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"When two systems, of which we know the
states by their respective representatives,
enter into temporary physical interaction due
to known forces between them, and when
after a time of mutual influence the systems
separate again, then they can no longer be
described in the same way as before, viz. by
endowing each of them with a representative
of its own. I would not call that one but
rather the characteristic trait of quantum
mechanics, the one that enforces its entire
departure from classical lines of thought. By
the interaction the two representatives have
become entangled."



For the long period from 1935 to 1964, until Bell’s work
was published 1. s. Ben, Physics 1, 195 (19641 d1scussions about
entanglement were purely meta-theoretical.

Quantum information theory has established
entanglement as a physical resource and
key ingredient for:

Quantum Computation

Quantum Teleportation

Quantum Cryptography

Quantum Communication ...



Entanglement refers to the non-separability of

quantum states of composite systems

W>AB - Z>A ® ¢>B' > Separable
v >AB v >A ® ¢>B- > ENTANGLED




Mathematical description of entanglement 1s
necessary and involves its

MANIPULATION

QUANTIFICATION

Study of Entanglement Measures serves as
characterization and quantification of
Entanglement

* Mathematical quantity that should capture the essential feature
that we associate with entanglement

* Ideally should be related to some operational procedure



‘ Pure states I

For arbitrary pure bipartite state Oag the
entropy of entanglement E(p,g),
namely von Neumann entropy of the
reduced density matrix Pag = ITsaPas is given by

S=-Trp, log py =-Trpglog pg

serves as a good measure of entanglement

S=(0 =— SEPARABLE



‘ Mixed states I

P=D PP ®p wy SEPARABLE

Classically correlated states

/

D # E PP ® P et ENTANGLED
_ N B TIA E I
l

Can’t be represented as a arbitrary convex combination of
direct product of single qubit states



‘ Mixed states I

Due to interaction of states with environment we
always have mixed states in our labs

Greater difficulty !
Several entanglement measures have been proposed

Entanglement of formation E . (0Oag)

EC (pAAB)

Quantify asymptotic pure-state required to create Pns

Distillable entanglement E, (0Oag)

Quantity the states which can be extracted fromQaB

Relative entropy of Entanglement

Related measure that interpolates between E(0ag)and Ep, (Oag)
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Peres’ PPT criterion

“An elegant criterion to check whether a given state 1s
entangled or not 1s given by Peres’
Positivity under partial transpose (PPT) of Pag ”

A. Peres, Phys. Rev. Lett. 77, 1473 (1996)

A TA N TB CEDADAR] E
______________ aB (0T Ppp) = 0 SEPARABLE
AT .
where T 5
plA]A;lB]B IOZA]B;ZB]A

“PPT criterion 1s necessary and sufficient for
separability 1n the 2X2 and 2x3 dimensional cases,
but ceases to be sufficient condition 1n higher dimensions ™

M. Horodecki, et.al, Phys. Lett. A 223, 1 (1996)



Clonmetriec internreftatinn of entanclement

for infinite dimension systems

“In continuous variable states (CV) the partial transpose operation
acquires a beautiful geometric interpretation as
mirror reflection in phase space”.
R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

Using phase space variables and the Hermitian cannonical operators
we have

0

é:: ~ |» 4; = s Pi=——— =12
d> 2 21
NZY

Commutation relation will be

A A J O O 1
E1=10Q, . @, f=1234; Q= J=
(00051210255 01 (0 Jj [—1 oj
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4X4 real variance matrix

Vaﬂ:%<{A$a’A$ﬁ}>’ V=(CI,4T Zj

where AL, =&,~(£,)
W&, A8, J=AE AL, +AEAE,

Under canonical transformation . .
preserves the commutation relation

E—>E =8 Se SPAR)

V >V =85vs’

Entanglement properties are unaltered
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Elements of variance matrix under
canonical transformation

A— A'=5AS"

’_ T
C—>C' =SCS’ » I,=detB
I, =detC

I, =Tr[AJCJBJC"J]

Peres-Horodecki PPT criterion:

Gaussian states with det (Gte Hecessarily separable, where as those with
dehd@'vidlbting above inequality are entangled




OUTLINE OF OUR WORK

# I|dentification of structural parallelism between CV states and
two-qubit states.

# Necessary and sufficient inseparability conditions imposed on
variance matrix of symmetric two qubits.

# Extension of covariance matrix method to symmetric N-qubit
state — when individual qubits are accessible

# Collective multipole like signatures of entanglement is
symmetric N-qubit systems (involves bulk observables, generalizes the
concept of spin squeezing)



where

Arbitrary two qubit density operator in the
Hilbert space H =C* ®C~

p=| I®I+ Z(O-lisli +055, )+ ZO- O-zth
B I=X,y,2 l,J=X,V,2
0,=0,01 s5,= Tr(po-li)
0, =1®0, Ly = Tr(po_lio_2j)

15 state parameters
sli(3), S (3) and 1, (9)

Symmetric two qubit density operator in the
Hilbert space H_= Sym (C2 ® Cz)

S =8y =8 ;=1 Tr(T):
81 = 92; = 5 (3)
8 state parameters I =1 (5)
Tr T)zl




Basic variables of two qubit systems are

s | Ou
g;(G%J

The covariance matrix is given by

Vop :%<{Aé>ai’Afﬁj}>; af =12 ij=xy,z

In 3%3 block form [ A Cj

V =
C' B

— 1 — — r
where A; =5 .<O-1i’o-1j>_<o-li><o-lj>J_ 0y =88, =1 =55

T
Bij :% .<O-2i’o-2j>_<o-2i><o-2j>]: 517 =88, = I —s,s,
1 _
C; =7 .<O-1i’o-2j>_<o-1i><o-2j>]_ L =512,

In symmetric states each block assumes the form
A=B=1-ss"
C=T-ss"

A. R. Usha Devi, M. S. Uma, R. Prabhu and A. K. Rajagopal,
Phys. Lett. A 364,203 (2007)
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For separable symmetric state C=T-ss' >0

A two qubit separable symmetric state 1s given by

=P p,®p; Y P =1 0<P <l

I=X,Y,2

where 0,, = %[1 + Z o ,-S,-W) single qubit density matrix

The state variables are given by

l. < > TrQO' prw

tij <Gll 21> Tl" e0-110-21 pr lW ]w

\)



Evaluating the quadratic form 5’ (T—SST)n

n' (T—SST)n = Z(tij —sl.sj)nl.nj

i,j

= Z|:Z priWSjW — Z pwsiwz pW'SiW':| ninj
l,] w W v
— Z p,(5- ﬁ)g _(Z P, (5 ﬁ)]u

2

which is of the form <A2> — <A>

S nT(T—SST)nZO

“off diagonal blocK of the covariance matrix is necessarily positive
semi-definite for separable symmetric states”

C<() ==sssp Entangled




The necessary condition for the inseparability of an
arbitrary symmetric two qubit mixed state is given by
C<0

p:% I®I+ Z(O-lisli +O_2is2 ZO- O-thl]

I=X,Y,Z [,J=X, 9,2




Following PT operation by a local rotation about the
spin operators of the second qubit completely
reverse their signs:

O'2y — —O'2y

IOPT :% I®I+ Z(O-lisli _O-2iS2l ZO- O-2ltl]

I=X,Y,Z [,J=X,Y,Z

with the 3 X 3 real symmetric correlation matrix 7, and 3 X 1 column s



Applying a congruence operation on partially
transposed density matrix we get

L,OSTZLT Z%(T—SST OJ

0 1

. I -5
where congruence operator 1S L= (O . j
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Realizing inseparability criterion C < Qin symmetric
N-qubit systems

Collective observables of a N-qubit system are given by
N

J=> 16,
=1
Collective correlation matrix involving first and second moments
of J may be defined as

Collective observables when expressed in terms of the constituent qubit
variables as

21



Correlation matrix v’ assumes the form

vy =%(I—SST +(N—1)(T—SST))
OR

VYV 4+ LssT =X (1 +(N-1)C)

using (J)=%s, =S5,

2 M I

Cis positive semi-definite

for all separable symmetric == V) +%SST <L
two-qubit states

Under identical local unitary transformations U ® U ®....... U
VY =ov™0" and §'=0S

The symmetric N-qubit system is pairwise entangled iff the
least eigenvalue of the real symmetric matrix




Characterizing multiparticle entanglement in
symmetric N-qubit states

An arbitrary N-qubit system density matrix:

1
P = 2_]\7 Z Talaz...aN (O-lcx1 O-2a2 “'O-NaN )

where .
’ _ o. appearing at
Tal%maN =Tr[ ,o(o'm1 Oy, O e, )]

=<G o) o) >

lay ™ 20, " Noy
Total number of parameters of the density matrix

22N _q

l permutation symmetry

2) A. R. Usha Devi, R. Prabhu and A. K. Rajagopal,
(N + 1) —1 Phys. Rev. Lett. 98, 060501 (2007) .




N qubit systen

J= j1j2"'jk

[ =10l,...I,

—

Moments Tl.j(zk ) of even order 2k may be arranged as

(2k) _ 0 (2k) (k) _ (k)
Tij - Tiliz...ik s & 1,7 = Tiliz...ik

k qubit operator associated with each groups:

A k) _ A
AT = 0.1, OCai,-Oa, cf(k) Al

n(k) _
Bi _ Gbljl szjz '"O-bkjk

2k order variance matrix is given by

Ve = LIAEWAEW + H C]




Matrix form: B AR
V(zk) _ A C

cw gk
Off diagonal block

EW = (A0 B Y- (A0 BP)

1) 1 J

_ 7 (2k) (k) (k)
_Tij _Ti Tj

corresponds to 2k™ order covariance among the
inter group of multiqubits

For every separable symmetric multiqubit state of @dfidus order
2 kake pecessarily positive semidefinite



To establish (%) ylvester criterion may be used

Principle minor of Matrix is said to
Hermitian matrix is be positive
negative definite

Therefore a series of sufficient conditions for
entanglement of 2k qubits could be extracted from

negativity of principle minors of ((2)

Separable conditions involving correlation
observables making our criterion as
experimentally amenable



Test for inseparability conditions (% <0

N qubit GHZ state

|GHZ ), = -=(]00...0)+]11...1))

C V) has one negative eigenvalue:

PIED (2951

The diagonal element of C™) with index
i = {xxx..xy} will be negative

cN) =1V —(T.]%)Z

l

_ 1, if N/2 =even integer
—2, 1f N/2 =o0dd integer

~—
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N qubit W state

W) =-—(10..0)+]010 ..0) + ...)

C *® has one negative eigenvalue:

(-) _ 2k(k-1)
A7 =—=3

2k-qubit entanglement for all values of k

We have observed that the diagonal element of C **’ with index
| ={zzz...z} will be negative

C =1 =1



N gubit mixed state

0<x<1

pz(v]ovis)y — ﬁPN + X‘W><W

N/2 .
P = N VA Mg - Projection
N M =Z_: N ‘/22 >< . ‘ Operator
GHZ noisy state:
N=2 0.25<x<1
N =4 0.0625<x<1
N=6 0.014<x<1
W noisy state:
N=2 0.25<x<1

N=4 0.089<x<1
N=6 0.042<x<1

For large N, both will remain entangled for all values of

29



A more general trend is found by examining the
lowest order principal minor

GHZ noisy state:

1 I—x
5 < X S 1 N = —
N2 Tu N2 1 X
Inseparability Negative
range diagonal
l element
W noisy state: 11
! < Vo 1TX
vz <x=1 e

i = {xxx..xy}

I

Index

l

i ={zzz...7}
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“Covariance matrix techniques are extremely
useful in characterizing entanglement in
symmetric multiqubit states”

31



Thank you



