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Recalling Schumacher compression

e Signal = € X, which occurs with probability p,, is
encoded as a pure state |¢,) € Hs: Initial density
matrix, corresponding to the non-spectral ensemble
Ens = {pw5 ‘¢w>’$ S X}! is p = erXpw’¢w><¢x’ |¢x>,s are
non-orthogonal, in general. The spectral ensemble
Es = {wy; |Yy)|l € L} corresponds to the spectral
decomposition p = > _,_, w;|v;) (Y] of p.

P2/



Recalling Schumacher compression (continued)
e Consider a string p°" = p® p® ... (n times) of length

n. SO we have now the non-spectral ensemble £ }Jﬁ =

{PNS(:Cla L2y .. 7:En) = Pz1Pxs - - - Pz ’(I)NS(:Cla L2y .. 7:Cn)> -
| Ga1) © |baz) ® |a, )| (21, T2, ..., 20) € X"} as well as the
spectral ensemble

e = {Ps(ly,ls, ..., 1) = w wb. Pl gy 1))
V1) @ [,) @ )| (L Loy o 1) € L”}
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Recalling Schumacher compression (continued)

e Consider the random variable L. = {/;w,|l € L}. So
H(L) = S(p). Consider the classical messages /,/5...1,
with associated probabilities Ps(l1,15,...,[,). Given

e, 0 > 0, for sufficiently large n, (1l ... [, will be a typical
sequence if 20 > Po(ly 1y, ..., 1,) > 27 H(L)+9)
and the total probability of all such typical messages
exceeds 1 — . So the total no. N (¢, §;n) of such typical
sequences will satisfy:

2n(H(L)—|—5) > N(€757n) > (1 o E)zn(H(L)—(S)_
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Recalling Schumacher compression (continued)

e The states |9s(l,05,...,1,)) (Whose total no. is

N (e, 6:n)), corresponding to the typical sequences

il ...1,, are pairwise orthogonal and so they will span
a N (e, 0;n)-dimensional subspace (called as the

‘typical’ subspace, and is denoted by A) of HS™".

e Consider now the projective measurement { £, [ — '}
on p*", where £ : HZ" — A is the projector on A and

(I — E) is the projector on A+,
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Recalling Schumacher compression (continued)

o If I/ clicks, encode the states |®,,,,..;) (of A) in the
range of Ep*"F as: A(|Pypica) (Piypicat]) = |Yeomp)s Where
W omp) is @ 2750 T9).qubit state and A is a CP map. If
(I — F) clicks, take the output state, cooresponding to
input the state | yg(z1,22,...2,)) (appeared in the
non-spectral ensemble for p“"), as p;,.x(z1, 22, ..., xp).

.~ p.6/4



Recalling Schumacher compression (continued)
e Thus we see that, after this measurement, a general
state |Pys(xy, 20, ..., 2.))(Prs(21, oy ..y 2p)]
D oaren | (@rupicatl s (1,22, 20)) P comp) (Weomp| +
Piunk (X1, Tay oo Ty (Prs(T1, Ta, .. x| (L —
E)|®ns(x1, T2, ... 20)) = pns(T1, Xo, ..., 2,), Where
{|Psypicar) } 1S @ complete orthonormal basis of the
on(S(r)+9).dimensional Hilbert space and {|V.,,,,)} is the
corresponding encoded set.
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Recalling Schumacher compression (continued)

e The average fidelity /' of this measurement =
encoding scheme:

F = (€1,22,....00)EX PNS(LUl,l'Q,...,SL’n)X
(Pns(T1, oy s xn)|pNs (X1, To, ooy T0) | Ps(T1, Toy ..., T))
> 1 — 2¢

e Once F clicks, because of knowledge of the
encoding scheme A(|®,,,ica) (Piypicar|) = |Veomp)s ONE CAN
now perform a (unitary) decoding scheme

U(|Veomp) ® [0)) = |Prypicar)» DY appending extra
dimension to 2"(°»)*%)-dimensional Hilbert space.

.~ p.8/4



Recalling Schumacher compression (continued)
e This compression scheme is optimal: If we want to

encode states of A by states of a 2"°(?)~%)-dimensional
Hilbert space A’, one can generate (through the
scheme: measurement — encoding — unitary

decoding) only a 2"5(»)=%).dimensional subspace (\”,
say) of HZ". If £ is the projector on the subspace A",
then Tr(p*"E") < sum of the first 27(5(V)=%) no. of
largest eigen values of p®", which, in turn, less that ¢
(follows from properties of typical subspace). So the
average fidelity F < Tr(p®"E") < e.
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Recalling Schumacher compression (continued)

e In the case when |¢,)’s are pairwise orthogonal, the
incompressible information content (in terms of
qubits) in p = 3 p.|6.)(6,] is S(p) = H(X). By the
compression scheme, the decoder will be able to
distinguish the encoded states perfectly, in the large »
limit. For the case of non-orthogonal |¢,)’s, the
incompressible information content is S(p), which is
strictly less than 4 (X). But we have to pay the price:
the decoder will not be able to distinguish the encoded
state.
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Data compression for mixed state encoding

¢ In the case of mixed state encoding with the
ensemble £ = {p,, p,|r € X} withp=>___. p.p,, it can
be shown that the incompressible information content
(in terms of qubits) in p will be less than or equal to the
Holevo bound (&) = S(p) — >, x P=S(p2). But whether
one can achieve the limit x(£) in an asymptotic
compression scheme, is still not fully settled.
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Data compression for mixed state encoding
(continued)

e That one needs less that S(p) no. of qubits as
incompressible information content for mixed state
encoding, in general, can be seen in the trivial case:
Consider p,, = 1and p, =0 forall x € (X — {z(}), where
it is assumed that S(p,,) > 0. So it is certain that the
ensemble £ has been prepared in the state p,,. So
there is nothing to be compressed — everything is
known, even though S(p,, ) is positive!
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Mutual information vs. Holevo bound

¢ In classical information theory, the mutual
information /(Y; X) = H(Y) — H(Y|X) tells us how
much, on the average, the Shannon entropy of the
random variable Y = {y, ¢,|y € Y} is reduced once we
learn the values of X = {z,p.|r € X}. Similarly, in
quantum information theory, the Holevo bound (&)
tells us how much, on the average, von Neumann
entropy S(p) (with p = > _, p.p.) is reduced once we
know which preparation procedure was chosen to
prepare p.
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Mutual information vs. Holevo bound (continued)

o [(Y;X)2=0;x(8) =5(p) = Xpex PaS(pz) =
SO pex PzPz) — D rex PS(pz) = 0 (due to concavity of
von Neumann entropy).
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Mutual information vs. Holevo bound (continued)

¢ Lindblad-Uhiman monotonicity: If

7 : D(Hg) — D(Hy) is a (trace-preserving) CP map,
then \ (&) < x(€) where &' = {p,, 7 (p.)|x € X} while

€ ={p., p. }- Note that this inequality does not always
hold good for von Neumann entropy.

e Due to the analogy of y (&) with /(Y; X), the Holevo
bound \(£) may be interpreted as the amount of
classical information about the signal = that one can
extract from the ensemble £ = {p,, p.|r € X} by
performing measurements.
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Accessible information

e Suppose Alice prepares a density matrix p, of S with
probability p, according to the ensemble

E =A{p., p:|xr € X}. She then sends the state p, to Bob
via a noiseless quantum channel. Bob does know the
ensemble £ but he doesn’t know which state is sent by
Alice. Bob wants to know the signal z (i.e., Bob wants
to extract the (classical) information about the random
variable X = {z,p.|r € X}) by performing a POVM
{E,|ly € Y} on the state with measurement outcomes

y € Y and probabilities p(y|z) = Tr(E,p.)-
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Accessible information (continued)

e Using Bayes’ rule, we have

p(ely) = (p(l2)pe) /(2 sex P(y|2)ps). SO the mutual
information /(X;Y) = H(X) - H(X|Y) =

— 2 wex Pu 10800y + )2 oy (D e x P(Y]2)p2) X H(Xy), which
is the amount of reduction of (classical) information
about X, on an average, after Bob performs the
measurement. Bob wants to maximize this reduction
by choosing appropriate POVM.
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Accessible information (continued)
e Accessible information:
Liee = max{I(X;Y)| over all POVMs {F, |y € Y}}

e In general, it is difficult to calculate /,,...
e Holevo (1973) has shown that

Loce < S(p) = Dpex P25 (pz) = X(E)-
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Accessible information (continued)
e Proof of this result uses strong subadditivity of von

Neumann entropy, for which we need three systems:
An preparation system P of dimension | X| having a
complete orthonormal basis {|z) : + € X}, the original
system S which is prepared in state p, with probability
p. (corresponding to the ensemble £ = {p., p.|x € X}
for the average state ps = ) . p.p.), and the
measuring apparatus M of dimension > |Y'| with an
orthonomal basis (possibly incomplete) {|y) : y € Y}.
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Quantum conditional entropy

e Quantum conditional entropy: For any density
matrix p 5 of a bipartite system A + B, with reduced
density matrices p4, = Trg(pap) and pg = Tra(pag), the
quantum conditional entropy S(A|B) = S(pag) — S(pB)-
Unlike classical case, S(A|B) can be negative!
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Quantum mutual entropy

e Quantum mutual entropy: For any density matrix p 5
of a bipartite system A + B, with reduced density
matrices p4 = Trp(pap) and pp = Tra(pan),

S(A; B) = S(pa) — S(A|B) = 5(pa) + S(pp) — S(pap). Itis
always non-negative due to subadditivity property of
von Neumann entropy.
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Results from strong subadditivity
e (i) Ignoring subsystem: S(A; B,C) > S(A; B),S(A; C).

e (ii) One-sided CP map: f 7 : B(Hg) — B(Hp/) is a
trace-preserving CP map such that

(I @T)(pap) = P € D(Ha ® Hp') for each

PAB € D(HA &) HB), then

S(A; B) = S(ply) + S(plp) — S(pap) = S(A B').
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Useful property of von Neumann entropy

o (ili)If {|z): x € X} is an orthonormal basis of the
| X |-dimensional preparation system P, then

S wex P2l T)(T| @ pe) = H(X) + > cx PoS(P2)-
e This is true because of the fact that here
S(Ypex Palt) (x| ® p2) =

= 2wex Tr((po]e)(@] @ pa) logy(pa|z) (2] @ pa)), as
lz){x| ® p,’s are pairwise orthogonal.
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Proof of /,.. < x(&)

e Alice prepares the initial ensemble, described by
PPSM = D .cx Pz|T) (x| ® pr ®]0)(0], where |0) is a fixed
state of ). She then sends (undisturbedly) the
systems S and ) to Bob.

e So S(,OPSM) = S(,Ops). Now

S(P; S, M) = S(pp) + S(psm) — S(ppsm) =

S(2vex P2l2)(x]) + 5(Qpex Pepz @ |0)(0]) = S(pps) =
S(pp) + 5(ps) — S(pps) = S(P;5).
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Proof of /,.. < x(£) (continued)

e Bob applies now a CP map

7 :D(Hs ® Hy ) — D(Hg ® Hy) corresponding to
implimentation of the POVM £, |y € Y}, given by the
Kraus representation

T (05 ®[0)(0]) = ey (B* @ Uy) (05 ® [0)(O)(E,* ® UJ),
where ¢ is any state of S and for each y € Y,
U, : Hy — H)y, is an unitary operator for which

U,|0) = |y)-
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Proof of /,.. < x(£) (continued)
o Let phsy = (Ip @ T)(ppsm) =
> wex, yev Pol2) (x| @ (B, p,By*) @ |y) (y|- Then by
property (ii), S(P; S, M) > S(P"; 5", M").
e So by property (i), we have S(P’; 5", M'") > S(P'; M'").
e So we have finally S(P’; M') < S(P;S).
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Proof of /... < x(&) (continued)
o Now S(P;5) = S(pp) + S(ps) — S(pps) =
H(X) + 5(ps) = H(X) = > ex P=S(p2) (bY property (iii)).
Thus S(P;5) = S(ps) = 2 ,ex P=S(pz) = x(E).
o P(P;M')=5(pp)+5(ph) = S(Ppa) =
S(2wex, yev PaP(Yl2)|2)(2]) + S(X e x, yev PaP(Y]2)|y)(Yl) —
SO wex, yey PPyl |2y)(2Y|) =
HX)+HY)- HX,Y)=I(X;Y).
e Thus we have /(X;Y) < x(£), whatever be POVM
{Ey‘y €Y},




Attainability of the Holevo bound

e Example 1: Let |¢y) and |y,) be two non-
orthogonal states (spanning a two-dimensional Hilbert
space H), supplied with equal probability. Thus £ =
{lvn), p(lvn)) = 1/2 and |¢2),p(|¢2)) = 1/2}. Here
the accessible information /,.(£) can be shown to
be the value of /(X;Y) corresponding to the optimal
POVM {F = (1/(1 + [{¢ulvo) )|z ) (ol Fo = (1/(1 +
(D[ Y) D) (i |, Fs = Iy — Fy — Fa b
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Attainability of the Holevo bound (Exmaple 1)

e Example 1 (continued): Here I,..(&) = 1 — |{1/1]1)]

while x(£) = H((1 + [(¢1[v2)])/2, (1 — [(¢1]2)])/2). So
L... < x(&), equality holds iff either |(v);]y,)| = 0 or

’<¢1‘¢2>’ = L.
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Attainability of the Holevo bound (Example 2)

e Example 2: Let |¢/;) and |y») be same as in Example 1,
supplied with equal probability. Now, instead of taking
the initial ensemble as &, let us take £ = {|U,) = [¢))) ®
1), p(|W1)) = 1/2 and [W2) = |2) @ [¢he), p(|¥2)) = 1/2}.
Let /7’ be the Hilbert space spanned by |V,) and |U,).
Here the accessible information /,..(£) can be shown
to be the value of /(X:;Y) corresponding to the opti-
mal POVM {G = (1/(1 + [(W1[W2)])) (T — [W2)(Wa|), G2 =
(1/(1+ [(U1[W2) ) (L — [W1)(V1], Gs = I — G1 — Ga }
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Attainability of the Holevo bound (Exmaple 2)
(continued)

e Example 2 (continued): Here 1,..(E®) =1 — |(y |15 |?
while x(£®) = H((1+ [(1|2)[?)/2, (1 — [(¥1]12)]?)/2). So
L..(E®) < x(£®@), equality holds iff either |{1)]1),)| = 0
or |(¢1]1»)| = 1. Note that

(X(EPD) — I ()} < {x(&) — L,..(€)} and equality
holds iff either | (v, |1y5)| = 0 or [(¢|1o)| = 1.
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Entanglement dilution for pure states

e Far apart parties Alice and Bob want to share
copies of a bipartite pure entangled state |¢)) 45, for
large n, starting from minimum no. (%,,;,, say) of the
shared siglet state |¢*) = (1/1/2)(]00) + |11)), by using
LOCC only. k,,;,/n, in the limit n — oo, is called as the
entanglement of formation Ex(|¢)a5) Of |1)) 45.
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Entanglement concentration for pure states

e Far apart parties Alice and Bob are sharing share n
copies of a bipartite pure entangled state |¢)) 45, for
large n, and they want to generate now, by using LOCC
only, maximum no. (k,..., say) of siglet states |¢*). The
value k,,../n, in the limit n — oo, is called the

distillable entanglement £ (|1)) 45) Of |¢) 4.
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Ep(|¢)) < Ep([¥))

e As entanglement does not increase under LOCC
(which is known as “irreversibility of entanglement
under the thermodynamic process of LOCC”),
therefore: k,,../n < k,.;,/n in the large n limit. So

(1) Ep(|Y)ap) < Ep(|¥)ap).

e Using Schumacher data compression, one can show
that, in the large » limit, Alice and Bob can share n no.
of entangled state |¢) .5, by using LOCC only, starting

from n.5(p",) no. of shared siglet states |¢*), where
Pffx = Trp(|V) 45 (¥]) -
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Ep([v)) < Ep([¥))
e There is an entanglement concentration scheme,
using which Alice and Bob can finally share n.5(p%) no.

of singlet state, in the large » limit, starting from »n
copies of the shared state |¢)) 4.

e So we have
nS(ply)/n < Ep([¢)as) < Er(l¢) ap) < nS(p4)/n. Thus:

En(|¥)ag) = Er(|¢)a) = S(p})-
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Entanglement dilution scheme

e Letn be large and let Alice and Bob share n.5(p",) no.
of copies of the singlet state |¢) 4.

e Alice now locally prepares n copies of the state
4 4p), having Schmidt decomposition

V) ap = 2?21 VAilei)a ® | fi)p. SO P% = Z?ﬂ il fi) (il
e Alice now uses Schumacher data compression on
the string (p%,)®" to compress it to the typical
subspace of nS(p%) = nS(p") qubits.

e Note that S(p%) = —>°%, A logohi = H(A, Aa, ., Aa).
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Entanglement dilution scheme (continued)

e Alice now sends the states of this typical subspace
to Bob, by using standard teleportation protocol using
the shared n.5(p",) no. of shared singlet states.

e So, in this teleportation scheme, 2n.5(p") bits of

classical communication from Alice to Bob is
necessary.

e After receving the states of the typical subspaces,
Bob now decompress them to the string (p%,)®".
e So now Alice and Bob share »n copies of the state

1) AB-

e Thus, from the definition of £, we have:

(2) Er(|Y)ap) < H(A, g,y ..oy Ag).
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Entanglement concentration scheme

e For simplicity, we consider that Alice and Bob are
sharing n copies of the state |¢)) = a|00) 45 + b|11) 45,
where ¢,0 > 0 and «* + b*> = 1 and n is large enough. We
would like to extract as many singlet states |¢") 4, as
possible, using LOCC only.

e So the joint state of Alice and Bob will be now a
linear superposition of product states of the form

)4 ® |z) 5 Where = = Z?:_Ol a;2) = agay ... a,_1. SO |x) is
a product state of £ no. of single-qubit states, each in
0) and (n — k) no. of single-qubit states, each in |1),
and we write |x) as |01 ).

.~ p.38/4



Entanglement concentration scheme (continued)

e The square of the modulus of the coefficient of the
state [2) 4 ® |7) 5 is a®*b*"~%), and the total no. of such
states is "C}. Let |[¢(0*;1"7%)) ,5: normalized equal
superposition of all such states. So the probability
associated with [(0%; 1"7%)) 45 is

P(a%, k;n) = "C), x a® >k,

e The dimension of the subspace (4 4(0*;1"%), say) of
(€*)®", spanned by the "C;, no. of pairwise orthogonal
states [0*1"%), is "C}. Let P,(0*;1"*) be the projector
on HA(Ok; 1n—k)_

e Alice now performs the projective measurement:
{P4(0%: 1K), Iynyon — P4(0%;1"7%)} on her n-qubit
system when Alice and Bob share the state |¢)®".
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Entanglement concentration scheme (continued)

¢ Note that

(Pa(0%17F) @ 15700 ) (1) §) = v/ Ckab 6" (0F; 1779)) 4.
So, when P,(0%;1"7%) clicks in the measurement of
Alice (which occurs with probability "C), x a?*p?("—+)),
the shared state between Alice and Bob will be

(0% 1"7%)) ap-

e What should be the value of £, in the large n limit, so
that the above-mentioned probability of occurrance of
P4(0%;:1"%) can become very much close to unity (and
also approaches unity as n — oo0)? Stirling’s
approximation provides us this value: £ = na*! And so,

for this value of k, "}, ~ 27 (@)
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Entanglement concentration scheme (continued)

e Thus the finally shared state |/(0%; 1" %)) 45 will have,

in this case, 2"7(@* ") no. of terms |z)4 ® |z) 5, all with
same coefficient. How much entanglement is there In
the state |¢(0%;1"7%)) 45?2

e For the product states |v) 4, ® |z) 5, appearing in
4(0%; 17%)) 4 5, we can arrange all these 2"#(*%*) no, of
non-negative numbers z = >~
(where eaxctly £ = na” no. of a;’s are equal to 0 and
rest (n — k) no. of a;’s are equal to 1) in the increasing
order and call them as 1, 2, 3, ..., 2"H#(@* %) Thus

(0517 F)) ap = 27" DR(1) s @ 1) g + 12)4 ® [2)5 +
3)a®[3)p + ...+ [20HD) 4 @ [20H( ) ).

CLij = Qo1 ...0/—1
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Entanglement concentration scheme (continued)

o As [1)y4, |2)4, ..., [27H(@0) | are pairwise orthonormal
states forming a basis for an nH (a?, b*)-qubit Hilbert
space %), ® €}, ® ... ® € therefore, without

nH(a2 2) ?

loss of any generality, we can wrlte

1>A — ‘O>A1 X ‘O>A2 ®...® |O>AnH(a2,b2)_1 X ’O>AnH(a2,b2)!
2>A — ‘O>A1 X ‘O>A2 ®...® |O>AnH(a2,b2>_1 X ’1>AnH(a2,b2>! 3
@)y = 1) 4, @[1) 4, ® ... ®[1) 4 ®|1)a

nH(a?,b2)—1

e Thus we can now write: |¢(0%; 1" %)) 45 =

0T) 418 ®[O0T) 48, © @DV A s 10 By 42> WhHICH TS
nothing but nH (a?, %) no. of two-qubit singlet state
|¢1), shared between Alice and Bob.
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Entanglement concentration scheme (continued)

e Thus we see that, starting from large n copies of the
shared two-qubit non-maximally entangled state

(VY 2B = al0)4 ® |0)g + b|1)4 ® |1) 5, Alice and Bob can
distill out, using LOCC only, nH (a*, b*) no. of shared
two-qubit singlet state |¢™) 45, with probability of
success approaching to 1 as n — oc.

e So we have:

3) Ep([¢)ap) > H(a®,b?).

e Note that in this concentration scheme, no classical
communication is needed.
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Entanglement concentration scheme (continued)

e From equations (1), (2) and (3), it follows that:
Ep(|¥)ag) = Er([¢)ap) = H(a* b%).

e For entanglement concentration of large n copies of
a state |v) 45 having Schmidt decomposition

PYag = S0 VAile) 4 @ | i) B, one should look (as
earlier) for those product states

etz MA@ | frdepnde o gnAdy g the expansion
of |1)%7, where in |efel “/\2 eZ’Ad>A there are n\; no. of
states |¢;), n)\; no. of states \62> ..., nAg ho. of states
leq), and in | f f222 . £729) p there are n)\; no. of states
| f1), nA no. of states |f,), ..., n\; no. of states |f,).
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Entanglement concentration scheme (continued)

e The probability of occurrance of each such pairwise
orthogonal product state is A} \7*2 ... \"* and the
total no. of such product states is

n! /(A1) x (n)! x ... X (nA\g)!) ~ 2nHBvAz24)  Go all of
these product states when added, with equal
coefficients, wiII form the state

p(eMeh2 el fpdgnde o gnda)y  the later state
will occur in the expansion of [))%", with probability

{n!/((nA)! X (nA)! X ... X (nAg)D)} X NIV N g
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Entanglement concentration scheme (continued)
o Let H(e!Mel . . ”Ad) be the

n!/((nA)! x (nA)! X ... X (n)Ayg)!)-dimensional subspace
of Alice’s Hilbert space (¢*)*", spanned by the
n!/((nA1)! X (nA2)! X ... X (nAg)!) no. of pairwise

Tl)\d

orthogonal states \e“l A2 el .

e Alice now performs the prolective measurement
{P(ef™es™ ... e™), Iynxan — Pl es™ .. e*)} on her
system, where P(e!* e .. ") is the projector on
H(eMMeh?2 e, If P(ef™ ;W ...e") clicks (which
will happen W|th probablllty

{n!/((nA)! x (nA2)! X ... x (nAg)))} x NIMARA | A"24) the
shared final state will be

W( ni\i n)\g o BZ)\d; f{z)\l fn)\g . n)\d)>AB-
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Entanglement concentration scheme (continued)

o Representing all the 277 (1:22.-24) (approximately) no.

of terms |e/M el ... "), as
O>A1 ® O>A2 ® o o ® O>AnH(>\1,>\2 Ag)—1 ® O>AnH(>\1,>\2 ..... Ad)’

.....

O>A1 & O>A2 Q... & O>AnH(>\1,>\2 ..... Ag)—1 X 1>AnH(>\1,)\2 ..... Ag)? T

1>A1 ® 1>A2 ® o o ® 1>AnH(>\1,>\2 Ag)—1 ® 1>AnH()\1,)\2 ..... )xd),

above, we can express
’w( nii n)\g ' fn)\lfn)\g ' n)\d)>AB as |¢+>A1B1 R

’¢+>A232 Tt |¢+> AnH(A Ag, .., Ad)BnH()\l,)\Q ..... Ag)nH (A, A9,..0g) "

e Thus we see that, with probability of success
approacing unity (as n — o), Alice and Bob will share
nH(Ai, Ao, ..., A\g) NO. of copies of the singlet state
6T) 4 starting from n copies of |¢) 45. (No classical
communication is needed.)

.~ AT/



Topics not covered

¢ Different capacities of quantum channels.

e Classical and quantum error correcting codes

e Different no-go theorems of quantum information
References

(1) Chapters 1, 2, 8,9, 11 and 12 of the book: Quantum
Computation and Quantum Information by Michael A.

Nielsen and Issac L. Chuang (Cambridge Univ. Press,
2002).

(2) Chapters 2, 3, 4 and 5 of John Preskill’s Caltech
lectures on Quantum Information and Computation,
available at his website.

. — p.A8/4:



