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QOutline

» Joint Probabilities, classical correlations and Shannon
mutual information.

» Extension to bipartite quantum systems -

density matrices of composite states and their marginals;
von Neumann information entropy

» Measures of “guantumness of correlations”:
guantum discord (OZ), quantum deficit (RR) ...

» Generalized measures to discern qguantumness
» Summary



Two random variables are said to be correlated if their joint

probability distributions cannot be expressed as a mere
product of the marginal probabilities:

P(a,b)# Pla)P(b) | > correlated

Shannon Mutual information entropy:

H(A:B)=H(A)+H(B)-H(A,B)

==Y Pla)logP(a)- 3 P(b)logP ()

+ ZP(a,b)logP(a,b)
a,b

H(A:B)=0 iff Pa,b)=P(a)P(b)




Quantum description:

P(a, b) — P,z Bipartite density matrix

P(a) — P =173 Py
Subsystem density matrices

P(b) — Pp =17, Prp
Natural extension of the idea of correlation:

Pin FPsDPs | > correlated
von Neumann mutual information:
S(A:B)= S(A)+ S(B) S(A,B)
=5 (04511 P4 ®pp)=—Tr ps1ogp,~Tr pylogoy

Relative entropy/l 17 Paploghas




Notion of correlation per se does not set a borderline between
classical and quantum descriptions.

How do we distinguish between classical and quantum
correlations in a bipartite quantum state?

Can we express

Contribution Contribution

S(A:B)= fromclassical 4  from quantum ?
correlations correlations



R. F. Werner, Phys. Rev. A 40, 4277 (1989)

A bipartite density operator 2,5 is classically correlated
(separable) if it admits a convex combination of product states:

Pl =Y PpY®p)); 0<P <1, Y P=1

Alice
|
,01(41) :01(42) """" ,ng) """" pél) ,0,5;2) ....... ,Oék) .......
H F, B B P, B



Measurements on one part of the quantum system
distinguishing classical and quantum correlation:

H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

Measurements on one end disturbs the quantum
correlated state in general:

measurement '
/0 AB """""""""""""""""""" p AB i p AB

If an optimal measurement scheme (on one part) exists such
that p ., = P4p the state is classically correlated

Are separable states classical?



OZ approach
Projective measurementson A {r1‘ @/, }

I, =1, M1 =146

o oo’

Completenes& > @1 Orthogonality

The conditional density operator of subsystem B — when
measurement II®I, is known to have led to the value a -
IS given by,

@Iy Py N oD,
Tr[(I14®1,) p, 4]

Tr[(H2®IB)IOAB]:Pa’ ZPa =1

o _
Pap=




Given the results of the complete measurements {H‘é@IB}
the conditional information entropy is given by,

5 (BlA{ng}): 2. P, S (/01(401[3))
/\°
/ \

positive exhibits inherent dependence on measurements




A structural generalization of Shannon conditional entropy

NThis is a consequence

of the Bayes’ rule
Pla,b)

P(a)

Pbla)=

S(B1A)=S(A,B)-S(B)

/ Xuncritical extension

of Shannon form




Quantum discord (OZ): optimal difference of two classically
identical expressions for conditional entropies:

5(A, B)=min {Hg}S(B | A{Hé})— S(B1A)

Optimal measurement {ng} leaves the overall state
with least disturbance and this is quantified by J(A, B)

Bipartite states, which are in conformity with Bayes’ Rule have
JAB)=0

0Z: S(A,B)=0 iff p'ABzz(ng@)lB P45 ng®13)=pAB
a

i.e, only when the state is left undisturbed as a result of optimal
projective measurement on one part of the system



Quantum Discord DOES NOT VANISH FOR
ALL SEPARABLE STATES !!!!

Separability is not synonymous with classical correlations
?1

Quantum states with vanishing quantum discord:

Pl =7, 1140 08
a




A. K. Rajagopal and R. W. Rendell, Phys. Rev. A 66, 022104 (2002)

Quantum Deficit: D,g=S ABllij)
- a measure of quantumness of correlations

2 - classical decohered counterpart of o4z
Subsystem eigen basis

Pas = Zpa'ﬂ';aﬁ o) a|®|B) A ) =|a)a|
Pl = ZPwas ) )®H([f?) ) =| )8
_ ZPaH(aA) Q| 2L Py =Y Pupias %Ha =/, etc...
a Py B

_ (A) g A(B) .
_%Pana ®py > classical




L. Henderson and V. Vedral: J. Phys. A: Math. Gen. 34, 6899 (2001)

Classical correlation: CA(,OAB) maxf, } (pB ZPS(/))

Residual information entropy of B after carrying out a POVM
measurement {V,-A} on the subsystem A

] :
Py =FTFA [ViA Ty Pap ViAi ®IB];

l

P =Tr,, [ViA I o V'AT ®IB]

l

Classical and entangled correlations do not add up to give
total correlations!

Culpus)+ Ege(p45)< S(A: B)

“Are different types of correlations not additive?”



Measurements play a crucial role in distinguishing and
quantifying correlations as classical and quantum



Our approach:
(A. R. Usha Devi and A. K. Rajagopal, To appear in Phys. Rev. Lett.)

« Consider all tripartite extensions Pcap of the state 0,5 such
that

I, [IOCAB] = Pas

State under
investigation

« Perform generalized projective measurements {n§CA> ® IB}
on one part (CA) of the system.

l

101'43 =11 {ZHECA) ®1 BIOCABI—IE Der B } =17 (IO'CA B

state left after generalized measurement



Charlie /
@)

=)

@ / ) f'f-&\"?
=4

Optimal projective
measurement by CA /\/ Pcas
P2y Tre(Pcan)= Pas

pAB — IOAB —> classical

Pap * Pap = Auantum



Quantumness:

Qap = min 5 (/OAB ] P'AB)

{HECA) O1lp . Pcas }

Minimization is over the set of all tripartite extensions and the set of
all projective measurements at the CA end

Qs =0 iff P A :p:axB



Separability and Quantumness

Quantumness vanishes when

Pcap=2.P HECA) ®P€B)

ie., Pap=Trc | Peapl= ZPi Pi(A) ®,0i(B)

where Tr.[I1¢Y 1= o)

l

Separable states are insensitive to generalized measurement
(optimal) > quantumness vanishes



Generalized measurements are NOT necessarily POVMs

An example:
Paz = Pl0,,0, 00,0, [+ (U= P+, 4, )+t
+)==(0)=[1); 0<P<1
Three qubit extended state

16:0405)10.04. 0| H1=P)| Opstast ) Octacts
Tre [peas)= Pas

Peag=P

(CA_ (CA_
An optimal measurement on CA: Hl |1C’OA><1C’OA|’ H2 | |1C’1A><1C’1A|’
11 (3CA):| OC’+A><OC’+A |, I1 ELAA):| OC’_A><OC’_A|

This leaves the overall state unperturbed:

4
ZHSCA)(@IB Pcas H(CA)®IB = Pcas

i
i=1

and IOI'AB:IOAB |:>QAB:O



Operational aspects of quantumness

p;?AB ZZHSCA)(@IB P caB Hz(CA)®IB
= 5 (10pcuni0) |1 i |8 [0

=y pIMe §b<ib'|pCA3 i 66" )b|

s p @) g p®

—
ne =i pn =y Pl

P.

l

B =Trcap lHSCA) ®1p Pcas Hz('CA) ®IBJ = 2{ib|pcaplib)
b

i

Tre pes = 2P pM® p®) s a separable state

with same marginal: Tre, [peas1= X P ) =

z<ib'|PCAB|ib>

i,b'.b




Qup =, min }S(pAB 10s)

7 ®1p, Peap

= {g}i }S(/OAB ] pgsgp))

sep
B

Minimum entropic distance between Pis and the closest
separable state " which shares the same marginal 25

¥ Qg =0 aff Pag 18 separable

¥ Qg #0 for all entangled states



Classical correlations:

Ca(Pap) =S(Papll P4 B Pp)— {L{Hlﬂs (Pagl pl(:gp)) >0

\

o

so that total correlations (mutual information) is equal to a
sum of classical correlations c,p,, and quantumness Q ,;




Summary

» Importance of generalized measurements in discerning
quantumness of correlations.

> A physical approach to this fundamental problem, based
on the basic concept of a quantum measurement and the
corresponding information content

» Entangled states get projected to their closest separable
states (with same marginal for one of the subsystems) by
an optimal generalized projective measurement on one
part

» Our new measure Quantumness is the minimum entropic
distance of the bipartite state with its closest separable
state; it serves as an upper bound of relative entropy of
entanglement

> Flawless merger of quantumness of correlations with
gquantum entanglement itself — based on a measurement
based approach.



