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PKC: Origin and History

Timeline

1976: The Idea - Whitfield Diffie and Martin Hellman

1976: Diffie and Hellman Key Exchange algorithm

1978: Rivest, Shamir and Adleman invented RSA

Actual Timeline (?) [announced in 1997]

1970: The Idea - James H. Ellis (British intelligence)

1973: Clifford Cocks developed RSA algorithm

1974: Malcom Williamson built Diffie-Hellman scheme
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Public Key Framework

Goal: Alice and Bob communicate securely, avoiding Charles

Alice (receiver) Key Gen: Construct related pair of keys (public and private)

Key Dist: Publish public key and keep private key secret

Bob (sender) Get Key: Obtain an authentic Public Key of Alice

Encrypt: Use it to encrypt message and send to Alice

Alice (receiver) Get Cipher: Obtain the ciphertext sent by Bob

Decrypt: Use Private Key to decrypt the ciphertext
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Examples of Public Key Cryptosystems

RSA (1977)

Knapsack (1978)

Goldwasser-Micali (1982)

ElGamal (1985)

ECC (1985)

Cramer-Shoup (1998)

Paillier (1999)
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Example: RSA Cryptosystem

Key Gen Choose two large primes p and q

Compute the product N = pq

Compute Euler’s Totient function φ(N) = (p − 1)(q − 1)

Choose positive integer e such that gcd(e, φ(N)) = 1

Compute d such that ed ≡ 1 (mod φ(N))

Key Dist Public Key = 〈N, e〉 and Private Key = 〈N, d〉

Encryption Message M produces Ciphertext C = Me mod N

Decryption Ciphertext C produces Message M = Cd mod N
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Example: an RSA Instance

Suppose p = 653, q = 877. Then N = pq = 572681,
φ(N) = (p − 1)(q − 1) = 571152.

Suppose Bob chooses e = 13 as the encryption exponent.

Now he has to find the decryption exponent d which is
e−1 in Zφ(N).

One can check that 13× 395413 ≡ 1 (mod 571152).

Hence, the RSA parameters for Bob are

public key: (13, 572681), and
private key: (395413, 572681).
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Example: an RSA Instance (contd...)

To encrypt a plaintext m = 12345, Alice uses Bob’s
public key (13, 572681), and calculates
c = 1234513 mod 572681 = 536754 and sends c to Bob.

To decrypt c = 536754, Bob calculates
536754395413 mod 572681 = 12345 = m.
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Correctness and Security of RSA

Correctness depends on Euler Fermat theorem

aφ(n) ≡ 1 (mod n) if gcd(n, a) = 1

Security depends on Factorization problem

Obtain factors p, q given product N = pq
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Factoring Challenge

Best: RSA-768 (232 digits) factored by several researchers in 2010 (over 2 years)
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Period finding problem

Let

f : {0, 1, 2, . . . ,M − 1} → {0, 1, 2, . . . ,M − 1}

be a periodic function of period r , meaning that

f (x) = f (x + r) ∀x ∈ {0, 1, 2, . . . ,M − 1}

and the values f (x), f (x + 1), f (x + 2), . . . , f (x + r − 1) are
all distinct.

For simplicity, one can assume that M = 2m that r ≤ M/2.
Finding the unknown period is a hard problem in classical
computing.
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Quantum Algorithm for finding period

4 Create the quantum state 1√
M

∑
x |x〉|f (x)〉.

5 Measure the last m bits of the state: for an output
y = f (x0) with the smallest possible x0, the residual state
is

1√
[M
r

]

[M
r
]−1∑

t=0

|x0 + tr〉|f (x0)〉.

6 Ignore the last n bits and apply the Fourier transform to
the first m bits to get

1√
M

1√
[M
r

]

∑
s

[M
r
]−1∑

t=0

ω(x0+tr)·s |s〉.
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Quantum Algorithm for finding period (contd...)

1 Measurement gives an integer s with probability

1

M
· 1

[M
r

]
|ωx0s |2

∣∣∣∣∣∣
[M
r
]−1∑

t=0

ω(x0+tr)·s

∣∣∣∣∣∣
2

=
1

M
· 1

[M
r

]

∣∣∣∣∣∣
[M
r
]−1∑

t=0

ωtrs

∣∣∣∣∣∣
2

.

2 This probability is higher, the closer the unit vector ωrs is
to the positive real axis, or the closer rs/M is to some
integer c .

3 Known value s/M ≈ unknown value c/r .
This information suffices to determine r .
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Order finding problem

For a ∈ Z∗N , the order of a ∈ Z∗N (or the order of a modulo N)
is the smallest positive integer r such that

ar ≡ 1( mod N).

The order finding problem is to find the order of an element a,
given an integer N ≥ 2 and an element a ∈ Z∗N .

Classically this problem is hard. But, quantum period finding
can be used to solve order finding.
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Reducing factoring to order finding

Suppose that the random choice of a is in Z∗N (which is
very likely), and that the order r of a is even.

N divides ar − 1 = (ar/2 + 1)(ar/2 − 1).

N cannot divide ar/2 − 1, otherwise r/2 < r would have
been the order.

If N - ar/2 + 1 (lucky case), gcd(N , ar/2 − 1) gives a
non-trivial factor of N .

Goutam Paul The death and rebirth of classical cryptography in a quantum world Slide 18 of 28



Pre-Quantum Cryptograpghy
Quantum Attacks on Classical Cryptosystems

Quantum Cryptography
Post-Quantum Cryptography

Solving Hard Problems by Quantum Computers
Death of Classical Public Key Cryptography
Need for QKD

Efficiency of Shor’s Algorithm, 1994

Fastest classical algorithm has sub-exponential time
complexity: O(e1.9(logN)1/3(log logN)2/3).

Polynomial time quantum algorithm known due to Shor,
1994: O ((logN)2(log logN)(log log logN)).

In 2001, a group at IBM factored 15, using an NMR
quantum computer with 7 qubits.

Until 2012 the largest number factored using Shor’s
algorithm was 15.

So far, the largest number factored by a quantum
computer is 56153, using 4 qubits in an NMR system
(Chinese group, PRL 2012).
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Implication of Shor’s Algorithm

Factoring – breaks RSA (banking, online shopping dead).

Factoring can be used to easily solve

quadratic residuosity problem – breaks
Goldwasser-Micali.
decisional composite residuosity problem – breaks
Paillier.

Discrete Log – breaks ElGamal, ECC, Cramer-Shoup.

Shor’s algorithm for discrete logarithm can be generalized
to find hidden subgroups in abelian groups.
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Quantum Key Distribution (QKD)
Other Quantum Cryptography Algorithms

BB84 Protocol

Uses two conjugate bases + = {↑,→} and × = {↗,↖} to
establish a secret key between two parties at a distance.
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Pre-Quantum Cryptograpghy
Quantum Attacks on Classical Cryptosystems

Quantum Cryptography
Post-Quantum Cryptography

Quantum Key Distribution (QKD)
Other Quantum Cryptography Algorithms

Other variants of QKD

E91 Protocol [Ekert, PRL 1991]

Semi-Quantum QKD [Boyer, Kenigsberg and Mor, PRL
2007]

Device Independent (DI) QKD

Idea by Mayers and Yao [FOCS, 1998]
Measurement Device Independent (MDI) QKD [Lo,
Curty and Qi, PRL, 2012]
Side Channel Free (SCF) QKD [Braunstein and
Pirandola, PRL, 2012]
Fully Device Independent (FDI) QKD [Vazirani and
Vidick, PRL, 2014]
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Pre-Quantum Cryptograpghy
Quantum Attacks on Classical Cryptosystems

Quantum Cryptography
Post-Quantum Cryptography

Quantum Key Distribution (QKD)
Other Quantum Cryptography Algorithms

Non-QKD Quantum Crypto

Quantum commitment

Quantum SMC

Position-based quantum cryptography
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Pre-Quantum Cryptograpghy
Quantum Attacks on Classical Cryptosystems

Quantum Cryptography
Post-Quantum Cryptography

Rebirth of Classical Cryptography

Post-Quantum Cryptography

Lattice-based cryptography (e.g., NTRU)

Multivariate cryptography (e.g., Rainbow)

Hash-based cryptography (e.g., Lamport, Merkle).

Code-based cryptography (e.g., McEliece, Niederreiter)

Supersingular ECC

Symmetric Key Cryptography
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Thank You

Questions / Comments ?

Homepage: http://www.goutampaul.com

Email: goutam.k.paul@gmail.com
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