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� Joint Probabilities, classical correlations and Shannon 
mutual information.

� Extension to bipartite quantum systems  -
density matrices of composite states and their marginals; 
von Neumann information entropy 

� Measures of “quantumness of correlations”:        
quantum discord (OZ), quantum deficit (RR) …

� Generalized measures to discern quantumness
� Summary 

Outline



Two random variables are said to be correlated if their joint 
probability distributions cannot be expressed as a mere 
product of the marginal probabilities:

correlated

Shannon Mutual information entropy:
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Quantum description:
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Natural extension of the idea of correlation:

BAAB ρρρ ⊗≠ correlated

von Neumann mutual information:
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Bipartite density matrix

Subsystem density matrices



Notion of correlation per se does not set a borderline between 
classical and quantum descriptions.

How do we distinguish between classical and quantum 
correlations in a bipartite quantum state?
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R. F. Werner, Phys. Rev. A 40, 4277 (1989)

A bipartite density operator        is classically correlated 
(separable) if it admits a convex combination of product states:
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Measurements on one part of the quantum system 
distinguishing classical and quantum correlation:

Measurements on one end disturbs the quantum
correlated state  in general: 

ABρ ABAB ρρ ≠'measurement

If an optimal measurement scheme (on one part) exists such 
that                                the state is classically correlated ABAB ρρ ='

Are separable states classical?

on A

H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)



OZ approach
Projective measurements on A { }B
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Completeness Orthogonality
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The conditional density operator of subsystem B – when 
measurement                   is known to have led to the value α -
is given by,
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{ }B
A I⊗Πα Given the results of the complete measurements                 

the  conditional information entropy is given by, 
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exhibits inherent dependence on measurementspositive



A structural generalization of Shannon conditional entropy
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Not necessarily a positive definite !!!!!



Quantum discord (OZ):  optimal difference of two classically 
identical expressions for conditional entropies:
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Optimal measurement          leaves the overall state 
with least disturbance and this is quantified by               
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Bipartite states, which are in conformity with Bayes’ Rule have 
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i.e, only when the state is left undisturbed as a result of optimal
projective measurement on one part of the system



Quantum Discord DOES NOT VANISH FOR 
ALL SEPARABLE STATES !!!!

Separability is not synonymous with classical correlations 
?!

Quantum states with vanishing quantum discord:
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A. K. Rajagopal and R. W. Rendell, Phys. Rev. A 66, 022104 (2002)
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- a measure of quantumness of correlations
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L. Henderson and V. Vedral: J. Phys. A: Math. Gen. 34, 6899 (2001)
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Residual information entropy of B after carrying out a POVM 
measurement          on the subsystem A{ }A
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Classical and entangled correlations do not add up to give 
total correlations!

( ) ( ) ( )BASEC ABREABA :≤+ ρρ

“Are different types of correlations not additive?”

Classical correlation:



Measurements play a crucial role in distinguishing and 
quantifying correlations as classical and quantum



Our approach:
(A. R. Usha Devi and A. K. Rajagopal, To appear in Phys. Rev. Lett.) 

• Consider all tripartite extensions         of the state      such 
that 

CABρ ABρ
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• Perform generalized projective measurements 
on  one part (CA) of the system. 
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CABρ
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( ) ABCABCTr ρρ =

Optimal projective 
measurement by CA

�= ABAB ρρ '
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classical

quantum



Quantumness:
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Minimization is over the set of all tripartite extensions and the set of 
all  projective measurements at the CA  end 
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Separable states are insensitive to generalized measurement 
(optimal)                                    quantumness vanishes

Quantumness vanishes when

Separability and Quantumness



Generalized measurements are NOT necessarily POVMs

An example:
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Three qubit extended state
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Operational aspects of quantumness
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Classical correlations:
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Summary
� Importance of generalized measurements in discerning 

quantumness of correlations. 
� A physical approach to this fundamental problem, based 

on the basic concept of a quantum measurement and the 
corresponding information content

� Entangled states get projected to their closest separable 
states (with same marginal for one of the subsystems) by 
an optimal generalized projective measurement on one 
part

� Our new measure Quantumness is the minimum entropic 
distance of the bipartite state with its closest separable 
state; it serves as an upper bound of relative entropy of 
entanglement 

� Flawless merger of quantumness of correlations with 
quantum entanglement itself – based on a measurement 
based approach.


