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1 Introduction

Some Basics of quantum mechanics

Starting from the begining of the 20th century some new things

were appearing specially from the experiments involving quantum

nature of light, spectrum analysis of different elements, interference

phenomena for micro particles which were counterintuitive to the

common sense shaped by classical ideas for years. To explain these

new phenomena and to interpret the world of physics, the physicists

were forced to adopt a new kind of mathematical formalism and

rules in the arena of physics. Quantum mechanics is actually this

set of mathematical rules which reproduces the physical theories.
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System: In quantum mechanics, every system is associated with a

Hilbert space H. For example, a Harmonic Oscillator is associated

with the Hilbert space L2(−∞,∞), spin-1
2

particle with two

dimensional complex Hilbert space, etc.

State: Quantum states are associated with positive trace class

operators(with trace 1) on that Hilbert space. If ρ is a state, then

ρ ≥ 0 and Tr[ρ] = 1. ρ is called a pure state if ρ2 = ρ. In this case

ρ is a one dimensional projection operator i. e. ρ = |ψ〉〈ψ| for some

vector |ψ〉. In the case of pure states, states are usually identified

with the vector |ψ〉. For ρ2 6= ρ, the state is in general, called a

mixed state. The set of states is convex.
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State for qubits:

Any quantum system associated with two dimensional complex

Hilbert space is referred as qubit. In general, as we have discussed

earlier the state of a system in quantum mechanics is represented

by positive normalized trace class operator. This is popularly

known as density matrix. Now for a qubit (two level system), any

operator can be written in terms of the basis operators (linear

operaors acting on a Hilbert space form a Vector space) given by

I, σx, σy, σz where σ’s are popularly known as Pauli matrices. The

density matrix (ρ, say) in particular are represented by

ρ =
1

2
[I + axσx + ayσy + azσz]

where ai(i = x, y, z)’s are real and Σ|ai|2 ≤ 1.
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In short this can also be written as

ρ =
1

2
[I + a.σ]

where a is a vector with components ai and the notation r.σ means

Σriσi.

So there is a one to one correspondence between single qubit states

and points in the Poincare sphere. For Σ|ai|2 = 1, the state become

pure which is represented by points on the surface of the Poincare

sphere.
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Observable: Observable (measurable quantities like position

momentum, spin) are associated with self adjoint operators on the

Hilbert space.

Consider a linear self adjoint operator A. Being self adjoint,

A = A†. Then the eigen values {ai} of A are real. The set of eigen

vectors {|ψi〉, A|ψi〉 = ai|ψi〉} from an orthonormal basis for the

Hilbert space. The operator A can be expressed as (also called

spectral representation) A = ΣaiPi, Pi being projection operator.

For non-degenerate eigenvalue ar, the corresponding projection

operator Pr is one dimensional and is given by Pr = |ψr〉〈ψr|, and

for degenerate eigen values the subspace corresponding to

projection operator will have dimension equal to the degree of

degeneracy.
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Measurement Rule:

1. Measurement result is always one of the eigen value.

2. Born Rule: If a state is prepared in a state ρ (with Trρ = 1)

and measurement of an observable A with spectral representation

A = ΣaiPi, is performed on the system, then the probability that

the measurement result is ai is given by Tr[ρPi]. In the case when

the state is pure like ρ = |ψ〉〈ψ|, the corresponding probability

becomes 〈ψ|Pi|ψ〉.
One should note that if the considered observable is B instead of A,

having spectral representation B = ΣbiPi (which involves same set

of projection operators as A and ai 6= bi), then also the probability

of the result bi for B measurement on the state ρ is given by

Tr[ρPi]. So the probability does not depend on the eigenvalues.

Rather it depends on the projection operators present in the
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spectral representation. So measurement represents partition of

Identity matrix in terms of projection operator. Different

measurements in quantum mechanics mean partition of Indentity

in terms of different set of projectors. When all the Pi’s are one

dimensional projection operator i.e. Pi = |ψi〉〈ψi| for all i, we can

characterize the measurement by referring only the basis vectors on

which the projectors are defined.

3. Collapse postulate: If after the measurement the result is ai,

then the final state will be

ρi =
PiρPi

Tr[Piρ]
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Unitary dynamics: The future development of a state is given by

the unitary dynamics where the unitary operator U

(UU† = U†U = I)is determined by the Hamiltonian acting on the

system.The dynamical equation is given by

ρ(t) = U(t, t0)ρ(t0)U(t, t0)
†

For pure state ρ(t0) = |ψ(t0)〉〈ψ(t0)|, the dynamics can also be

expressed in terms of the state vector |ψ(t)〉 = U(t, t0)|ψ(t0)〉
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Description of Joint system:

1. Consider two system S1 and S2 associated with the Hilbert

space H1 and H2 respectively. The joint system S1 + S2 is

described by the Tensor product Hilbert space H1 ⊗H2.

2. Consider a density operator ρ12for joint system S1 + S2. Now if

some observable A (say) is measured on system S1 alone, the

expectation value is obtained by

〈A〉S1
= Tr[A⊗ Iρ12] = TrS1

[Aρ1]

where ρ1 is called marginal density matrix for system S1 and is

given by

ρ1 = TrS2
[ρ12]

.
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The state of a two qubits system can be written in a operator basis

having 16 members (I ⊗ I, I ⊗ σi, σi ⊗ I, σi ⊗ σj , i, j = x, y, z).

Explicitly a state of a two qubit system can be written as

ρ12 =
1

4
[I1 ⊗ I2 + I1 ⊗ (r.σ)2 + (s.σ)1 ⊗ I2 + Σtij(σi)1 ⊗ (σj)2]

where r and s represents two vectors characterizing the marginal

state of each qubit. One can easily calculate the marginal density

matrix for particles 1 and 2 as ρ1 = Tr2[ρ12] = 1
2
[I + s.σ] and

ρ2 = Tr1[ρ12] = 1
2
[I + r.σ]
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General quantum operation: In general there is no quantum

mechanical operation by which one can violate the principle of

causality. In quantum mechanics, the dynamics of a closed system

is described by Unitary transformations which is expressed by

Schrodinger equation. Then in a natural way the dynamics of an

open system should be described by Unitary interaction on the

system of interest and its environment which together again form a

closed system. Now if we are interested in the dynamics of the

system only, we will have to ignore the environment after the

Unitary interaction which mathematically means performing

partial trace over the environment to obtain the reduced state of

the system alone.

T (ρsys) = Trenv[U(ρsys ⊗ ρenv)U†]

From the above , it clearly follows that T is a physical operation.

But surprisingly all possible (trace preserving) physical operations
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on the system can be obtained in the above way. Mathematically

these are characterized by linear completely positive (CP) maps. A

map T is said to be completely positive if T maps (by acting on

one system A)every density matrix (which is by definition, positive

operator) defined on a joint system A and B to another valid

density matrix, whatever be the dimension of Hilbert space

corresponding to system B. According to Kraus representation

theorem any trace preserving CP map i.e general quantum

mechanical operation can also be expressed in a very useful form;

T (ρ) =
∑

k

AkρA
†
k

where Ak is some set of operator with
∑

k A
†
kAk = I (Unit

operator).
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2 Existence of non-orthogonal states

Nonorthogonality has important physical consequences.

Consider the set of states {|ψz〉, |ψ−z〉}

If a particle is prepared in one of these states, can one determine

the state?

The answer is obviously yes as measurement of σz will answer it.

But if the set is

{|ψz〉, |ψx〉}
Then the answer is not so obvious.

In this case measurement of σz will determine the state
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probabilistically.

If the result is up, one can not tell.

If the result is down, then the state must have been |ψx〉}
The question is whether there is some good measurement which

would answer deterministically has to be answered.

We shall answer the question from a more powerful theorem in

quantum mechanics.

Suppose |Ψ〉 and |Φ〉 are two nonorthogonal states i.e. 〈Ψ|Φ〉 6= 0.

Let there is a machine along with a blank state which can clone

these two states.

So there must be a unitary operator U (This must be the most
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general physical operation on the system and blank state as there is

no restriction on the dimension of Hilbert space associated with the

machine system) such that

U |Ψ〉 ⊗ |0〉 ⊗ |M〉 = |Ψ〉 ⊗ |Ψ〉 ⊗ |M1〉

U |Φ〉 ⊗ |0〉 ⊗ |M〉 = |Φ〉 ⊗ |Φ〉 ⊗ |M2〉

where |0〉 and |M〉, |M1〉, |M2〉 are blank state, initial machine

state and final machine states corresponding to cloning of two

different states respectively.
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Takeing scaler product of both side

〈Ψ|Φ〉 = 〈Ψ|Φ〉2〈M1|M2〉
Now this can be true only when 〈Ψ|Φ〉 = 1 or 0 .

So two different states can be cloned only when they are orthogonal.

From this result it also follows that two nonorthogonal states can

not distinguished with certainty. This can simply be proved in the

following way. On the contrary, we assume that two nonorthogonal

states can be discriminated with certainty. Then even if the states

are destroyed in the process of knowing it, one can prepare as many

copies of the state as he wants because now he knows the state.

But this would imply exact cloning of nonorthogonal states. A

contradiction.



Physics and Applied Mathematics Unit, ISI, Kol-108, March, 2008 18

b. Non unique decomposition of mixed state

Every density matrix, in general, can be written as convex

combination of pure states. Being positive operator, the spectral

representation of the density operator will be one such example.

But interestingly, a density matrix can be written as convex

combination of pure states in infinitely many ways.

Example

1. In two dimensional Hilbert space the state 1
2
I (I being the

Identity operator on two dimensional Hilbert space) can be written

as

1

2
I =

1

2
|ψz〉〈ψz| +

1

2
|ψ−z〉〈ψ−z| =

1

2
|ψx〉〈ψx| +

1

2
|ψ−x〉〈ψ−x|

where the orthogonal set {|ψz〉, |ψ−z〉} and {|ψx〉, |ψ−x〉} are eigen

vector of Pauli matrix σz and σx respectively.
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2.

ρ = p|ψz〉〈ψz| + (1 − p)|ψ−z〉〈ψ−z|
with p 6= 1

2
.

Then this density matrix can be expressed as convex combination

of two non-orthogonal states

|R〉 and |L〉;
ρ =

1

2
|R〉〈R| + 1

2
|L〉〈L|

where

|R〉 =
√
p|ψz〉 +

√
1 − p|ψ−z〉

|L〉 =
√
p|ψz〉 −

√
1 − p|ψ−z〉.
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3. Consider any normalized qubit state |ψ〉 = a|0〉 + b|1〉, Then the

density matrix 1
2
I can be expressed as

1

2
I =

1

4
[|ψ〉〈ψ| + σx|ψ〉〈ψ|σx + σy|ψ〉〈ψ|σy + σz|ψ〉〈ψ|σz]

This is an outstanding result and will be very useful in quantum

teleportation.
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c. Existence of entangled states:

Let ρAB is a state for the joint system A and B. Then ρAB is a

entangled state if it can not be written as

ρAB = Σωi̺A
i ⊗ ̺B

i

for any choice of {̺A
i} and {̺B

i} for subsystems A and B

respectively. For special case of a pure state, the state is entangled

if the vector can not be written as product vector. For example one

can check that the vector

|Θsing〉AB =
1√
2
[|Ψ〉A ⊗ |Ψ̄〉B − |Ψ̄〉A ⊗ |Ψ〉B ]

|Ψ̄〉, |Ψ〉 being orthogonal, can not be written as a product vector

|φ〉A ⊗ |θ〉B

for any |φ〉 and |θ〉 for system A and B respectively.
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3 Shmidt Decomposition theorem

Consider two systems

A and B associated with Hilbert space HA of dimension dA and

HB of dimension dB respectively.

Consider orthogonal basis {|αi〉}dA

i=1 for HA and {|βj〉}dB

j=1 for HB .

Then {|αi〉 ⊗ |βj〉} form a orthogonal basis for the Hilbert space

HA ⊗HB .

Then any vector |ψ〉AB in HA ⊗HB can be expressed as

|ψ〉AB =
∑

i,j

Cij |αi〉 ⊗ |βj〉



Physics and Applied Mathematics Unit, ISI, Kol-108, March, 2008 23

But Schimdt decomposition theorem says that any pure state

|ψ〉AB of the composite system can be expressed as

|ψ〉AB =

r
∑

i=1

√

λi|ai〉 ⊗ |bi〉

where {|ai〉} and {bi〉} are orthonormal basis for system A and B

respectively and r ≤Min{dA, dB}.
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The proof goes as follows.

Let the marginal density matrix of the system A is ρA

where

ρA = TrB [|ψ〉AB〈ψ|]
ρA being a self adjoint operator will have a spectral representation

of the form

ρA =

m
∑

k=1

λk|ak〉〈ak|

Write |ψ〉AB using basis{|ak〉} as

|ψ〉AB =
∑

k

|ak〉A ⊗ |φk〉B

where in general {|φk〉B} are neither orthogonal nor normalized.
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Again calculate ρA from this expression which will be

ρA =
∑

kl

〈φl|φk〉|ak〉〈al|

Comparing with early expression of ρA we get

〈φl|φk〉 = λkδkl

So if we rewrite |φk〉 as

|φk〉 =
√

λk|bk〉

we get the result of the theorem.
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4 GHJW theorem

Objectively real internal properties of an isolated

individual system should not change when something is

done to another non-interacting system.

Consider the singlet state of two qubits which can be written in the

following two representations

|Θsing〉AB =
1√
2
[|ψz〉A ⊗ |ψ−z〉B − |ψ−z〉A ⊗ |ψz〉B ]

|Θsing〉AB =
1√
2
[|ψx〉A ⊗ |ψ−x〉B − |ψ−x〉A ⊗ |ψx〉B ]

Now if one measures σz on qubit A, qubit A will collapse either on

|ψz〉A or on |ψ−z〉A, both with probability 1
2
. So due to (anti)

correlation, the qubit B will also collapse on |ψ−z〉B or |ψz〉B with
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equal probability.

So the density matrix in the z- representation of qubit B can be

prepared by acting on system A.

But due to the symmetry, acting on qubit A i.e. measuring σx on

qubit A, same density matrix in the x-representation can also be

prepared.

Now if one assumes that there is an objective difference between

these two representations violating the assertion, then that

difference can be used to send some information (encoded in the

direction of spin measurement on qubit A) instantaneously as

qubits A and B can be put light years away preparing in singlet

state.
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If one thinks that the above result holds due to degeneracy of the

density matrix 1
2
I and may not hold for other representations like

in example 2., then one can see the following two expansions of the

same entangled state;

|Ψ〉 =
√
p|ψz〉 ⊗ |ψz〉 +

√

1 − p|ψ−z〉 ⊗ |ψ−z〉

|Ψ〉 =
1√
2
[|R〉 ⊗ |ψx〉 − |L〉 ⊗ |ψ−x〉]

So measurement of spin in the z-direction and x-direction on second

qubit will prepare the first and second representation respectively.
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Actually every mixed density matrix has infinitely many

representation and there is a theorem due to GHJW which tells

that every representation of a density matrix can be produced for a

system by acting on different non-interacting system (whose

associated Hilbert space has infinite dimension) by a single suitable

choice of an entangled state of the joint system.

Proof of GHJW theorem :

Consider a spectral representation of density matrix ρA i.e

ρA =
∑

i

pi|ηi〉〈ηi|,
∑

pi = 1

Where {|ηi〉′s} are orthogonal to each other. ρA can be realized as

ensemble in which each pure state |ηi〉〈ηi| occurs with probability

pi. If ρA is not degenerate then it’s spectral representation is also

unique. Now Bob can remotely prepare this ensemble in the

following way:
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Let Alice and Bob are sharing a bipartite pure entangled state

|φ1〉AB =
∑

i

√
pi|ηi〉A ⊗ |αi〉B

where the vector |αi〉B ∈ HB are mutually orthogonal and

normalized. Now a measurement |αi〉B basis in system B will

prepare the density matrix ρA ==
∑

i pi|ηi〉〈ηi| for the system A.

|φ1〉AB is called purification of ρA.

Consider any other probabilistic mixture of the same density matrix

ρA =
∑

µ

qµ|ψµ〉〈ψµ|,
∑

qµ = 1

Where {|ψµ〉′s} are not orthogonal in general. Then one can have

the corresponding purification for this ensemble

|φ2〉AB =
∑√

qµ|ψµ〉A ⊗ |βµ〉B

where again{|βµ〉′Bs} are orthonormal vector in HB .
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Again by performing orthogonal measurement in |βµ〉B basis in B

system , above ensemble can be prepared for system A.

But the Schmidt decomposition of |φ2〉AB must have the form

|φ2〉AB =
∑√

pi|ηi〉A ⊗ |ξi〉B

where the vector |ξi〉B ∈ HB are mutually orthogonal and

normalized, as it has to reproduce the correct reduced density

matrix for A. Let us now define a Unitary operator U such that

U |αi〉 = |ξi〉, then

|φ1〉AB = I ⊗ U |φ2〉AB

Thus we have seen that starting from a single purification (|φ1〉AB ,

say) Bob can prepare any representation leading to the same

density matrix for Alice by the proper choice of Unitary operator

and measurement basis.
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Introduction: We now scan some of the applications of the

quantum laws in new area of quantum information. But again one

should be careful about in what sense quantum laws enters into

information theory. Long before the birth of quantum information,

quantum physics had been used to understand better, and thus

improve existing technology. For example, the development of

smaller and faster Silicon or other semiconductor devices benefits

from the understanding of the quantum behaviour of electrons in

such metals.

Here we enter into information theory in a different way. Instead of

improved versions of what we already have, consider devices which

actually process information and perform logical operations

according to the laws of quantum mechanics. Such devices, which

would be part of new quantum information technology will be

fundamentally different from their classical counterparts.
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5 Quantum cryptography

The most simple but very powerful application of quantum laws in

information processing is the area of cryptography.

The aim of cryptography is secret information exchange between

two parties, so that any attempt of eavesdropping message or

breaking the code would be unsuccessful.

Schematically things can be put in the following way.

Let P be the message EK(P ) = C (cryptotext)

where the encrypton operation EK produce the cryptotext using

the key K, only known to sender and receiver.

C is sent to Bob.

DK(C) = P

where DK is the decrypton operation reproducing the original

message.

In this scenario if K remains secret, message remains safe.
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Example:

The message (P): 0 1 1 0 1

The key (K): 1 1 0 0 1

Alice encrypts the message by (Ci = Pi +Ki mod 2):

0 1 1 0 1
⊕

1 1 0 0 1 = 1 0 1 0 0 (cryptotext, C)

Bob decrypts the message by addition modulo 2:

1 0 1 0 0
⊕

1 1 0 0 1

= 0 1 1 0 1 (message, P)

Now if the sender and receiver meet and agreed on a key before

going apart, they can safely send message later using that key. Now

the question remains how to generate the secret key when Alice

and Bob are far away?
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In principle, any private classical channel can be monitored

passively, without the sender and receiver knowing that the

eavesdropping has taken place. For example, a key carried by a

trusted courier might have been read en route by a surreptitious

high-resolution X-ray scan or other sophisticated imaging technique

without the courier’s knowledge. Since all information, including a

cryptographic key, is encoded in measurable physical properties of

some object or signal, classical theory leaves open the possibility of

passive eavesdropping, because it allows eavesdropper in principle

to measure physical properties without disturbing them.
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But this fundamental problem in cryptography can be solved by

using quantum system and quantum laws. In the process of

generating the secret key if the information about the key are

encoded in states of a quantum system then that message can not

be cloned or deciphered as unknown quantum state can neither be

cloned nor determined. If a eavesdropper try some measurements

on the quantum system he will irreversibly change the state and

will be caught when the sender and receiver compare their result.
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Secure quantum key generation protocol :

Let us study the simplest secret key generation protocol provided

by Bennett et.al. in 1984. Let Alice and Bob are two distant parties

who have been provided the facility of public communication as

well as transportation of physical system like a spin-1/2 system or

a polarized photon. Now we describe the steps to be taken by them

to generate the key as well as detect the eavesdropper if any.

Step-1 Alice picks up a spin-1/2 particle prepared in one of the

sates |Ψz〉, |Ψ−z〉, |Ψx〉 and |Ψ−x〉 where first two are eigen states

of σz representing spin measurement in the z-diection and the last

two are eigen states of spin observable σxfor x-direction, and send

them to Bob one by one.

Step-2 Bob randomly choses spin measurement either in the

z-direction or in the x-direction.

Step-3 Bob records his bases and the result of spin measurement.
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Step-4 Bob announces his bases publicly

but not the result of his measurement

Step-5 Alice tells Bob in which cases Bob choses the correct basis.

They discard the results when their bases are different and keep the

rest.

Let their assignment of bit value (0, 1) is like this;

(|Ψ〉,|Ψx〉) 7→ 0

(|Ψ−z〉,|Ψ−x〉) 7→ 1

Then they have generated the key.
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Alice |Ψz〉 |Ψ−z〉 |Ψx〉 |Ψz〉 |Ψ−x〉 |Ψx〉 |Ψ−z〉
Bob’s basis X Z X X Z X Z

Bob’s |Ψx〉 |Ψ−z〉 |Ψx〉 |Ψ−x〉 |Ψz〉 |Ψx〉 |Ψ−z〉
result

Alice’s × √ √ × × √ √

message

Raw key 1 0 1 0
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From the table one can see how the key is generated where Alice

sends 7 qubits one by one and Bob performs spin measurement

randomly in one of the bases.

Now let us consider what happens when some eavesdropper try to

intervene to get the information about the key. One should note

that the four states that Alice sends are linearly depended set and

hence Eve can not either clone them or discriminate among them

even probabilistically. Still if Eve intervenes by performing spin

measurement in one of the bases (X or Z) he can be caught if Alice

and Bobcompares some of their result. This is due the disturbance

introduced by the measurement which is in no away unavoidable.

Let us consider the example;

|Ψz〉 → X → |Ψx〉 → Z → |Ψ−z〉
Alice Eve′s Eve′s Bob′s Bob′s

basis result basis result



Physics and Applied Mathematics Unit, ISI, Kol-108, March, 2008 41

where Alice sends the particle in the state |Ψz〉, Eve intervenes be

making measurement in the X-basis and the state collapses to |Ψx〉
(which has a 50 percent probability). After getting the particle let

Bob measures it in the correct basis i.e. in the Z- basis. Then again

there is a 50 percent probability that the state collapses to |Ψ−z〉
which is orthogonal to what Alice sends. So in such cases error will

be introduced by Eve’s intervention. So it is obvious that If Alice

and Bob compare some of their results when they have chosen the

same basis, they would easily learn whether someone is monitoring

the channel.
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EPR protocol:

In EPR key generation protocol Alice and Bob share a singlet state

of two qubit, each holding one qubit. We can write the singlet state

as

|Θsing〉 =
1√
2
[|Ψz〉A ⊗ |Ψ−z〉B − |Ψ−z〉A ⊗ |Ψz〉B ]

But the singlet state can also be written as

|Θsing〉 =
1√
2
[|Ψx〉A ⊗ |Ψ−x〉B − |Ψ−x〉A ⊗ |Ψx〉B ]

In this protocol in the first step Alice and Bob perform spin

measurement either in the Z-basis or in the X-basis randomly. In

the second step, they compare their chosen basis and discard the

cases when basis are not same.

Then they keep the rest of the result and assign the bit in the

following way;
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For Alice

(|Ψz〉,|Ψx〉) 7→ 0

(|Ψ−z〉,|Ψ−x〉) 7→ 1

For Bob

(|Ψz〉,|Ψx〉) 7→ 1

(|Ψ−z〉,|Ψ−x〉) 7→ 0

As their results are anticorrelated, they will generate the same key.

One can easily check that the singlet state is a eigen state of both

σz

⊗

σz and σx ⊗ σx with eigen value −1. So the result of spin

measurement in the same direction on both will remain strictly

(anti)correlated.
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Now if any eavesdropper intercepts one or both the particles and

performs some measurement it will break the EPR correlation and

collapse it to a product state.

Now there is a theorem (Horodecki, PLA, 210,(1996)227) which

tells that if there are more than one pair of axes along which spin

measurements of two qubits are either correlated or anti-correlated,

then possible states of two qubits are U1 ⊗ U2 isomorphic to the

singlet state. So there can not be any pure product state for which

the results of spin measurements along both z direction and x

direction can be anti-correlated. From this result it is obvious that

if Alice and Bob compare some of their preserved results (when

they measure along same directions) publicly they be able to know

whether there is some eavesdropper acting on the channel.
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Alternative proof of security in both the protocol

Let in the BB-84 protocol, Eve gets hold of the qubit and makes it

interact with an auxiliary quantum system, to be measured

afterwards with the aim of knowing the secret key and then send

the original qubit to Bob. Let |a〉 be the state of the auxiliary

system and U be the unitary operation which leaves just two

non-orthogonal states |Ψz〉 and |Ψx〉 undisturbed so that his

intervention remains undetected. Then

U |Ψz〉 ⊗ |a〉 = |Ψz〉 ⊗ |az〉

U |Ψx〉 ⊗ |a〉 = |Ψx〉 ⊗ |ax〉
If the two states |az〉 and |ax〉 are different, the auxiliary system

has extracted some information about the state keeping the original

states undisturbed and thus Eve will remain undetected.



Physics and Applied Mathematics Unit, ISI, Kol-108, March, 2008 46

Now if we take the scaler product of both sides, we get

〈Ψz|Ψx〉 = 〈Ψz|Ψx〉〈az|ax〉

Since 〈Ψz|Ψx〉 6= 0,

〈az|ax〉 = 1

.

So Eve’s state has to remain same to escape detection.

The only attack that avoids detection is one that yields no

information. This shows another fundamental point (more powerful

than no-cloning theorem) that without disturbing the system no

information about the states can be obtained if the states are

non-orthogonal .
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Now we consider the case of EPR protocol. We assume the extreme

case of intervention by Eve where he supplies the EPR pair to Alice

and Bob who will generate the secret key. So Eve can cause one or

both the particles to interact coherently with an auxiliary system,

to be measured afterwards. The most general entangled state that

Eve can prepare is of the form

|Φ〉ABE = |Ψz〉A ⊗ |Ψz〉B ⊗ |A〉E + |Ψ−z〉A ⊗ |Ψ−z〉B ⊗ |B〉E
+|Ψz〉A ⊗ |Ψ−z〉B |C〉E + |Ψ−z〉A ⊗ |Ψz〉B ⊗ |D〉E

If |A〉E , |B〉E , |C〉E and |D〉E are orthogonal then Eve can know

completely the result of measurement in the Z-basis done by Alice

and Bob.

But if Eve’s tampering is to escape detection, the state |Φ〉ABE

must be eigen state of σz

⊗

σz

⊗

I with eigen value −1. To meet

this constraint |Φ〉ABE has to be of the form

|Φ〉ABE = |Ψz〉A ⊗ |Ψ−z〉B ⊗ |A〉E + |Ψ−z〉A ⊗ |Ψz〉B ⊗ |D〉E
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but again |Φ〉ABE has to be eigen state of σx

⊗

σx

⊗

I with eigen

value −1. This further restriction forces Eve to prepare the state in

the form

|Φ〉ABE = [|Ψz〉A ⊗ |Ψ−z〉B ⊗−|Ψ−z〉A ⊗ |Ψz〉B ] ⊗ |K〉E

= |Θsing〉AB ⊗ |K〉E
So Eve’s system becomes completely uncorrelated if he has to evade

detection. It also shows that if two qubits are maximally correlated

(a pure entangled state where the subsystem’s states are 1
2
I,I being

an unit operator) , then they can in no way be correlated (either

quantum mechanically or classically) with a third system.
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6 Quantum dense coding

We have seen that for a single qubit, only two orthogonal states can

be distinguished. If one is supplied a state from a set of three states

of a qubit, the state can not be determined even probabilistically as

they are linearly dependent. So with a qubit we can encode only

one bit (either 0 or 1) of information to be used later. Although

there are infinite possible states for a qubit we can not use them for

coding more information. So Alice can transfer one bit of

information to Bob by physically transferring a qubit to Bob.

So in this respect two level classical system and two level quantum

system are no different. Similarly two classical bits of information

can be sent using two qubits or two two-level classical system. let

us consider a cricket match to be played between India and

Pakistan. Alice is supposed to watch the match and allowed to

send two level classical system (for example ball either coloured red
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or blue)or quantum system for communicating the result of the

match to Bob. The encoding may be done as follows;

India won → RR

India lost → BB

Match drawn → RB

Match abandoned → BR

Similarly encoding may be done by quantum system replacing red

ball by qubit in state |Ψz〉 and blue ball by qubit in state |Ψ−z〉.
Now let us consider a situation where Alice will be allowed to send

only one ball or one qubit after the match ends. So she can send

one system earlier to Bob. Then is it possible to communicate the

result of the match by using classical or quantum system in this

situation? The result seems to be NO. But this is not true for

quantum system.
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Surprisingly in the case of quantum system, if Alice prepares a two

qubit entangled state and send one qubit earlier even before

deciding which message to be sent, Alice can still send two bits.

This process is known as dense coding.

Let Alice and Bob share a maximally entangled state (one of the

four Bell states)

|Φ+〉AB =
1√
2
[|Ψz〉A ⊗ |Ψz〉B ⊗ +|Ψ−z〉A ⊗ |Ψ−z〉B ]

It is a nice result of quantum mechanics that all the four Bell states

are connected by a unitary operation on one side. For example if

Alice apply the unitary operation σz on her qubit the Bell state

|Φ+〉AB changes to |Φ−〉AB . Mathematically we can write

|Φ−〉AB = σz ⊗ I|Φ+〉AB

|Ψ+〉AB = σx ⊗ I|Φ+〉AB

|Ψ−〉AB = σzσx ⊗ I|Φ+〉AB
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Let us now describe the protocol; Alice encodes her two bits of

information in her operation on the qubit in the following way;

India won → I,

India lost → σz,

Mathch drawn → σx,

Match abandoned → σzσx.

Alice encode her bit applying the proper operation on her qubit

and then send the qubit to Bob.

So finally Bob gets two qubits and he performs a measurement in

the Bell basis. After getting the result he decodes the information

according to the following correspondence;
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India won → |Φ+〉AB ,

India lost → |Φ−〉AB ,

Mathch drawn → |Ψ+〉AB ,

Match abandoned → |Ψ−〉AB

So in this way two bits of information will be transferred by

physically sending one qubit which again reveals the power of

quantum correlation.
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7 Quantum teleportation

To understand the teleportation process we start with the following

ensemble representation of the density matrix 1
2
I;

1

2
I =

1

4
[|ψ〉〈ψ| + σx|ψ〉〈ψ|σx + σy|ψ〉〈ψ|σy + σz|ψ〉〈ψ|σz]

Now GHJW theorem tell that this ensemble (for any |ψ〉) can be

prepared by Alice on Bob’s side by sharing appropriate pure

entangled state. Now the density matrix on Bob’s side being 1
2
I,

the pure entangled state must be maximally entangled one. We

describe two protocols for preparing this ensemble representation.

1) Alice and Bob share a singlet state. Alice tosses an unbiased coin

and if the result is head she makes a measurement in the orthogonal

basis {|ψ〉, σy|ψ〉} and for tail she does the same in orthogonal basis

{σx|ψ〉, σz|ψ〉}. In this way, the required ensemble is prepared.
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2) Let Alice and Bob share the maximally entangled state given by

|Φ+〉23 =
1√
2
[|Ψz〉2 ⊗ |Ψz〉3 ⊗ +|Ψ−z〉2 ⊗ |Ψ−z〉3]

where Alice is holding the particle 2 and Bob is holding the particle

3.

Alice prepare another qubit in the state |ψ〉 which can be expressed

in the basis {|Ψz〉1, |Ψ−z〉1} as

|ψ〉1 = a|Ψz〉1 + b|Ψ−z〉1

Now the state of all the three qubits can be written as

|Υ〉123 = (a|Ψz〉1 + b|Ψ−z〉1) ⊗ |Φ+〉23



Physics and Applied Mathematics Unit, ISI, Kol-108, March, 2008 56

If the joint states of the two particles on the Alice’s side are written

in the Bell basis, given by

|Φ+〉12 =
1√
2
[|Ψz〉1 ⊗ |Ψz〉2 + |Ψ−z〉1 ⊗ |Ψ−z〉2]

|Φ−〉12 =
1√
2
[|Ψz〉1 ⊗ |Ψz〉2 − |Ψ−z〉1 ⊗ |Ψ−z〉2]

|Ψ+〉12 =
1√
2
[|Ψz〉1 ⊗ |Ψ−z〉2 + |Ψ−z〉1 ⊗ |Ψz〉2]

|Ψ−〉12 =
1√
2
[|Ψz〉1 ⊗ |Ψ−z〉2 − |Ψ−z〉1 ⊗ |Ψz〉2]
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Then the state |Υ〉123 of the three qubits can be written as

|Υ〉123

=
1

2
[|Φ+〉12 ⊗ (a|Ψz〉3 + b|Ψ−z〉3)(= |ψ〉)

+
1

2
|Φ−〉12 ⊗ (a|Ψz〉3 − b|Ψ−z〉3)(= σz|ψ〉)

+
1

2
|Ψ+〉12 ⊗ (a|Ψ−z〉3 + b|Ψz〉3)(= σx|ψ〉

+
1

2
|Ψ−〉12 ⊗ (a|Ψ−z〉3 − b|Ψz〉3)(= σy|ψ〉)

Now one can easily see that if Alice makes a measurement in the

Bell basis on qubits 1 and 2, she will be preparing the required

ensemble for the density matrix 1
2
I on Bob’s side.

But one should note that in the first protocol, Alice has to learn

the state |ψ〉 for performing the measurement, but in the second

one as her measurement basis is independent of |ψ〉, she can
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produce the ensemble even without knowing |ψ〉 if only a qubit is

supplied in the state |ψ〉 to her. This is the essential thing which

makes teleportation scheme possible.

Now The teleportation protocol can be described in the following

way;

1) Upon receiving the qubit in the unknown state Alice performs

projective measurements on her two qubits in the Bell basis. this

means that she will obtain one of the four Bell states randomly and

with equal probability.

2) After getting the result Alice will inform it to Bob.

3) Bob will perform some unitary operation on his qubit depending

on the result of Alice and gets the state to be teleported.
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The correspondence is like this;

If Alice gets |Φ+〉12 Bob does nothing. If Alice gets |Φ−〉12, Bob

applies the unitary operation σz on his qubit, if Alice gets |Ψ+〉12,
Bob applies σx and if Alice gets |Ψ−〉12, Bob first apply σx and then

apply σz. One can easily see that this unitary transformation does

not any way depend on the unknown parameter a and b, So this is

an universal protocol to teleport any unknown state of a qubit.

The important features of quantum teleportation to be noted are

(i) Two classical bits of information are required to inform Alice’s

measurement result to Bob.

(ii) After the teleportation the entangled channel i.e. the maximal

quantum correlation between Alice and Bob are totally destroyed.

(iii) On the Alice’s side the state of the two particles is one of the

maximally entangled state and hence no remnant

of information about the teleported state remains on the Alice’s side.
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Is entangled channel necessary for quantum teleportation?

Let us assume that there is a classically correlated state between

Alice and Bob by which quantum state can be teleported by using

local operations and classical communications. Let the classically

correlated state is given by

Ω12 = Σλi(γi)1 ⊗ (πi)2

where Alice holds the particle 1 and Bob holds the particle 2, and

(γi)1 and (πi)2 are density matrices for particles of 1 and 2

respectively. As assumed, if this state is used as channel any

quantum state can be teleported by using some local protocol. Now

interestingly there exists a three-particles state for which particle 1

has same classical correlation with particle 3 as it had with particle

2. Such state can easily be constructed as

Γ123 = Σλi(γi)1 ⊗ (πi)2 ⊗ (πi)3
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If one consider only the state of 1 and 2 by tracing out 3 we get

Ω12 and by tracing out 2 we get Ω13. So the party who is holding

the particle 3 can follw the teleportation protocol like Bob and

there is nothing to debar him to get the teleported state like Bob.

But then a single quantum state would appear in two places which

means cloning of an unknown quantum state has been possible.

This is a contradiction.

Why two classical bit is necessary in quantum

teleportation

In quantum teleportation we have seen that Alice the sender makes

a projective measurement in the bell basis and has to classically

inform Bob which one of the four Bell states she has got. This

needs two classical bits of information. Now the question is

whether there can be other teleportation protocol which will need

less no. of classical bits. We show that this is impossible.

Let Alice and Bob share two maximally entangled state |Φ+〉12 and
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|Φ+〉34 where Alice holds the particle 1 and 3 and Bob holds the

particle 2 and 4. Now they decide to use the state |Φ+〉12 for

quantum dense coding. For that Alice has to send the particle 1 to

Bob physically. But now as they share another maximally

entangled state |Φ+〉34 they can use it for teleporting the state of 1

by using teleportation protocol, where Alice first performed the

operation on the particle 1 corresponding to the classical bit she

wants to communicate and then teleport the state to Bob. So

finally Bob gets the desired maximally entangled state (encoding

the Alice’s clasical bit) between particle 2 and 4 both of which are

on his side. Bob can easily know the Bell state and get the desired

classical bit. In this whole process one sees that in the absence of

physical transfer of qubit, Alice can send two classical bits by

spending (during teleportation)two classical bits.

Now we assume that there exists a teleportation protocol which can

teleport any quantum state exactly using c bits which is less that
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two bits of classical information. Using that protocol Alice can

send two bits of information by spending only c(< 2) bits of

classical information without physically transferring any particles.

This implies signalling. To be more explicit, let in the teleportation

protocol, Bob guesses the classical bit instead of hearing from Alice

and performs his necessary action fixed by the teleportation

protocol. Then Bob will be correct with probability 1
2c which is

obviously greater than 1
4

as c < 2. But for four mutually exclusive

random information with equal probability, guessing can give

correct result with probability 1
4
. But teleportation of quantum

state with classical bits less than two makes this probability greater

which implies signalling. Hence quantum teleportation can not be

performed with classical information less than two bits.
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8 Remote state preparation

In quantum teleportation as we have seen any unknown state of a

qubit can be teleported but this process necessarily needs two bits

of classical information. Now we pose a different question. If the

state is known to Alice, does it help to reduce the number of bits

for preparing the state at Bob’s end. The question in general,

remains unsolved though there is some asymptotic result which we

refrain from discussing now. Here we shall show that if the state to

be prepared at Bob’s end, is from a great circle of the Poincare

sphere, then the state can be remotely prepared using only one bit

of information. Let Alice and Bob share a singlet state where Alice

holds the particle 1 and Bob holds particle 2.

|Θsing〉12 =
1√
2
[|Ψz〉1 ⊗ |Ψ−z〉2 − |Ψ−z〉1 ⊗ |Ψz〉2]
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Let the state known to Alice that Alice has to remotely prepare is

|ψ〉 = a|Ψz〉 + b|Ψ−z〉. Due to symmetry of the singlet state, it can

be written in any basis with same form. We can express the singlet

state in the basis (|ψ〉, |ψ̄〉) where |ψ̄〉(= a∗|Ψ−z〉 − b∗|Ψz〉) is

orthogonal to |ψ〉.

|Θsing〉12 =
1√
2
[|ψ〉1 ⊗ |ψ〉2 − |ψ〉1 ⊗ |ψ〉2]

Now let us come to the protocol.

Alice performs measurement in the basis (|ψ〉, |ψ̄〉). If her qubit

collapses on the state |ψ̄〉, then Bob’s qubit collapses on the state

|ψ〉 that was suppose to be prepared. So the programme has been

successful. But if Alice’s qubit collapses on the the state |ψ〉, then

Bob’s qubit collapses on |ψ̄〉. So after knowing the result of Alice

Bob has to apply a unitary operation such that

a∗|Ψ−z〉 − b∗|Ψz〉 U−→ a|Ψz〉 + b|Ψ−z〉
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But at this point there is a no-go theorem which states that there

is no universal unitary operator which can flip every state. So in

general remote state preparation is impossible using only one

classical bit. But if one restricts the set of states to be remotely

prepared, to the set |ψ〉 = a|Ψz〉 + b|Ψ−z〉 for a, b real, then if Bob

applies σx first and then σz, the state is successfully prepared at

Bob’s end as

σzσx(a|Ψ−z〉 − b|Ψz〉) = a|Ψz〉 + b|Ψ−z〉 = |ψ〉

Though, in general Alice can not prepare an arbitrary state half of

the times, she can make Bob generate the correct statistics for any

state. Let Alice has the pure state ρ = |ψ〉〈ψ| = 1
2
[I + a.σ] with

|a| = 1 and B is an (polarization) observable in the direction of the

vectorb. Now for measurement of a spin observable b.σ in the state
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ρ the probability of spin-up (+) and spin-down (−) are given by

P±(ρ) =
1

2
[1 ± b.a]

Interestingly the corresponding probabilities for the pure state

orthogonal to ρ are given by

P±(ρ) =
1

2
[1 ∓ b.a]

Then the remote statistics generation protocol will be like this. If

Alice gets |ψ〉 then after Alice’s phone call Bob performs the

measurement of b.σ (say) and records his result. When Alice gets

|ψ〉, then after Alice’s phone call Bob performs his measurement

but inverts her result as

+1→− 1

−1→ + 1
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By this transformation

P±(ρ) =
1

2
[1 ∓ b.a]→1

2
[1 ± b.a] = P±(ρ)

Finally what we saw is that though a quantum state can not be

remotely prepared, one can remotely generate the measurement

statistics for any given state by using one classical bit only.
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9 Quantum correlation reduces

communication

The pseudo-telepathy games described above shows the power of

quantum correlation (entanglement) in the world of communication.

Now we shall see how quantum entanglement can be used to reduce

the communication needed to compute (in classical world) a

function whose input data is distributed among remote parties.

Consider the following three-party scenario. Alice, Bob and Charlie

receive n- strings x, y and z respectively, where

x = (x1x2 . . . xn), xi ∈ {0, 1}

Similarly for y and z. There is a constraint on the inputs x, y and
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z given by

xi + yi + zi = 1

for all i where the + is addition modulo 2. The goal is for Alice to

determine the value of the following function

f(x, y, z) = x1 · y1 · z1 + . . .+ xn · yn · zn

For n ≥ 3, in classical world, more than two bits of communication

are necessary to compute this function.

A three-bit classical protocol

Now we shall see that three bits of communication are also

sufficient. We shall check this for the simplest case n = 3.

The idea behind the protocol is to count the total number of zeros

among all the 9 bits input (3 bits each). Now for each i ∈ {1, 2, 3},
if xi · yi · zi = 1 then none of xi, yi, zi is zero and if xi · yi · zi = 0,
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then two among xi, yi, zi are zero (remember x1 + yi + zi = 1). Let

the number of zeros in Alice’s input, Bob’s input and Charlie’s

input are rA, rB and rC respectively. Obviously the total no. of

zeros among all their input is even and let us denote it by 2k. Then

one can easily see that in the sum

x1 · y1 · z1 + . . .+ xn · yn · zn

, k no. of terms are zero and hence

f(x, y, z) = (n− k)mod2

So the problem of computing the function reduces to computing k.

k can be computed if Bob and Charlie communicate rB and rC

whose possible values can be 0, 1, 2, 3. To communicate this no.

Bob and Charlie have to communicate two bits of information

(00, 01, 10, 11). But rA + rB + rC being even, if Alice knows one of

rB and rC , she can find the parity of the other. So it will be



Physics and Applied Mathematics Unit, ISI, Kol-108, March, 2008 72

sufficient if one of them just send the higher order bit (0 for

{00, 01} and 1 for {10, 11}) of their two bit-number.

Two-bit quantum protocol:

Let Alice Bob and Charlie share n copies of the following entangled

state

|ψ >i
ABC=

1

2
[|001 > +|010 > +|100 > −|111 >]

where i = 1, 2..n. So each party will have n qubits in their lab. The

protocol is as follows.

∗ If Alice i-th bit is 1 i.e. xi = 1, she measures on the qubit

belonging to the ith entangled state in the {|0 >, |1 >} basis and

notes down the outputs si
A (0 if collapses on |0 > and 1 if collapses

on |1〉).
∗ If i-th bit is 0, she first applies the Haddamard gate on the
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respective qubit

H|0 >=
1√
2
(|0 > +|1 >), H|1 >=

1√
2
(|0 > −|1 >)

and then follows the same procedure described above.

Bob and Charlie follow similar procedure.

The Alice, Bob and Charlie calculates SA(=
∑

Si
A), SB = (

∑

Si
B),

and SC(=
∑

Si
C) respectively. Bob and Charlie send SB and SC

using one cbit respectively to Alice. Alice outputs SA + SB + SC as

value of the function.

How this protocol works

We shall see that for all i ∈ {1, ......, n},

Si
A + Si

B + Si
C = xi · yi · zi

Due to the constraint on the input the allowed values of xiyizi are
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{001, 010, 100.111}
∗ First we consider the case when xiyizi = 111. In this case all of

them will measure on their respective qubits in the {|0 >, |1 >}
basis. Obviously all possible results {Si

AS
i
BS

i
C} will satisfy

Si
A + Si

B + Si
C = 1 = xi · yi · zi

∗ Next we consider the case xiyizi = 001. Following the protocol,

Alice and Bob first apply Haddamard operation on their respective

qubit. So the final state will become

H ⊗H ⊗ I
1

2
[|001 > +|010 > +|100 > −|111 >]

=
1

2
[|011 > +|101 > +|000 > −|110 >]

Obviously again all possible measurement result {Si
AS

i
BS

i
C} will

satisfy

Si
A + Si

B + Si
C = 0 = xi · yi · zi
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Due to the symmetry of the entangled state things will work

similarly for cases where xiyizi = 010, 100.

Now one can compute

SA + SB + SC =

n
∑

i=1

Si
A +

n
∑

i=1

Si
B +

n
∑

i=1

Si
C

=
n

∑

i=1

(Si
AS

i
BS

i
C)

=

n
∑

i=1

xi · yi · zi = f(x, y, z)


