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Quantum Discord

Understanding quantum correlations is a fundamental problem
facing science.
Last two decades, this problem is approached via entanglement
separability scenasrio, with its successes and failures.
Successes : Quantum information processing (Teleportation,
Superdense coding, Algorithms, Cryptography),
Physical processes (Quantum phase transitions, BE condensation,
Quantum-to-classical transitions, Open quantum systems)
Failures : No viable measure for entanglement in mixed states.
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Entanglement does not account for the total quantum correlations
or ‘quantumness’ of a quantum state. Separable quantum states
can have correlations responsible for some quantum tasks which
cannot be achieved by classical means. Well known instance :
DQC1. Knill Laflamme : Phys. Rev. Lett. 81, 5672 (1998).
A.Datta, A.Shaji and C.M.Caves : Phys. Rev. Lett. 100, 050502
(2008).
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Another approach : Quantum verses classical paradigm. First
proposed by
H. Ollivier and W. H. Zurek : Phys. Rev. Lett. 88, 017901 (2001)
and L. Henderson and V. Vedral : J. Phy. A 34, 6899 (2001).
Basically, for a bipartite state, Total quantum correlation (Mutual
information) - Classical correlation = Quantum correlation
(Quantum discord).
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An alternative formulation for quantum discord :
Minimal loss of correlation caused by a non-selective von-Neumann
projective measurement on one part of the system.

D(ρ) = min
Πa
{I (ρ)− I (Πa(ρ))}

where
Πa(ρ) =

∑
i

(Πa
i ⊗ I b)ρ(Πa

i ⊗ I b) (1)

Here the minimum is over von Neumann measurements Πa = {Πa
i }

on a part say a of a bipartite system ab in a state ρ with reduced
density operators ρa and ρb and Πa(ρ) is the resulting state after
the measurement. I (ρ) = S(ρa) + S(ρb)− S(ρ) is the quantum
mutual information, S(ρ) = −tr(ρ ln ρ) is the von Neumann
entropy and I b is the identity operator on part b.
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Geometric Approach

This formulation of QD based on mutual information is difficult to
generalize to multipartite case. We can overcome this hurdle by
introducing a geometric measure of quantum discord as a distance
of the given state to the closest classical quantum (or the zero
discord) state.
Dakic, Vedral, and Brukner [Phys. Rev. Lett. 105,190502 (2010)],
Lin Chen, Eric Chitambar, Kavan Modi, and Giovanni Vacanti,
arXiv: 1005.4348.
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QUANTUM DISCORD IN A N-PARTITE STATE

Consider a multipartite system H = H1 ⊗H2 ⊗ · · · ⊗ HN with
dim(Hm) = dm, m = 1, 2, · · · ,N. Let L(Hm) be the
Hilbert-Schmidt space of linear operators on Hm with the
Hilbert-Schmidt inner product

〈X (m)|Y (m)〉 := trX (m)†Y (m).

We can define The Hilbert-Schmidt space L(H1 ⊗H2 ⊗ · · · ⊗ HN)

similarly. Let {X (m)
i : i = 1, 2, ..., d2

m, m = 1, 2, · · · ,N} be set of
Hermitian operators which constitute orthonormal bases for
L(Hm), then

trX
(m)
i X

(m)
j = δij ,

and {X (1)
i1
⊗ X

(2)
i2
⊗ · · · ⊗ X

(N)
iN
} constitutes an orthonormal basis

for L(H1 ⊗H2 ⊗ · · · ⊗ HN).
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QUANTUM DISCORD IN A N-PARTITE STATE

(. . . continued)
In particular, any N-partite state ρ12···N ∈ L(H1 ⊗H2 ⊗ · · · ⊗ HN)
can be expanded as

ρ12···N =
∑

i1i2···iN

ci1i2···iNX
(1)
i1
⊗X (2)

i2
⊗· · ·⊗X (N)

iN
; im = 1, . . . , d2

m ;m = 1, . . . ,N,

with C = [ci1i2···iN ] = [tr(ρ12···NX
(1)
i1
⊗ X

(2)
i2
⊗ · · · ⊗ X

(N)
iN

)] is a

N-way array (tensor of order N) with size d2
1d

2
2 · · · d2

N .
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We can define the geometric measure of quantum discord for a
N-partite quantum state corresponding to the von Neumann
measurement on the kth part as

Dk(ρ12···N) = min
χk

||ρ12···N − χk ||2,

where the minimum is over the set of zero discord states χk [i.e.
Dk(χk) = 0]. A state χk ∈ L(H1 ⊗H2 ⊗ · · · ⊗ HN) is of zero
discord if and only if it is a classical-quantum state

χk =

dk∑
l=1

pl |l〉〈l | ⊗ ρ[k]|l ,

where [k] stands for 12 · · · k − 1k + 1 · · ·N, {pl} is a probability
distribution over the terms in the sum, {|l〉} is an arbitrary
orthonormal basis in Hk , and {ρ[k]|l} is a set of arbitrary states
(density operators) acting on
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(. . . continued)
H1 ⊗H2 ⊗ · · ·Hk−1 ⊗Hk+1 ⊗ · · ·HN). It follows that the
quantum discord corresponding to measurement on different
subsystems is different, that is, Dk(ρ) 6= Dl(ρ) ; k 6= l .
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We need to define a product of a tensor with a matrix, the n-mode
product. The n-mode (matrix) product of a tensor Y (of order N
and with dimension J1 × J2 × · · · JN) with a matrix A with
dimension I × Jn is denoted by Y ×n A. The result is a tensor of
size J1 × J2 × · · · Jn−1 × I × Jn+1 × · · · JN and is defined
elementwise by

(Y ×n A)j1j2···jn−1ijn+1···jN =
Jn∑

jn=1

yj1j2···jNaijn .
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Recently, for a bipartite system ab (N = 2) with states in
Ha ⊗Hb, dim(Ha) = da, dim(Hb) = db, S. Luo and S. Fu (Phys.
Rev. A 82, 034302 (2010))introduced the following form of
geometric measure of quantum discord

Da(ρ) = tr(CC t)−max
A

tr(ACC tAt),

where C = [cij ] is an d2
a × d2

b matrix and the maximum is taken
over all da × d2

a -dimensional isometric matrices A = [ali ] such that
ali = tr(|l〉〈l |Xi ) = 〈l |Xi |l〉, l = 1, 2, . . . , da ; i = 1, 2, . . . , d2

a and
{|l〉} is any orthonormal basis in Ha. we generalize this result to
N-partite quantum states.
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Theorem 1. Let ρ12···N be a N-partite state defined before, then

Dk(ρ12···N) = ||C||2 −max
A(k)
||C ×k A

(k)||2,

where C = [ci1i2···iN ] is defined by the state ρ12···N , the maximum is
taken over all dk × d2

k -dimensional isometric matrices A(k) = [alik ],
A(k)(A(k))t = Ik , such that

alik = tr(|l〉〈l |X (k)
ik

), l = 1, 2, . . . , dk ; ik = 1, 2, . . . , d2
k and {|l〉} is

any orthonormal basis for Hk .
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Sketch of the proof : By expanding ρ12···N and χk in the basis

{X (1)
i1
⊗ X

(2)
i2
⊗ · · · ⊗ X

(N)
iN
} and making a valid choice for the

coefficients of expansion of ρ[k]|l states we can show that

||ρ12···N − χk ||2 = ||C||2 − ||C ×k A
(k)||2.

Since the tensor C is determined by the state ρ12···N , we have,

Dk(ρ12···N) = min
χk

||ρ12···N − χk ||2 = ||C||2 −max
A(k)
||C ×k A

(k)||2,

where the maximum is taken over A(k) specified in the theorem,
thus completing the proof.
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For a bipartite system, C is a d2
1 × d2

2 matrix while A(1) and A(2)

are d1 × d2
1 and d2 × d2

2 matrices respectively. Using the definition
of the n-mode product and the norm of a tensor it follows that

D1(ρ) = tr(CC t)−max
A(1)

tr(A(1)CC tA(1)t),

and
D2(ρ) = tr(CC t)−max

A(2)
tr(A(2)C tCA(2)t).
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Following its definition in terms of von-Neumann measurements, it
seems more natural and simple to define the geometric measure of
quantum discord as

Dk(ρ12···N) = min
Πk
||ρ12···N − Πk(ρ12···N)||2,

where the minimum is over von Neumann measurements
Πk = {Πk

l } on system Hk , and Πk(ρ12···N) =∑
l(I1⊗ I2⊗· · ·⊗Πk

l ⊗· · ·⊗ IN)ρ12···N(I1⊗ I2⊗· · ·⊗Πk
l ⊗· · ·⊗ IN).

It is easy to prove that Dk(ρ12···N) = Dk(ρ12···N).
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EXACT FORMULA FOR A N-QUBIT STATE

We get an exact expression for the QD in a N-qubit case. We have
to find the maximum in the equation

Dk(ρ12···N) = ||C||2 −max
A(k)
||C ×k A

(k)||2,

The maximum is to be obtained over 2× 4 isometric matrices A(k)

whose row vectors can be shown to have the form

~a1 =
1√
2

(1, ê1),

~a2 =
1√
2

(1,−ê1).

and the vector ê1 ∈ R3 must be the coherence vector of a
orthonormal basis state in a single qubit Hilbert space. However,
every unit vector in R3 satisfies this requirement so that this
constaint on optimization becomes redundant. This enormous
simplification facilitates the explicit construction of the required
maximum.
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The isometric 2× 4 matrix Ã(k) which maximizes ||C ×k A
(k)||2

can be explicitly constructed as

Ã(k) =
1√
2

(
1 êmax

1 −êmax

)
,

where êmax is the eigenvector of G (k) which is a 3× 3 real
symmetric matrix, defined as

G (k) = ~s(k)(~s(k))t +
∑

k1∈N−k
(T {k1,k})tT {k1,k} +

∑
2≤M≤N−1

T(M+1),

for its highest eigenvalue ηmax .
We can then compute

Dk(ρ12···N) = ||C||2 − ||C ×k Ã
(k)||2.
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Examples

The first example comprises the 3-qubit mixed states

ρ = p|GHZ 〉〈GHZ |+ (1− p)

8
I8, 0 ≤ p ≤ 1

where |GHZ 〉 = 1√
2

(|000〉+ |111〉) and I8 is the identity matrix.

Figure 1(a) shows the variation of D1(ρ) with p. We see that
D1(ρ) increases continuously from p = 0 state (random mixture)
to p = 1 state (pure GHZ state), as expected.
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Examples

Second example is the set of 3-qubit states

ρ = p|W 〉〈W |+ (1− p)|GHZ 〉〈GHZ |, 0 ≤ p ≤ 1

where |W 〉 = 1√
3

(|100〉+ |010〉+ |001〉). Figure 1(b) shows the

variation of D1(ρ) with p. It is straightforward to check that this
state cannot be written as a classical quantum state for any value
of p, including p = 1

2 . This explains the nonzero discord at p = 1
2 .

Further, we observe that discord for the pure GHZ state exceeds
that for the pure W state, in conformity with similar behavior of
entanglement in these states.
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Examples

(. . . continued)
The rate of increase of the discord diminishes discontinuously at
p = 3

4 as the |W 〉 state increasingly dominates the classical
mixture with increasing p. This interesting observation needs
further analysis.
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Examples

As the last example we consider the set of 3-qubit states

ρ = p|GHZ−〉〈GHZ−|+ (1− p)|GHZ 〉〈GHZ |, 0 ≤ p ≤ 1;

where |GHZ−〉 = 1√
2

(|000〉 − |111〉). Figure 1(c) shows the

variation of D1(ρ) with p. The discord is symmetric about p = 1
2

at which it vanishes. For p = 1
2 the state can be written as

1

2
|000〉〈000|+ 1

2
|111〉〈111|

which is a classical quantum state, so that discord vanishes at
p = 1

2 .

P. S. Joag Quantum Dicord and Quantum Correlations



Example

(. . . continued)
Again, discord is maximum and equal for pure |GHZ 〉 state and
pure |GHZ−〉 state, similar to the behavior of entanglement in
these two states.
We note that, in all these examples, D1(ρ) = D2(ρ) = D3(ρ) as all
the states are symmetric with respect to the swapping of qubits.
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TOTAL QUANTUM CORRELATIONS IN A BIPARTITE
STATE

Consider a bipartite state ρ and denote by Π̃(1) the von Neumann
measurement minimizing ||ρ− Π(1)(ρ)||2. It is straightforward to
check that the state after the measurement Π̃(1)(ρ) is a zero
discord state, that is D1(Π̃(1)(ρ)) = 0. However, the state Π̃(1)(ρ)
may have D2(Π̃(1)(ρ)) 6= 0. Thus the state Π̃(1)(ρ) can have some
non-zero quantum correlations. Thus neither D1(ρ) nor D2(ρ)
gives us a measure of the total quantum correlations in the state ρ.
But this analysis suggests that quantity

Q(ρ) = D1(ρ) + D2(Π̃(1)(ρ))

gives the required measure of the total quantum correlations in the
state ρ.
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In order to find the optimal von Neumann measurement Π̃(1) on ρ
which minimizes ||ρ− Π̃(1)(ρ)||2 we have to find the corresponding

orthonormal basis {|q̃〉} in H1 such that {Π̃(1)
q } = {|q̃〉〈q̃|}. The

expansion of these 1-D projectors |q̃〉〈q̃| in the basis Xi = {I1, λi}

|q̃〉〈q̃| =

d2
1∑
i

ãqiXi ; q = 1, . . . , d1

with
ãqi = 〈q̃|Xi |q̃〉, q = 1, 2 . . . , d1; i = 1, . . . , d2

1

must then give the matrix Ã(1) which maximizes tr(ACC tAt)
which in turn gives D1(ρ).
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To get the state Π̃(1)(ρ) we proceed as follows. As noticed above,
any post measurement state Π(1)(ρ) is a zero discord state
satisfying D1(Π(1)(ρ)) = 0. Hence Π(1)(ρ) must have the form of
classical quantum state as in for N = 2 namely,

Π(1)(ρ) =

d1∑
q=1

pq|q〉〈q| ⊗ ρq.

We expand the state pqρq in terms of the basis {X (2)
j } to get

pqρq =
∑
j

bqjX
(2)
j ,

where bqj = tr(pqρqX
(2)
j ).
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(. . . continued)
We know from theorem 1 that, for the above equation to hold, we
must have

bqj =
∑
i

ãqicij .

Now, we substitute these equations in the expression for the
general post measurement state to get the state Π̃(1)(ρ) which
easily reduces to

Π̃(1)(ρ) =
∑
lj

(Ã(1)tÃ(1)C )ljX
(1)
l ⊗ X

(2)
j ,

where Ã(1) is the matrix which maximizes tr(A(1)CC tA(1)t). This
expression can be exactly evaluated in two qubit case.

P. S. Joag Quantum Dicord and Quantum Correlations



TOTAL QUANTUM CORRELATIONS IN A N-PARTITE
STATE

Consider a N-partite state ρ12···N and denote by Π̃(k) the von
Neumann measurement giving QD DK . It is straightforward to
check that the state after the measurement Π̃(k)(ρ12···N) is a zero
k-discord state, that is Dk(Π̃(k)(ρ12···N)) = 0. However, the state
Π̃(k)(ρ12···N) may have Dl(Π̃(k)(ρ12···N)) 6= 0, l 6= k. Thus the
state Π̃(k)(ρ12···N) can have some non-zero quantum correlations.
Thus Dk(ρ12···N) cannot give us a measure of the total quantum
correlations in the state ρ12···N . This analysis suggests a geometric
measure of total quantum correlations present in a N-partite state
ρ12···N .
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TOTAL QUANTUM CORRELATIONS IN A N-PARTITE
STATE

(. . . continued)
We can now use the above considerations to investigate the total
quantum correlations present in a state ρ12···N . Let us assume that
the non-selective von Neumann projective measurements
Π̃(1), Π̃(2), · · · , Π̃(N) are performed successively on N parts
12 · · ·N, kth successive measurement being performed on the kth
part, leading to Dk(µ12···N) = 0, where µ12···N is the state
produced after (k − 1)th successive measurement. Clearly, the
corresponding post-measurement states are given by

Π̃(1)(ρ12···N), Π̃(2)(Π̃(1)(ρ12···N)), . . . , Π̃(N)(· · · (Π̃(1)(ρ12···N) · · · ).

Here the measurement Π̃(k) minimizes the loss of correlations in
the state produced after the first k − 1 successive measurements
on k − 1 parts.
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Thus the geometric measures of quantum discord of these
successive measurement states are given by

D1(ρ12···N),

D2(Π̃(1)(ρ12···N)),

D3(Π̃(2)(Π̃(1)(ρ12···N))),

...

DN(Π̃(N−1)(· · · (Π̃(1)(ρ12···N))) · · · ).

Therefore, the geometric measure of total quantum correlations
present in a N-partite quantum state ρ12···N is given by

Q(ρ12···N) = D1(ρ12···N)+D2(Π̃(1)(ρ12···N))+D3(Π̃(2)(Π̃(1)(ρ12···N)))+· · ·

· · ·+ DN(Π̃(N−1)(· · · (Π̃(1)(ρ12···N))) · · · ), (2)

which is a multipartite generalization of the bipartite measure.

P. S. Joag Quantum Dicord and Quantum Correlations



We can show that

Q(ρ12···N) = ||C||2−||C×1Ã
(1)×2Ã

(2)×3· · ·×N−1Ã
(N−1)×N Ã

(N)||2.

where Ã(k) is the matrix optimizing the kth measurement. This
formula applies to an arbitrary N-partite quantum state. However,
Q(ρ12···N) can be actually computed only for a N-qubit state,
because the matrices Ã(k) as well as the states
Π̃(k)(ρ12···N), k = 1, . . . ,N can be explicitly constructed in this
case. Further, for N-qubit states, this formula can be
experimentally implemented, as all the elements of all the matrices
can be determined by measuring Pauli operators on individual
qubits. We can show that Q(ρ12···N) is invariant under the
permutation of parts, that is, it does not matter in which order the
measurements are made.
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