Spin Squeezing in N-qubit Systems

SWARNAMALA SIRSI Department of Physics Yuvaraja's College University of Mysore Mysore 570 005, India

Heisenberg-Robertson inequality

$$(\Delta x)^2 (\Delta p_x)^2 \ge \frac{1}{4},\tag{1}$$

follows from

$$[x, p_x] = i \tag{2}$$

where $(\Delta p_x)^2$ and $(\Delta x)^2$ are the variances of p_x and x. The state is squeezed in x if

$$(\Delta x)^2 < 1/2 \tag{3}$$

or squeezed in p_x if

$$(\Delta p_x)^2 < 1/2. \tag{4}$$

Similarly, a radiation field is said to be squeezed if one of the quadrature amplitudes satisfies the condition

$$(\Delta a_i)^2 < 1/2. \tag{5}$$

It is interesting to note that quantum mechanical correlations between photons established through non-liner interactions play a crucial role in the generation of squeezed states of light.

As spin can be used to describe various physical systems, the problem of defining and achieving spin squeezing assumes a central role. As before, the commutation relation,

$$[S_x, S_y] = iS_z \tag{6}$$

leads to the Heisenberg-Robertson uncertainty relation,

$$(\Delta S_x)^2 (\Delta S_y)^2 \ge \frac{|\langle S_z \rangle|^2}{4},\tag{7}$$

which would naturally suggest that a spin state would be regarded as squeezed if $(\Delta S_x)^2$ or $(\Delta S_y)^2$ is smaller than $\frac{|\langle S_z \rangle|}{2}$.

Here the expectation values and the variances are calculated in some arbitrary coordinate system.

Such a definition does not take into consideration the existence of quantum correlations and is coordinate dependent.

A more general inequality

$$\Delta S_x)^2 (\Delta S_y)^2 - (\Delta S_x S_y)^2 \ge \frac{|\langle [S_x, S_y] \rangle|^2}{4} \tag{8}$$

where

$$(\Delta S_x S_y)^2 = \frac{\langle S_x S_y + S_y S_x \rangle}{2} - \langle S_x \rangle \langle S_y \rangle, \tag{9}$$

can be derived using Schwartz inequality.

The above relation, known as the Schrodinger inequality, is more precise and symmetric and provides a more stringent limitation (from below) to the product of two variances. The vector nature of the spin operator leads one naturally to consider the mean spin direction $\hat{\mathbf{n}}$ as the preferred direction in space. According to Kitagawa and Ueda the squeezing condition becomes,

$$(\Delta S_{n\perp})^2 \langle \frac{|\langle S_n \rangle|}{2} \tag{10}$$

where
$$S_{n_{\perp}} = \vec{S}.\hat{n}_{\perp}$$
, $S_n = \vec{S}.\hat{n}$, $\hat{n} = \frac{\langle \vec{S} \rangle}{\sqrt{\langle \vec{S}.\vec{S} \rangle}}$ and $\hat{n}_{\perp}.\hat{n} = 0$.

Here \hat{n}_{\perp} is arbitrary and can be along any one of the infinite directions in the plane perpendicular to \hat{n} .

Therefore, we further make a rotation about the mean spin axis \hat{n} such that the covariance (which also happens to be the correlation)

$$(\Delta S_{n_{1\perp}} S_{n_{2\perp}})^2 = 0, \tag{11}$$

in the new coordinate system.

Here $\hat{n}, \hat{n}_{1\perp}, \hat{n}_{2\perp}$ form a triad of mutually perpendicular unit vectors.

This is possible since the correlation matrix in some arbitrary frame with mean spin direction \hat{n} as the \hat{z} - axis, can be brought to the form

$$\begin{bmatrix} \langle S_{n_{1_{\perp}}}^{2} \rangle & 0 & \langle S_{n_{1_{\perp}}}S_{n} + S_{n}S_{n_{1_{\perp}}} \rangle \\ 0 & \langle S_{n_{2_{\perp}}}^{2} \rangle & \langle S_{n_{2_{\perp}}}S_{n} + S_{n}S_{n_{2_{\perp}}} \rangle \\ \langle S_{n_{1_{\perp}}}S_{n} + S_{n}S_{n_{1_{\perp}}} \rangle & \langle S_{n_{2_{\perp}}}S_{n} + S_{n}S_{n_{2_{\perp}}} \rangle & \langle S_{n}^{2} \rangle - \langle S_{n} \rangle^{2} \end{bmatrix}$$

$$(12)$$

by a planar rotation about the mean spin direction.

It can be observed that in this frame, the Schroedinger inequality and the Heisenberg-Robertson inequality are of the same form and definition of squeezing becomes unambiguous and is given by

$$(\Delta S_{n_{1_{\perp}}})^2 \langle \frac{|\langle S_n \rangle|}{2} \tag{13}$$

or

$$\Delta S_{n_{2\perp}})^2 \langle \frac{|\langle S_n \rangle|}{2} \tag{14}$$

Intrinsic spin associated with point particles such as electrons is described in terms of the *up* and *down* spinors which are well defined mathematically once the definition of spin

$$\vec{S} \times \vec{S} = i\vec{S}$$
 (15)

is accepted. Schwinger visualised any state $|sm\rangle$ as made up of (s+m) up spinors and (s-m) down spinors through ,

$$|sm\rangle = \frac{(a_{+}^{\dagger})^{s+m} (a_{-}^{\dagger})^{s-m}}{\sqrt{(s+m)!(s-m)!}}|00\rangle$$
(16)

where a_{+}^{\dagger} , a_{-}^{\dagger} are the creation operators for the spin *up* and *_down* states respectively.

It must be noted here that spin up and spin down states as well as $|sm\rangle$ are all referred to the same axis of quantization. Recently it was shown that any general spin-s pure state $|\psi\rangle$ can be constructed using 2s spin -1/2 states which are specified with respect to 2s different directions $\hat{Q}_1(\theta_1\phi_1), \hat{Q}_2(\theta_2\phi_2), \dots, \hat{Q}_{2S}(\theta_{2s}\phi_{2s})$ such that

$$\phi\rangle = \sum_{m} c_{m} |sm\rangle \tag{17}$$

where,

$$c_m = N_s d_m, N_s^{-1} = \{\sum_{m=-s}^{+s} |d_m|^2\}^{\frac{1}{2}}$$
 (18)

and

$$d_{m} = \sum_{m_{1}m_{2}...m_{2s-1}} C(\frac{1}{2}\frac{1}{2}1; m_{1}m_{2}\mu_{1})C(1\frac{1}{2}\frac{3}{2}; \mu_{1}m_{3}\mu_{2})....$$
(19)
$$C(s - \frac{1}{2}\frac{1}{2}S; \mu_{2s-2}m_{2s}m)D_{m_{1}\frac{1}{2}}^{\frac{1}{2}}(\phi_{1}\theta_{1}0)....D_{m_{2s}\frac{1}{2}}^{\frac{1}{2}}(\phi_{2s}\theta_{2s}0)$$
(20)

In particular, if $\hat{Q}_1 = \pm \hat{Q}_2 = \dots = \pm \hat{Q}_{2s}$, then this construction specialises to the realization suggested by Schwinger.

Then $|\phi\rangle$ can be constructed using two spinors specified with respect to $\hat{Q}_1(\theta_1\phi_1)$ and $\hat{Q}_2(\theta_2\phi_2)$ as

$$|\phi\rangle = N_2 \sum_{m_1 m} D_{m_1 \frac{1}{2}}^{\frac{1}{2}} (\phi_1 \theta_1 0 |\phi\rangle) D_{m_2 \frac{1}{2}}^{\frac{1}{2}} (\phi_2 \theta_2 0) C(\frac{1}{2} \frac{1}{2} 1; m_1 m_2 m) |(\frac{1}{2} \frac{1}{2}) 1 m_1 |(\frac{1}{2} \frac{1}{2})| 1 m_2 |(\frac{1}{2} \frac{1}{2} \frac{1}{2})| 1 m_2 |(\frac{1}{2} \frac{1}{2} \frac{1}{2})| 1 m_2 |(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2})| 1 m_2 |(\frac{1}{2} \frac{1}{2} \frac{1$$

It can be shown that the mean spin direction \hat{n} for a spin-1 pure state like $|\phi\rangle$ happens to be along the bisector of the two directions \hat{Q}_1 and \hat{Q}_2 .

Employing the frame $\hat{n}_{1\perp}\hat{n}_{2\perp}\hat{n}$ with $\hat{n}_{1\perp}$ lying in the plane of \hat{Q}_1 and \hat{Q}_2 , the state $|\phi\rangle$ has the explicit form

$$|\phi\rangle = \frac{-i\sqrt{2}}{\sqrt{T}r(C^{12})1 + \cos^2\theta} \left[\cos^2\frac{\theta}{2} \left|\frac{1}{2}\frac{1}{2}\right\rangle_{\hat{n}} - \sin^2\frac{\theta}{2} \left|-\frac{1}{2}-\frac{1}{2}\right\rangle_{\hat{n}}\right]$$
(22)

or

$$|\phi\rangle = \frac{-i\sqrt{2}}{\sqrt{1+\cos^2\theta}} \left[\cos^2\frac{\theta}{2}|11\rangle_{\hat{n}} - \sin^2\frac{\theta}{2}|-1-1\rangle_{\hat{n}}\right].$$
 (23)

For $\theta \neq 0, \pi, |\phi\rangle$ cannot be written as a simple product of the spin-1/2 states implying that it is indeed entangled.

The squeezing condition for $S_{n_{1_{\perp}}}$ takes the form $\cos 2\theta < |\cos \theta|.$

which is satisfied for all θ except when $\theta = 0, \pi/2, \pi$.

Thus for all other values of θ , the state ϕ is squeezed in either of the spin components $S_{n_{1+}}$ or $S_{n_{2+}}$.

Spin-spin correlation is defined through the relation

$$C_{\mu\nu}^{12} = \langle S_{1\mu} S_{2\nu} \rangle - \langle S_{1\mu} \rangle \langle S_{2\nu} \rangle$$
(25)

The eigen correlations satisfy the inequality

(24)

$$0 \le |C_{ii}^{12}| \le 1/4$$
; $i = \hat{n}, \hat{n}_{1\perp}, \hat{n}_{2\perp}$ (26)

for all values of θ except when $\theta = 0, \pi/2, \pi$.

The values of c_{ii}^{12} for $\theta = 0, \pi/2, \pi$ are either 0 or $\pm 1/4$.

Thus this construction quantitatively demonstrates the existence of quantum correlations and indicates as to how they lead to squeezing behaviour in the case of pure spin-1 state.

Trace of the correlation matrix

$$Tr(C^{12}) = \left[\frac{\sin^2\theta}{2(1+\cos^2\theta)}\right]^2$$

is invariant. $|\phi\rangle$ is squeezed if

$$0\langle Tr(C^{12})\langle \frac{1}{4}$$

This is a necessary and sufficient condition for $|\phi\rangle$ to be squeezed.

(27)

Given the correlation matrix, the value of θ can be found out through

$$\cos \theta = \pm \left[\frac{1 - 2Tr(C^{12})^{1/2}}{1 + 2Tr(C^{12})^{1/2}} \right]^{1/2}$$
(28)

which identifies the structure of the state in terms of two spinors.

Experimentally squeezing can be achieved with a two-axis counter-twisting Hamiltonian of the form

$$H = \alpha (S_Y^2 - S_X^2) \tag{29}$$

Such a Hamiltonian can be implemented with two-laser fields of orthogonal polarisations and opposite de-tunings from an atomic resonance. By adjusting the light intensity and de-tuning one can obtain the Hamiltonian to be

$$H = H_o + \beta \frac{\hbar}{2} s(s+1) + \frac{\beta}{2} (S_Y^2 - S_X^2)$$
(30)

such an interaction leads to squeezing in an initial state of the form $|11\rangle.$

