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Quantum Channel Capacities




Quantum Channel Capacities

Quantum Error Correction Codes reduce error —
but at a cost: each /ogical qubit is encoded in a
larger number of physical qubits.

The Communication rate, R, of a code is:

Rate — logical qubits

physical qubits




Quantum Channel Capacities

Quantum error correction very powerful, errors
can be made to vanish for large data blocks,
provided rates low enough.

The maximal allowed rate for a given channel
Q(¢) is called the guantum channel capacity.




Quantum Channel Capacities

Quantum error correction very powerful, errors
can be made to vanish for large data blocks,
provided rates low enough.

The maximal allowed rate for a given channel
Q(¢) is called the guantum channel capacity.

If you try to communicate at a rate R > Q, then
you will suffer errors.

Communication at rates R < Q can be made
essentially error free by choosing a clever code.




Quantum Channel Capacities

Q(¢&) is the maximal rate at which quantum bits can
be sent essentially error free over many uses of a
quantum channel &

So how do we compute Q(€) ?
Unfortunately it is very difficult....!




So how do we figure out Q(¢) ?

The best known formula for Q(¢) for
UNCORRELATED channels is:

n—o0 0

0(e) = lim {max [S(en<p>>—S<en®I<w»]}

where: W isa purification of p

£ =—ERERER...OERE

See e.g. Barnum et. al. 98, Devetak '05.




Independence vs. Correlations

Independent error model: each transmission affected by
noise independently of the others

However realistic errors can often exhibit correlations :




Independence vs. Correlations

Independent error model: each transmission affected by
noise independently of the others
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However realistic errors can often exhibit correlations :
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E.g. scratches on a CD affect adjacent information pieces,
birefringence in optical fibres (Banaszek experiments 04)




Correlated Errors.

Independent errors: channel acts on n7 qubits
as

E(P)=ERE®.QE(P,)




Correlated Errors.

Independent errors: channel acts on n7 qubits
as

Family of channels {¢,} — for each number of
qubits n:

E(P)-ERER..OE(P,)

So how do correlations in noise affect our
ability to communicate ?




Motivating Example

Consider an independent Pauli error channel:

p— Y plijk..)o®0c ®0,..1plo,®c ®0,..]

1=0,x,y,z

p(ijk....)= p(i) p(j) p(k)




Motivating Example

Consider an independent Pauli error channel:

p— Y plijk..)o®0c ®0,..1plo,®c ®0,..]

1=0,x,y,z
p(Ljk....)= p(i) p(j) p(k)
Channel considered in Macchiavello & Palma '02:

p(ijk....)=Q()p(j i) p(k 1 j)

p(j 1) =10-w)0(j)+ uo(, j)




Macchiavello-Palma channel:

Holevo

Perfect —

Max. entangled

states
Product

states o
§ > kink in curve
’ >

Hp &
Also see e.g. Macchiavello et. al. '04; Karpov et. al. '06;
Banaszek et. al. ‘04, Daems 06




Hmmm......Statistical Physics?

Non-analyticity in large n, thermodynamic, limit ?
Expressions involving entropy ?
That sounds just like Many-body physics!!




Hmmm......Statistical Physics?

Non-analyticity in large n, thermodynamic, limit ?
Expressions involving entropy ?
That sounds just like Many-body physics!!

Consider a many-body inspired model for correlated

Unitary Transmitted Environment

Interaction Qubits Qubits in
correlated
thermal state




Capacity for correlated errors

For our many body models we will compute:

o(e,})) = lim {max [S(En (p)—S(e, ® I(w))]}

n—o0 0

where: W i1sa purification of p

ingeneral: € #ERERER..QERE

This will NOT be the capacity in general, but for “sensible”
models it will be the capacity

In general this expression is too difficult to calculate.

But for specific types of channel it can be simplified




Pick a simple interaction!

= Simple model:

- Consider 2 level systems in environment — either
classical or quantum particles

- Let interaction be CNOT, environment controls




Pick a simple interaction!

= Simple model:

- Consider 2 level systems in environment — either
classical or quantum particles

- Let interaction be CNOT, environment controls

Such interaction gives some pleasant properties:
- Essentially probabilistic application of Id or X
- truncated Quantum Cap = Distillable ent.
- Answer given by Hashing bound.

see Bennett et. al. 96, Devetak & Winter '04.




For such channels:

H (many - body system)

lim

n—oo n

For classical environments A is just the entropy.
Thermodynamic property!!

For quantum His the entropy of computational basis
diagonal.

This is very convenient! There are years of interesting
examples, at least for classical environment.




Quantum example: Rank-1 MPS

Matrix Product States (e.g. Perez-Garcia et al 06) are
interesting class of states with efficient classical description.

Convenient result: If matrices are rank-1, H reduces to
entropy of a classical Ising chain.

E.qg. ground state of following Hamiltonian (Wolf et. al. '05):

H= Z2(g2 _1)ZiZi+1 o (1+ g)ZX,' + (g _1)ZZiXi+IZi+2




Wolf et. al. MPS cont.

Diverging gradient

>
g

g=0

- Slight Cheat : left-right symmetry as channel identical for g, -g




Quantum Ising (Numerics)




The Assumptions.

We have calculated is actually the coherent information:

I.(1¢,}) = lim l{ ax [S(gn(P))—S(€n®I(W))]}

n—oo n

For correlated errors this is NOT the capacity in general.

Is this the capacity for all many-body environments?

Certainly the Hamiltonian must satisfy some constraints.

What are they ?




Cheat’s guide to correlated coding

Consider the whole system over many uses:

CC@

T

large LIVE small SPACER blocks, s

blocks, [ spins

each block spins each block




Cheat’s guide to correlated coding

Consider the whole system over many uses:

MC“MCO"“@

large LIVE small SPACER blocks, s

blocks, [ spins

each block spins each block

If correlations in the environment decay sufficiently, reduced
state of LIVE blocks will be approximately a product

See e.g. Kretschmann & Werner ‘05




Cheat’s guide to correlated coding II

So if correlations decay sufficiently fast, can apply known
results on wncorrelated errors.

How fast is sufficiently fast ? Sufficient conditions are:

o — () Il < CvI® exp(=Fs)

We also require a similar condition, demonstrating that the
bulk properties are sufficiently independent of boundary
conditions.

These conditions can be proven for MPS and certain bosonic
and fermionic system.




Conclusions and Further work:

Results from many-body theory can give interesting insight
into the coherent information of correlated channels.

What about more complicated interactions? Methods give
LOWER bounds to capacity for all random unitary channels.

For which many body systems can decay be proven?

How about other capacities of quantum channels?

A step towards physically motivated models of correlated
error. 2d, 3d.....7?

Is there a more direct connection to quantum coding.
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