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Multi-qubit states
• An n-qubit system shared between n parties (or

subsystems) has 2n orthonormal basis vectors.

• A 2-qubit system has four basis vectors and its
state can be represented as
|Φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

• For multi-qubit systems, the joint state of the
system is a tensor product of qubit states.
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Multi-qubit states
• If qubit A is with Alice and qubit B with Bob

with their individual states,
|ΦA〉 = 1√

2
|0A〉 + 1√

2
|1A〉

|ΦB〉 = 1√
2
|0B〉 + 1√

2
|1B〉

• then the composite system AB is:
|ΦAB〉 = |ΦA〉 ⊗ |ΦB〉,
|ΦAB〉 = 1

2(|00〉 + |01〉 + |10〉 + |11〉).
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Entangled States
• Consider the state of the system AB

|ΦAB〉 = (|0A0B〉+|1A1B〉)√
2

for a two qubit system.

• This state cannot be written as the tensor product
of single-qubit states of its individual component
qubits.

• Such states are called as entangled quantum
states. The above bi-partite state is also called an
EPR pair or a Bell state

• The state shared between parties A,B and C,
|ΦABC〉 = (|0A0B0C〉+|1A1B1C〉√

2
, is a tri-partite

entangled state or GHZstate.

Combinatorial methods for studying LOCC incomparability – p.4/42



Entangled States
• Consider the state of the system AB

|ΦAB〉 = (|0A0B〉+|1A1B〉)√
2

for a two qubit system.
• This state cannot be written as the tensor product

of single-qubit states of its individual component
qubits.

• Such states are called as entangled quantum
states. The above bi-partite state is also called an
EPR pair or a Bell state

• The state shared between parties A,B and C,
|ΦABC〉 = (|0A0B0C〉+|1A1B1C〉√

2
, is a tri-partite

entangled state or GHZstate.

Combinatorial methods for studying LOCC incomparability – p.4/42



Entangled States
• Consider the state of the system AB

|ΦAB〉 = (|0A0B〉+|1A1B〉)√
2

for a two qubit system.
• This state cannot be written as the tensor product

of single-qubit states of its individual component
qubits.

• Such states are called as entangled quantum
states. The above bi-partite state is also called an
EPR pair or a Bell state

• The state shared between parties A,B and C,
|ΦABC〉 = (|0A0B0C〉+|1A1B1C〉√

2
, is a tri-partite

entangled state or GHZstate.

Combinatorial methods for studying LOCC incomparability – p.4/42



Entangled States
• Consider the state of the system AB

|ΦAB〉 = (|0A0B〉+|1A1B〉)√
2

for a two qubit system.
• This state cannot be written as the tensor product

of single-qubit states of its individual component
qubits.

• Such states are called as entangled quantum
states. The above bi-partite state is also called an
EPR pair or a Bell state

• The state shared between parties A,B and C,
|ΦABC〉 = (|0A0B0C〉+|1A1B1C〉√

2
, is a tri-partite

entangled state or GHZstate.

Combinatorial methods for studying LOCC incomparability – p.4/42



Entangled States
• Consider the state of the system AB

|ΦAB〉 = (|0A0B〉+|1A1B〉)√
2

for a two qubit system.
• This state cannot be written as the tensor product

of single-qubit states of its individual component
qubits.

• Such states are called as entangled quantum
states. The above bi-partite state is also called an
EPR pair or a Bell state

• The state shared between parties A,B and C,
|ΦABC〉 = (|0A0B0C〉+|1A1B1C〉√

2
, is a tri-partite

entangled state or GHZstate.

Combinatorial methods for studying LOCC incomparability – p.4/42



Entangled States
• Let |Φ〉 = α|0n〉 + β|1n〉. If α = β then this is

called a maximally entangled state.

• The above maximally entangled state is also
called an n− CAT state.
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Local operations and classical
communication

• Local operations and classical communication
(LOCC) is a class of entanglement
transformations, that includes multiple rounds of
local operations by various parties and sending of
the result of the measurement to other parties
(classical communication).

• Other parties perform local operations
conditioned on the results received.
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Incomparability
• If state |Φ〉 can converted to the state |Ψ〉 using
LOCC transformations, then the two states are
called LOCC − comparable, and this is denoted
as |Φ〉 ≥ |Ψ〉.

• If both |Φ〉 ≥ |Ψ〉 and |Ψ〉 ≥ |Φ〉, then the two
states are LU − equivalent or |Φ〉 ≡ |Ψ〉.

• If neither |Φ〉 ≥ |Ψ〉 nor |Ψ〉 ≥ |Φ〉, then the two
states are called LOCC − incomparable.

• Partial entropies cannot increase in the system
due to LOCC.
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Bicolor Merging Technique
• Bicolor merging is a technique used to prove
LOCC − incomparability between two
multipartite states using partial entropic criteria.

• It uses the fact that we cannot increase the
number of entanglements shared between two
parties under LOCC.

• In this technique we color vertices of the graph
using two colors. We merge the adjacent vertices
colored with same color.

• If number of EPR pairs in reduced graph of
graph G1 is greater than number of EPR pairs in
reduced graph of graph G2 then G1 cannot be
tranformed to G2 using LOCC.
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Bicolor merging v/s partial
entropy

We can show that the bicolor merging technique is as
powerful as the partial entropic criteria, when we
restrict ourselves to only maximally entangled states.
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Combinatorial results of
entanglement hypergraphs

• The degree of a vertex cannot increase.

• Singh et al. [1] proved that two labeled EPR
trees and r-uniform hypertrees with same number
of vertices are LOCC − incomparable.

• As a generalization, we show that two EPR
graphs with same number of edges and vertices
are LOCC comparable if and only if they are
identical.
[1]S.K. Singh, S.P. Pal, Somesh Kumar, R. Srikant, A combinatorial approach for

studying local operations and classical communication transformation for multipartite

states, J. Math Phys 46, 122105(2005).
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Results for hypergraphs
• We also show that two labeled r-uniform

hypergraphs with the same vertex set and equal
number of hyperedges are LOCC comparable if
and only if they are identical.
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Result on connectivity of EPR
graphs

• Using LOCC transformations one cannot create
an EPR pair between two disconnected vertices
of an EPR graph.
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Restricted Model of LOCC
• Consider a restricted model of LOCC on labeled
EPR graphs where only operations allowed are
i)EPR edge destruction and ii)teleportation.

• Under this restricted model: Given two EPR
graphs , Is G ≥ H?

• Let G(V,E1) and H = (V,E2) be two EPR
graphs on the same vertex set. Let
E2 \ E1 = {{u1, v1}, {u2, v2}, . . . , {um, vm}}.
Then, H ≤ G if and only if there are edge disjoint
paths from ui to vi, 1 ≤ i ≤ m, in G(V,E1 \E2).
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GLOCC and its properties
• We define a directed graph GLOCC(V,E) where

(i) the nodes in the set V represent equivalence
classes of such ensembles under LOCC
transformations, and (ii) the directed edge from
node X ∈ V to node Y ∈ V implies that there is
an ensemble x in the equivalence class X which
can be transformed to an ensemble y in the
equivalence class Y , using only LOCC
transformations.

• GLOCC is transitive graph, forms a partial order,
and has no non-trivial cycles.
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Consequences of Sperner’s the-
orem

• ≥ forms a partial order on the set of labeled
r-uniform entanglement hypergraph.

• Sperner’s theorem: For a set A, the number of
sets in any antichain in A under the partial order
induced by set inclusion cannot exceed
( |A|
d(|A|+1)/2e

)

.
• The maximum number of mutually LOCC

incomparable EPR graph with n nodes is
(

M
d(M+1)/2e

)

where M =
(

n
2

)

.
This is also called the Width of the partial order
induced by ≥.
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Result for r-uniform hyper-
graphs

The maximum number of mutually LOCC
incomparable r-uniform hypergraph with n nodes is
(

M
d(M+1)/2e

)

where M =
(

n
r

)

.
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Definitions
• If a multipartite state |φ〉 can be transformed into

another such state |ψ〉 by LOCC, then we denote
this transformation as |φ〉 ≥ |ψ〉 (or |ψ〉 ≤ |φ〉).

• If none of |φ〉 ≥ |ψ〉 and |ψ〉 ≥ |φ〉 hold then we
say that the two ensembles or states are LOCC
incomparable.

• If one or both of |φ〉 ≥ |ψ〉 and |ψ〉 ≥ |φ〉 hold,
then we say that the two ensembles or states are
LOCC comparable.
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Definitions
• The degree of a vertex in a (hyper)graph is the

number of (hyper)edges containing that vertex, in
the (hyper)graph.

• The degree of a vertex subset in a hypergraph is
the number of hyperedges containing all vertices
of the vertex subset, in the hypergraph. We use
E(G) to denote the set of (hyper)edges of a
(hyper)graph G.
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Restricted LOCC transforma-
tions

• Given an EPR graph we restrict LOCC to EPR
pair (edge) destruction and teleportation. If the
EPR graphs G and H are such that H can be
obtained from G using such restricted LOCC,
then we say G ≥R H .

• Lemma 1: Let G and H be two EPR graphs
defined on the same vertex set V . Then, G ≥R H
if and only if there are edge disjoint paths from u
to v in G, for each edge {u, v} ∈ H .
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Good LOCC transformations
• Definition: An LOCC transformation from G to
H is called good if |E(H) \ E(G)| ≤ 1, where G
and H are EPR graphs defined on the same vertex
set V .

• In other words, there is at most one new EPR pair
(edge) in H .

• Lemma 2: Suppose EPR graph G can be
transformed to H via a sequence of good
transformations. Then G ≥R H .

• A sequence of good transformations can be
simulated by a sequence of EPR pair destructions
and teleportations.
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Example...

A

B

C

D E D

A

B

C

E
?

G H
Incomparability of the above example cannot be shown using partial entropy.
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Cont...
• Theorem 1: Let G and H be EPR graphs defined

on the same vertex set. Then, the following
statements are equivalent.
1. G ≥R H
2. There are edge disjoint paths in G from u to v
for all edges (u, v) ∈ H .
3. H can be obtained from G by a sequence of
good transformations.

• Conjecture: Good transformations exhaust the
set of all possible LOCC transformation between
EPR graphs.
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Example...
1 3

4
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6 7

                                

The spanning tree T 1
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Proof of incomparability...

|
|
|
|

|
|

            A and B
Two EPR pair between 

LO

− LO

an impossible
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Results
• Lemma 1: The degree of a vertex v in an

entanglement hypergraph (or an EPR graph),
cannot increase under LOCC transformations.

• Theorem 2: Any two distinct labeled EPR
graphs with the same number of vertices and
edges, are LOCC incomparable.

• Theorem 3: Any two distinct labelled r-uniform
entangled hypergraphs defined on the same set V
of vertices, with same number of hyperedges, are
LOCC incomparable, ∀ even integer r ≥ 4.
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General Theorem
• Theorem 4: Any two r-uniform entangled

hypertrees are LOCC incomparable for all r ≥ 2.
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Outline of the proof
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u v u v

V(G)−{u,v} V(G)−{u,v}

u(B) v(B) u(B) v(B)

V(G)−{u,v} V(G)−{u,v}

Bicoloring

Merging

B{u,v}
B{u,v}

A{V(G)−{u,v}} A{V(G)−{u,v}}

Number of edges after bicolor merging = deg(u)+deg(v) − 2 Number of edges after bicolor merging = deg(u) + deg(v)
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Degree lemma: General
•

Lemma 1. The degree of a vertex v in an EC
hypergraph (or in an EPR graph) cannot increase
under LOCC transformations.

• Proof. Let H1 be a EC hypergraph which can be
transformed into another EC hypergraph H2 by
LOCC. For a vertex v ∈ H1, define a bipartition
of H1 by placing v in one set and the remaining
vertices in the other.
The number of edges across the cut defined by
this bipartition is equal to the degree of v.
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Degree lemma: General
•

Lemma 3. The degree of a vertex v in an EC
hypergraph (or in an EPR graph) cannot increase
under LOCC transformations.

• Proof. Let H1 be a EC hypergraph which can be
transformed into another EC hypergraph H2 by
LOCC. For a vertex v ∈ H1, define a bipartition
of H1 by placing v in one set and the remaining
vertices in the other.

The number of edges across the cut defined by
this bipartition is equal to the degree of v.
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Applications of the degree
lemma

•

Theorem 1. Any two distinct labeled EPR
graphs with the same number of vertices and
edges are LOCC incomparable.

•
∑

v∈V

degG(v) =
∑

v∈V

degH(v) (.1)

where degG(v) (degH(v)) is the degree of the
vertex v ∈ V in EPR graph G (H).

• Further, by Lemma 3, the degree of no vertex can
increase under LOCC. Therefore, the degrees of
all vertices remain unchanged.

Combinatorial methods for studying LOCC incomparability – p.29/42



Applications of the degree
lemma

•

Theorem 2. Any two distinct labeled EPR
graphs with the same number of vertices and
edges are LOCC incomparable.

•
∑

v∈V

degG(v) =
∑

v∈V

degH(v) (.2)

where degG(v) (degH(v)) is the degree of the
vertex v ∈ V in EPR graph G (H).

• Further, by Lemma 3, the degree of no vertex can
increase under LOCC. Therefore, the degrees of
all vertices remain unchanged.
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Applications of the degree
lemma

•

Theorem 3. Any two distinct labeled EPR
graphs with the same number of vertices and
edges are LOCC incomparable.

•
∑

v∈V

degG(v) =
∑

v∈V

degH(v) (.3)

where degG(v) (degH(v)) is the degree of the
vertex v ∈ V in EPR graph G (H).

• Further, by Lemma 3, the degree of no vertex can
increase under LOCC. Therefore, the degrees of
all vertices remain unchanged.
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Applications of the degree
lemma

• Since the two graphs H and G are distinct, there
exists an edge {u, v} in G, which is not present in
H .

• Define a bipartition ({u, v}, V \ {u, v}) of the
graph G by coloring vertices u and v with color
1, and the rest of the vertices with color 2.
The number of edges across the cut in this
partition is degG(u) + degG(v) − 2.

• Since (u, v) is not present in H , the same cut due
to the same bipartition of the vertices will have
degH(v) + degH(u) edges in H .

• Since the degree of each labeled vertex is the
same in both G and H , the number of edges in
the reduced graph after bicolored merging
increases by 2.
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Degree lemma: Hypergraphs
Lemma 4. Let H1 and H2 be two r-uniform EC
hypergraphs defined on the same vertex set V . If H1

and H2 have the same number of hyperedges and
H1 ≥ H2, then the degrees of all vertices in H1 and
H2 are the same.

Proof. The degree of a vertex can not increase under
LOCC (see Lemma 3). Also, H1 and H2 have same
number of hyperedges. Therefore the sum of degrees
of all vertices in H1 is equal to the sum of the degrees
of all vertices in H2. This enforces the degrees of all
vertices to be same for hypergraphs H1 to H2.
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• We now exhibit two 3-uniform hypergraphs on 6
vertices having 4 edges each, such that all cut
capacities are same in both the hypergraphs.

H1 = {123}, {156}, {245}, {346}

H2 = {456}, {234}, {136}, {125}

• It is easy to verify that degH1
(F ) = degH2

(F ) for
F ⊂ V and |F | < 3.

• From the above argument it follows that H1 and
H2 cannot be shown to be incomparable by
partial entropic characterizations.
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• As degH1
(F ) = degH2

(F ) for F ⊂ V and
|F | < 3 so they are isentropic. Also, marginally
isentropic states are either LU (locally unitary)
equivalent or incomparable.

• Partition the vertices into three sets
A = {1}, B = {2, 3}, C = {4, 5, 6} and merge
the vertices in the same sets.

• H1 reduces to the EPR graph with edges
(A,B), (A,C) and two copies of (B,C).

• H2 reduces to the entangled hypergraph with 2
GHZs shared between A,B,C and an EPR pair
shared between B and C.
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• Let the reduced (hyper)graphs of H1 and H2 be
denoted by R(H1) and R(H2) respectively.

• If H1 and H2 are LU-equivalent then so R(H1)
and R(H2) must also be LU-equivalent.

• To prove that are not LU-equivalent, observe that
the mixed state obtained by tracing out B from
R(H2) i.e., ρAC(R(H2)) is a maximally mixed,
separable state of A and C.
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• The corresponding mixed state ρAC(R(H1))
obtained from R(H1) can be distilled to the
entangled state, consisting an intact (A,C) EPR
pair shared by the two parties.

• So if R(H1) and R(H2) are LU equivalent, then
A and C can do local unitary operations and
convert ρAC(R(H2)) to ρAC(R(H1)).

• This is not possible as one cannot create the
entanglement (A,C) by LOCC.

• So, R(H2) and R(H2) are not LU equivalent,
implying H1 and H2 are not LU equivalent. So,
they are LOCC incomparable.
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• We now state the main LOCC incomparability
result for r-uniform EC hypergraphs using partial
entropic criteria, for even integers r ≥ 4.

•

Theorem 4. Let H1 and H2 be any two labeled
r-uniform EC hypergraphs defined on the set V
of vertices. If H1 and H2 have the same number
of hyperedges and either H1 ≤ H2 or H2 ≤ H1

then (i) degH1
(S) = degH2

(S), ∀S ⊆ V such that
|S| < r, for all integers r ≥ 3, and (ii) H1 = H2,
for all even integers r ≥ 4.
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• We now state the main LOCC incomparability
result for r-uniform EC hypergraphs using partial
entropic criteria, for even integers r ≥ 4.

•

Theorem 5. Let H1 and H2 be any two labeled
r-uniform EC hypergraphs defined on the set V
of vertices. If H1 and H2 have the same number
of hyperedges and either H1 ≤ H2 or H2 ≤ H1

then (i) degH1
(S) = degH2

(S), ∀S ⊆ V such that
|S| < r, for all integers r ≥ 3, and (ii) H1 = H2,
for all even integers r ≥ 4.
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•

Definition 1. For an EC hypergraph H with
vertex set V and subset S ⊆ V , degH(S) is
defined as the number of hyperedges in H
containing all the vertices of S.

•

Lemma 5. For a subset S of a r-uniform
hypergraph H , the number of hyperedges across
the cut (S, V \ S) is given by

∑

F⊆S

(−1)|F |−1degH(F ) −
∑

F⊆S,|F |=r

degH(F )
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•

Definition 2. For an EC hypergraph H with
vertex set V and subset S ⊆ V , degH(S) is
defined as the number of hyperedges in H
containing all the vertices of S.

•

Lemma 6. For a subset S of a r-uniform
hypergraph H , the number of hyperedges across
the cut (S, V \ S) is given by

∑

F⊆S

(−1)|F |−1degH(F ) −
∑

F⊆S,|F |=r

degH(F )
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• Let E be a hyperedge intersecting S in t ≤ r
vertices. E contributes to the first part of the sum
above through the terms (−1)|F |−1degHi

(F ),
∀F ⊆ E ∩ S, by virtue of the inclusion-exclusion
principle.

• The contribution equals (i) 1, for the t singleton
subsets F ⊆ E ∩ S with |F | = 1, (ii) −1, for the
(

t
2

)

subsets F ⊆ E ∩ S with |F | = 2, and so on,
ending with (−1)t−1, for the subset F = E ∩ S.

• The total contribution of E to the first part of the

sum is
t

∑

i=1

(−1)i−1

(

t

i

)

= 1. The second part of

the sum counts the number of hyperedges having
all vertices in S.
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• Hyperedge E belongs to the cut (S, V \ S) if and
only if 0 < t < r. In this case E contributes +1
to the first part and 0 to the second part of the
sum, making a net contribution of 1.

• For t = r (and t = 0) the contribution of E to
both parts of the above sum is 1 (and 0)
respectively, making a net contribution of 0.

• Therefore,
∑

F⊆S

(−1)|F |−1degH(F ) −
∑

F⊆S,|F |=r

degH(F )

equals the number of hyperedges across the cut
(S, V \ S).
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• Let the two hypertrees defined on the vertex set
{1, 2, · · · , n} be T1 and T2.

• For r = 2 the result follows as all trees on n
vertices have the same number of n− 1 edges.

• For r = 3, we assume without loss of generality
that the hyperedge {1, 2, 3} is in T1 \ T2. If T1

and T2 are not LOCC incomparable, then by part
(i) in the last Theorem, we have
degT1

({1, 2}) = degT2
({1, 2}).
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({1, 2}) = degT2
({1, 2}).
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• So, there should be a hyperedge E1 = {1, 2, x} in
T2 \ T1, where x is not in {1, 2, 3}; this hyperedge
E1 cannot be in T1 because no hypertree has two
hyperedges with two common vertices. Similarly,

• T2 must have hyperedges E2 = {1, 3, y} and
E3 = {2, 3, z}, where y is not in {1, 2, 3, x} and
z is not in {1, 2, 3, x, y}. This implies that the
cycle {3, E2, 1, E1, 2, E3, 3} is present in T2, a
contradiction.

• For r > 3, we assume without loss of generality
that the hyperedge {1, 2, . . . r} is in T1 \ T2.
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• If T1 and T2 are not LOCC incomparable, then by
part (i) of the last Theorem, we have
degT1

({1, 2, . . . , r−1}) = degT2
({1, 2, . . . , r−1})

and degT1
({2, 3, . . . , r}) = degT2

({2, 3, . . . , r}).

• So, there must be hyperedges in T2 containing
{1, 2, . . . , r − 1} and {2, 3, . . . , r}. As r > 3,
these two hyperedges intersect in at least 2
vertices, a contradiction.

• References
(i) arxiv:0709.0063v2 [quant-ph], Presented in
AQIS 2007, Kyoto, Japan.
(ii) J. Math. Phys. 46, 122105 (2005).
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