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Right from its inception, quantum
information fraternity is confronted

with two basic questions :

(i) Given a multipartite quantum state
(possibly mixed), how to find out

whether it is entangled or separable?

(ii) Given an entangled state, how to
decide how much entangled it is?



Answers to both these questions are
known for bipartite pure states.

(i) If ρ2
A = ρA then ρ is separable.

(ii) Typical measure is the
entanglement entropy
E (|ψ〉) = S(ρA) = −∑

i λi lnλi

Zero for separable states, lnN for
maximally entangled states.



Multipartite states
General answers to both these questions are

not knowns. Different types of entanglement.

Many separability criteria are proposed

Example: Generalizations of Peres-Horodecki

criterion. The genuine entanglement of pure

multipartite quantum state is established by

checking whether it is entangled in all

bipartite cuts, which can be tested using

Peres-Horodecki criterion.



For mixed states this strategy does not work

because there are mixed states which are

separable in all bipartite cuts but are

genuinely entangled [PRL 1999, 82, 5385].

A direct and independent detection of

genuine multipartite entanglement is lacking.



In this talk I present a new measure of
entanglement for 3-qubit pure states.
I present all the results for N-qubit
pure states except one which we could
prove only for two and three qubit
pure states.



Let ρ act on H ; dim(H) = d . ρ ∈ L(H);

scalar product (A, B) = Tr(A†B).

dim(L(H)) = d2.

ρ can be expanded in any orthonormal basis

of L(H).

The basis comprising d2 − 1 generators of

SU(d) is particularly useful:

{Id , λi ; i = 1, 2, · · · , d2 − 1}.



{λi} are traceless Hermition operators

satisfying

Tr(λiλj) = 2δij

and λiλj = 2
d δij Id + ifijkλk + gijkλk

fijk , gijk are completely antisymmetics

(symm.) tensors.

d = 2 :

λi ↔ σi ; fijk = εijk (Levi-civita) gijk = 0.



ρ expanded in this basis:

ρ = 1
d (Id +

∑
i siλi) (A)

where si = 〈λi〉 = Tr(ρλi) is the average
value of the ith generator λi in the
state ρ.



Bloch Vectors

The vector s = (s1, s2, . . . , sd2−1); si = 〈λi〉
is called the Bloch vector of state.

The correspondence s ↔ ρ

via the expansion of ρ in (A) is one-to-one .

Thus we can use s to specify a quantum

state.



Note that s is very easily accessible

experimentally because all the averages can

be directly computed using the outputs of

measurements of {λi}; i = 1, 2, · · · , d2 − 1.

In fact the Bloch vector s can be obtaind

experimenttally even if the form of ρ is not

known.



Bloch vector space

Bloch vectors for a given system live in

Rd2−1.

If we put an arbitrary vector ∈ Rd2−1 in

equation (A) we may not get a valid density

operator.

A density operator has to satisfy

(i) Trρ = 1 (ii) ρ = ρ†

(iii) x†ρx ≥ 0 ∀x ∈ C



So the problem is to find the set of Bloch

vectors in Rd2−1, called Bloch vector space

B(Rd2−1).

This problem is solved only for d = 2:

The Bloch vector space is a ball of unit

radius in R3, known as the Bloch ball.



For d > 2, the problem is still open.

However for pure states (ρ2 = ρ) the

following relations hold,

||s||2 =
√

d(d−1)
2 ; sisjgijk = (d−2)sk (A′)

It is known that

Dr(Rd2−1) ⊆ B(Rd2−1) ⊆ DR(Rd2−1)

r =
√

d
2(d−1) R =

√
d(d−1)

2



Bloch Representation of a Multipartite
state

We construct the basis of L(H) which is the

product of individual bases comprising

generators of SU(dk); k = 1, 2, · · · , N .

k ,ki : a subsystem chosen from N subsys.

{Idki
, λαki

}; αki
= 1, 2, · · · , d2

ki
− 1 is the

basis of Cd2
k−i , comprising the generetors of

SU(ddki
).



Define, for subsystems k1 and k2

λ(k1)
αk1

= (Id1⊗Id2⊗· · ·⊗λαk1
⊗Idk1+1

⊗· · ·⊗IdN
)

λ(k2)
αk2

= (Id1⊗Id2⊗· · ·⊗λαk2
⊗Idk2+1

⊗· · ·⊗IdN
)

λ
(k1)
αk1

λ
(k2)
αk2

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk1
⊗ Idk1+1

⊗
· · · ⊗ λαk2

⊗ Idk2+1
⊗ IdN

λαk1
and λαk2

occur at the k1th and k2th

places and are the λαk1
th and λαk2

th

generators of SU(dk1), SU(dk2) respectively.



In this basis we can expand ρ as

ρ = 1
ΠN

k dk
{⊗N

k Idk
+

∑
k∈N

∑
αk

sαk
λ

(k)
αk +

∑
{k1,k2}

∑
αk1

αk2
tαk1

αk2
λ

(k1)
αk1

λ
(k2)
αk2

+ · · · +
∑

{k1,k2,··· ,kM}
∑

αk1
αk2

···αkM
tαk1

αk2
···αkM

λ
(k1)
αk1

λ
(k2)
αk2
· · ·

λ
(kM)
αkM

+ · · · +∑
α1α2···αN

tα1α2···αN
λ

(1)
α1 λ

(2)
α2 · · ·λ(N)

αN }. (B)

(B) is called the Bloch representation of ρ.

s(k) = [sαk
]
d2
k−1

αk=1 : Bloch vector for kth

subsystem.



(
N
M

)
terms in the sum

∑
{k1,k2,··· ,kM}

Each contains a tensor (M-way array) of

order M

tαk1
αk2

...αkM
=

dk1
dk2

...dkM
2M Tr [ρλ

(k1)
αk1

λ
(k2)
αk2
· · ·λ(kM)

αkM
]

=
dk1

dk2
...dkM

2M Tr [ρk1k2...kM
(λαk1

⊗ λαk2
⊗ · · · ⊗

λαkM
)]

T {k1,k2,··· ,kM} = [tαk1
αk2

···αkM
]

The tensor in the last term is T (N).



Outer product of vectors

Let u(1),u(2), . . . ,u(M) be vectors in

Rd2
1−1,Rd2

2−1, · · · ,Rd2
M−1.

The outer product u(1) ◦ u(2) ◦ · · · ◦ u(M) is a

tensor of order M , (M-way array), defined by

ti1i2···iM = u
(1)
i1

u
(2)
i2

. . .u
(M)
iM

; 1 ≤ ik ≤
d2

k − 1, k = 1, 2, · · · , M .



We need the following result

A pure N-partite state with Bloch
representation (B) is fully separable
(product state) If and only if
T (N) = s(1) ◦ s(2) ◦ · · · ◦ s(N) where s(k) is
the Bloch vector of kth subsystem
reduced density matrix.



We propose the following measure for

N-qubit pure state entanglement.

E (ρ) = (||T (N)||−1)
R

where the normalization constant R is given

by

R = (1 + 1
4(1 + (−1)N)2 +

∑bN
2 c

k=1

(
N
2k

)
)1/2− 1

where R = ||T (N)|| − 1 calculated for

N-qubit GHZ state as shown below.



The general GHZ state is

|ψ〉 =
√

p|0 · · · 0〉 +
√

1− p|1 · · · 1〉
For this state the elements of T (N) are given

by ti1i2···iN = 〈ψ|σi1 ⊗ · · · ⊗ σiN |ψ〉
Using this, the norm of T (N) for the state

|ψ〉〈ψ| is given by

||T (N)||2 = 4p(1− p) + (p + (−1)N(1−
p))2 + 4p(1− p)

∑bN
2 c

k=1

(
N
2k

)



For maximally entangled state p = 1
2

R = ||T (N)|| − 1

= (1 + 1
4(1 + (−1)N)2 +

∑bN
2 c

k=1

(
N
2k

)
)1/2 − 1

E (ρGHZ ) = 1
R [(4p(1− p) + (p + (−1)N(1−

p))2 + 4p(1− p)
∑bN

2 c
k=1

(
N
2k

)
)1/2 − 1]

E as a function of p is plotted in the next

slide. Note that E (ρ) ≥ 0 for general

N-qubit GHZ state.
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|W 〉 state

|W 〉 = 1√
N

∑
j |0 · · · 01j0 · · · 0〉

|W̃ 〉 = 1√
N

∑
j |1 · · · 10j1 · · · 1〉

where jth summand has a single 1 for |W 〉
and sigle 0 for |W̃ 〉 at the jth bit.



For both the states we get

||T (N)||2 = 1 + 4N−1
N

so that,

E (|W 〉) = E (|W̃ 〉) = 1
R (

√
1 + 4N−1

N − 1).

E (|W 〉) = E (|W̃ 〉) is to be expected as

these are LU equivalent.



Figure 2 shows the variation of E with

weight s in the state

|ψs〉 =
√

s|W 〉 +
√

1− s e iφ|W̃ 〉
Note that the entanglement is independent

of φ.
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Figure 3 shows the variation of E with

weight s in the state

|χs〉 =
√

s|GHZ 〉 +
√

1− s e iφ|W 〉
Note agian that the entanglement is

independent of φ.
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An entanglement measure must have the

following basic properties

(a) (i) E (ρ)) ≥ 0 (ii) E (ρ) = 0 if and only if

ρ is separable

(b) Monotonicity under probabilistic LOCC .

(c) Convexity,

E (pρ + (1− p)σ) ≤ pE (ρ) + (1− p)E (σ)

with p ∈ [0, 1].

We prove these properties for our measure

one by one.



Proposition 1 : Let ρ be a N-qubit pure

state with Bloch representation (B). Then,

||T (N)|| = 1 if and only if ρ is a product

state.



By the result we have quoted

T (N) = s(1) ◦ s(2) ◦ · · · ◦ s(N)

Taking norm on both sides

||T (N)||2 = 〈T (N), T (N)〉 = Πi〈si, si〉 =

Πi ||si||2 = 1

Immediatly it follows that N-qubit pure state

ρ has E (ρ) = 0 if and only if ρ is a product

state.



Proposition 2 : For two and three qubit

states ||T (N)|| ≥ 1

We prove this by directly computing ||T (N)||
for the general two and three qubit states.



Consider, the general two qubit state

|ψ〉 = a1|00〉 + a2|01〉 + a3|01〉 + a4|11〉,
∑

i |ai |2 = 1.

||T (2)||2 = 1 + 8(a2a3 − a1a4)
2 ≥ 1



Consider, the general Schmidt form of three

qubit state

|ψ〉 = λ0|000〉 + λ1e
iφ|100〉 + λ2|101〉 +

λ3|110〉 + λ4|111〉, λi ≥ 0,
∑

i |λi |2 = 1.

By direct calculation of ||T (3)|| we get

||T (3)||2 ≥ 1 + 12λ2
0λ

2
4 + 8λ2

0λ
2
2 + 8λ2

0λ
2
3 +

8(λ2
0λ3 − λ1λ4)

2 ≥ 1



For any two and three qubit pure states ρ

E (ρ) ≥ 0.

We conjecture that ||T (N)|| ≥ 1 for any

N-qubit pure state.



Proposition 3 : Let Ui be a local unitray

operator acting on the Hilbert space of ith

subsystem.

If ρ′ = (⊗N
i=1Ui)ρ(⊗N

i=1U
†
i )

then ||T ′(N)|| = ||T (N)||.



Proposition 4 : E (ρ) is LOCC invariant.

This follows from proposition 3 and the

result due to Bennett et al. that N-partite

pure state is LOCC invariant if and only if it

is LU invariant [PRA 2000,63 012307].



Convexity

E (p|ψ〉〈ψ| + (1− p)|φ〉〈φ|)

= 1
R (||pT (N)

|ψ〉 + (1− p)T (N)
|φ〉 || − 1)

≤ 1
R (p||T (N)

|ψ〉 || + (1− p)||T (N)
|φ〉 || − 1)

= pE (|ψ〉) + (1− p)E (|φ〉)



Continuity

||(|ψ〉〈ψ| − |φ〉〈φ|)|| → 0

⇒
∣∣∣E (|ψ〉)− E (|φ〉)

∣∣∣ → 0

||(|ψ〉〈ψ| − |φ〉〈φ|)|| → 0

⇒ ||T (N)
|ψ〉 − T

(N)
|φ〉 || → 0

But ||T (N)
|ψ〉 − T

(N)
|φ〉 || ≥

∣∣∣||T (N)
|ψ〉 || − ||T

(N)
|φ〉 ||

∣∣∣



Therefore ||T (N)
|ψ〉 − T

(N)
|φ〉 || → 0

⇒ ||T (N)
|ψ〉 || − ||T

(N)
|φ〉 || → 0

⇒
∣∣∣E (|ψ〉)− E (|φ〉)

∣∣∣ → 0


