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SCHMIDT DECOMPOSITION

Theorem 1. Given |Ψ〉 ∈ H1 ⊗H2, there is an orthonormal basis
|ψ1〉, . . . , |ψm〉 of H1 and an orthonormal basis |φ1〉, . . . , |φn〉 of
H2〉 such that

|Ψ〉 =
m∑
i=1

λi |φi 〉|ψi 〉 (if m ≤ n)

where λ1, . . . , λm are real and non-negative.



ENTROPY OF A PROBABILITY DISTRIBUTION

Suppose a source is emitting messages, i.e. strings of symbols χi ,
where the probability of χi is pi (i = 1, . . . , n). In a message of
length N, we expect that χi will occur Npi times. Such a message
has probability pNp1

1 pNp2
2 . . . pNpnn . Ignoring the rare untypical

sequences, this probability must (since it is the same for all
messages) be 1/M where M is the number of typical messages.
Hence the number of bits required to identify such a message is

log2M = −N
∑
i

pi log2 pi

and the average information per symbol is

S(p) = −
∑
i

pi log2 pi

This is the entropy of the probability distribution (p1, . . . , pn).



GENERALISED SCHMIDT DECOMPOSITION

Given |Ψ〉 ∈ H1 ⊗ · · · ⊗Hn, there are bases of H1, . . . ,Hn such
that the expansion

|Ψ〉 =
∑

ci1···in |i1〉 · · · |in〉

has the minimum number of terms, with coefficients satisfying:

1. cji ···i = ciji ···i = · · · = ci ···ij = 0 if 1 ≤ i < j ≤ d ;

2. cjd ···d , cdjd ···d , . . . , cd ···dj are real and non-negative;

3. |ci ···i | ≥ |cj1···jn | if i ≤ jr , r = 1, . . . , n.

Three qubits

|Ψ〉 = a|000〉+ b|011〉+ c |101〉+ d |110〉+ f |111〉

a, b, c, d real, a ≥ b ≥ c ≥ d ≥ 0.



LOCAL INVARIANTS OF THREE QUBITS

|Ψ〉 =
∑
ijk

cijk |i〉|j〉|k〉 ∈ HA ⊗HB ⊗HC
∼= C2 ⊗ C2 ⊗ C2

I1 = cijkc
ijk = 〈Ψ|Ψ〉 (c ijk = c∗ijk)

I2 = ci1j1k1ci2j2k2c
i1j1k2c i2j2k1 = tr(ρ2C )

I3 = ci1j1k1ci2j2k2c
i1j2k1c i2j1k2 = tr(ρ2B)

I4 = ci1j1k1ci2j2k2c
i2j1k1c i1j2k2 = tr(ρ2A)

ci1j1k1ci2j2k2ci3j3k3c
i1j2k3c i2j3k1c i3j1k2 = tr [(ρA ⊗ ρB)ρAB ]− tr

(
ρ3A
)
− tr

(
ρ3B
)

(the Kempe invariant, symmetric in A,B,C)

I6 =
∣∣∣εi1i2εi3i4εj1j2εj3j4εk1k3εk2k4ci1j1k1ci2j2k3ci3j3k3ci4j4k4∣∣∣2

= |hyperdeterminant of cijk |2 (the 3-tangle)



FULLY ENTANGLED STATES

An n-party state is fully entangled if every m-party reduced
state, with m ≤ n/2, is maximally mixed.

Two qubits The Bell states

|Ψ±〉 = |00〉 ± |11〉, |Φ±〉 = |01〉 ± |10〉

are fully entangled. Thus there is a basis of fully entangled states.

Three qubits

The GHZ state |000〉+ |111〉 is fully entangled. It is equivalent to
the tetrahedral state

|Ψ++〉 = |000〉+ |011〉+ |101〉+ |110〉

There is a basis of fully entangled states.



BELL BASIS FOR THREE QUBITS

Three qubits

There is a basis of fully entangled states

|Ψ++〉 = |000〉+ |011〉+ |101〉+ |011〉
|Ψ+−〉 = |000〉+ |011〉 − |101〉 − |011〉
|Ψ−+〉 = |000〉 − |011〉+ |101〉 − |011〉
|Ψ++〉 = |000〉 − |011〉 − |101〉+ |011〉,

|Φ++〉 = |111〉+ |100〉+ |010〉+ |111〉
|Φ+−〉 = |111〉+ |100〉 − |010〉 − |111〉
|Φ−+〉 = |111〉 − |100〉+ |010〉 − |111〉
|Φ−−〉 = |111〉 − |100〉 − |010〉+ |111〉



QUADRIPARTITE STATES

Four qubits

There is no fully entangled state of four qubits.
The maximally entangled state is

|M4〉 = |0011〉+ |1100〉+ω(|1010〉+ |0101〉) +ω2(|1001〉+ |0110〉)

where ω = e2πi/3

Four qudits

There is a fully entangled state of four qud its for all d except
d = 2 and (possibly) d = 6.



MANY-QUBIT STATES

Five qubits
There is a fully entangled 5-qubit state (Brown et al.)

|000〉|Ψ+〉+ |011〉|Φ+〉+ |101〉|Ψ−〉+ |110〉|Φ−〉

Six qubits
There is a fully entangled 6-qubit state (Borras et al.)

|000〉|Ψ++〉+ |011〉|Ψ+−〉+ |101〉|Ψ−+〉+ |110〉|Ψ−−〉
+|111〉|Φ++〉+ |100〉|Φ+−〉+ |010〉|Φ−+〉+ |001〉|Φ−−〉

Seven qubits

Open Question Is there a fully entangled 7-qubit state?

Eight qubits

There is no fully entangled n-qubit state for n ≥ 8 (Scott).


