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Possible quantum states of the audience
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Summary

It is known that orthogonal quantum states of a composite system
may not be reliably distinguished by LOCC.

In a typical setting of LOCC discrimination of quantum states, only
a single copy of the unknown state is made available.

By relaxing this constraint on the number of copies we
will show that,

Any given set of N orthogonal pure states can be reliably
distinguished by LOCC while requiring no more than N-1 copies.

Orthogonal mixed states, on the other hand, may not be perfectly
distinguished by LOCC even with many copies.

Thus in the many-copy domain local distinguishability appears to
be fundamentally different for pure and mixed states.



Perfect local discrimination of orthogonal
gquantum states

Suppose a composite quantum system, consisting of two
parts, A and B, held by separated observers (Alice and Bob)
were prepared in one of several mutually orthogonal states:

V) v)

Alice and Bob wish to determine which state the system is in
with certainty only using local operations and classical
communication (LOCC).
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Observers can perform arbitrary quantum operations on their
respective systems and communicate classically but are not
allowed to exchange quantum information (that is, qubits)

Mathematically quantum operations under LOCC are
described by separable superoperators.

p—p=S(p)= ZAZ. ®BpA' ® B

Quantum communication and cryptography primitives and entanglement

manipulation (entanglement distillation, entanglement transformations) are
described within the framework of LOCC.



Perfect local discrimination of orthogonal

gquantum states

If a set of orthogonal quantum states { PisPyseens pn} can

be perfectly distinguished by LOCC then it is necessary that
there exists a separable POVM 11 = {H1 A1, ,...,Hn} such that

g

Tr(Mp,) =3,
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Caution: not all separable measurements can be implemented by LOCC



Perfect local discrimination of orthogonal

gquantum states

In some cases Alice and Bob can indeed figure out correctly the state of the
system. For example, any two orthogonal states can be perfectly

distinguished.
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In some cases they cannot. Examples include the Bell basis, product states
exhibiting “nonlocality without entanglement” .
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Walgate, Hardy, Short and Vedral,
PRL, 2000

O ey e

If the system were prepared in one of two orthogonal quantum states,
then Alice and Bob can always determine correctly in which state the
system is in.

Example: when they can

v w,)

By local change of bases Alice and Bob can always bring the states in the
following canonical form:

‘l//1>AB = |1>A‘91>B + |2>A‘92>B T "'+|n>A‘9n>B <6, ‘6J> 7 O

6:10) %0
‘wz)AB:|1>A‘91L>B+|2>A‘92l>3+“'+|n>A‘9i>B < ‘ ]>

The result holds regardless of the dimension, entanglement and
multipartite structure.



Orthogonal pure states may not be perfectly
distinguished by LOCC

Example 1:
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Alice and Bob cannot determine the state in question with certainty



Orthogonal pure states may not be perfectly
distinguished by LOCC

Example 2: Bell basis
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e Suppose Alice and Bob were given a state from the

Bell basis 0*) = %(|00>i|11))

)= (01)£10))

2
Alice and Bob cannot determine the state in question with certainty

Ghosh et al, PRL, 2001



Bell states are locally indistinguishable
Ghosh et al, PRL, 2001
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Smolin, PRA 2000

If A and B can distinguish the four Bell states exactly by LOCC, then they can
simply distill a Bell state between C and D. This results in the creation of 1 e-bit
of entanglement across the bipartition (or bipartite cut) AC : BD.

However, the Smolin state assumes the same separable form across the
bipartite cut AC : BD, and therefore has zero entanglement across AC : BD.

Since one cannot create entanglement from any separable state only by
LOCC, it follows that the Bell states are not perfectly LOCC distinguishable.



Orthogonal pure states may not be perfectly
distinguished by LOCC

Example 3: Locally indistinguishable product basis

“Nonlocality without entanglement”

B
0 1 2

a)(Alice) |3)(Bob) [ ; )
Yo = |0) 0+1) )
Y3 = |0) 0—1) : 89
Y= [2) 1+2) A
Y5 = [2) 1-2) : .
v = |1+ 2) 0) ..o | =
Yr= |1 - 2) O> (" N
s = [0+1) 2) , ‘ ) ]
Yg = [0-1) 2). l )1\ |




Orthogonal pure states may not be perfectly
distinguished by LOCC

Example 4: More nonlocality with less entanglement

Yy = 100) + w|11) + w?[22),
Yy, = |00) + w?|11) + w|22),
= |01) + |12) + [20).

Perfectly LOCC
distinguishable

Uy = 00) + w|11) + w2|22),
U = [00) + w?|11) + w|22),

= |01)

LOCC indistinguishable
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Nonlocality

* Locally indistinguishable (immeasurable) sets of
guantum states are said to be nonlocal in the sense
that a measurement of the whole can reveal more

information about the state than by coordinated
local measurements on its parts (LOCC).
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A central assumption

* In the problem of local distinguishability of quantum
states, Alice and Bob must work with a single copy of
the unknown state.




More than one copy helps

* For example, the Bell basis can be perfectly
distinguished with two copies, and so are the product
states exhibiting “nonlocality without entanglement”.




Local distinguishability with many copies

* Suppose we relax the single copy constraint, then the
guestion is:

How many copies of the unknown state are needed

to distinguish any set of orthogonal quantum states
(pure or mixed) by LOCC?
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Perfect local discrimination of orthogonal pure
states with many copies

Theorem:

Any N orthogonal pure quantum states |l//1>, l//2>,..., 1//N>
are perfectly distinguishable by LOCC with at most (N-1)
copies regardless of their dimensionality, entanglement and
multipartite structure.
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Perfect local discrimination of orthogonal pure
states with many copies

For any given set of orthogonal pure states {‘ l//l.> i=1,..,N }, there exists

an integer 1 <m < N —1, such that the set {|l//l.>®m = 1,...,N} can be
perfectly distinguished by LOCC.
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Proof for any three orthogonal states

Walgate et al
q:> PRL, 2000
1//1>AB — |1>A|91>B +|2>A|92>B + ...+ |n>A 0”>B In general
Vo), =I0),]60) +12),[6) + ..+ |n),|64) (6,16,) =0
(67167) =0

‘1/13>AB = |1>A‘¢1>B +|2>A‘¢2>B T “'+|n>A ¢”l>B

(9.16,) = 0;(¢,]6;) % 0 for all i



Proof for three orthogonal states

Alice goes first. Suppose the outcome of Alice’s measurement is i.

l//1>AB %‘1>A 9i>B
l//2>AB — l>A 91l>B




Alice Measurement

l//1>AB — |i>A ‘9,->B Bob measures his system in an orthogonal
. R basis like the one below -
l//2>AB — 1>A 9i>B
L
) i) [o) 6,):16. )| )5-o| 1)
<¢i |9i> # O;<¢i ‘ezl> # 0
Bob’s outcome | State State of the second
eliminated copy
0,) v,) w,)or|ys)
;) W) w,)or|ys)
n) v )V, |vs)




Proof idea in the general case

 The strategy is to measure each copy separately, one
after the other.

* Every round of measurement performed on a single
copy succeeds in eliminating at least one state. That
is, after K rounds of measurements on K copies, at
least K states get eliminated.



Proof for any N orthogonal pure states

|l//1>,|l//2>,...,|l//N> Walgate et al
(" PRL, 2000
p
‘WI>AB - |1>A‘91>B +|2>A‘92>B Tt |n>A‘6n>B <Ol |9]> #0
‘W2>AB = |1>A ‘91l>3 T |2>A ‘QQL>B T "'+|n>A ‘9i>3 <91l‘9j> #0

), =10, ]00) +12),|03) +..+[n),|07),

|‘//N ‘¢A> +|2 ‘¢2> T +| ‘¢111V>B

(¢/16,)# 0:(9}|6) % 0 forall i and k = 3,..,N



Proof for N orthogonal states

First round of measurements on the first copy

Alice goes first. Suppose the outcome of Alice’s measurement is i.

W1>AB%‘ZO>A 9i>B L
l//2>AB N l->A Qj_>B <¢z 9,‘)-'/—'0
Ko
l//3>AB N l>A ¢Z3>B <¢l z'> = 0
, o;|¢/) =0
k=3,..N




Proof for N orthogonal states

Alice Measurement . .
Bob measures his system in an orthogonal

W1>AB — |i>A|9i>B basis like the one below -

l:U2>AB — |l>A ‘Hzl>B

v, i), o) 0,).6: 3.1, ) | 1)
. Bob’s outcome | State No. of states still left
|"le >AB i), ‘¢?>B eliminated in contention
0i> “//2> N—1
9f> W1> N -1
77> l//1> ’ l//2> N -2




Proof for N orthogonal states

Same protocol is repeated in the second round
on the second copy

After each round we eliminate at least one state
from contention.

Thus in the worst case no more than N-1
copies are required.

HOW GOOQOD IS THE BOUND N-1 ?



Local discrimination of orthogonal mixed states with
many copies

Given any set of orthogonal mixed states {pl. i=1,....N } ,

we would like to know whether the set { p®m i=1,....N }
can be perfectly distinguished by LOCC for some positive

integer m.



Conclusive (unambiguous) state discrimination
by LOCC

Conclusive state discrimination seeks definite
knowledge of the system balanced against a probability
of failure.

Definition: A set of orthogonal quantum states (pure or mixed) is

conclusively (unambiguously) locally distinguishable if and only if
there is a LOCC protocol whereby with some nonzero probability
p > 0 every state can be correctly identified.



A necessary condition for conclusive/unambiguous
state discrimination by LOCC

If a set of orthogonal quantum states {p1 o S pn} is conclusively locally

distinguishable by LOCC then it is necessary that for every i there exists a
product state ‘q)i)such that Vj #1 <¢j‘pi ‘¢j> =0 and (¢, ‘pi M)l.) # 0.

Chefles, PRA (2004), Bandyopadhyay and Walgate, J Phys A (2007)



Conclusive (unambiguous) vs Perfect local
discrimination

* If aset of orthogonal states is not perfectly distinguishable by
LOCC then it may still be conclusively locally distinguishable.

Examples: any three Bell states, “nonlocality w/o
entanglement” states

 However, if a set is not conclusively distinguishable, then
obviously it cannot be perfectly distinguished by LOCC.



Unextendible product basis (UPB)

A UPB 1s an orthogonal product basis on H = H, ® H , spanning a

subspace S of H such that its complementary subspace S~ contains

no product state.

UPB in 3® 3
do) = L[0)(10) — [1)), [ = L[2)(I1) — |2)).
|v1)=—(|0> 1)I2),  [¥s) = Z5(11) = [2))]0),
|Y4) = (1/3)(|0) + (1) +12))(|0) + [1) +[2)).




) —
b1) =
|4)

DiVincenzo et al, 2002
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)(10) —
0) —
L/3)(

1), [2) = 22)(1) - [2)),
)2, hws) = (1) - [2))]0),
0) + 1) + \2>>(|o> F1) +12).

A
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Two orthogonal mixed states may not be perfectly
distinguishable by LOCC with single copy

Let S be the subspace spanned byaUPBon H =H, ® H,, and S~

be its complementary subspce.

Let o and p be the normalized projectors onto the subspace S and S™

respectively.

UPB:{\I//1>, W, ) s

G=%@.\%>(%

Vo)
j;p: ﬁ(hﬁ,\%)(‘/ﬁ j

where, k =dim S, and D =dim H



Lemma:
The orthogonal density matrices o and p are not conclusively

locally distinguishable (and therefore, not perfectly distinguishable
by LOCC)

Proof:
Suppose the states can be conclusively locally distinguished. For p it implies

that there is a product state |¢) such that the following equations are satisfied:

UPB :{‘l//1>,‘1//2> """ ‘l//k>}

(0| plo) =0

o= Shv o | (8] 5]9) =0
o= D;—k(l_lzkf 1/4)(‘/6]

The second equation implies that the product state |¢) € S*. This is in

contradiction with the fact that S* contains no product state.



Can we distinguish the density matrices 0, 0 with many
copies?

That 1s, we would like to know whether the orthogonal density matrices

o®" and p®" can be perfectly distinguished by LOCC for some positive

integer n.



Tensor product of UPB subspaces

Lemma:

Let S, and S, be the UPB subspaceson H = H, ® H,. Then S, ® §, 1s
also a UPB subspace on H'® H -

Divincenzo et al, 2002

Corollary:

If S is a UPB subspace on H, ® H, then §*" is also a UPB

subspace on H." ® H;".



The orthogonal density matrices 0®" and p®" cannot be perfectly
distinguished by LOCC.

Proof:
We first make the following observations:

1. o®" is the normalized projector onto S*"
1
2. p®n c ( S@n)
®n L .
3. ( S ) contains no product state.

Now suppose that the states °" and p®" are conclusively locally distinguishable.
Then, for p®" it means that there is a product state|p) € H," ® H;" such that the

following two relations hold:

0.

¢)# 0 and (b) (¢p|c®"

(@) (9] p™" ¢)

L
Eq. (b) implies that |¢) e( S®”) — a contradiction.



Main results

* Orthogonal pure states can always be perfectly
distinguished with finitely many copies by LOCC.

* Orthogonal mixed states cannot always be perfectly

distinguished by LOCC even if multiple copies of the
unknown state are available.




Points to ponder

* How good is the N-1 bound for pure states?

N>4 2797977

* For mixed states, study the limit 77 — ©©

* More precisely behavior of P. in the limit

n— oo



Thank you for your kind attention



LocaIIy hidden information

Global operations on a quantum system can process information in ways
that local operations on system’s parts cannot.

Physical information can be stored in quantum systems such that it is
inaccessible to local observers, even when they classically communicate
freely.

Global measurements upon the whole system reveal information that is
harder, or even impossible, to obtain by local means.
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