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Extend to mixed states by the usual convex roof definition



APPLICATIONS

» Constructing optimal entanglement witnesses

» Experimental estimate of entanglement

» Quantifies difficulty of distinguishing multipartite states by
local means

Identifying multipartite states for perfect quantum
teleportation and superdense coding

Identifying multipartite states for perfect quantum
teleportation and superdense coding

Detecting quantum phase transitions in spin models
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PROPERTIES

1. The geometric measure is an entanglement monotone.

Barnum & Linden, Wei and Goldbart

2. In the form G(|V)) = —logg(|V)), the geometric measure is
additive:

G([W)[®)) = G([W)) + G(|#)

for certain symmetric states |V). Dhen. Zhu and Wei

3. The geometric measure is a lower bound for the relative
entropy relative to separable states:

G(|v)) < min tr[plogp— plogo]

separable o

(p = V)W) Dhen, Zhu and Wei
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Schmidt decomposition of bipartite state (n = 2):

Given ‘\U> € 'Hi ® Hp, d bases |1>1, cey ’d1>1 of H1
and|1>2, ceey |d2>2 of Hz

= Aelk)alk)2
k

Ak = singular values of (c;;) where |W) = Z ciil)1f)

such that

Geometric measure
g(|V)) = max A}



GENERALISED SCHMIDT DECOMPOSITION

H. Carteret, A. Higuchi, AS

Given |V) € H1 ® - -+ ® H,, there are bases of Hy,...,H, such
that the expansion

W) = ciiplit) -+ lin)
has the minimum number of terms, with coefficients satisfying:
1. Cjivwoj = Cijiveej = *+* = Cjwnjj = 0ifl < <j <d;

This reduces the number of non-zero coefficients by nd(d + 1)/2.
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H. Carteret, A. Higuchi, AS

Given |V) € H1 ® - -+ ® Hp,, there are bases of Hy,...,H, such
that the expansion of |W) has the minimum number of terms.

Geometric measure

g(|V)) = coeff. of |0)[0) - - - |0)

Three qubits

W) = a]000) + b|011) + c|101) + d|110) + f|111)

a,b,c,dreal, a>b>c>d>0.
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Lagrange multipliers A1, A2, A3 = ajyjzx = \1X;
ajjkXizik = A2y

ajjkXiyj = \3Zk

x| = |lyll = |lz]| =1 = A1 = A2 = A3 = required maximum .
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SINGULAR VALUES OF A TENSOR

Lagrange multipliers A1, A2, A3 = ajiyjzc = \1X;
ajjkXizk = A2yj

ajikXiyj = A3Zx

IIx]| = |lyll = |lz]| =1 = A1 = A2 = A3 = required maximum \.
Compare n =2 ajy; = XXi Ay = \x
ajjxj = )‘7j ATi = Xy

Choose phases to make A real and > 0: A is a singular value of A
(A2 is an eigenvalue of ATA).
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Homogeneous polynomial f(zi,...,zy).

The discriminant As is a polynomial in the coefficients of f such
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DISCRIMINANTS AND HYPERDETERMINANTS
Homogeneous polynomial f(zi, ..., zy).

The discriminant A¢ is a polynomial in the coefficients of f such
that

of
Af=0 < Jzs.t. —(2)=0, k=1,...,N.
0z

Examples

3. N=di+do+d3, z=(u,v,w), f=ajuvjw:

Ar = hyperdeterminant of the hypermatrix ajj

= 0 if a;j has singular value 0.

d; = dr = ds (three qubits): |Af|? = 3-tangle (al. et Wootters)



THE 3 x 3 HYPERDETERMINANT
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CHARACTERISTIC POLYNOMIAL OF A TENSOR

Theorem (Hilling, AS)  «a: C% x ... x C% — C multilinear:

a (u(l), e u(d")) = a,..j U 1(11) NG

In

Given A € R, define @&(\) : R2% x ... x R2% — R by
&(\) (u(3>, . .,u(")) — det [ATA @2 Hu<n>H2l,]

A @) .. ,m

ivip = Qiyipigeinyy " U T

If A # 0, the equations

ai U,(ll) . ,(,r) "u,(,,n) _ )‘u,(,r)

have a solution with all u(") non-zero if and only if &(\) has a real
critical point. If this so, A satisfies the polynomial equation

discriminant of &(\) = 0.



THREE-QUBIT STATES
W) = _alli)lk) (i, k=0,1)

Geometric measure of entanglement g(|W)) = A given by

ajjkyjzk = AX;

ajjkXizk = AYyj

ajjkXiyj = AZk
Let A(z) = 2 x 2 matrix ajjzx; then

Alz)y = X%, A(2)'x =)y,
so  @(\)(z,2) = det |A(z)TA(z) — \?2Tz| = 0.

Characteristic equation of a;j:

A(N) = discriminant A, z8(\) = Az (A,a(N)) =0

Degree 12 in \°.
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THE ART OF THE SOLUBLE
Tetrahedral state

W) = a]000) + b|011) + c|101) + d|110)

A(N) = —16a°b?c2d?* (A% — 2*) (N2 — b)) (A% — )(\? — d?)Q(N)?
Q(\) = \*(452)\2 — L?)(4S"* X\ — L?)
L% = (ab + cd)(ac + bd)(ad + bc)

S =(s—a)(s— b)(s—c)(s — d)
s=3(a+b+c+d)

S = area of cyclic quadrilateral with sides a, b, ¢, d (Brahmagupta)

S’, L’ obtained from S, L by changing sign of d.



SOLUTIONS OF THE CHARACTERISTIC EQUATION
W) = a]000) + b|011) + c|101) + d|110)

L /
A =0 (twice), a, b, ¢, d, — (twice), — (twice).

25 28

L

25

L/
25

= 2R = diameter of circumcircle of cyclic quadrilateral

= 2R’ = diameter of circumcircle of self-intersecting quadrilateral




GEOMETRY OF THE GEOMETRIC MEASURE

Tamaryan, Park, Son & Tamaryan

area of WXYZ
|ATWZ — ATXY|

S
5/

}:|V|7X><\7X+Vl72><\72|:{



GETTING THE RIGHT SOLUTION

s? —a+b+ct+d)(a—b+ctd)(atb—ct+d)(atbtc—d)

= R(
§'2 = S% — abced

If S? < 0, there is no cyclic quadrilateral and no solution 2R.
In this case, g(|W)) = max(a, b, ¢, d).

If 0 < S? < abed, 2R = L/2S is the largest solution.

If S? > abcd, the largest solution is either 2R or 2R’
But only 2R gives a real critical point.



GETTING THE RIGHT SOLUTION

s? —a+b+ct+d)(a—b+ctd)(atb—ct+d)(atbtc—d)

= E(
§'2 = S% — abced

If S? < 0, there is no cyclic quadrilateral and no solution 2R.
In this case, g(|W)) = max(a, b, ¢, d).

If 0 < S? < abed, 2R = L/2S is the largest solution.

If S? > abcd, the largest solution is either 2R or 2R’
But only 2R gives a real critical point.

max(a, b, c,d) if S2 <0;
g(|V)) = £ 2
L/2S if S > 0.



MATRICES ws, HYPERMATRICES
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MANY QUBITS

Generalised W state

‘\U>:C1’10...0>—|-C2|010...0>+"'+Cn‘0..

0<a<---<c,eR)

Slightly entangled (max|ck|? > 1/2):

g(|v)) = c;

|W) has many different nearest product states.

.01)



Highly entangled (c2 < 1/2):

|W) has nearest product state |uy) ... |u,) where
|lui) = sin 0, |0) + e/® cos B |1)
and the geometric measure is
g(|V) =2rsinfysinby...sinb,

where r is the unique solution of

2 2 2

C C C
1— 2Ly 1- g 1—-2=p—-2
JYi-S+ o+ = Z=n

and sin 20y = &.
r

Then
cos’ 0y + -+ -+ cos?f, = ,

so the set of highly entangled states has the form S"~1 x S!.



Highly entangled (c2 < 1/2):
|W) has nearest product state |u1) ... |u,) where
|uk) = sin 0;]0) + e'® cos O |1)
and the geometric measure is
g(|V) =2rsinf;sinf;,...sind,

where r is the unique solution of

2 2 2

c c c
11 4. 1l /1_Zn_ph 9
Y1-"F+ o+ 1= S =0

(4 if cn < ro; —ifr0<cn<m);

rp satisfies the same equation with the last term removed;
¢ is arbitrary; and

. Ck
sin260;, = —.
r



