On witnessing arbitrary bipartite entanglement in measurement device independent way

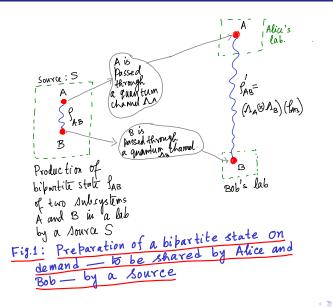
Sibasish Ghosh

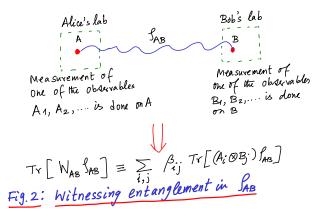
Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai - 600 113

[In collaboration with A. Mallick]

(arXiv:1506.03985)

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -





Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Detecting entanglement

- It is essential to have shared entangled states between distantly located parties prior to efficient performance of several quantum information processing tasks (like, teleportation, superdense coding, etc.).
- How to check that such a shared state supplied apriori by some source – is indeed the state Alice and Bob are supposed to share? (preparation process)
- And how to check that such a shared state supplied apriori by some source – is indeed entangled? (measurement process)
- No assumption regarding faithfulness of preparation process is needed for our purpose here as we will be dealing with arbitrary states.

Detecting entanglement (continued)

- The measurement process corresponds to witnessing entanglement in the shared state via measurement of the corresponding entanglement witness operator using measurements of local observables on the shared state.
- Erroneous measurements of the local observables may lead to witness a separable shared state to be entangled!
- How to avoid such a situation?
- It can be avoided if witnessing entanglement in the shared state can be made possible in a *measurement-device independent* (MDI) way.
- Shown to be possible by Branciard et al. recently [*Phys. Rev. Lett.* 110, 060405 (2013)].

Detecting entanglement (continued)

- But their scheme requires *apriori* knowledge about the shared state – as the form of the EW operator depends, in general, on the entangled state itself.
- Here we discuss about witnessing entanglement in the shared state in an MDI way without such *apriori* knowledge.
- But we need to pay some extra price for that!
- We require more copies of the shared state.
- Moreover, knowledge of dimensions of individual subsystems is needed – as in the case of Branciard et al.

Outline

- Witnessing entanglement
- Non-locality vs. entanglement
- Measurement-device independent entanglement witness with apriori knowledge of state
- Universal entanglement witness process for two-qubits
- Witnessing entanglement in unknown two-qubit state in MDI way
- Witnessing NPT-ness of unknown state in any given bi-partite system in MDI way
- Conjecture about non-existence of universal MDI entanglement witness operator in any given bi-partite system other than two-qubits
- Conclusion

Witnessing entanglement

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

< 回 > < 国 > < 国 >

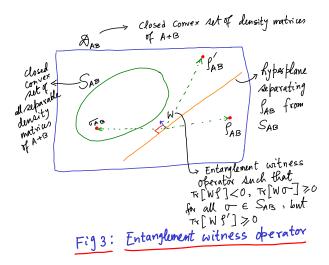
Given any density matrix ρ_{AB} of a bi-partite quantum system S = A + B – described by the composite Hilbert space $\mathcal{H}_S = \mathcal{H}_A \otimes \mathcal{H}_B$ – will be *separable* iff $\rho_{AB} = \sum_i \omega_i \sigma_A^{(i)} \otimes \tau_B^{(i)}$, with $\sigma_A^{(i)}$'s $(\tau_B^{(i)}$'s) being density matrices of A(B) and $0 \le \omega_i \le 1$ with $\sum_i \omega_i = 1$.

• Otherwise ρ_{AB} is entangled.

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai

What is an entanglement witness operator?

- Given any entangled state ρ_{AB} of a (given) bi-partite quantum system S = A + B, one can always (in principle) find out a hermitian operator W on H_S such that: (i) Tr[Wρ] < 0 and (ii) Tr[Wσ] ≥ 0 for all separable states σ_{AB} of the system.
- W is said to be an *entanglement witness* operator, witnessing the entanglement in ρ_{AB} .
- Given a different entangled state ρ'_{AB} of the system, it may happen that $\text{Tr}[W\rho'] \ge 0$.
- Thus *W* does not have a *universal* character, in general.



Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Local realization of entanglement witness operator

One can always find out a set of observables

 $\begin{array}{l} \{A_i: i=1,2,\ldots,N_A\} \text{ for } A \text{ as well as a set of observables} \\ \{B_j: j=1,2,\ldots,N_B\} \text{ (with } N_A \leq d_A^2 \equiv (\dim \mathcal{H}_A)^2 \text{ and} \\ N_B \leq d_B^2 \equiv (\dim \mathcal{H}_B)^2 \text{) such that:} \\ W = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \beta_{ij} A_i \otimes B_j \text{ where } \beta_{ij} \text{'s are real numbers.} \end{array}$

- So, given a state ρ_{AB} shared between Alice and Bob measurement of one of the observables A_i 's on A (by Alice) and measurement of one of the observables B_j on B (by Bob) will give rise to the measurement statistics $Tr[(A_i \otimes B_i)\rho]$.
- Using these measurement statistics, one can calculate: $Tr[W\rho] = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \beta_{ij} Tr[(A_i \otimes B_j)\rho].$

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -On witnessing arbitrary bipartite entanglement in measurement device independent way

Local-realistic inequalities vs. entanglement witness

- Every local-realistic inequality can be expressed in the form: $\sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \beta_{ij} \langle A_i B_j \rangle \ge k$, a constant.
- For any quantum state ρ_{AB} , satisfaction of such an inequality takes the form: $\sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \beta_{ij} \operatorname{Tr}[(A_i \otimes B_j)\rho] \ge k$.
- This is equivalent to: $\operatorname{Tr}[W_{LR}\rho] \ge 0$ with $W_{LR} \equiv \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \beta_{ij} (A_i \otimes B_j) kI_{d_A^2 \times d_R^2}.$
- As no separable state σ_{AB} of the system violates any local-realistic inequality, we must have: $\text{Tr}[W_{LR}\sigma] \ge 0$.
- On the other hand, for any (entangled) state ρ_{AB} , violating the inequality, we must have: $\text{Tr}[W_{LR}\rho] < 0$.
- Thus W_{LR} is an entanglement witness operator.
- The converse is not true, in general otherwise, loophole-free test of BI would mean MDI witnessing of the corresponding EW operator.

Erroneous witnessing

- The two photon-polarization state: $\rho_{AB}^{v} \equiv (1-v)|\Psi^{-}\rangle_{AB}\langle\Psi^{-}| + (v/2)(|HH\rangle_{AB}\langle HH| + |VV\rangle_{AB}\langle VV|)$, with $|\Psi^{-}\rangle_{AB} \equiv (1/\sqrt{2})(|HV\rangle_{AB} |VH\rangle_{AB})$, is entangled iff $0 \leq v < 1/2$.
- With the witness operator $W \equiv (1/2)I_{4\times4} |\Psi^-\rangle\langle\Psi^-|$, we have: $\text{Tr}[W\rho_{AB}^v] = (2v-1)/2$ which is negative iff v < 1/2.
- For any ρ_{AB} : Tr[$W \rho_{AB}$] = (1/4)(1 + $\langle \sigma_x \otimes \sigma_x \rangle_{\rho} + \langle \sigma_y \otimes \sigma_y \rangle_{\rho} + \langle \sigma_y \otimes \sigma_y \rangle_{\rho}$) with $\sigma_x \equiv |H\rangle \langle V| + |V\rangle \langle H|$, etc.
- $\langle \sigma_j \otimes \sigma_j \rangle_{\rho} = \langle \sigma_j^+ \otimes \sigma_j^+ \rangle_{\rho} + \langle \sigma_j^- \otimes \sigma_j^- \rangle_{\rho} \langle \sigma_j^+ \otimes \sigma_j^- \rangle_{\rho} \langle \sigma_j^- \otimes \sigma_j^- \rangle_{\rho}$ for j = x, y, z.
- $\sigma_j = \sigma_i^+ \sigma_i^-$ for all *j* (spectral decomposition).

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -On witnessing arbitrary bipartite entanglement in measurement device independent way

-

Erroneous witnessing (continued)

- Experimental demonstration by Xu et al. [PRL 112, 140506 (2014)]
- Using the time-shift attack of QKD, the coincidence counting rate for calculating $\langle \sigma_j^+ \otimes \sigma_j^+ \rangle_{\rho}$ and $\langle \sigma_j^- \otimes \sigma_j^- \rangle_{\rho}$ can be diminished for the separable state $\rho_{AB} = \rho_{AB}^{v=1}$, and thereby, giving: $\langle \sigma_j^{\alpha} \otimes \sigma_j^{\alpha} \rangle_{\rho} \equiv N_{jA}^{(\alpha)} N_{jB}^{(\alpha)} / (N_{jA}^{(+)} N_{jB}^{(+)} + N_{jA}^{(+)} N_{jB}^{(-)} + N_{jA}^{(-)} N_{jB}^{(+)} + N_{jA}^{(-)} N_{jB}^{(-)} + N_{jA}^{(-)} + N_{jA}^{($
- Thus here: $\langle \sigma_j \otimes \sigma_j \rangle_{\rho} \approx -(N_{jA}^{(+)}N_{jB}^{(-)} + N_{jA}^{(-)}N_{jB}^{(+)})/(N_{jA}^{(+)}N_{jB}^{(-)} + N_{jA}^{(-)}N_{jB}^{(+)}) = -1$ for j = x, y, z.
- It then gives rise to: ${
 m Tr}[W
 ho_{AB}^{v=1}] pprox -(1/2)$



Time-shift attack on conventional EW

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Non-locality vs. entanglement

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Entanglement does not imply non-locality, in general

- Two-qubit Werner state $\rho_x \equiv x |\psi^-\rangle \langle \psi^-| + \frac{1-x}{4}I_{4\times 4}$ (with $|\psi^-\rangle \equiv (1/\sqrt{2})(|01\rangle |10\rangle)$ and $0 \le x \le 1$) is entangled for all x with $1/3 < x \le 1$.
- But ρ_x is known to have a local-realistic model for its measurement statistics (even for measurements of POVMs) for certain range (*R*, say) of values of x within the interval (1/3, 1].
- Thus ρ_x can violate no local-realistic inequality for any such x in R.
- There are plenty of such examples!
- But, can one utilize *every* entangled state for some information processing task in a way which is more efficient that having *any* separable state? ('operational' meaning of entanglement)

Winning two-party co-operative game

- In a two-party co-operative classical game \mathcal{G} , the players Alice and Bob are supplied with strategies $s \in \mathcal{S}$ and $t \in \mathcal{T}$ respectively with probabilities p(s) and q(t) by a referee (Charlie), and the players' job is to come up with respective (definite) outcomes $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ so that the gain of the two players together will be $\mathcal{C}(s, t, x, y)$ (to be given by the referee).
- Thus the maximum average pay-off of the game: $\mathcal{P}(\mathcal{G}) \equiv \max \sum_{s \in \mathcal{S}, t \in \mathcal{T}, x \in \mathcal{X}, y \in \mathcal{Y}} p(s)q(t)\mathcal{C}(s, t, x, y)\mu(x, y|s, t),$ where maximization is taken over all $\mu(x, y|s, t)$ – the joint
 probability of occurance of the outcomes x and y for the
 inputs s and t.

Winning two-party co-operative game with shared quantum state

- Replacement of the strategies s(t) by pairwise orthogonal quantum states $\tau_{A_0}^{(s)}(\omega_{B_0}^{(t)})$: does not really mean any change!
- But now the players start the game with an *apriori* shared entangled state ρ_{AB}.
- Alice (Bob) now performs a measurement using a POVM $\{E_{A_0A}^{(x)}: x \in \mathcal{X}\} (\{E_{B_0B}^{(y)}: y \in \mathcal{Y}\})$ jointly on A_0 and $A (B_0$ and B) to comeup with a measurement outcome x (y).
- Maximum average pay-off:

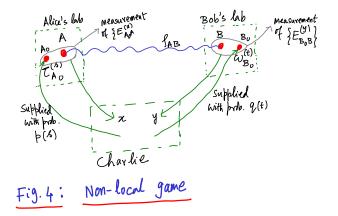
 $\mathcal{P}(\mathcal{G}; \rho) \equiv \max \sum_{s \in \mathcal{S}, t \in \mathcal{T}, x \in \mathcal{X}, y \in \mathcal{Y}} p(s)q(t)\mathcal{C}(s, t, x, y)\mu_{\rho}(x, y|s, t),$ where maximization is taken over all POVMs.

• Here
$$\mu_{\rho}(x, y|s, t) \equiv \operatorname{Tr}[(E_{A_0A}^{(s)} \otimes E_{B_0B}^{(t)})(\tau_{A_0}^{(s)} \otimes \rho_{AB} \otimes \omega_{B_0}^{(t)})].$$

Winning two-party co-operative game with shared quantum state (continued)

- Is it true that for given any shared entangled state ρ_{AB}, there always exists at least one game plan G_ρ for which P(G_ρ; σ) < P(G_ρ; ρ) for all separable states σ_{AB}?
- It was shown to be *untrue* by Buscemi [*Phys. Rev. Lett.* 108, 200401 (2012)].
- But in case the game strategies are associated with non-orthogonal (in general) quantum inputs $\tau_{A_0}^{(s)}(\omega_{B_0}^{(t)})$, the aforesaid fact was shown to be true for any given entangled state ρ_{AB} – shown in the same work of Buscemi.
- Note that, for any given game plan G, P(G; σ) is one and the same for all separable states σ_{AB}.
- Thus, every entangled state is more efficient to win a 'non-local' game compared to any separable state => <=>

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai



Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Measurement-device independent entanglement witness with *apriori* knowledge of state

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

MDI-EW

- Although Buscemi's result prefers any entangled state over all possible separable states while winning a non-local game, it *does not explicitly provide* any scheme for detecting entanglement.
- Note that violation of a loophole-free local-realistic inequality by any state necessarily indicates entanglement in the state in a *device-independent* (DI) way within quantum theory: it guarantees the presence of entanglement, independently

 (i) of the measurements actually performed,
 - (ii) of the functioning of any device used in the experiment, as well as
 - (iii) of the dimension of the underlying shared quantum state.

MDI-EW (continued)

- But such a DI entanglement witness scheme does not work for all entangled states – some entangled states have local model.
- Based on Buscemi's result, Branciard et al. [*Phys. Rev. Lett.* 110, 060405 (2013)] provided a MDI-EW scheme for all entangled state.
- In fact, denoting the quantities $p(s)q(t)\mathcal{P}(s, t, x, y)$ in Buscemi's scheme by $\tilde{\beta}_{s,t,x,y}$, one can find out the expression $I(\mu) \equiv \sum_{s \in \mathcal{S}, t \in \mathcal{T}, x \in \mathcal{X}, y \in \mathcal{Y}} \beta_{s,t,x,y} \mu(x, y|s, t)$, where $I(\mu) \ge 0$ will *necessarily* mean the shared state to be separable.
- This holds irrespective of the choice as well as performance of measurement.
- Thus, I(µ) < 0 implies entanglement in the shared state in a MDI way.</p>

How does it work?

• Assuming that $\{(\tau^{(s)})^T : s \in S\}$ $(\{(\omega^{(t)})^T : t \in T\})$ can span $\mathcal{B}(\mathcal{H}_A)$ $(\mathcal{B}(\mathcal{H}_B))$, any EW operator W on $\mathcal{H}_A \otimes \mathcal{H}_B$ can be expressed as: $W = \sum_{s \in S, t \in T} \beta_{st}(\tau^{(s)})^T \otimes (\omega^{(t)})^T$.

• Here we take
$$\mathcal{X} = \{0, 1\} = \mathcal{Y}$$
.

For any shared separable state σ_{AB} = Σ_k p_kσ_A^(k) ⊗ η_B^(k) and for any POVM effect A₁ (B₁) corresponding to outcomes 1: μ_σ(1, 1|τ^(s), ω^(t)) = Tr[(A₁ ⊗ B₁)(τ^(s) ⊗ σ ⊗ ω^(t))] = Σ_k p_k Tr[(A₁^(k) ⊗ B₁^(k))(τ^(s) ⊗ ω^(t))] with A₁^(k) ≡ Tr_A[A₁(I ⊗ σ_A^(k))] and B₁^(k) ≡ Tr_B[B₁(η_B^(k) ⊗ I)].
 Note that here: β̃_{s,t,1,1} = β_{st} and β̃_{s,t,x,y} = 0 otherwise.

How does it work (continued)

Here:
$$I(\mu_{\sigma}) = \sum_{s \in S, t \in T} \beta_{st} \mu_{\sigma}(1, 1 | \tau^{(s)}, \omega^{(t)}) =$$

$$\sum_{s \in S, t \in T} \beta_{st} \sum_{k} p_{k} \operatorname{Tr}[(A_{1}^{(k)} \otimes B_{1}^{(k)})(\tau^{(s)} \otimes \omega^{(t)})] =$$

$$\sum_{k} p_{k} \operatorname{Tr}[(A_{1}^{(k)} \otimes B_{1}^{(k)})W^{T}] = \operatorname{Tr}[\{\sum_{k} p_{k}(A_{1}^{(k)})^{T} \otimes (B_{1}^{(k)})^{T}\}W] \ge 0, \text{ as } \{\sum_{k} p_{k}(A_{1}^{(k)})^{T} \otimes (B_{1}^{(k)})^{T}\} \text{ is separable (possibly unnormalized).}$$

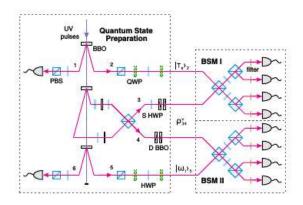
• On the other hand, if W is an EW operator for a given entangled state ρ_{AB} , we have (for $A_1 = |\Phi\rangle_{AA}\langle\Phi|$ and $B_1 = |\Phi\rangle_{BB}\langle\Phi|$ with $|\Phi\rangle_{SS} \equiv (1/d_S)\sum_{i=1}^{d_S} |ii\rangle_{SS}$ for S =A, B): $\mu_{\rho}(1, 1|\tau^{(s)}, \omega^{(t)}) = \operatorname{Tr}[(|\Phi\rangle_{AA}\langle\Phi| \otimes |\Phi\rangle_{BB}\langle\Phi|)(\tau^{(s)} \otimes \rho_{AB} \otimes \omega^{(t)})] = (1/(d_A d_B)) \operatorname{Tr}[((\tau^{(s)})^T \otimes (\omega^{(t)})^T)\rho_{AB}].$

Then
$$I(\mu_{\rho}) = \sum_{s \in \mathcal{S}, t \in \mathcal{T}} \beta_{st} \mu_{\rho}(1, 1 | \tau^{(s)}, \omega^{(t)}) = \operatorname{Tr}[W \rho_{AB}]/(d_A d_B) < 0.$$

Experimental demonstration of MDI-EW

Xu et al. [PRL 112, 140506 (2014)] have experimentally demostrated the MDI-EW scheme successfully for the class of two-photon polarization states: ρ^v_{AB} ≡ (1 − v)|Ψ⁻⟩_{AB}⟨Ψ⁻| + (v/2)(|HH⟩_{AB}⟨HH| + |VV⟩_{AB}⟨VV|) (0 ≤ v ≤ 1), using a six photon interference process.

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

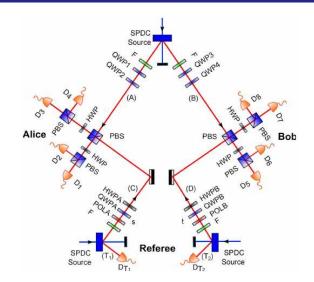


Experimental demonstration of MDIEW [Xu et al., PRL **112**, 140506 (2014)]

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Experimental demonstration of MDI-EW (continued)

On the other hand, Nawareg et al. [Scientific Reports, DOI: 10. 1038/srep08048] have experimentally demostrated the MDI-EW scheme successfully for the class of two-photon polarization states: ρ^p_{AB} ≡ p|Ψ⁻⟩_{AB}⟨Ψ⁻| + ((1 - p)/4)I_{4×4} (0 ≤ p ≤ 1), (again) using a six photon interference process.



Experimental demonstration of MDIEW [Nawareg et al., SR E DQC Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Experimental demonstration of MDI-EW (continued)

- Other than the entangled state generation processes, the two experimental set-ups are similar.
- In both the experiments, the referee uses a two-photon interference process to generate the single photon polarization states τ_s for Alice, and similarly for the states ω_t to be supplied to Bob.
- This accounts for the six photon requirement in each of these experiments.
- The witness operator being used in both the experiments: $W \equiv (1/2)I_{4\times 4} |\Psi^-\rangle\langle\Psi^-|$.
- Due to the supply of the single photon states τ_s and ω_t, supression of the positive results (σ_j^(α) ⊗ σ_j^(α))_ρ (for α = +, -) unlike in the case of standard EW experiments have been avoided in the present experiments.

Experimental demonstration of MDI-EW under noise

- We have introduced noise (theoretically) in the Bell state measurement part of both the experiments – not explicitly considered in the experiments – and verified that the corresponding separable states get witnessed as separable even in the presence of noise.
- The optical gadgets being used in both the experiments for the Bell state measurements are mainly: HWP, PBS, and photo-detectors.
- We have taken here lossy PBS by introding white noise. Noisy HWP has been considered by introducing error in the angle of rotation of the polarization axis. Noise in the photo-detectors have been introduced by incorporating detection inefficiency.

Universal entanglement witness process for two-qubits

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

4 戸下 4

Universal EW operator for two-qubits

- In the case of two-qubits, Augusiak et al. [*Phys. Rev. A* **77**, 030301 (2008)] provided a *state-independent* (*i.e.*, *universal*) hermitian operator W_u , acting on $(\mathcal{L}^2)^{\otimes 4} \otimes (\mathcal{L}^2)^{\otimes 4}$, such that $\operatorname{Tr}[W_u \rho_{AB}^{\otimes 4}] \equiv \operatorname{det}(\rho_{AB}^{T_B}) \geq 0$ if and only if ρ_{AB} is a (two-qubit) separable state.
- A local realization of W_u is of the form: $W_u = (1/24)I_{256 \times 256} - (1/8)(\tilde{V}^{(4)} \otimes (\tilde{V}^{(4)})^T + (\tilde{V}^{(4)})^T \otimes \tilde{V}^{(4)}) + (1/6)I_{4 \times 4} \otimes (\tilde{V}^{(3)} \otimes (\tilde{V}^{(3)})^T + (\tilde{V}^{(3)})^T \otimes \tilde{V}^{(3)}) + (1/8)V^{(2)} \otimes V^{(2)} - (1/4)I_{16 \times 16} \otimes V^{(2)}.$

• Here $V^{(k)}$ is the swap operator: $V^{(k)}(|\phi_1\rangle \otimes |\phi_2\rangle \otimes \ldots \otimes |\phi_k\rangle) = |\phi_k\rangle \otimes |\phi_1\rangle \otimes \ldots \otimes |\phi_{k-1}\rangle$ and $\tilde{V}^{(l)}$'s are permutations in the same subsystems of $\rho^{\otimes 4}$.

Witnessing entanglement in unknown two-qubit state in MDI way

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

→ Ξ →

Witnessing entanglement in unknown two-qubit state in MDI way

- Assume now that the referee supplies states $\tau^{(s)}$ on $(\mathbf{\ell}^2)^{\otimes 4}$ to Alice and $\omega^{(t)}$ on $(\mathbf{\ell}^2)^{\otimes 4}$ to Bob.
- And four copies of a *unknown* two-qubit state ρ_{AB} are shared.
- Express now: $W_u = \sum_{s \in \mathcal{S}, t \in \mathcal{T}} \beta_{st}(\tau^{(s)})^T \otimes (\omega^{(t)})^T$.
- For four copies of any two-qubit state σ_{AB} : $I(\mu_{\sigma^{\otimes 4}}) = \sum_{s \in S, t \in T} \beta_{st} \mu_{\sigma^{\otimes 4}}(1, 1 | \tau^{(s)}, \omega^{(t)}) = \operatorname{Tr}[W_u(\sigma_{AB})^{\otimes 4}]/256.$
- So, $I(\mu_{\sigma^{\otimes 4}}) \ge 0$ iff σ is separable.
- Bartkiewicz et al. [PRA 91, 032315 (2015)] provided an implementation scheme for universally witnessing two-qubit photon polarization states using W_n – not in MDI way.

Witnessing NPT-ness of unknown state in any given bi-partite system in MDI way

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Universally witnessing NPT-ness in MDI way

- A two-qudit state ρ_{AB} is said to have PPT iff ρ^{T_B}_{AB} ≥ 0. Otherwise it is said to have NPT.
- The characteristic eqn. for ρ^{T_B}_{AB}: Σ^{d²}_{α=0} a_αλ^{d²-α} = 0 where the coefficients a₀, a₁, ..., a_{d²} are respectively 1, -Σ_i λ_i = -1, Σ_{i>j} λ_iλ_j = (1/2)(1 Σ_i λ²_i), ... (Newton-Girad formula).
- In operational form: $a_2 = \text{Tr}[W_2 \rho_{AB}^{\otimes 2}]$ where $W_2 = (1/2)(I_{d^4 \times d^4} - V^{(2)}).$ $a_3 = -(1/6)(1 - 3\sum_i \lambda_i^2 + 2\sum_i \lambda_i^3) = \text{Tr}[W_3 \rho_{AB}^{\otimes 3}].$ Here $W_3 = -(1/6)(I_{d^6 \times d^6} - 3I_{d^2 \times d^2} \otimes V^{(2)} + (\tilde{V}^{(3)} \otimes (\tilde{V}^{(3)})^T + (\tilde{V}^{(3)})^T \otimes \tilde{V}^{(3)})).$
- etc. etc.

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -On witnessing arbitrary bipartite entanglement in measurement device independent way

N 4 E N 4

Universally witnessing NPT-ness in MDI way (continued)

- In order to thus calculate a_k in MDI way, k copies of the state should be shared, and the referee should supply states $\tau^{(s)}(\omega^{(t)})$ from $(\mathbf{\ell}^{d_A})^{\otimes k}((\mathbf{\ell}^{d_B})^{\otimes k})$ to Alice (Bob).
- By looking at the signs of a_k's, one can then easily figure out whether ρ has PPT or NPT.

Conjecture about non-existence of universal MDI-EW in higher dimension

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

→ Ξ →

Conjecture

- We conjecture that if d_Ad_B > 6, there can not exist one (or a finitely many) universal entanglement witness which can be realized in a MDI way: (Conjecture 1)
- Note that there is *no* PPT entangled state whenever $d_A d_B \leq 6$. So, universally witnessing the NPT-ness of an arbitrary state ρ_{AB} with $d_A d_B \leq 6$ in an MDI way is enough to witness entanglement in ρ_{AB} in an MDI way.
- The reason behind the aforesaid conjecture is another conjecture:
- There can not exist a universal EW (or, a finitely many EW operators) for all PPT entangled states of any given bipartite system: (Conjecture 2).

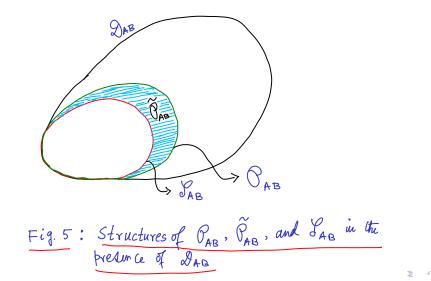
Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -On witnessing arbitrary bipartite entanglement in measurement device independent way

Motivation about the second conjecture

- Consider a bi-partite quantum system A + B, described by the Hilbert space $\mathcal{H}_{AB} \equiv \mathcal{H}_A \otimes \mathcal{H}_B$ with $\dim \mathcal{H}_A = \dim \mathcal{H}_B = d$.
- $\mathcal{D}_{AB} \equiv$ set of all the density matrices of A + B.
- $S_{AB} \equiv$ set of all separable density matrices of A + B.
- $\mathcal{P}_{AB} \equiv$ set of all density matrices ρ_{AB} of A + B for which $\rho_{AB}^{T_B} \ge 0$.
- $\tilde{\mathcal{P}}_{AB} \equiv$ set of all ρ_{AB} in \mathcal{P}_{AB} with ρ_{AB} being entangled.
- Note that P_{AB} is a convex subset of D_{AB}, while S_{AB} is a convex subset of P_{AB}.
- $\tilde{\mathcal{P}}_{AB}$ is not convex.

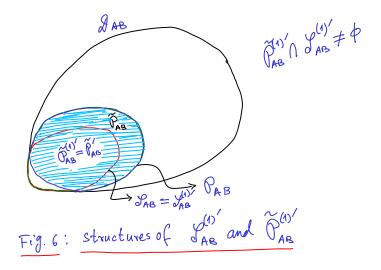
•
$$\mathcal{P}_{AB} = \mathcal{S}_{AB}$$
 for $d = 2$.

• Thus, for d = 2, $\tilde{\mathcal{P}}_{AB} = \phi$, the null set.



Motivation about the second conjecture (continued)

- $S'_{AB} \equiv$ set of all convex combinations of elements of S_{AB} .
- Thus we have: $S'_{AB} = S_{AB}$.
- $\tilde{\mathcal{P}}'_{AB} \equiv$ set of all convex combinations of elements of $\tilde{\mathcal{P}}_{AB}$.
- Edge state: ρ_{AB} in $\tilde{\mathcal{P}}_{AB}$ is an edge state iff the state $(\rho_{AB} + p\sigma_{AB})/(1+p)$ is in \mathcal{S}_{AB} for all $p \in (0,1]$ and all $\sigma_{AB} \in \mathcal{P}_{AB}$.
- Edge states lie near the boundary of S_{AB}.
- Edge states exist for all $d \ge 3$.
- This implies that *P*[']_{AB} and *S*[']_{AB} have non-null overlap: *P*[']_{AB} ∩ *S*[']_{AB} ≠ φ for d ≥ 3.



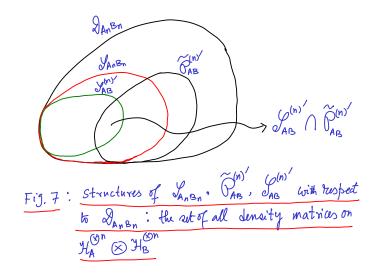
Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

イロト イポト イヨト イヨト

3

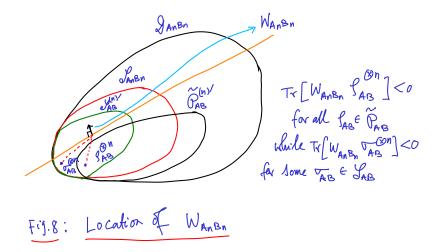
Motivation about the second conjecture (continued)

- *n* is any positive integer.
- $S_{AB}^{(n)'} \equiv$ set of all convex combinations of the states $\sigma_{AB}^{\otimes n}$ with $\sigma_{AB} \in S_{AB}$.
- $\tilde{\mathcal{P}}_{AB}^{(n)\prime} \equiv$ set of all convex combinations of the states $\rho_{AB}^{\otimes n}$ with $\rho_{AB} \in \tilde{\mathcal{P}}_{AB}$.
- $\mathcal{S}_{A_nB_n} \equiv$ set of all separable states on $\mathcal{H}_A^{\otimes n} \otimes \mathcal{H}_B^{\otimes n}$.
- It is most likely that $S_{A_nB_n} \cap \tilde{\mathcal{P}}_{AB}^{(n)'} \neq \phi$ for all *n* with $d \ge 3$ (possibly because of existence of edge states).
- Conjecture 3: $\mathcal{S}_{AB}^{(n)'} \cap \tilde{\mathcal{P}}_{AB}^{(n)'} \neq \phi$ for all *n* with $d \geq 3$.
- Conjecture 3 is true for n = 1.



Implication of the 3rd conjecture

- Validity of conjecture 3 implies the *non-existence* of any hermitian operator $W_{A_nB_n} : \mathcal{H}_A^{\otimes n} \otimes \mathcal{H}_B^{\otimes n} \to \mathcal{H}_A^{\otimes n} \otimes \mathcal{H}_B^{\otimes n}$ for which $\operatorname{Tr} \left[\rho_{AB}^{\otimes n} W_{A_nB_n} \right] < 0$ for some $\rho_{AB} \in \tilde{\mathcal{P}}_{AB}$ together with $\operatorname{Tr} \left[\sigma_{AB}^{\otimes n} W_{A_nB_n} \right] \ge 0$ for all $\sigma_{AB} \in \mathcal{S}_{AB}$ – irrespective of the choice of *n*.
- Thus, validity of conjecture 3 implies that there can not exist a universal EW (or, a finitely many EWs) which can detect entanglement in all the PPT (bound) entangled states of A + B whenever $d \ge 3$.
- Thus, validity of conjecture 3 automatically implies validity of conjecture 2, which, in turn, implies the non-existence of a MDI universal entanglement witness operator for all the PPT (bound) entangled states of A + B validity of conjecture 1.



Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -On witnessing arbitrary bipartite entanglement in measurement device independent way

< 回 > < 三 > < 三 >

3

- It appears to be quite difficult to verify conjecture 3 directly.
- One may try to verify whether for any given ρ_{A_nB_n} ∈ P̃^{(n)'}_{AB}, there exists some σ_{A_nB_n} ∈ S^{(n)'}_{AB} such that Tr [O<sub>A_nB_nρ_{A_nB_n}] = Tr [O_{A_nB_n}σ<sub>A_nB_n] for a complete set of linearly independent observables O_{A_nB_n} : H^{⊗n}_A ⊗ H^{⊗n}_B → H^{⊗n}_A ⊗ H^{⊗n}_B.
 </sub></sub>
- Even verification of this one may turn out to be difficult.

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

Conclusion

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

・ロト ・回ト ・ヨト ・ヨト

3

Conclusion

- Based on the knowledge of the dimension of the individual sub-systems and relying on the supply of several copies of the state on demand, we provided here a prescription on how to detect NPT/PPT-ness of an arbitrary bi-partite state in a measurement device independent way.
- In case the bi-partite system is known *apriori* to be a two-qubit or a qubit-qutrit system, our method provided a scheme for universal entanglement detection in a measurement device independent way.
- In case the total dimension of the bi-partite system is higher than six and in case the unknown bi-partite state has PPT, we conjecture that its entanglement can not be detected in a measurement device independent way.

Conclusion (continued)

 Our noise analysis of the Bell-state measurent scenario in both the experimental demonstrations of MDIEW are in conformity with the demand of the measurement device independence of the entanglement witness scheme of Branciard et al. [*Phys. Rev. Lett.* **110**, 060405 (2013)].

Thanks!

Sibasish Ghosh Optics & Quantum Information Group The Institute of Mathematical Sciences C. I. T. Campus, Taramani Chennai -

・ロト ・回ト ・ヨト ・ヨト

3