially the system S is correlated with the apparatus 
A. The recipient R is not correlated with SA. After 
LOCC we want the full information about the system S  
present in A should be transferred to R. 

 Clearly, the recipient can obtain full information by 
LOCC about the system S is its classical information. 
The information which could not be transferred is 
thus quantum. So any state with non-zero quantum 
discord contains non-classical information.

 In the other work of Zurek, they showed an anti-
symmetry property relating accessible information 
and discord.



Criteria for measures of correlation
 To formalize the new paradigm beyond entanglement 

one could set some properties for a measure of 
correlation.

 Modi et al.,  provided a set of conditions for a measure 
of correlation.

 Necessary conditions:

 Product states have no correlation

 Invariance under local unitarity

 Non=negativeness

 Classical states do not have quantum correlation(!)



Other conditions
 Reasonable conditions:

 Continuity under small perturbations

 Other type of strong and weak continuities

 Questionable/debatable conditions:

 For pure bipartite states total, classical and quantum 
correlations could be defined by nthe marginals

 Additivity  total= classsical+quantum

 Classical and/or quantum are nonincreasing under 
LOCC 

 Symmetry under interchange of subsystems



Some other important 
measures of correlation
 Quantum deficit, 

 measurement induced disturbance, 

 quantum dissonance, 

 quantum dissension, 

 measurement induced non-locality, 

 local quantum uncertainty, 

 etc….



Measurement Induced Nonlocality
 Consider the state,  

 The state has non-zero value of a new measure of 
correlation is the Measurement Induced Non-
Locality(MIN) .

 It is defined as,

N(ρ)= max ||ρ-(ρ) || 

where the maximum is taken over all Von-
Neumann measurements that preserves 
density matrix of the first party.

 11110000
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Physically, MIN quantifies the global effect 
caused by locally invariant measurement.

MIN vanishes for product state and remains 
positive for entangled states. For pure 
bipartite state MIN reduces to linear entropy 
like geometric discord. 

 It has explicit formula for 2m system, mn 
system(if reduced density matrix of first 
party is non-degenerate) system.



MIN is invariant under local unitary.

The set of states with zero MIN is a proper 
subset of the set of states with zero Discord. 
Thus, it signifies the existence of non-
locality without Discord. The set of all zero 
MIN states is also non-convex.



Local Quantum Uncertainty
 Consider the Bell state (1/√2)(|00> +|11>)

 This state is an eigen-state of the global spin 
observable along z z direction. Hence measurement of 
this observable on the state is certain.

 However it can’t be an eigen-state of any local 
observable in arbitrary spin direction a.I, and hence 
the measurement is inherently uncertain. In fact this is 
true for any pure entangled state and uncorrelated 
states such as|00> admits at least one certain 
observable.



Contd..
 How to measure this uncertainty?

 How to extend this idea to mixed state also?

 For this we need to build a measure and which does 
not affected by classical mixing.

 Classically, it is possible to measure any two 
observables with arbitrary accuracy. However, such 
measurement is not always possible in quantum 
systems. Uncertainty relation provides the statistical 
nature of errors in these kind of measurements. 
Measurement of single observable can also help to 
detect uncertainty of a quantum observable.



Contd…
 For a quantum state, an observable is called quantum 

certain if the error in measurement of the observable is 
due to only the ignorance about the classical mixing in 
that state. A good quantifier of this uncertainty is the 
skew information.

 For a bipartite quantum state AB, Girolami et.al. 
(PRL,110, 240402 (2013)) introduced the concept of 
local quantum uncertainty(LQU) and it is defined as 
the minimum over all local maximally informative 
observable (or non-degenerate spectrum ) of skew 
information for the state. This quantity quantifies the 
minimum amount of uncertainty in a quantum state.



Contd..
 Non-zero value of this quantity indicates the non 

existence of any quantum certain observable for the 
state AB.

 It vanishes for all zero discord state w.r.t. measurement 
on party A.

 It is invariant under local unitary.

 It reduces to entanglement monotone for pure state. In 
fact, for pure bipartite states it reduces to linear 
entropy of reduced subsystems.

 So, LQU can be taken as a measure of bipartite 
quantumness.



Contd..
 Geometrically, LQU in a state of a 2 × n system is the 

minimum Hellinger distance between and the state 
after a least disturbing root-of-unity local unitary 
operation applied on the qubit.



Thanks to all present.


