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Hilbert space formulation of Quantum Mechanics

e (i) Every quantum mechanical system S'is
associated with a Hilbert space Hs.

o (i) Every state of the system S is described by a
density operator p: Hg — Hg.

e The state p can be a part of a joint state |V) of

Hs ® Hr, i.e., Trr(|V)(V]) = p. | V) is a ‘purification’ of p.
This purification is not a physical process!
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Hilbert space formulation of QM (continued)

o (iii) As a generalization of projective measurement
{P,|P,P; = 0;;P;;i,5 =1,2,...,d}, every measurement on
S is associated toa POVM {F;|i = 1,2,..., N}, where
E; : Hy — Hg is a positive operator and >_.' | F; = 1.
The probability of ‘clicking’ £; is Tr(F;p). The output
state is (E!/*pE!’*)/(Tr(E;p)) in this case, while the

average output state is > . £//*pE!/* in a particular
realization of the POVM.
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Hilbert space formulation of QM (continued)

e Each POVM {F;|i =1,2,..., N} on S can be realized
by a projective measurement {F;|i =1,2,..., N} on

S+ S"where Trs(E;p) = Tre,s(PU(p ® 09)U"), oy being
a fixed state of S’ and U being a unitary evolution of

S + S’ after which {F;|: =1,2,..., N} Is measured.

e (iv) As a generalization of the unitary Schrodinger
dynamics, the dynamics of the is described by a
completely positive (CP) map 7' : D(Hs) — D(Hg),
where D(Hgs) and D(Hg ) are the convex sets of all
density operators of S and S’ respectively.
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Hilbert space formulation of QM (continued)

¢ A linear, Hermitian, positive, trace-preserving map
T': B(Hs) — B(Hg/ ) from the Hilbert space B(Hg) of
bounded linear operators on Hs (with

(A, B) =Tr(A'B)) to B(Hs ) is also completely positive
if for every Hilbert space H 4, the linear, Hermitian,
trace-preserving map

(T"® 1) :B(Hs ® Ha) — B(Hgr @ H,) Is again positive.
Restrict B(Hs) to D(Hg) for our purpose.

¢ Unitary Schrodinger dynamics, non-selective POVM
as well as their copmositions are all CP maps.
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Kraus representation
e EveryCP map 7" : B(Hs) — B(Hg/) can be
represented by 7'(p) = > A;pA! where
A; 1 Hs — Hg’s are linear maps and > ATA, = Ig.
e Anymap T : D(Hs) — D(Hg), which has a Kraus form,
is always a CP map.

e Every quantum mechanical operation (e.g.,
non-selective measurement, unitary evolution, taking
trace, taking partial trace over a sub-system of a
composite system, etc.) is a CP map.
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Realization of CP maps

e EveryCP map 7 : D(Hs) — D(Hg) can be obtained
by: T(p) = Tr4(U(p ® 0y)U") for every p in D(Hg), oy is a
fixed stateof Aand U : Hs ® H4 — Hg ® H4 is unitary,
for some suitably chosen H 4.

e Gorini, Kossakowski, Sudarshan, Lindblad:
Dynamics of any open quantum system in the
Lindblad form:

% = —4lH, 0 +3,(2LipL} — {L}L;, p})
corresponds to a CP map p(0) — p(t) = V (£)p(0).
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Quantum channels

e Quantum channel with input system S and output
system T =CP map 7" : D(Hs) — D(Hr).

e Bit-flip channel: p — EypEl + EipE!, with

10
Eo\/ﬁ]\/]_J(O 1>,E1\/71—p0x

0 1
(1)
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Quantum channels (continued)
e Phase-flip channel: p — EopE]} + EipEl, with

1 O
S

1 0
Vl—p(o 1).
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Quantum channels (continued)
e bit-phase flip channel: p — EopE} + EipE], with

10
EO\/;;J\/;—;<O 1>,E1\/71—p0y

=(17)
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Quantum channels (continued)
e Depolarizing channel: p — pL + (1 —p)p= 30, EipEl,

with Ey = /1 — 3p/41, By = \/p/20,, By = \/p/20,,
E3 — \/]_?/20'2

e Amplitude damping channel: p — EopEl + EipET with

f= (3 g ) 2= (07 ) wenma
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Why CP, why not just positive?
e Transposition map: Consider an orthonomal basis
{]¢) :i=1,2,...d = dimHg} for Hg. Forany A € B(Hy),
define its transposition A" : Hg — Hg as (i|A*|j) = (j]A1).
Sothe map 7 : A — A' is alinear, Hermitian,
trace-preserving, positive map. But the map
(T®1):B(Hs® Hs) — B(Hs ® Hg), when acts on
&) (dF|, produces a non-positive operator, where

o) = (1/Vd) X, id).
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Positive maps for testing entanglement

e Think of the map (I ® 7)) as time-reversal (under
Schrodinger evolution) of one subsystem of a composite
system.

e Separable states: A state p of Hy ® Hy is separable iff
p=S10 wipl” @al”), with pi*) € D(Hs), 0l € D(Hy),
0<w; <1, 7, w; = 1. If pis not separable, then it is
entangled.

o A state p of S + T is separable iff for every positive map
A:B(Hs) — B(Hg), the operator

(AR I7)(p): Hs ® Hr — Hg ® Hr is positive.
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Recalling Shannon (source coding)

e For processing an arbitrarily large message of
letters from the values of the random variable

X ={z,p(x)}, its incompressible information content
per letter is H(X).
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Recalling Shannon (channel coding)

e Given an output Y = y of a noisy channel N for
sending X, the incompressible information content for
the probability distribution {Prob(x|y) : «} being
H(X|y), the average value of this information content
is H(X|Y) =} p(y)H(X|y). The information about X,

gained by sending X through a channel N/
(characterized by the probabilities Prob(y|z), from
which Prob(z|y)’s can be obtained by using the Bayes’
rule: Prob(x|y) = (Prob(y|x) x Prob(x))/ Prob(y) where
Prob(y) = > Prob(y|x) x Prob(z))is
[(X;Y)=HX)-HX|Y)=HX)+ HY)- HX,Y).
The capacity of the channel NV is max{I(X;Y)|X}.
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von Neumann entropy

e Now we encode the letter = by a density matrix p, of
S. So, the classical ensemble X = {z,p(x) : x} is now
replaced by the quantum ensemble p = {p,,p(z) : =},
representing the density matrix p = ) p(x)p,. If we
take the preparation {p.,p(x) : =} of p in its spectral
decomposition (i.e., p,’s are pairwise orthogonal), then
the information content about X, is

— > _p(x) logyp(x) = —Tr(plogyp), as p,’s are
distinguishable.
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von Neumann entropy (continued)

e But what would be information content in p if its
preparation is hot known? von Neumann, considering
phenomenological considerations of
Thermodynamics, provided the formula for that
information content. It is the von Neumann entropy
S(p) = —T'r(plogyp).

e Schumacher (1995) has shown that if we consider
strings p® p® ... p = p®" of large length n, S(p) gives
the incompressible information content, in terms of
qubits, of p.
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Shannon vs. von Neumann

e S(p) >0,and S(p) = 0 iff p is a pure state.

e Forunitary U : Hg — Hg, S(UpU) = S(p).

e For any p, S(p) < log,(dimHg). (Recall that
H(p1,p2,...,pn) < logyn.)

o S(Trp(|Y)4pW))) = S(Tra(|¥) 45{¥])).

o SN wip) > S wiS(p;), where w;’s are weights.

o If{P]i=1,2,...,d} is a projective measurement on p,
then for the average output state > | PpP, =,

S(p') = S(p).
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Shannon vs. von Neumann (continued)

o H(X)>S(p=3,p(x)ts)(:]). So the
distingushability among the signals = by encoding

them by non-orthogonal states |¢,.). S(p) is here a tight
upper bound on the amount of classical information
about the signals x that one can get by performing
measurement on the state p (Holevo’s bound).

e Subadditivity: S(pas) < S(Trs(pas)) + S(Tralpas));
equality iff pop = Trg(pap) ® Tra(pas). (Compare with
the classical case: H(X,Y) < H(X)+ H(Y).)
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Shannon vs. von Neumann (continued)

e Strong subadditivity:

S(papc)+S(Trac(papc)) < S(Trc(pape)) +S(Tra(pasc))-
(Compare with the classical case:

HX,Y,2)+HY)< HX,Y)+ H(Y,2).)

e Araki-Lieb inequality:

S(pag) = |S(Tre(pag)) — S(Tra(pas))|- (Compare with
the classical case: H(X,Y) > H(X),H(Y).) But for a
quantum state p,3, it may happen that

S(pap) < S(Trp(pas))-
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Entropy vs. thermodynamics

o S(p4)+S(p)) = S(pap) = S(U(pa®pp)UT) = S(pa®@pg)-
So the total entropy of the system A + B increases
under the interaction of A and B (Second law?).
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Schumacher compression

e Consider the density matrix p given by the ensemble
{pe,|0:) (0|}, Where |¢,)’s are not hecessarily
orthogonal to each other. Consider now a string

" = p® p®...n times of length n, for large n.)
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Schumacher compression (continued)

e Consider now the spectral decomposition of

pr p =% w;)(¢;]. We have basically now a
classical probability distribution:

X =A{i,w;:i=1,2,...,d}. Consider now the typical
sequences i . . . i,, Will have probability w; w;, ... w; ,
which satisfies (for given ¢, ¢ > 0)

2~ H(X)=0) >, wy, .. w;, > 27MHX)+) and the sum of
these probabilities exceeds 1 — .
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Schumacher compression (continued)

e Thus we see that the subspace S,,,;... = A of HZ,
spanned by the pairwise orthogonal states

;) @ i) @ ... [ ), corresponding to the typical
sequence i1, .. .1,, has dimension equal to the total
number N (¢, ;n) of such typical sequences, and for
the projector P on this subspace A, Tr(p®"P) = the
total prob. of typical sequences > 1 — .

e So we have: 2"7(X)0) > N(c,5;n) > (1 — €)2nH()=0)
where H(X) = S(p).
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Schumacher compression (continued)

e We now use some encoding unitary operation:
U‘\Ijtypical> — ‘\chomp> & |O>uselesss where ‘\Ijtypical> IS any
state the typical subspace, |V.,,,,) is a n(S(p) + ¢)-qubit
state and |0) is a fixed state of A. Once we have
Uoomp)s WE can now get back |¥,,,,..;) by applying U~
by appending [0).cicss-
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Schumacher compression (continued)

e Consider now the states

D, i) = |0i) R |diy,) @ ... |¢;,) from the ensemble
p®" = {w;, wi, ... w; 5 | Piyi,. i) . We now perform
measurement of { P,/ — P}. Under this measurement,
’¢i1i2---in>< 1112.. Zn’ — qu)21’&2---in><q)i1i2---in‘P_|_

P i (Piyia i (I = P)| @iy 2,) = pl,i,. ., (after applying
above coding-decoding scheme).
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Schumacher compression (continued)

e So the fidelity of this scheme:
F = Zil’ig...’in pfb‘ilpl’ig c o« Py, <(D7;17;2---in‘pgliQ...in’¢i1i2---in> —
> iviain Das Dawe - - - Doy, | [P @ivigin )|+

unk
Zzlfgg...z'n Pz Pz - - - Py, (Piyi..in !pﬁf?;’...z-n Dy ) X
(Piig.in |(I — P)|Piiy.in) =

Zilig...in pmilpmiQ © pmzn

|P|®iyiy i) |[* >

D irizin P Paig - - - Dy, (/P Piyiga)|]* = 1) =
2Tr(p®"P) — 1 > 1 — 2e.

e It can be shown to be optimal!
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Appendix: Completely positive maps

e Any dynamical operation N on states of a quantum
system S must have the following properties:

(@) " must be linear; in other words, it should respect
superposition principle.

(b) It should be Hermiticity preserving; in other words,
observable should be transformed into a bonafide
observable (think of the Heisenberg picture).

(c) It should be positivity as well as trace-preserving;
in other words, each density matrix should be
transformed into a bonafide density matrix.

e Sudarshan, Mathews and Rau [Phys. Rev. (1961)] has
taken the above-mentioned three conditions (a), (b)
and (c) as the defining conditions for the most general

quantum dynamical operation.
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Appendix: Completely positive maps (continued)

e In that direction, let us consider a linear map

N : B(Hs) — B(Hs/) from the Hilbert space 5(Hg) of
bounded linear operators on Hs to a Hilbert space Hg:
of bounded linear operators on Hs. Letdim Hs = d
and dim Hgs = d'. Let us fix an orthonormal basis
(ONB) {|e;) : 2 =1,2,...,d} for Hs and an ONB

{‘fk> k=1,2,... ,d/} for Hg.

e For any density matrix p of S, let us write

pi; = (ei|ple;). Also, with respect to the ONB
{Iff(ee;| 4,7 =1,2,....d;k,l=1,2,...,d}, letus
write <67;€j’./\/"fk'fl> — Nkl,z’j-

e So, for the mapping p — N (p) = o/, we have the
following matrix equations: pj, = 3¢ Nii;pi-
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Appendix: Completely positive maps (continued)

e Condition (a) is automatically satisfied here via the
above-mentioned matrix equations.

e Condition (b) implies that (p;, )" = p, if (p;i)* = pi;- SO
we have Zijzl(./\/‘lhij)*pﬂ — szzl Nkl,jz'pji- Thus:

(1) Nkl,z'j — (Mk,ji)*a Za] — 1727' . ada kal — 1727' . 7d/'

e Trace-preservation in condition (c) implies that
d’ d d -
k=1 Zi,jzl Nikijpi; = 21,3:1 pi0i;» ThUS:

(2) > Niij =05, 4,5 =1,2,...d.
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Appendix: Completely positive maps (continued)
e The positivity demand in (c) implies that for all
(yl yg,...,yd/) S @d/ and fOI‘ a" (1131,332,.. ilfd) ~ @d:

Zkl 1 2aij= 1ykal ijPijy1 > 0 whenever Zzg 1 X3 PigT e
e At this point, Sudarshan et al. considered a

(d'd) x (d'd) matrix 7 = (7,,,), defined as: 7;;,; = Nyi;-

e Then, in terms of the linear operator 7, equation (1)
says that 7 is Hermitian:

(3) Trit; = (Zj,ki)*-
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Appendix: Completely positive maps (continued)
e Equation (2) becomes:

d/

@ Y Tigg = Tre(T))y =0y, i.j=12,....d.

k=1

e Now by equation (3), we have the spectral
decomposition of 7:

d’ d
(5) T=> > MalWhi) (Wi,

k=1 =1
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Appendix: Completely positive maps (continued)
o where \y; € IR, |Uy,) =30 S0 afle; /1), and
d’ d ki) « kz
[=1 Zj:l(al(] )) ( — 5kk’5zz
e Thus we see that Nitij = Trigg = (eifelT e fi) =
d k' k') «
Y iy Ay, (@ >> -
e We then have Zkl 1 i,j=1 ykal ijPij Y =
k / /
Zkl 1 1,]= 1Zk’ 1 V= 1)\k"/yka§€z )ngy (al(j ))
(K1) sy41 —
Zk’ 12/ Mm{Z” 1(Zk 1%@ yk)ﬂw(Zz 1%7 >yz) }Z
Zk’ 12' 1)‘16”{2@] 1( ) Pw( )} where
2 = (0 aF Dy fori = 1,2, d.
e As pis a state, therefore, Zkl 1D i  YiNwipiy > 0
if all \,,;’s are non-negative, i.e., if 7 > (.
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Appendix: Completely positive maps (continued)

e Assumption (1): 7 is a positive operator.
e Thus we see that all the three conditions (a), (b) and
(c) will be simultaneously satisfied if the linear

operator 7 : ¢¢? — ¢¥? is Hermitian, Try (7) = 1., and
all the eigen values of 7 are non-negative, where
dlm(HS/) = d'.

e We will now see that the Assumption (1) is stronger
than what is needed to satisfy all the three conditions
(a), (b) and (c).

e Consider an arbitrary quantum system 7" where
dim(Hr) = D can be any positive integer. Consider
now the linear map (N ® I) : B(Hs ® Hy) — B(Hg ® Hy),
where [ : B(Hr) — B(Hy) is the identity map.
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Appendix: Completely positive maps (continued)
e Any density matrix o of the combined system S + T

can be written as: 0 = Zi‘f ) waps) ® 75", where

p& ) e D(Hg), e D(Hr), and w,’s are real numbers

such that > w, = 1.

e So (N ®T)(o) =), 1wa<N<p£§>>®T§T>>.

e Then {(N @ 1)(0)} = XM w (N (p))} @ (1)} =
M wo(N(pE) @ 7)), as N is a

Hermiticity-preserving operator. So (V @ ) is a
Hermiticy-preserving operator.

o Tr[(N®©1)(0)] = 200, wal(TrIN (ps”)] x Trrs"]) =
M w, =1,as N is a trace-preserving map. So
(N ® I) is trace-preserving.
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Appendix: Completely positive maps (continued)

e Finally, for any

1) = S bkl frgm) € (Hs © Hr) (Where

{lgm) :m =1,2,...,D} is an ONB for H;), we have
<m<N®f><a>\n>=z;”1wa<n|< <”>®m )In) =

BT DITED Pugl ol D PN (D) i) (G| 787 ) =
S Y e Yot Wabhmbin T (€il 067 1€} (gl 78 g0
_Za IZzz = 1Zk K = 1Zm,n:1 Wa by bln)\k”a’l(m ,)(al(j >)*><
(eilpt” ) (gml ") lga) =

ZH = 1Zkk’l lngn 1 O bln}‘k"’a/(c]:/i,)( (f, ,)) X

<zgm\(Za L Waps) @ T )\6ggn> =

Zk’Zl Zi’Zl )\k/i’< k’ /)‘O_lq) k'/ /)>,
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Appendix: Completely positive maps (continued)

o where [0¢) =37 370 (S50 bl ) eigun).
e Thus, under Assumption (1), it follows that (\V @ 7) is
a positivity-preserving map, irrespective of the
dimension D of Hr.

e So, \V is CP map. What about the Kraus
representation of \/'?

o Here (fillN(p)|fi) = X0 Nuijpis = >0 i1 Tuiajpij =
S0t Yer S Awag, (g ) elples) =

S Yo Yoo (SRl AF D e (el pleg) (e (AT ) =
el Xy AFD oA £), where

AR = S S Vrag L fid el
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Appendix: Completely positive maps (continued)
e Note that >7,_, S¢_ (AK")i oK)
S A (e Sims v (@l )Y lead s | =
Zi,jzl{Zk’:l Trikj}*|ei)(ej] = ch;i,jzl 0ijlei)(ej| = Laxa:
e Thus a Kraus representation for the CP map
p— N(p) is given by: N(p) = Yf_, S0, AFD (AR,

e Thus we see that Assumption (1) regarding the map
7, given by equation (5), not only makes the
Hermiticity-preserving linear map )V positive, it also
makes it a CP map!
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Appendix: Completely positive maps (continued)

e In the case when d = d’, Sudarshan et al. have
initially taken the positivity condition for the map N as:

d
(6) Z iy Njxiy; > 0 for all @, v, xp, yr € C.

1,0,k 1=1

e But after introducing the map 7, Sudarshan et al.
have considered a stronger positivity condition, given
as:

d
(7) Z 21 T2 > 0 for all 2, 25 € @

1,0,k 1=1
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Appendix: Completely positive maps (continued)

e instead of considering just the condition (6), i.e. the
condition that

Zij,k,lzl 30Ty y; > 0 for all z;, v, xp, yr €

e Note that condition (7) is nothing but Assumption
(1)!

e Try to construct a linear operator

U:(Hs® Hr) — (Hse ® Hr) and a fixed state |0)r € Hr,
where dimH; = d'd, such that U'U = I\ g (@a))x (@ (aa)) and
rleqs fi|U]0),, = A®) forall K = 1,2,...,d and for all

' =1,2,....d. This will give us:

N(p) =30 30 olew fwlU(p @ [0)(0)) Ut e fir) - Tor all
states p of S.
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Appendix: Unitary realization of the bit-flip channel

e Show that the unitary operator

U:Hs® Hr - Hg ® Hr (Where dimHgs = dimH = 2),
given by

U100)sT = /pl00)s7 + /1 — p|11)s7,

U[10)s7 = /BI10)s + T — pl0L) st

Ul01) sz = —/Bl11)sr + vT— pl00)st,

Ul1)sr = —/p|01) st + /T — p|10) 57,

‘realizes’ the bit-flip channel, i.e., for any single-qubit
density matrix ps, we have Tr,[U(ps @ |0),(0))UT] =

(\/p[)pS(\/Z—?[) + (\/ 1 —pUq;)/OS(\/ 1 _pam)'
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Appendix: Unitary realization of the phase-flip
channel

e Show that the unitary operator

U:Hg® Hr — Hs ® Hr (Where dimHgs = dimH; = 2),
given by

Ul +0)sr = /bl +0)sr + 1 —p| —1)sr,

Ul —0)sr = /D] —0)sr + 1 —p|+ 1)sr,

Ul+1)sr = —/p| — L)sr + V1 —p|+0)sr,

Ul—1)st = —+/D| +Lsr++v1—p —0)sr,

‘realizes’ the phase-flip channel, i.e., for any
single-qubit density matrix p5, we have
Trr[U(ps ©10)(0))UT] = (VI = po.)ps(v/T = po.)+
(vPI)ps(y/pI), where | £ ) = (1/v2)(|0) + |1)).
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Appendix: Unitary realization of the bit-phase flip
channel

e Show that the unitary operator
U:Hg® Hr — Hs ® Hr (Where dimHgs = dimH; = 2),
given by
Ul +vy0)st = /p| +y0)sr + /1 —p| —yl)s7,
Ul —y0)sr = /p| —y0)sr + /1 — p| +y1)s7,
Ul+yl)st = —/p| — yl)sr + 1 — p| +30)s7,
Ul—yl)st = —/p| +yl)sr + /1 —p| —y0)s7,
‘realizes’ the phase-flip channel, i.e., for any
single-qubit density matrix o5, we have
Trr[U(ps @ 10)p(0)UT] = (V1 = poy)ps(v/1 — po, )+
(vpI)ps(y/pI), where |+y) = (1/v/2)(|0) +i[1)).
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Appendix: Unitary realization of the amplitude
damping channel
e Show that the unitary operator
U:Hg® Hr — Hs ® Hr (Where dimHgs = dimH; = 2),
given by
U]00)sr = [00) g7,
Ul10)sr = cosf|10) s + sind|01) g7,
Ul01)sr = |[11) 57,

Ul11)sr = sinf|10)sr — cosf|01) g7,

‘realizes’ the amplitude damping channel, i.e., for any
single-qubit density matrix o5, we have

Trr[U(ps ® |0),(0)) U = EypsES + E1psEl, where
0<6<n/2and Ey = |0)(0| + cosf|1)(1|, E; = sinf|0)(1].
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Appendix: Unitary realization of the depolarizing
channel

e Show that the unitary operator

U:Hs® Hr — Hg ® Hr (wWhere dimHs = 2 and

dimH; = 4), given by U]00)sr = /1 — 3p/4|00) s7 +
(v/P/2)101) s 4+ i(\/P/2)|12) s7 + (/P/2)|13) 375 U|10)s7 =
V1= 3p/410)sr — (\/p/2)|11)s7 — i(,/P/2)|02) 57 +
(v/2/2)|03)sr (actions of U on other basis elements

defined suitably), ‘realizes’ the depolarizing channel,
I.e., for any single-qubit density matrix p5, we have

Tre[U(ps @ |0),(0))UT] =
(v/1=3p/4I)ps(\/1 = 3p/AT) + ((\/p/2)02)ps((\/P/2)0) +
((v/P/2)oy)ps((\/P/2)ay) + ((/P/2)0:)ps((\/D/2)02)-
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