Some important recent results

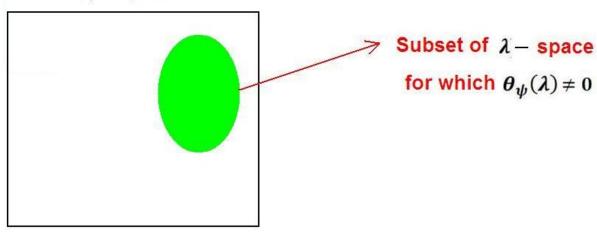
Guruprasad Kar

Indian Statistical Institute

Kolkata

$-\psi$ -Epistemic HVT model -

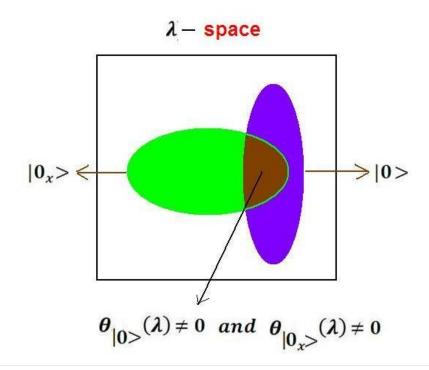
Knowledge of λ provides definite values for all possible observables.

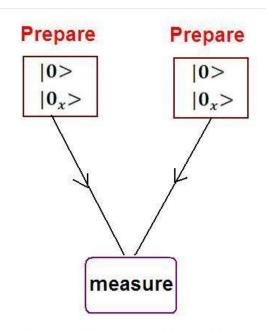

 ψ Correcponds to specific distribution $heta_{\psi}(\lambda)$ of λ .

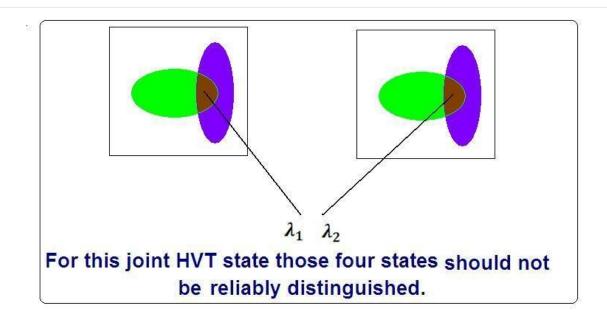
Different quantum states mean different distribution of λ .

$$v_{\lambda}(A) = one of the eigenvalue of A$$

$$<\psi|A|\psi> = \int \theta_{\psi}(\lambda)v_{\lambda}(A)d\lambda$$
 with $\int \theta_{\psi}(\lambda)d\lambda = 1$


 λ – space




Consider the following two states;

$$|0>$$
 and $\frac{1}{\sqrt{2}}(|0>+|1>) \equiv |0_x>$

These two states can not be reliably distinguished by any operation in quantum mechanics

Possible quantum states: |0>|0>, $|0>|0_x>$, $|0_x>|0>$, $|0_x>|0>$

Measure in the orthogonal basis

$$|\psi>_1 = \frac{1}{\sqrt{2}} (|0>|1>+|1>|0>)$$

$$|\psi>_2 = \frac{1}{\sqrt{2}} (|0>|1_x> +|1>|0_x>)$$

$$|\psi\rangle_3 = \frac{1}{\sqrt{2}} (|0_x\rangle |1\rangle + |1_x\rangle |0\rangle)$$

$$|\psi>_4 = \frac{1}{\sqrt{2}} (|0_x>|1_x> + |1_x>|0_x>)$$

Result

$$|\psi>_1$$

$$|\psi>_2$$

$$|\psi>_3$$

$$|\psi>_4$$

conclusion

Not
$$|0>|0_x>$$

Not
$$|0_x>|0>$$

Not
$$|0_x>|0_x>$$

Contradiction!

Information Causality Principle

and

Super quantum correlation

Consider the problem:

India vs England

To convey result of both the match 2 bits is necessary.

India-junior vs Srilanka

Encoding

WW
$$\rightarrow$$
 00

$$WL \rightarrow 01$$

Success with less than 2 bits would imply violation of causality

INFORMATION CAUSALITY PRINCIPLE

India vs England

But Alice communicates 1 bit.

India-junior vs Srilanka

Bob is asked to tell either the result of 1st match or the second match but not the both

Is the task possible with 1 bit of communication?

Information causality principle says the task is impossible.

12/31/11

Technical version of Information Causality principle –

Alice sends m bits to Bob

Alice has n bits

$$a_1 \ a_2 \ a_3 \dots \dots a_n$$

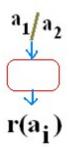
Bob is given a number b where

$$b \in \{1, 2, 3, \dots, n\}$$

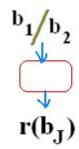
Bob has to determine the value of the b-th bit a_b

Let Bob's answer is β

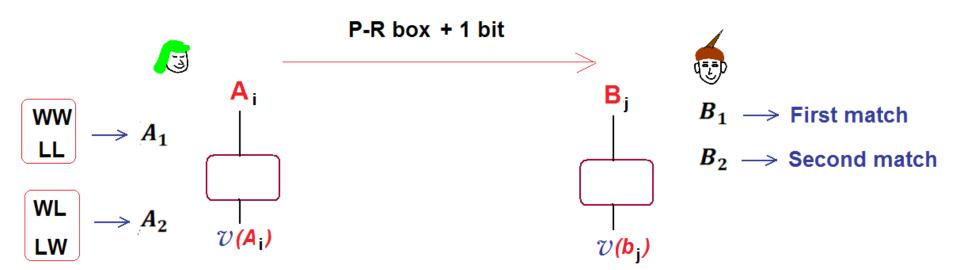
The degree of success at this task is measured by


$$I = \sum_{k} I(a_k = \beta) | b = k)$$

where, I is the shannon mutual information between and $a_k = \beta$


Infrmation causality principle tells,

$$I \leq m$$


Non-signalling Correlation

r(a ₁)	r (b ₁)	Probability
+1	+1	$\frac{1}{2}$
-1	-1	$\frac{1}{2}$
r(a ₁)	r(b ₂)	200
+1	+1	$\frac{1}{2}$
-1	-1	$\frac{1}{2}$
r(a2)	r (b ₁)	72
+1	+1	$\frac{1}{2}$
-1	-1	$\frac{1}{2}$
r(a ₂)	r (b ₂)	
+1	-1	$\frac{1}{2}$
-1	+1	$\frac{1}{2}$ $\frac{1}{2}$

This is known as PR-Box correlation.

Alice sends the result if W appears first and flip the result and then sends if L appears first by using one bit.

Bob's answer:

product of his result and value sent by Alice

$$-1 \longrightarrow Lost$$

12/31/11

- How it works -

Cases:

Result	Bob wants to learn	A_1	$\boldsymbol{B_2}$	Bob's answer
ww	Second	+1	+1	+1
		-1	-1	+1
LL	first	A_1	$\boldsymbol{B_1}$	
		+1	+1	-1
		-1	-1	-1
WL	Second	\overline{A}_2	B_2	
		+1	-1	-1
		-1	+1	-1
LW	first	A_2	$\boldsymbol{B_1}$	
		+1	+1	-1
		-1	-1	-1

Quantum mechanics satisfies I-C principle.

P-R box violates I-C principle.

 Any correlation that goes beyond Chirelsion bound violates I-C principle.