Quantum Information Theory III

Sibasish Ghosh

The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India.

Recalling Schumacher compression

• Signal $x \in X$, which occurs with probability p_x , is encoded as a pure state $|\phi_x\rangle \in H_S$: Initial density matrix, corresponding to the non-spectral ensemble $\mathcal{E}_{NS} = \{p_x; |\phi_x\rangle | x \in X\}$, is $\rho = \sum_{x \in X} p_x |\phi_x\rangle \langle \phi_x|$. $|\phi_x\rangle$'s are non-orthogonal, in general. The spectral ensemble $\mathcal{E}_S = \{w_l; |\psi_l\rangle | l \in L\}$ corresponds to the spectral decomposition $\rho = \sum_{l \in L} w_l |\psi_l\rangle \langle \psi_l|$ of ρ .

• Consider a string $\rho^{\otimes n} = \rho \otimes \rho \otimes \dots (n \text{ times})$ of length

n. So we have now the non-spectral ensemble $\mathcal{E}_{NS}^{(n)} = \{P_{NS}(x_1, x_2, \dots, x_n) \equiv p_{x_1} p_{x_2} \dots p_{x_n}; |\Phi_{NS}(x_1, x_2, \dots, x_n)\rangle \equiv |\phi_{x_1}\rangle \otimes |\phi_{x_2}\rangle \otimes |\phi_{x_n}\rangle | (x_1, x_2, \dots, x_n) \in X^n \}$ as well as the spectral ensemble

 $\mathcal{E}_{S}^{(n)} = \{ P_{S}(l_{1}, l_{2}, \dots, l_{n}) \equiv w_{l_{1}}w_{l_{2}} \dots w_{l_{n}}; |\Phi_{S}(l_{1}, l_{2}, \dots, l_{n})\rangle \equiv |\psi_{l_{1}}\rangle \otimes |\psi_{l_{2}}\rangle \otimes |\psi_{l_{n}}\rangle |(l_{1}, l_{2}, \dots, l_{n}) \in L^{n} \}.$

- Consider the random variable $L \equiv \{l; w_l | l \in L\}$. So $H(L) = S(\rho)$. Consider the classical messages $l_1 l_2 \dots l_n$ with associated probabilities $P_S(l_1, l_2, \dots, l_n)$. Given $\epsilon, \delta > 0$, for sufficiently large $n, l_1 l_2 \dots l_n$ will be a typical sequence if $2^{-n(H(L)-\delta)} \ge P_S(l_1, l_2, \dots, l_n) \ge 2^{-n(H(L)+\delta)}$ and the total probability of all such typical messages exceeds $1 - \epsilon$. So the total no. $N(\epsilon, \delta; n)$ of such typical sequences will satisfy: $2^{n(H(L)+\delta)} > N(\epsilon, \delta; n) > (1 - \epsilon)2^{n(H(L)-\delta)}$
- $2^{n(H(L)+\delta)} \ge N(\epsilon,\delta;n) \ge (1-\epsilon)2^{n(H(L)-\delta)}.$

- The states $|\Phi_S(l_1, l_2, \dots, l_n)\rangle$ (whose total no. is $N(\epsilon, \delta; n)$), corresponding to the typical sequences $l_1 l_2 \dots l_n$, are pairwise orthogonal and so they will span a $N(\epsilon, \delta; n)$ -dimensional subspace (called as the 'typical' subspace, and is denoted by Λ) of $H_S^{\otimes n}$.
- Consider now the projective measurement $\{E, I E\}$ on $\rho^{\otimes n}$, where $E: H_S^{\otimes n} \to \Lambda$ is the projector on Λ and (I - E) is the projector on Λ^{\perp} .

• If E clicks, encode the states $|\Phi_{typical}\rangle$ (of Λ) in the range of $E\rho^{\otimes n}E$ as: $\mathcal{A}(|\Phi_{typical}\rangle\langle\Phi_{typical}|) = |\Psi_{comp}\rangle$, where $|\Psi_{comp}\rangle$ is a $2^{n(S(\rho)+\delta)}$ -qubit state and \mathcal{A} is a CP map. If (I-E) clicks, take the output state, cooresponding to input the state $|\Phi_{NS}(x_1, x_2, \dots, x_n)\rangle$ (appeared in the non-spectral ensemble for $\rho^{\otimes n}$), as $\rho_{junk}(x_1, x_2, \dots, x_n)$.

• Thus we see that, after this measurement, a general state $|\Phi_{NS}(x_1, x_2, \ldots, x_n)\rangle\langle\Phi_{NS}(x_1, x_2, \ldots, x_n)|\mapsto$ $\sum_{|\Phi_{typical}\rangle\in\Lambda}|\langle\Phi_{typical}|\Phi_{NS}(x_1, x_2, \ldots, x_n)\rangle|^2|\Psi_{comp}\rangle\langle\Psi_{comp}| + \rho_{junk}(x_1, x_2, \ldots, x_n)\langle\Phi_{NS}(x_1, x_2, \ldots, x_n)|(I - E)|\Phi_{NS}(x_1, x_2, \ldots, x_n)\rangle \equiv \rho_{NS}(x_1, x_2, \ldots, x_n)$, where $\{|\Phi_{typical}\rangle\}$ is a complete orthonormal basis of the $2^{n(S(\rho)+\delta)}$ -dimensional Hilbert space and $\{|\Psi_{comp}\rangle\}$ is the corresponding encoded set.

• The average fidelity F of this measurement = encoding scheme:

 $F = \sum_{(x_1, x_2, \dots, x_n) \in X} P_{NS}(x_1, x_2, \dots, x_n) \times \\ \langle \Phi_{NS}(x_1, x_2, \dots, x_n) | \rho_{NS}(x_1, x_2, \dots, x_n) | \Phi_{NS}(x_1, x_2, \dots, x_n) \rangle \\ > 1 - 2\epsilon.$

• Once *E* clicks, because of knowledge of the encoding scheme $\mathcal{A}(|\Phi_{typical}\rangle\langle\Phi_{typical}|) = |\Psi_{comp}\rangle$, one can now perform a (unitary) decoding scheme $U(|\Psi_{comp}\rangle \otimes |0\rangle) = |\Phi_{typical}\rangle$, by appending extra dimension to $2^{n(S(\rho)+\delta)}$ -dimensional Hilbert space.

 This compression scheme is optimal: If we want to encode states of Λ by states of a $2^{n(S(\rho)-\delta)}$ -dimensional Hilbert space Λ' , one can generate (through the scheme: measurement \rightarrow encoding \rightarrow unitary decoding) only a $2^{n(S(\rho)-\delta)}$ -dimensional subspace (Λ'' , say) of $H_S^{\otimes n}$. If E'' is the projector on the subspace Λ'' , then $Tr(\rho^{\otimes n}E'') \leq$ sum of the first $2^{n(S(\rho)-\delta)}$ no. of largest eigen values of $\rho^{\otimes n}$, which, in turn, less that ϵ (follows from properties of typical subspace). So the average fidelity $F \leq Tr(\rho^{\otimes n}E'') < \epsilon$.

• In the case when $|\phi_x\rangle$'s are pairwise orthogonal, the incompressible information content (in terms of qubits) in $\rho = \sum_{x \in X} p_x |\phi_x\rangle \langle \phi_x|$ is $S(\rho) = H(X)$. By the compression scheme, the decoder will be able to distinguish the encoded states perfectly, in the large n limit. For the case of non-orthogonal $|\phi_x\rangle$'s, the incompressible information content is $S(\rho)$, which is strictly less than H(X). But we have to pay the price: the decoder will not be able to distinguish the encoded state.

Data compression for mixed state encoding

• In the case of mixed state encoding with the ensemble $\mathcal{E} = \{p_x, \rho_x | x \in X\}$ with $\rho = \sum_{x \in X} p_x \rho_x$, it can be shown that the incompressible information content (in terms of qubits) in ρ will be less than or equal to the Holevo bound $\chi(\mathcal{E}) \equiv S(\rho) - \sum_{x \in X} p_x S(\rho_x)$. But whether one can achieve the limit $\chi(\mathcal{E})$ in an asymptotic compression scheme, is still not fully settled.

Data compression for mixed state encoding (continued)

• That one needs less that $S(\rho)$ no. of qubits as incompressible information content for mixed state encoding, in general, can be seen in the trivial case: Consider $p_{x_0} = 1$ and $p_x = 0$ for all $x \in (X - \{x_0\})$, where it is assumed that $S(\rho_{x_0}) > 0$. So it is certain that the ensemble \mathcal{E} has been prepared in the state ρ_{x_0} . So there is nothing to be compressed – everything is known, even though $S(\rho_{x_0})$ is positive!

Mutual information vs. Holevo bound

 In classical information theory, the mutual information I(Y; X) = H(Y) - H(Y|X) tells us how much, on the average, the Shannon entropy of the random variable $Y = \{y, q_u | y \in Y\}$ is <u>reduced</u> once we learn the values of $X = \{x, p_x | x \in X\}$. Similarly, in quantum information theory, the Holevo bound $\chi(\mathcal{E})$ tells us how much, on the average, von Neumann entropy $S(\rho)$ (with $\rho = \sum_{x \in X} p_x \rho_x$) is <u>reduced</u> once we know which preparation procedure was chosen to prepare ρ .

Mutual information vs. Holevo bound (continued)

• $I(Y;X) \ge 0$; $\chi(\mathcal{E}) = S(\rho) - \sum_{x \in X} p_x S(\rho_x) = S(\sum_{x \in X} p_x \rho_x) - \sum_{x \in X} p_x S(\rho_x) \ge 0$ (due to concavity of von Neumann entropy).

Mutual information vs. Holevo bound (continued)

• Lindblad-Uhlman monotonicity: If

 $\mathcal{T}: \mathcal{D}(H_S) \to \mathcal{D}(H_S)$ is a (trace-preserving) CP map, then $\chi(\mathcal{E}') \leq \chi(\mathcal{E})$ where $\mathcal{E}' = \{p_x, \mathcal{T}(\rho_x) | x \in X\}$ while $\mathcal{E} = \{p_x, \rho_x\}$. Note that this inequality does not always hold good for von Neumann entropy.

• Due to the analogy of $\chi(\mathcal{E})$ with I(Y; X), the Holevo bound $\chi(\mathcal{E})$ may be interpreted as the amount of <u>classical</u> information about the signal x that one can extract from the ensemble $\mathcal{E} = \{p_x, \rho_x | x \in X\}$ by performing measurements.

Accessible information

• Suppose Alice prepares a density matrix ρ_x of S with probability p_x according to the ensemble $\mathcal{E} = \{p_x, \rho_x | x \in X\}$. She then sends the state ρ_x to Bob via a noiseless quantum channel. Bob does know the ensemble \mathcal{E} but he doesn't know which state is sent by Alice. Bob wants to know the signal x (i.e., Bob wants to extract the (classical) information about the random variable $X = \{x, p_x | x \in X\}$) by performing a POVM $\{E_y | y \in Y\}$ on the state with measurement outcomes $y \in Y$ and probabilities $p(y|x) = Tr(E_u \rho_x)$.

Accessible information (continued)

• Using Bayes' rule, we have $p(x|y) = (p(y|x)p_x)/(\sum_{x \in X} p(y|x)p_x)$. So the mutual information $I(X;Y) \equiv H(X) - H(X|Y) =$ $-\sum_{x \in X} p_x \log_2 p_x + \sum_{y \in Y} (\sum_{x \in X} p(y|x)p_x) \times H(X|y)$, which is the amount of reduction of (classical) information about *X*, on an average, after Bob performs the measurement. Bob wants to maximize this reduction by choosing appropriate POVM.

Accessible information (continued)

• Accessible information:

 $I_{acc} \equiv \max\{I(X;Y) \mid \text{over all POVMs } \{E_y | y \in Y\}\}$

- In general, it is difficult to calculate I_{acc} .
- Holevo (1973) has shown that

 $I_{acc} \leq S(\rho) - \sum_{x \in X} p_x S(\rho_x) \equiv \chi(\mathcal{E}).$

Accessible information (continued)

• Proof of this result uses strong subadditivity of von Neumann entropy, for which we need three systems: An preparation system P of dimension |X| having a complete orthonormal basis $\{|x\rangle : x \in X\}$, the original system S which is prepared in state ρ_x with probability p_x (corresponding to the ensemble $\mathcal{E} = \{p_x, \rho_x | x \in X\}$ for the average state $\rho_S = \sum_{x \in X} p_x \rho_x$), and the measuring apparatus M of dimension $\geq |Y|$ with an orthonomal basis (possibly incomplete) $\{|y\rangle : y \in Y\}$.

Quantum conditional entropy

• Quantum conditional entropy: For any density matrix ρ_{AB} of a bipartite system A + B, with reduced density matrices $\rho_A = Tr_B(\rho_{AB})$ and $\rho_B = Tr_A(\rho_{AB})$, the quantum conditional entropy $S(A|B) \equiv S(\rho_{AB}) - S(\rho_B)$. Unlike classical case, S(A|B) can be negative!

Quantum mutual entropy

• Quantum mutual entropy: For any density matrix ρ_{AB} of a bipartite system A + B, with reduced density matrices $\rho_A = Tr_B(\rho_{AB})$ and $\rho_B = Tr_A(\rho_{AB})$, $S(A; B) \equiv S(\rho_A) - S(A|B) \equiv S(\rho_A) + S(\rho_B) - S(\rho_{AB})$. It is always non-negative due to subadditivity property of von Neumann entropy.

Results from strong subadditivity

• (i) Ignoring subsystem: $S(A; B, C) \ge S(A; B), S(A; C)$.

• (ii) One-sided CP map: If $\mathcal{T} : \mathcal{B}(H_B) \to \mathcal{B}(H_{B'})$ is a trace-preserving CP map such that $(I \otimes \mathcal{T})(\rho_{AB}) = \rho'_{AB'} \in \mathcal{D}(H_A \otimes H_{B'})$ for each $\rho_{AB} \in \mathcal{D}(H_A \otimes H_B)$, then $S(A; B) \ge S(\rho'_A) + S(\rho'_{B'}) - S(\rho'_{AB}) \equiv S(A'; B')$.

Useful property of von Neumann entropy

- (iii) If $\{|x\rangle : x \in X\}$ is an orthonormal basis of the |X|-dimensional preparation system P, then $S(\sum_{x \in X} p_x |x\rangle \langle x | \otimes \rho_x) = H(X) + \sum_{x \in X} p_x S(\rho_x).$
- This is true because of the fact that here
- $S(\sum_{x \in X} p_x | x \rangle \langle x | \otimes \rho_x) \equiv$
- $-\sum_{x \in X} Tr((p_x|x)\langle x| \otimes \rho_x) \log_2(p_x|x)\langle x| \otimes \rho_x))$, as $|x\rangle\langle x| \otimes \rho_x$'s are pairwise orthogonal.

Proof of $I_{acc} \leq \chi(\mathcal{E})$

• Alice prepares the initial ensemble, described by $\rho_{PSM} = \sum_{x \in X} p_x |x\rangle \langle x| \otimes \rho_x \otimes |0\rangle \langle 0|$, where $|0\rangle$ is a fixed state of M. She then sends (undisturbedly) the systems S and M to Bob.

• So $S(\rho_{PSM}) = S(\rho_{PS})$. Now $S(P; S, M) = S(\rho_P) + S(\rho_{SM}) - S(\rho_{PSM}) =$ $S(\sum_{x \in X} p_x |x\rangle \langle x|) + S(\sum_{x \in X} p_x \rho_x \otimes |0\rangle \langle 0|) - S(\rho_{PS}) =$ $S(\rho_P) + S(\rho_S) - S(\rho_{PS}) = S(P; S)$.

Proof of $I_{acc} \leq \chi(\mathcal{E})$ (continued)

• Bob applies now a CP map $\mathcal{T}: \mathcal{D}(H_S \otimes H_M) \to \mathcal{D}(H_S \otimes H_M)$ corresponding to implimentation of the POVM $E_y | y \in Y \}$, given by the Kraus representation $\mathcal{T}(\sigma_S \otimes |0\rangle \langle 0|) = \sum_{y \in Y} (E_y^{1/2} \otimes U_y) (\sigma_S \otimes |0\rangle \langle 0|) (E_y^{1/2} \otimes U_y^{\dagger}),$ where σ_S is any state of *S* and for each $y \in Y$, $U_y: H_M \to H_M$ is an unitary operator for which $U_y |0\rangle = |y\rangle.$

Proof of $I_{acc} \leq \chi(\mathcal{E})$ (continued)

- Let $\rho'_{PSM} = (I_P \otimes \mathcal{T})(\rho_{PSM}) =$
- $\sum_{x \in X, y \in Y} p_x |x\rangle \langle x| \otimes (E_y^{1/2} \rho_x E_y^{1/2}) \otimes |y\rangle \langle y|.$ Then by property (ii), $S(P; S, M) \ge S(P'; S', M').$
- So by property (i), we have $S(P'; S', M') \ge S(P'; M')$.
- So we have finally $S(P'; M') \leq S(P; S)$.

Proof of $I_{acc} \leq \chi(\mathcal{E})$ (continued)

• Now $S(P; S) = S(\rho_P) + S(\rho_S) - S(\rho_{PS}) =$ $H(X) + S(\rho_S) - H(X) - \sum_{x \in X} p_x S(\rho_x)$ (by property (iii)). Thus $S(P; S) = S(\rho_S) - \sum_{x \in X} p_x S(\rho_x) = \chi(\mathcal{E}).$

- $P(P';M') = S(\rho'_P) + S(\rho'_M) S(\rho'_{PM}) =$ $S(\sum_{x \in X, y \in Y} p_x p(y|x)|x\rangle\langle x|) + S(\sum_{x \in X, y \in Y} p_x p(y|x)|y\rangle\langle y|) S(\sum_{x \in X, y \in Y} p_x p(y|x)|xy\rangle\langle xy|) =$ H(X) + H(Y) H(X,Y) = I(X;Y).
- Thus we have $I(X;Y) \le \chi(\mathcal{E})$, whatever be POVM

 $\{E_y|y\in Y\}.$

Attainability of the Holevo bound

Example 1: Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two non-• orthogonal states (spanning a two-dimensional Hilbert space H), supplied with equal probability. Thus $\mathcal{E} =$ $\{|\psi_1\rangle, p(|\psi_1\rangle) = 1/2 \text{ and } |\psi_2\rangle, p(|\psi_2\rangle) = 1/2\}.$ Here the accessible information $I_{acc}(\mathcal{E})$ can be shown to be the value of I(X;Y) corresponding to the optimal **POVM** $\{F_1 = (1/(1 + |\langle \psi_1 | \psi_2 \rangle|)) | \psi_2^{\perp} \rangle \langle \psi_2^{\perp} |, F_2 = (1/(1 + |\langle \psi_1 | \psi_2 \rangle|)) | \psi_2^{\perp} \rangle \langle \psi_2^{\perp} |, F_2 \rangle$ $|\langle \psi_1 | \psi_2 \rangle|) |\psi_1^{\perp} \rangle \langle \psi_1^{\perp} |, F_3 = I_H - F_1 - F_2 \}.$

Attainability of the Holevo bound (Exmaple 1)

• Example 1 (continued): Here $I_{acc}(\mathcal{E}) = 1 - |\langle \psi_1 | \psi_2 \rangle|$ while $\chi(\mathcal{E}) = H((1 + |\langle \psi_1 | \psi_2 \rangle|)/2, (1 - |\langle \psi_1 | \psi_2 \rangle|)/2)$. So $I_{acc} \leq \chi(\mathcal{E})$, equality holds iff either $|\langle \psi_1 | \psi_2 \rangle| = 0$ or $|\langle \psi_1 | \psi_2 \rangle| = 1$.

Attainability of the Holevo bound (Example 2)

• Example 2: Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be same as in Example 1, supplied with equal probability. Now, instead of taking the initial ensemble as \mathcal{E} , let us take $\mathcal{E}^{(2)} = \{|\Psi_1\rangle \equiv |\psi_1\rangle \otimes$ $|\psi_1\rangle, p(|\Psi_1\rangle) = 1/2$ and $|\Psi_2\rangle \equiv |\psi_2\rangle \otimes |\psi_2\rangle, p(|\Psi_2\rangle) = 1/2$. Let H' be the Hilbert space spanned by $|\Psi_1\rangle$ and $|\Psi_2\rangle$. Here the accessible information $I_{acc}(\mathcal{E}^{(2)})$ can be shown to be the value of I(X;Y) corresponding to the optimal POVM $\{G_1 = (1/(1 + |\langle \Psi_1 | \Psi_2 \rangle|))(I_{H'} - |\Psi_2 \rangle \langle \Psi_2 |), G_2 =$ $(1/(1+|\langle \Psi_1|\Psi_2\rangle|))(I_{H'}-|\Psi_1\rangle\langle \Psi_1|, G_3=I_{H'}-G_1-G_2\}.$

Attainability of the Holevo bound (Exmaple 2) (continued)

• Example 2 (continued): Here $I_{acc}(\mathcal{E}^{(2)}) = 1 - |\langle \psi_1 | \psi_2 \rangle|^2$ while $\chi(\mathcal{E}^{(2)}) = H((1 + |\langle \psi_1 | \psi_2 \rangle|^2)/2, (1 - |\langle \psi_1 | \psi_2 \rangle|^2)/2)$. So $I_{acc}(\mathcal{E}^{(2)}) \leq \chi(\mathcal{E}^{(2)})$, equality holds iff either $|\langle \psi_1 | \psi_2 \rangle| = 0$ or $|\langle \psi_1 | \psi_2 \rangle| = 1$. Note that $\{\chi(\mathcal{E}^{(2)}) - I_{acc}(\mathcal{E}^{(2)})\} \leq \{\chi(\mathcal{E}) - I_{acc}(\mathcal{E})\}$ and equality holds iff either $|\langle \psi_1 | \psi_2 \rangle| = 0$ or $|\langle \psi_1 | \psi_2 \rangle| = 1$.

Entanglement dilution for pure states

• Far apart parties Alice and Bob want to share n copies of a bipartite pure entangled state $|\psi\rangle_{AB}$, for large n, starting from minimum no. (k_{min} , say) of the shared siglet state $|\phi^+\rangle = (1/\sqrt{2})(|00\rangle + |11\rangle)$, by using LOCC only. k_{min}/n , in the limit $n \to \infty$, is called as the entanglement of formation $E_F(|\psi\rangle_{AB})$ of $|\psi\rangle_{AB}$.

Entanglement concentration for pure states

• Far apart parties Alice and Bob are sharing share n copies of a bipartite pure entangled state $|\psi\rangle_{AB}$, for large n, and they want to generate now, by using LOCC only, maximum no. (k_{max} , say) of siglet states $|\phi^+\rangle$. The value k_{max}/n , in the limit $n \to \infty$, is called the distillable entanglement $E_D(|\psi\rangle_{AB})$ of $|\psi\rangle_{AB}$.

$E_D(|\psi\rangle) \le E_F(|\psi\rangle)$

• As entanglement does not increase under LOCC (which is known as "irreversibility of entanglement under the thermodynamic process of LOCC"), therefore: $k_{max}/n \le k_{min}/n$ in the large n limit. So

(1) $E_D(|\psi\rangle_{AB}) \le E_F(|\psi\rangle_{AB}).$

• Using Schumacher data compression, one can show that, in the large n limit, Alice and Bob can share n no. of entangled state $|\psi\rangle_{AB}$, by using LOCC only, starting from $nS(\rho_A^{\psi})$ no. of shared siglet states $|\phi^+\rangle$, where $\rho_A^{\psi} = Tr_B(|\psi\rangle_{AB}\langle\psi|)$.

$E_D(|\psi\rangle) \le E_F(|\psi\rangle)$

• There is an entanglement concentration scheme, using which Alice and Bob can finally share $nS(\rho_A^{\psi})$ no. of singlet state, in the large *n* limit, starting from *n* copies of the shared state $|\psi\rangle_{AB}$.

So we have

 $nS(\rho_A^{\psi})/n \leq E_D(|\psi\rangle_{AB}) \leq E_F(|\psi\rangle_{AB}) \leq nS(\rho_A^{\psi})/n$. Thus: $E_D(|\psi\rangle_{AB}) = E_F(|\psi\rangle_{AB}) = S(\rho_A^{\psi})$.

Entanglement dilution scheme

- Let *n* be large and let Alice and Bob share $nS(\rho_A^{\psi})$ no. of copies of the singlet state $|\phi^+\rangle_{AB}$.
- Alice now locally prepares n copies of the state $|\psi_{AD}\rangle$, having Schmidt decomposition
- $|\psi\rangle_{AD} = \sum_{i=1}^d \sqrt{\lambda_i} |e_i\rangle_A \otimes |f_i\rangle_D$. So $\rho_D^{\psi} = \sum_{i=1}^d \lambda_i |f_i\rangle\langle f_i|$.
- Alice now uses Schumacher data compression on the string $(\rho_D^{\psi})^{\otimes n}$ to compress it to the typical subspace of $nS(\rho_D^{\psi}) = nS(\rho_A^{\psi})$ qubits.
- Note that $S(\rho_A^{\psi}) = -\sum_{i=1}^d \lambda_i \log_2 \lambda_i \equiv H(\lambda_1, \lambda_2, \dots, \lambda_d).$

Entanglement dilution scheme (continued)

• Alice now sends the states of this typical subspace to Bob, by using standard teleportation protocol using the shared $nS(\rho_A^\psi)$ no. of shared singlet states.

- So, in this teleportation scheme, $2nS(\rho_A^{\psi})$ bits of classical communication from Alice to Bob is necessary.
- After receving the states of the typical subspaces, Bob now decompress them to the string $(\rho_B^{\psi})^{\otimes n}$.
- So now Alice and Bob share n copies of the state $|\psi\rangle_{AB}.$
- Thus, from the definition of E_F , we have:

(2)
$$E_F(|\psi\rangle_{AB}) \leq H(\lambda_1, \lambda_2, \dots, \lambda_d).$$

Entanglement concentration scheme

• For simplicity, we consider that Alice and Bob are sharing n copies of the state $|\psi\rangle = a|00\rangle_{AB} + b|11\rangle_{AB}$, where a, b > 0 and $a^2 + b^2 = 1$ and n is large enough. We would like to extract as many singlet states $|\phi^+\rangle_{AB}$ as possible, using LOCC only.

• So the joint state of Alice and Bob will be now a linear superposition of product states of the form $|x\rangle_A \otimes |x\rangle_B$ where $x = \sum_{j=0}^{n-1} a_j 2^j \equiv a_0 a_1 \dots a_{n-1}$. So $|x\rangle$ is a product state of k no. of single-qubit states, each in $|0\rangle$ and (n-k) no. of single-qubit states, each in $|1\rangle$, and we write $|x\rangle$ as $|0^k 1^{n-k}\rangle$.

• The square of the modulus of the coefficient of the state $|x\rangle_A \otimes |x\rangle_B$ is $a^{2k}b^{2(n-k)}$, and the total no. of such states is nC_k . Let $|\psi(0^k; 1^{n-k})\rangle_{AB}$: normalized equal superposition of <u>all</u> such states. So the probability associated with $|\psi(0^k; 1^{n-k})\rangle_{AB}$ is $P(a^2, k; n) \equiv {}^nC_k \times a^{2k}b^{2(n-k)}$.

• The dimension of the subspace $(H_A(0^k; 1^{n-k}), \text{ say})$ of $(\mathcal{C}^2)^{\otimes n}$, spanned by the nC_k no. of pairwise orthogonal states $|0^k 1^{n-k}\rangle$, is nC_k . Let $P_A(0^k; 1^{n-k})$ be the projector on $H_A(0^k; 1^{n-k})$.

• Alice now performs the projective measurement: $\{P_A(0^k; 1^{n-k}), I_{2^n \times 2^n} - P_A(0^k; 1^{n-k})\}$ on her *n*-qubit system when Alice and Bob share the state $|\psi\rangle^{\otimes n}$.

Note that

 $(P_A(0^k; 1^{n-k}) \otimes I_{2^n \times 2^n}^{(B)})(|\psi\rangle_{AB}^{\otimes n}) = \sqrt{nC_k}a^k b^{n-k}|\psi(0^k; 1^{n-k})\rangle_{AB}$. So, when $P_A(0^k; 1^{n-k})$ clicks in the measurement of Alice (which occurs with probability ${}^nC_k \times a^{2k}b^{2(n-k)})$, the shared state between Alice and Bob will be $|\psi(0^k; 1^{n-k})\rangle_{AB}$.

• What should be the value of k, in the large n limit, so that the above-mentioned probability of occurrance of $P_A(0^k; 1^{n-k})$ can become very much close to unity (and also approaches unity as $n \to \infty$)? Stirling's approximation provides us this value: $k = na^2$! And so, for this value of k, ${}^nC_k \approx 2^{nH(a^2,b^2)}$.

• Thus the finally shared state $|\psi(0^k; 1^{n-k})\rangle_{AB}$ will have, in this case, $2^{nH(a^2,b^2)}$ no. of terms $|x\rangle_A \otimes |x\rangle_B$, all with <u>same</u> coefficient. How much entanglement is there in the state $|\psi(0^k; 1^{n-k})\rangle_{AB}$?

• For the product states $|x\rangle_A \otimes |x\rangle_B$, appearing in $|\psi(0^k; 1^{n-k})\rangle_{AB}$, we can arrange all these $2^{nH(a^2,b^2)}$ no. of non-negative numbers $x = \sum_{j=0}^{n-1} a_j 2^j \equiv a_0 a_1 \dots a_{n-1}$ (where eaxctly $k = na^2$ no. of a_i 's are equal to 0 and rest (n-k) no. of a_i 's are equal to 1) in the increasing order and call them as $1, 2, 3, \dots, 2^{nH(a^2,b^2)}$. Thus $|\psi(0^k; 1^{n-k})\rangle_{AB} = 2^{-nH(a^2,b^2)/2}(|1\rangle_A \otimes |1\rangle_B + |2\rangle_A \otimes |2\rangle_B + |3\rangle_A \otimes |3\rangle_B + \dots + |2^{nH(a^2,b^2)}\rangle_A \otimes |2^{nH(a^2,b^2)}\rangle_B$).

• As $|1\rangle_A$, $|2\rangle_A$, ..., $|2^{nH(a^2,b^2)}\rangle_A$ are pairwise orthonormal states forming a basis for an $nH(a^2, b^2)$ -qubit Hilbert space $\mathscr{C}^2_{A_1} \otimes \mathscr{C}^2_{A_2} \otimes \ldots \otimes \mathscr{C}^2_{A_{nH(a^2,b^2)}}$, therefore, without loss of any generality, we can write $|1\rangle_A = |0\rangle_{A_1} \otimes |0\rangle_{A_2} \otimes \ldots \otimes |0\rangle_{A_{nH(a^2,b^2)-1}} \otimes |0\rangle_{A_{nH(a^2,b^2)}}$, $|2\rangle_A = |0\rangle_{A_1} \otimes |0\rangle_{A_2} \otimes \ldots \otimes |0\rangle_{A_{nH(a^2,b^2)-1}} \otimes |1\rangle_{A_{nH(a^2,b^2)}}$, ..., $|2^{nH(a^2,b^2)}\rangle_A = |1\rangle_{A_1} \otimes |1\rangle_{A_2} \otimes \ldots \otimes |1\rangle_{A_{nH(a^2,b^2)-1}} \otimes |1\rangle_{A_{nH(a^2,b^2)}}$.

• Thus we can now write: $|\psi(0^k; 1^{n-k})\rangle_{AB} = |\phi^+\rangle_{A_1B_1} \otimes |\phi^+\rangle_{A_2B_2} \otimes \ldots \otimes |\phi^+\rangle_{A_{nH(a^2,b^2)}B_{nH(a^2,b^2)}}$, which is nothing but $nH(a^2, b^2)$ no. of two-qubit singlet state $|\phi^+\rangle$, shared between Alice and Bob.

• Thus we see that, starting from large n copies of the shared two-qubit non-maximally entangled state $|\psi\rangle_A B = a|0\rangle_A \otimes |0\rangle_B + b|1\rangle_A \otimes |1\rangle_B$, Alice and Bob can distill out, using LOCC only, $nH(a^2, b^2)$ no. of shared two-qubit singlet state $|\phi^+\rangle_{AB}$, with probability of success approaching to 1 as $n \to \infty$.

• So we have:

(3) $E_D(|\psi\rangle_{AB}) \ge H(a^2, b^2).$

Note that in this concentration scheme, no classical communication is needed.

- From equations (1), (2) and (3), it follows that: $E_D(|\psi\rangle_{AB}) = E_F(|\psi\rangle_{AB}) = H(a^2, b^2).$
- For entanglement concentration of large *n* copies of a state $|\psi\rangle_{AB}$ having Schmidt decomposition $|\psi\rangle_{AB} = \sum_{i=1}^{d} \sqrt{\lambda_i} |e_i\rangle_A \otimes |f_i\rangle_B$, one should look (as earlier) for those product states $|e_1^{n\lambda_1}e_2^{n\lambda_2} \dots e_d^{n\lambda_d}\rangle_A \otimes |f_1^{n\lambda_1}f_2^{n\lambda_2} \dots f_d^{n\lambda_d}\rangle_B$, in the expansion of $|\psi\rangle_{AB}^{\otimes n}$, where, in $|e_1^{n\lambda_1}e_2^{n\lambda_2} \dots e_d^{n\lambda_d}\rangle_A$ there are $n\lambda_1$ no. of states $|e_1\rangle$, $n\lambda_2$ no. of states $|e_2\rangle$, ..., $n\lambda_d$ no. of states $|e_d\rangle$, and in $|f_1^{n\lambda_1}f_2^{n\lambda_2} \dots f_d^{n\lambda_d}\rangle_B$ there are $n\lambda_1$ no. of states $|f_1\rangle$, $n\lambda_2$ no. of states $|f_2\rangle$, ..., $n\lambda_d$ no. of states $|f_d\rangle$.

• The probability of occurrance of each such pairwise orthogonal product state is $\lambda_1^{n\lambda_1}\lambda_2^{n\lambda_2}\dots\lambda_d^{n\lambda_d}$ and the total no. of such product states is $n!/((n\lambda_1)! \times (n\lambda_2)! \times \dots \times (n\lambda_d)!) \approx 2^{nH(\lambda_1,\lambda_2,\dots,\lambda_d)}$. So all of these product states when added, with equal coefficients, will form the state $|\psi(e_1^{n\lambda_1}e_2^{n\lambda_2}\dots e_d^{n\lambda_d}; f_1^{n\lambda_1}f_2^{n\lambda_2}\dots f_d^{n\lambda_d})\rangle_{AB}$, the later state will occur in the expansion of $|\psi\rangle_{AB}^{\otimes n}$ with probability $\{n!/((n\lambda_1)! \times (n\lambda_2)! \times \dots \times (n\lambda_d)!)\} \times \lambda_1^{n\lambda_1}\lambda_2^{n\lambda_2}\dots \lambda_d^{n\lambda_d} \approx 1$.

• Let $H(e_1^{n\lambda_1}e_2^{n\lambda_2}\dots e_d^{n\lambda_d})$ be the $n!/((n\lambda_1)! \times (n\lambda_2)! \times \dots \times (n\lambda_d)!)$ -dimensional subspace of Alice's Hilbert space $(\mathbb{C}^d)^{\otimes n}$, spanned by the $n!/((n\lambda_1)! \times (n\lambda_2)! \times \dots \times (n\lambda_d)!)$ no. of pairwise orthogonal states $|e_1^{n\lambda_1}e_2^{n\lambda_2}\dots e_d^{n\lambda_d}\rangle_A$.

• Alice now performs the projective measurement $\{P(e_1^{n\lambda_1}e_2^{n\lambda_2}\ldots e_d^{n\lambda_d}), I_{d^n\times d^n} - P(e_1^{n\lambda_1}e_2^{n\lambda_2}\ldots e_d^{n\lambda_d})\}$ on her system, where $P(e_1^{n\lambda_1}e_2^{n\lambda_2}\ldots e_d^{n\lambda_d})$ is the projector on $H(e_1^{n\lambda_1}e_2^{n\lambda_2}\ldots e_d^{n\lambda_d})$. If $P(e_1^{n\lambda_1}e_2^{n\lambda_2}\ldots e_d^{n\lambda_d})$ clicks (which will happen with probability $\{n!/((n\lambda_1)! \times (n\lambda_2)! \times \ldots \times (n\lambda_d)!)\} \times \lambda_1^{n\lambda_1}\lambda_2^{n\lambda_2}\ldots \lambda_d^{n\lambda_d}$), the shared final state will be $|\psi(e_1^{n\lambda_1}e_2^{n\lambda_2}\ldots e_d^{n\lambda_d}; f_1^{n\lambda_1}f_2^{n\lambda_2}\ldots f_d^{n\lambda_d})\rangle_{AB}$.

- Representing all the $2^{nH(\lambda_1,\lambda_2,...,\lambda_d)}$ (approximately) no. of terms $|e_1^{n\lambda_1}e_2^{n\lambda_2}\dots e_d^{n\lambda_d}\rangle_A$ as $|0
 angle_{A_1}\otimes|0
 angle_{A_2}\otimes\ldots\otimes|0
 angle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)-1}}\otimes|0
 angle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)}}$, $|0\rangle_{A_1}\otimes|0\rangle_{A_2}\otimes\ldots\otimes|0\rangle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)-1}}\otimes|1\rangle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)}}$, ..., $|1
 angle_{A_1}\otimes|1
 angle_{A_2}\otimes\ldots\otimes|1
 angle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)-1}}\otimes|1
 angle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)}}$, as above, we can express $|\psi(e_1^{n\lambda_1}e_2^{n\lambda_2}\dots e_d^{n\lambda_d}; f_1^{n\lambda_1}f_2^{n\lambda_2}\dots f_d^{n\lambda_d})\rangle_{AB}$ as $|\phi^+\rangle_{A_1B_1}\otimes$ $|\phi^+\rangle_{A_2B_2}\otimes\ldots\otimes|\phi^+\rangle_{A_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)}B_{nH(\lambda_1,\lambda_2,\ldots,\lambda_d)nH(\lambda_1,\lambda_2,\ldots,\lambda_d)}}$ • Thus we see that, with probability of success
- approacing unity (as $n \to \infty$), Alice and Bob will share $nH(\lambda_1, \lambda_2, \ldots, \lambda_d)$ no. of copies of the singlet state $|\phi^+\rangle_{AB}$ starting from n copies of $|\psi\rangle_{AB}$. (No classical communication is needed.)

Topics not covered

- Different capacities of quantum channels.
- Classical and quantum error correcting codes
- Different no-go theorems of quantum information

References

(1) Chapters 1, 2, 8, 9, 11 and 12 of the book: *Quantum Computation and Quantum Information* by Michael A. Nielsen and Issac L. Chuang (Cambridge Univ. Press, 2002).

(2) Chapters 2, 3, 4 and 5 of John Preskill's Caltech lectures on Quantum Information and Computation, available at his website.