
Pre-Quantum Information Theory

Goutam Paul

Cryptology and Security Research Unit,
Indian Statistical Institute, Kolkata

February 9, 2016

Lecture at
International School and Conference on Quantum Information,

Institute of Physics (IOP), Bhubaneswar (Feb 9-18, 2016).



Outline

1 Measures of Information
Uncertainty
Compressibility
Randomness
Encryption

2 Measures of Information Flow
Channel Capacity
Code
Noisy Coding

3 Quantum Information



Roadmap

1 Measures of Information
Uncertainty
Compressibility
Randomness
Encryption

2 Measures of Information Flow
Channel Capacity
Code
Noisy Coding

3 Quantum Information



Roadmap

1 Measures of Information
Uncertainty
Compressibility
Randomness
Encryption

2 Measures of Information Flow
Channel Capacity
Code
Noisy Coding

3 Quantum Information



Measures of Information
Measures of Information Flow

Quantum Information

Uncertainty
Compressibility
Randomness
Encryption

Information and Probability

For an event with probability p, let I(p) be the information
contained in it.

p ↓⇒ I(p) ↑ and p ↑⇒ I(p) ↓
For two independent events with probabilities p1 and
p2, I(p1p2) ∝ I(p1) + I(p2).

Thus, a natural definition is

I(p) , log
(

1
p

)
= − log p.
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Relation to Uncertainty / Surprise /
Knowledge Gain

Amount of information contained in an event

= Amount of uncertainty before the event happens
= Amount of surprise when the event happens
= Amount of knowledge gain after the event happens
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Average Information
Let X denote a random variable taking values from a
discrete set (may denote a set of events or a source of
symbols) with probabilities p(x) = Prob(X = x).

Average information in X (or of the corresponding set /
source)

H(X ) , E [I(p(X ))]

= E [− log p(X )]

= −
∑
x∈X

p(x) log p(x)

This is called the entropy of the variable X
(or of the set / source).
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Joint and Conditional Entropy

H(X ,Y ) , −
∑

x

∑
y

p(x , y) log p(x , y).

H(Y | X ) ,
∑

x

p(x)H(Y | X = x)

=
∑

x

p(x)

(
−
∑

y

p(y |x) log p(y |x)

)
= −

∑
x

∑
y

p(x , y) log p(y |x)
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Important Results Related to Entropy

Chain Rule: H(X ,Y ) = H(X ) + H(Y |X )

H(X ,Y ) ≤ H(X ) + H(Y )

H(Y | X ) ≤ H(Y )
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Mutual Information

I(X ;Y ) ,
∑

x

∑
y

p(x , y) log
p(x , y)

p(x)p(y)

= H(X )− H(X |Y )

= H(Y )− H(Y |X )

= H(X ) + H(Y )− H(X ,Y )
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Information and Codeword Length

Kraft Inequality: The necessary and sufficient conditions
for the existence of an instantaneous code over an r -ary
alphabet with codeword lengths `1, `2, . . . , `n satisfy

n∑
i=1

r−`i ≤ 1.

An Engineering Optimization:

Minimize L =
n∑

i=1

pi`i s.t.
n∑

i=1

r−`i ≤ 1 gives `∗i = − logr pi

and L∗ =
n∑

i=1

pi`
∗
i = H(X ).
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Entropy and Data Compression

For integer choice of codeword lengths,

H(X ) ≤ L∗ < H(X ) + 1.

For supersymbols with n-symbols at a time,

H(X ) ≤ L∗n < H(X ) +
1
n

and L∗n = H(X ) is achievable for stationary distribution.
This is Shannon’s Source/Noiseless Coding Theorem.
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Entropy as a Measure of Randomness

Suppose pi ≥ 0, for 1 ≤ i ≤ n.

Maximize

(
−
∑

i

pi logpi

)
s.t.

∑
i

pi = 1 gives

p1 = p2 = · · · = pn.
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Encryption increases Entropy

The goal of encryption is to make the transmitted
message look random.

Typically, H(C) > H(P).

But, H(P | C) may be < H(P)
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Example: Plaintext Entropy

Given

Three possible plaintexts: a,b, c,
with probabilities 0.5, 0.3, 0.2.

Three possible ciphertexts: U,V ,W .

Two possible keys: k1, k2, equally likely.

Encryption under k1: U,V ,W .
Encryption under k2: U,W ,V .
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Example: Plaintext Entropy (... contd)

One can calculate

p(U) = 0.5, p(V ) = p(W ) = 0.25.

p(a | V ) = 0

p(b | V ) = 0.6

p(c | V ) = 0.4

Similarly, one can calculate probabilities of a,b, c given
W .
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Example: Plaintext Entropy (... contd)

Thus,

H(P) = − (0.5 log2(0.5) + 0.3 log2(0.3) + 0.2 log2(0.2))
= 1.485

H(P | C) = −
∑

x∈{U,V ,W}

∑
y∈{a,b,c}

p(x)p(y |x) log2 p(y |x)

= 0.485
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Measures of Information Flow

Quantum Information

Uncertainty
Compressibility
Randomness
Encryption

Perfect Secrecy

Information Theoretic Security:

H(P | C) = H(P)

Or, equivalently,

Prob(P | C) = Prob(P).

A necessary condition for this is

H(K ) ≥ H(P).
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Measures of Information
Measures of Information Flow

Quantum Information

Channel Capacity
Code
Noisy Coding

Discrete Channel

Input alphabet X .
Output alphabet Y .
Probability Transition Matrix p(y |x).

Informational Channel Capacity C = max
p(x)

I(X ;Y ).
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Measures of Information
Measures of Information Flow

Quantum Information

Channel Capacity
Code
Noisy Coding

An (M,n) Code

An index set {1,2, . . . ,M}.
An encoding function C : {1,2, . . . ,M} → X n.
A decoding function D : Y n → {1,2, . . . ,M}.
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Measures of Information
Measures of Information Flow

Quantum Information

Channel Capacity
Code
Noisy Coding

Error probability

Conditional error probability given index i was sent:
εi = Pr(D(Y n) 6= i |X n = C(i)) =

∑
D(yn) 6=i

p(yn|c(i)).

Maximum error probability εmax = max
i∈{1,2,...,M}

εi .

Average error probability εavg = 1
M

M∑
i=1

εi .
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Measures of Information
Measures of Information Flow

Quantum Information

Channel Capacity
Code
Noisy Coding

Rate

R = log2 M
n bits per transmission.

A rate R is said to be achievable if there exists a
sequence of (d2nRe,n) codes such that εmax → 0 as
n→∞.
Operational channel capacity is the supremum of all
achievable rates.
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Measures of Information Flow

Quantum Information

Channel Capacity
Code
Noisy Coding

Shannon’s Noisy Channel Coding Theorem

All rates below capacity are achievable.
∀R < C, ∃ a sequence of codes such that εmax → 0
as n→∞.
Informational capacity = operational capacity.
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Measures of Information
Measures of Information Flow

Quantum Information

Channel Capacity
Code
Noisy Coding

Band Limited Gaussian Channel

C = W log
(

1 +
P

N0W

)
bits per second, where N0

2 watts/Hz is the noise spectral
density and P is the signal power.
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Measures of Information
Measures of Information Flow

Quantum Information

From Pre-Quantum to Quantum

von Neumann entropy.
Schumacher’s quantum noiseless coding theorem.
Holevo bound: upper bound of accessible
information.
Classical capacity and quantum capacity of quantum
channels.
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THANK YOU

Questions / Comments ?

Homepage: http://www.goutampaul.com
Email: goutam.k.paul@gmail.com
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