
5m
m

.

Quantum Information Theory III

Sibasish Ghosh

The Institute of Mathematical Sciences
CIT Campus, Taramani, Chennai 600 113, India.

. – p.1/48



Recalling Schumacher compression
• Signal x ∈ X, which occurs with probability px, is
encoded as a pure state |φx〉 ∈ HS: Initial density
matrix, corresponding to the non-spectral ensemble
ENS = {px; |φx〉|x ∈ X}, is ρ =

∑
x∈X px|φx〉〈φx|. |φx〉’s are

non-orthogonal, in general. The spectral ensemble
ES = {wl; |ψl〉|l ∈ L} corresponds to the spectral
decomposition ρ =

∑
l∈Lwl|ψl〉〈ψl| of ρ.
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Recalling Schumacher compression (continued)
• Consider a string ρ⊗n = ρ⊗ ρ⊗ . . . (n times) of length
n. So we have now the non-spectral ensemble E (n)

NS =
{PNS(x1, x2, . . . , xn) ≡ px1px2 . . . pxn ; |ΦNS(x1, x2, . . . , xn)〉 ≡
|φx1〉 ⊗ |φx2〉 ⊗ |φxn〉|(x1, x2, . . . , xn) ∈ Xn} as well as the
spectral ensemble
E (n)
S = {PS(l1, l2, . . . , ln) ≡ wl1wl2 . . . wln; |ΦS(l1, l2, . . . , ln)〉 ≡
|ψl1〉 ⊗ |ψl2〉 ⊗ |ψln〉|(l1, l2, . . . , ln) ∈ Ln}.
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Recalling Schumacher compression (continued)
• Consider the random variable L ≡ {l;wl|l ∈ L}. So
H(L) = S(ρ). Consider the classical messages l1l2 . . . ln
with associated probabilities PS(l1, l2, . . . , ln). Given
ε, δ > 0, for sufficiently large n, l1l2 . . . ln will be a typical
sequence if 2−n(H(L)−δ) ≥ PS(l1, l2, . . . , ln) ≥ 2−n(H(L)+δ)

and the total probability of all such typical messages
exceeds 1− ε. So the total no. N(ε, δ;n) of such typical
sequences will satisfy:
2n(H(L)+δ) ≥ N(ε, δ;n) ≥ (1− ε)2n(H(L)−δ).
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Recalling Schumacher compression (continued)
• The states |ΦS(l1, l2, . . . , ln)〉 (whose total no. is
N(ε, δ;n)), corresponding to the typical sequences
l1l2 . . . ln, are pairwise orthogonal and so they will span
a N(ε, δ;n)-dimensional subspace (called as the
‘typical’ subspace, and is denoted by Λ) of H⊗nS .
• Consider now the projective measurement {E, I −E}
on ρ⊗n, where E : H⊗nS → Λ is the projector on Λ and
(I − E) is the projector on Λ⊥.
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Recalling Schumacher compression (continued)
• If E clicks, encode the states |Φtypical〉 (of Λ) in the
range of Eρ⊗nE as: A(|Φtypical〉〈Φtypical|) = |Ψcomp〉, where
|Ψcomp〉 is a 2n(S(ρ)+δ)-qubit state and A is a CP map. If
(I − E) clicks, take the output state, cooresponding to
input the state |ΦNS(x1, x2, . . . xn)〉 (appeared in the
non-spectral ensemble for ρ⊗n), as ρjunk(x1, x2, . . . , xn).
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Recalling Schumacher compression (continued)
• Thus we see that, after this measurement, a general
state |ΦNS(x1, x2, . . . , xn)〉〈ΦNS(x1, x2, . . . , xn)| 7→∑
|Φtypical〉∈Λ |〈Φtypical|ΦNS(x1, x2, . . . , xn)〉|2|Ψcomp〉〈Ψcomp|+

ρjunk(x1, x2, . . . , xn)〈ΦNS(x1, x2, . . . xn)|(I −
E)|ΦNS(x1, x2, . . . , xn)〉 ≡ ρNS(x1, x2, . . . , xn), where
{|Φtypical〉} is a complete orthonormal basis of the
2n(S(ρ)+δ)-dimensional Hilbert space and {|Ψcomp〉} is the
corresponding encoded set.
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Recalling Schumacher compression (continued)

• The average fidelity F of this measurement =

encoding scheme:
F =

∑
(x1,x2,...,xn)∈X PNS(x1, x2, . . . , xn)×

〈ΦNS(x1, x2, . . . , xn)|ρNS(x1, x2, . . . , xn)|ΦNS(x1, x2, . . . , xn)〉
> 1− 2ε.
• Once E clicks, because of knowledge of the
encoding scheme A(|Φtypical〉〈Φtypical|) = |Ψcomp〉, one can
now perform a (unitary) decoding scheme
U(|Ψcomp〉 ⊗ |0〉) = |Φtypical〉, by appending extra
dimension to 2n(S(ρ)+δ)-dimensional Hilbert space.

. – p.8/48



Recalling Schumacher compression (continued)
• This compression scheme is optimal: If we want to
encode states of Λ by states of a 2n(S(ρ)−δ)-dimensional
Hilbert space Λ′, one can generate (through the
scheme: measurement→ encoding→ unitary
decoding) only a 2n(S(ρ)−δ)-dimensional subspace (Λ′′,
say) of H⊗nS . If E ′′ is the projector on the subspace Λ′′,
then Tr(ρ⊗nE ′′) ≤ sum of the first 2n(S(ρ)−δ) no. of
largest eigen values of ρ⊗n, which, in turn, less that ε
(follows from properties of typical subspace). So the
average fidelity F ≤ Tr(ρ⊗nE ′′) < ε.
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Recalling Schumacher compression (continued)
• In the case when |φx〉’s are pairwise orthogonal, the
incompressible information content (in terms of
qubits) in ρ =

∑
x∈X px|φx〉〈φx| is S(ρ) = H(X). By the

compression scheme, the decoder will be able to
distinguish the encoded states perfectly, in the large n
limit. For the case of non-orthogonal |φx〉’s, the
incompressible information content is S(ρ), which is
strictly less than H(X). But we have to pay the price:
the decoder will not be able to distinguish the encoded
state.
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Data compression for mixed state encoding
• In the case of mixed state encoding with the
ensemble E = {px, ρx|x ∈ X} with ρ =

∑
x∈X pxρx, it can

be shown that the incompressible information content
(in terms of qubits) in ρ will be less than or equal to the
Holevo bound χ(E) ≡ S(ρ)−∑x∈X pxS(ρx). But whether
one can achieve the limit χ(E) in an asymptotic
compression scheme, is still not fully settled.
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Data compression for mixed state encoding
(continued)

• That one needs less that S(ρ) no. of qubits as
incompressible information content for mixed state
encoding, in general, can be seen in the trivial case:
Consider px0 = 1 and px = 0 for all x ∈ (X − {x0}), where
it is assumed that S(ρx0) > 0. So it is certain that the
ensemble E has been prepared in the state ρx0 . So
there is nothing to be compressed – everything is
known, even though S(ρx0) is positive!
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Mutual information vs. Holevo bound
• In classical information theory, the mutual
information I(Y ;X) = H(Y )−H(Y |X) tells us how
much, on the average, the Shannon entropy of the
random variable Y = {y, qy|y ∈ Y } is reduced once we
learn the values of X = {x, px|x ∈ X}. Similarly, in
quantum information theory, the Holevo bound χ(E)
tells us how much, on the average, von Neumann
entropy S(ρ) (with ρ =

∑
x∈X pxρx) is reduced once we

know which preparation procedure was chosen to
prepare ρ.
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Mutual information vs. Holevo bound (continued)
• I(Y ;X) ≥ 0; χ(E) = S(ρ)−∑x∈X pxS(ρx) =

S(
∑

x∈X pxρx)−
∑

x∈X pxS(ρx) ≥ 0 (due to concavity of
von Neumann entropy).
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Mutual information vs. Holevo bound (continued)
• Lindblad-Uhlman monotonicity: If
T : D(HS)→ D(HS) is a (trace-preserving) CP map,
then χ(E ′) ≤ χ(E) where E ′ = {px, T (ρx)|x ∈ X} while
E = {px, ρx}. Note that this inequality does not always
hold good for von Neumann entropy.
• Due to the analogy of χ(E) with I(Y ;X), the Holevo
bound χ(E) may be interpreted as the amount of
classical information about the signal x that one can
extract from the ensemble E = {px, ρx|x ∈ X} by
performing measurements.
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Accessible information
• Suppose Alice prepares a density matrix ρx of S with
probability px according to the ensemble
E = {px, ρx|x ∈ X}. She then sends the state ρx to Bob
via a noiseless quantum channel. Bob does know the
ensemble E but he doesn’t know which state is sent by
Alice. Bob wants to know the signal x (i.e., Bob wants
to extract the (classical) information about the random
variable X = {x, px|x ∈ X}) by performing a POVM
{Ey|y ∈ Y } on the state with measurement outcomes
y ∈ Y and probabilities p(y|x) = Tr(Eyρx).
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Accessible information (continued)
• Using Bayes’ rule, we have
p(x|y) = (p(y|x)px)/(

∑
x∈X p(y|x)px). So the mutual

information I(X;Y ) ≡ H(X)−H(X|Y ) =
−∑x∈X px log2px +

∑
y∈Y (

∑
x∈X p(y|x)px)×H(X|y), which

is the amount of reduction of (classical) information
about X, on an average, after Bob performs the
measurement. Bob wants to maximize this reduction
by choosing appropriate POVM.
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Accessible information (continued)
• Accessible information:

Iacc ≡ max{I(X;Y )| over all POVMs {Ey|y ∈ Y }}
• In general, it is difficult to calculate Iacc.
• Holevo (1973) has shown that
Iacc ≤ S(ρ)−∑x∈X pxS(ρx) ≡ χ(E).
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Accessible information (continued)
• Proof of this result uses strong subadditivity of von
Neumann entropy, for which we need three systems:
An preparation system P of dimension |X| having a
complete orthonormal basis {|x〉 : x ∈ X}, the original
system S which is prepared in state ρx with probability
px (corresponding to the ensemble E = {px, ρx|x ∈ X}
for the average state ρS =

∑
x∈X pxρx), and the

measuring apparatus M of dimension ≥ |Y | with an
orthonomal basis (possibly incomplete) {|y〉 : y ∈ Y }.
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Quantum conditional entropy
• Quantum conditional entropy: For any density
matrix ρAB of a bipartite system A+B, with reduced
density matrices ρA = TrB(ρAB) and ρB = TrA(ρAB), the
quantum conditional entropy S(A|B) ≡ S(ρAB)− S(ρB).
Unlike classical case, S(A|B) can be negative!
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Quantum mutual entropy
• Quantum mutual entropy: For any density matrix ρAB
of a bipartite system A+ B, with reduced density
matrices ρA = TrB(ρAB) and ρB = TrA(ρAB),
S(A;B) ≡ S(ρA)− S(A|B) ≡ S(ρA) + S(ρB)− S(ρAB). It is
always non-negative due to subadditivity property of
von Neumann entropy.
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Results from strong subadditivity
• (i) Ignoring subsystem: S(A;B,C) ≥ S(A;B), S(A;C).

• (ii) One-sided CP map: If T : B(HB)→ B(HB′) is a
trace-preserving CP map such that
(I ⊗ T )(ρAB) = ρ′AB′ ∈ D(HA ⊗HB′) for each
ρAB ∈ D(HA ⊗HB), then
S(A;B) ≥ S(ρ′A) + S(ρ′B′)− S(ρ′AB) ≡ S(A′;B′).
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Useful property of von Neumann entropy
• (iii) If {|x〉 : x ∈ X} is an orthonormal basis of the
|X|-dimensional preparation system P , then
S(
∑

x∈X px|x〉〈x| ⊗ ρx) = H(X) +
∑

x∈X pxS(ρx).
• This is true because of the fact that here
S(
∑

x∈X px|x〉〈x| ⊗ ρx) ≡
−∑x∈X Tr((px|x〉〈x| ⊗ ρx) log2(px|x〉〈x| ⊗ ρx)), as
|x〉〈x| ⊗ ρx’s are pairwise orthogonal.
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Proof of Iacc ≤ χ(E)

• Alice prepares the initial ensemble, described by
ρPSM =

∑
x∈X px|x〉〈x| ⊗ ρx ⊗ |0〉〈0|, where |0〉 is a fixed

state of M . She then sends (undisturbedly) the
systems S and M to Bob.
• So S(ρPSM) = S(ρPS). Now
S(P ;S,M) = S(ρP ) + S(ρSM)− S(ρPSM ) =
S(
∑

x∈X px|x〉〈x|) + S(
∑

x∈X pxρx ⊗ |0〉〈0|)− S(ρPS) =

S(ρP ) + S(ρS)− S(ρPS) = S(P ;S).
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Proof of Iacc ≤ χ(E) (continued)
• Bob applies now a CP map
T : D(HS ⊗HM)→ D(HS ⊗HM) corresponding to
implimentation of the POVM Ey|y ∈ Y }, given by the
Kraus representation
T (σS ⊗ |0〉〈0|) =

∑
y∈Y (E

1/2
y ⊗ Uy)(σS ⊗ |0〉〈0|)(E1/2

y ⊗ U †y),
where σS is any state of S and for each y ∈ Y ,
Uy : HM → HM is an unitary operator for which
Uy|0〉 = |y〉.
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Proof of Iacc ≤ χ(E) (continued)
• Let ρ′PSM = (IP ⊗ T )(ρPSM) =∑

x∈X, y∈Y px|x〉〈x| ⊗ (E
1/2
y ρxE

1/2
y )⊗ |y〉〈y|. Then by

property (ii), S(P ;S,M) ≥ S(P ′;S ′,M ′).
• So by property (i), we have S(P ′;S ′,M ′) ≥ S(P ′;M ′).
• So we have finally S(P ′;M ′) ≤ S(P ;S).

. – p.26/48



Proof of Iacc ≤ χ(E) (continued)
• Now S(P ;S) = S(ρP ) + S(ρS)− S(ρPS) =
H(X) + S(ρS)−H(X)−∑x∈X pxS(ρx) (by property (iii)).
Thus S(P ;S) = S(ρS)−∑x∈X pxS(ρx) = χ(E).
• P (P ′;M ′) = S(ρ′P ) + S(ρ′M )− S(ρ′PM) =
S(
∑

x∈X, y∈Y pxp(y|x)|x〉〈x|) + S(
∑

x∈X, y∈Y pxp(y|x)|y〉〈y|)−
S(
∑

x∈X, y∈Y pxp(y|x)|xy〉〈xy|) =

H(X) +H(Y )−H(X,Y ) = I(X;Y ).
• Thus we have I(X;Y ) ≤ χ(E), whatever be POVM
{Ey|y ∈ Y }.
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Attainability of the Holevo bound

• Example 1: Let |ψ1〉 and |ψ2〉 be two non-

orthogonal states (spanning a two-dimensional Hilbert

space H), supplied with equal probability. Thus E =

{|ψ1〉, p(|ψ1〉) = 1/2 and |ψ2〉, p(|ψ2〉) = 1/2}. Here

the accessible information Iacc(E) can be shown to

be the value of I(X;Y ) corresponding to the optimal

POVM {F1 = (1/(1 + |〈ψ1|ψ2〉|))|ψ⊥2 〉〈ψ⊥2 |, F2 = (1/(1 +

|〈ψ1|ψ2〉|))|ψ⊥1 〉〈ψ⊥1 |, F3 = IH − F1 − F2}.
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Attainability of the Holevo bound (Exmaple 1)
• Example 1 (continued): Here Iacc(E) = 1− |〈ψ1|ψ2〉|
while χ(E) = H((1 + |〈ψ1|ψ2〉|)/2, (1− |〈ψ1|ψ2〉|)/2). So
Iacc ≤ χ(E), equality holds iff either |〈ψ1|ψ2〉| = 0 or
|〈ψ1|ψ2〉| = 1.
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Attainability of the Holevo bound (Example 2)

• Example 2: Let |ψ1〉 and |ψ2〉 be same as in Example 1,

supplied with equal probability. Now, instead of taking

the initial ensemble as E , let us take E (2) = {|Ψ1〉 ≡ |ψ1〉⊗
|ψ1〉, p(|Ψ1〉) = 1/2 and |Ψ2〉 ≡ |ψ2〉 ⊗ |ψ2〉, p(|Ψ2〉) = 1/2}.
Let H ′ be the Hilbert space spanned by |Ψ1〉 and |Ψ2〉.
Here the accessible information Iacc(E (2)) can be shown

to be the value of I(X;Y ) corresponding to the opti-

mal POVM {G1 = (1/(1 + |〈Ψ1|Ψ2〉|))(IH′ − |Ψ2〉〈Ψ2|), G2 =

(1/(1 + |〈Ψ1|Ψ2〉|))(IH′ − |Ψ1〉〈Ψ1|, G3 = IH′ −G1 −G2}.
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Attainability of the Holevo bound (Exmaple 2)
(continued)

• Example 2 (continued): Here Iacc(E (2)) = 1− |〈ψ1|ψ2〉|2
while χ(E (2)) = H((1 + |〈ψ1|ψ2〉|2)/2, (1− |〈ψ1|ψ2〉|2)/2). So
Iacc(E (2)) ≤ χ(E (2)), equality holds iff either |〈ψ1|ψ2〉| = 0
or |〈ψ1|ψ2〉| = 1. Note that
{χ(E (2))− Iacc(E (2))} ≤ {χ(E)− Iacc(E)} and equality
holds iff either |〈ψ1|ψ2〉| = 0 or |〈ψ1|ψ2〉| = 1.
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Entanglement dilution for pure states
• Far apart parties Alice and Bob want to share n
copies of a bipartite pure entangled state |ψ〉AB, for
large n, starting from minimum no. (kmin, say) of the
shared siglet state |φ+〉 = (1/

√
2)(|00〉+ |11〉), by using

LOCC only. kmin/n, in the limit n→∞, is called as the
entanglement of formation EF (|ψ〉AB) of |ψ〉AB.
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Entanglement concentration for pure states
• Far apart parties Alice and Bob are sharing share n
copies of a bipartite pure entangled state |ψ〉AB, for
large n, and they want to generate now, by using LOCC
only, maximum no. (kmax, say) of siglet states |φ+〉. The
value kmax/n, in the limit n→∞, is called the
distillable entanglement ED(|ψ〉AB) of |ψ〉AB.
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ED(|ψ〉) ≤ EF (|ψ〉)
• As entanglement does not increase under LOCC
(which is known as “irreversibility of entanglement
under the thermodynamic process of LOCC”),
therefore: kmax/n ≤ kmin/n in the large n limit. So

ED(|ψ〉AB) ≤ EF (|ψ〉AB).(1)

• Using Schumacher data compression, one can show
that, in the large n limit, Alice and Bob can share n no.
of entangled state |ψ〉AB, by using LOCC only, starting
from nS(ρψA) no. of shared siglet states |φ+〉, where
ρψA = TrB(|ψ〉AB〈ψ|) .
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ED(|ψ〉) ≤ EF (|ψ〉)
• There is an entanglement concentration scheme,
using which Alice and Bob can finally share nS(ρψA) no.
of singlet state, in the large n limit, starting from n
copies of the shared state |ψ〉AB.
• So we have
nS(ρψA)/n ≤ ED(|ψ〉AB) ≤ EF (|ψ〉AB) ≤ nS(ρψA)/n. Thus:
ED(|ψ〉AB) = EF (|ψ〉AB) = S(ρψA).
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Entanglement dilution scheme

• Let n be large and let Alice and Bob share nS(ρψA) no.
of copies of the singlet state |φ+〉AB.
• Alice now locally prepares n copies of the state
|ψAD〉, having Schmidt decomposition
|ψ〉AD =

∑d
i=1

√
λi|ei〉A ⊗ |fi〉D. So ρψD =

∑d
i=1 λi|fi〉〈fi|.

• Alice now uses Schumacher data compression on
the string (ρψD)⊗n to compress it to the typical
subspace of nS(ρψD) = nS(ρψA) qubits.
• Note that S(ρψA) = −∑d

i=1 λi log2λi ≡ H(λ1, λ2, . . . , λd).
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Entanglement dilution scheme (continued)
• Alice now sends the states of this typical subspace
to Bob, by using standard teleportation protocol using
the shared nS(ρψA) no. of shared singlet states.
• So, in this teleportation scheme, 2nS(ρψA) bits of
classical communication from Alice to Bob is
necessary.
• After receving the states of the typical subspaces,
Bob now decompress them to the string (ρψB)⊗n.
• So now Alice and Bob share n copies of the state
|ψ〉AB.
• Thus, from the definition of EF , we have:

EF (|ψ〉AB) ≤ H(λ1, λ2, . . . , λd).(2)
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Entanglement concentration scheme
• For simplicity, we consider that Alice and Bob are
sharing n copies of the state |ψ〉 = a|00〉AB + b|11〉AB ,
where a, b > 0 and a2 + b2 = 1 and n is large enough. We
would like to extract as many singlet states |φ+〉AB as
possible, using LOCC only.
• So the joint state of Alice and Bob will be now a
linear superposition of product states of the form
|x〉A ⊗ |x〉B where x =

∑n−1
j=0 aj2

j ≡ a0a1 . . . an−1. So |x〉 is
a product state of k no. of single-qubit states, each in
|0〉 and (n− k) no. of single-qubit states, each in |1〉,
and we write |x〉 as |0k1n−k〉.
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Entanglement concentration scheme (continued)
• The square of the modulus of the coefficient of the
state |x〉A ⊗ |x〉B is a2kb2(n−k), and the total no. of such
states is nCk. Let |ψ(0k; 1n−k)〉AB: normalized equal
superposition of all such states. So the probability
associated with |ψ(0k; 1n−k)〉AB is
P (a2, k;n) ≡ nCk × a2kb2(n−k).
• The dimension of the subspace (HA(0k; 1n−k), say) of
(CI2)⊗n, spanned by the nCk no. of pairwise orthogonal
states |0k1n−k〉, is nCk. Let PA(0k; 1n−k) be the projector
on HA(0k; 1n−k).
• Alice now performs the projective measurement:
{PA(0k; 1n−k), I2n×2n − PA(0k; 1n−k)} on her n-qubit
system when Alice and Bob share the state |ψ〉⊗n.
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Entanglement concentration scheme (continued)
• Note that
(PA(0k; 1n−k)⊗I(B)

2n×2n)(|ψ〉⊗nAB) =
√
nCka

kbn−k|ψ(0k; 1n−k)〉AB.
So, when PA(0k; 1n−k) clicks in the measurement of
Alice (which occurs with probability nCk × a2kb2(n−k)),
the shared state between Alice and Bob will be
|ψ(0k; 1n−k)〉AB.
• What should be the value of k, in the large n limit, so
that the above-mentioned probability of occurrance of
PA(0k; 1n−k) can become very much close to unity (and
also approaches unity as n→∞)? Stirling’s
approximation provides us this value: k = na2! And so,
for this value of k, nCk ≈ 2nH(a2,b2).
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Entanglement concentration scheme (continued)
• Thus the finally shared state |ψ(0k; 1n−k)〉AB will have,
in this case, 2nH(a2,b2) no. of terms |x〉A ⊗ |x〉B, all with
same coefficient. How much entanglement is there in
the state |ψ(0k; 1n−k)〉AB?
• For the product states |x〉A ⊗ |x〉B , appearing in
|ψ(0k; 1n−k)〉AB, we can arrange all these 2nH(a2,b2) no. of
non-negative numbers x =

∑n−1
j=0 aj2

j ≡ a0a1 . . . an−1

(where eaxctly k = na2 no. of ai’s are equal to 0 and
rest (n− k) no. of ai’s are equal to 1) in the increasing
order and call them as 1, 2, 3, . . ., 2nH(a2,b2). Thus
|ψ(0k; 1n−k)〉AB = 2−nH(a2,b2)/2(|1〉A ⊗ |1〉B + |2〉A ⊗ |2〉B +

|3〉A ⊗ |3〉B + . . . + |2nH(a2,b2)〉A ⊗ |2nH(a2,b2)〉B).
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Entanglement concentration scheme (continued)

• As |1〉A, |2〉A, . . ., |2nH(a2,b2)〉A are pairwise orthonormal
states forming a basis for an nH(a2, b2)-qubit Hilbert
space CI2

A1
⊗ CI2

A2
⊗ . . .⊗ CI2

AnH(a2,b2)
, therefore, without

loss of any generality, we can write
|1〉A = |0〉A1 ⊗ |0〉A2 ⊗ . . .⊗ |0〉AnH(a2,b2)−1

⊗ |0〉AnH(a2,b2)
,

|2〉A = |0〉A1 ⊗ |0〉A2 ⊗ . . .⊗ |0〉AnH(a2,b2)−1
⊗ |1〉AnH(a2,b2)

, . . .,

|2nH(a2,b2)〉A = |1〉A1⊗|1〉A2⊗ . . .⊗|1〉AnH(a2,b2)−1
⊗|1〉AnH(a2,b2)

.

• Thus we can now write: |ψ(0k; 1n−k)〉AB =
|φ+〉A1B1 ⊗ |φ+〉A2B2 ⊗ . . .⊗ |φ+〉AnH(a2,b2)BnH(a2,b2)

, which is
nothing but nH(a2, b2) no. of two-qubit singlet state
|φ+〉, shared between Alice and Bob.
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Entanglement concentration scheme (continued)
• Thus we see that, starting from large n copies of the
shared two-qubit non-maximally entangled state
|ψ〉AB = a|0〉A ⊗ |0〉B + b|1〉A ⊗ |1〉B, Alice and Bob can
distill out, using LOCC only, nH(a2, b2) no. of shared
two-qubit singlet state |φ+〉AB, with probability of
success approaching to 1 as n→∞.
• So we have:

ED(|ψ〉AB) ≥ H(a2, b2).(3)

• Note that in this concentration scheme, no classical
communication is needed.
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Entanglement concentration scheme (continued)
• From equations (1), (2) and (3), it follows that:
ED(|ψ〉AB) = EF (|ψ〉AB) = H(a2, b2).
• For entanglement concentration of large n copies of
a state |ψ〉AB having Schmidt decomposition
|ψ〉AB =

∑d
i=1

√
λi|ei〉A ⊗ |fi〉B, one should look (as

earlier) for those product states
|enλ1

1 enλ2
2 . . . enλdd 〉A ⊗ |fnλ1

1 fnλ2
2 . . . fnλdd 〉B, in the expansion

of |ψ〉⊗nAB, where, in |enλ1
1 enλ2

2 . . . enλdd 〉A there are nλ1 no. of
states |e1〉, nλ2 no. of states |e2〉, . . ., nλd no. of states
|ed〉, and in |fnλ1

1 fnλ2
2 . . . fnλdd 〉B there are nλ1 no. of states

|f1〉, nλ2 no. of states |f2〉, . . ., nλd no. of states |fd〉.
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Entanglement concentration scheme (continued)

• The probability of occurrance of each such pairwise
orthogonal product state is λnλ1

1 λnλ2
2 . . . λnλdd and the

total no. of such product states is
n!/((nλ1)!× (nλ2)!× . . .× (nλd)!) ≈ 2nH(λ1,λ2,...,λd). So all of
these product states when added, with equal
coefficients, will form the state
|ψ(enλ1

1 enλ2
2 . . . enλdd ; fnλ1

1 fnλ2
2 . . . fnλdd )〉AB, the later state

will occur in the expansion of |ψ〉⊗nAB with probability
{n!/((nλ1)!× (nλ2)!× . . .× (nλd)!)} × λnλ1

1 λnλ2
2 . . . λnλdd ≈ 1.
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Entanglement concentration scheme (continued)

• Let H(enλ1
1 enλ2

2 . . . enλdd ) be the
n!/((nλ1)!× (nλ2)!× . . .× (nλd)!)-dimensional subspace
of Alice’s Hilbert space (CId)⊗n, spanned by the
n!/((nλ1)!× (nλ2)!× . . .× (nλd)!) no. of pairwise
orthogonal states |enλ1

1 enλ2
2 . . . enλdd 〉A.

• Alice now performs the projective measurement
{P (enλ1

1 enλ2
2 . . . enλdd ), Idn×dn − P (enλ1

1 enλ2
2 . . . enλdd )} on her

system, where P (enλ1
1 enλ2

2 . . . enλdd ) is the projector on
H(enλ1

1 enλ2
2 . . . enλdd ). If P (enλ1

1 enλ2
2 . . . enλdd ) clicks (which

will happen with probability
{n!/((nλ1)!× (nλ2)!× . . .× (nλd)!)} × λnλ1

1 λnλ2
2 . . . λnλdd ), the

shared final state will be
|ψ(enλ1

1 enλ2
2 . . . enλdd ; fnλ1

1 fnλ2
2 . . . fnλdd )〉AB.
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Entanglement concentration scheme (continued)
• Representing all the 2nH(λ1,λ2,...,λd) (approximately) no.
of terms |enλ1

1 enλ2
2 . . . enλdd 〉A as

|0〉A1 ⊗ |0〉A2 ⊗ . . .⊗ |0〉AnH(λ1,λ2,...,λd)−1
⊗ |0〉AnH(λ1,λ2,...,λd)

,
|0〉A1 ⊗ |0〉A2 ⊗ . . .⊗ |0〉AnH(λ1,λ2,...,λd)−1

⊗ |1〉AnH(λ1,λ2,...,λd)
, . . .,

|1〉A1 ⊗ |1〉A2 ⊗ . . .⊗ |1〉AnH(λ1,λ2,...,λd)−1
⊗ |1〉AnH(λ1,λ2,...,λd)

, as
above, we can express
|ψ(enλ1

1 enλ2
2 . . . enλdd ; fnλ1

1 fnλ2
2 . . . fnλdd )〉AB as |φ+〉A1B1 ⊗

|φ+〉A2B2 ⊗ . . .⊗ |φ+〉AnH(λ1,λ2,...,λd)BnH(λ1,λ2,...,λd)nH(λ1,λ2,...,λd)
.

• Thus we see that, with probability of success
approacing unity (as n→∞), Alice and Bob will share
nH(λ1, λ2, . . . , λd) no. of copies of the singlet state
|φ+〉AB starting from n copies of |ψ〉AB. (No classical
communication is needed.)
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Topics not covered

• Different capacities of quantum channels.

• Classical and quantum error correcting codes

• Different no-go theorems of quantum information
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