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Greenberger, Horne and Zeilinger




GHZ'’s proof of Bell’s theore

* “Opened a new chapter on the hidden variables problem”,
and made “the strongest case against local realism since
Bell's work”.

e Quantum reduction of the communication complexity.

e Quantum secret sharing.

e Multipartite entanglement.



GHZ'’s proof of Bell's theorem
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Notation for single

Polarization observables:

X=|H><V|+|V><H|

Y=i(|V><H]|-|H><V])
Z=|H><H|-|V><V|
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Experimental GHZ
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Experimental test of quantum
nonlocality in three-photon
Greenberger-Horne-Zeilinger
entanglement

Jian-Wei Pan*, Dik Bouwmeester, Matthew Danigll*,
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Flgure 1 Experimental sat-up for Greenberger -Home—Zelnger {GHE) st of quanium
nonlacalty. Pairs of pdarization-entangied photons™ fne photon H patarized and e
oler V) are generated by a short pukse of uiraviodat Bght (- 200 &, » = 394 nm).
Observation of the desired GHZ camelations requines fourfald coincidence and therafore
twopairs™. The phaton registenad at Tis abways Handthus its partner in b mustbe ¥ The
photon reflected at the polarizing beam-spitier (PES) inarm a s always V, being umed
nio aqual superposiion of Vand Hby e W/2 plake, and itz pariner in arm b must be K
Thus if all four detectors regisier at e same tme, the two photons in 0y and Dy must
efherbod have been ¥ Vand reflecied by the kastPB S ar Hiand transmitied. The photon
at D, was therefare H or V, respectvely. Bolh posshifes are made indistinguishabie by
hawing equal path lengths via a and b io Dy D5 and by using namow kandwidih filiers ¢
== 4 nmj io siraich fhe coherence fme to about 500 &, substntialy arger than the puise
angti®. This afectvely erases the prior comaetafion information and, awing to indis
tinguishahity, the fhree photons regisierad at Dy, O, and O, exhibit e desired GHZ
comelations predicted by the state of equafion (1), where for simpiciy we assume he
poanzations atDy, tobe defined atright angles rakative tothe ofhers . Polarizers onented at
45% and /4 plates in frant of the detectars allow measwremeant of Bnear /Y icrcuar
A4 polarzation.
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The Mermin inequality

VOLUME 65, NUMBER 15 PHYSICAL REVIEW LETTERS 8 OCTOBER 1990

Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States

N. David Mermin

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
(Received 29 May 1990)

A Bell inequality is derived for a state of n spin- particles which superposes two macroscopically dis-
tinct states. Quantum mechanics violates this inequality by an amount that grows exponentially with 7.



The CHSH inequality

(ABy)+(AB,)+(ABy)—(AB,)|<2

:BQM — 2\/5 ~ 2.8




The Mermin inequality

(AB.Co) +{ABC,)+ (ABC,) ~(ABC,)|<2

,BQM =4




The n-qubit Mermin inequality

IBQM _ 2(n-1)/2

IB Local models




The violation grows exponentia

Paw

IB Local models

_ o(n1)2




Problems for an experiment

A nonlocality proof using n-qubit GHZ states requires n
space-like separated observers.

For GHZ states decoherence also grows with n.

The minimum detection efficiency for a loophole-free test
IS 0.5 (when n goes to infinity).



GHZ’s requires three observers

X1 Y1

Analyzer 1

Analyzer 3 Analyzer 2

Source of GHZ
states
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* Two-observer AVN proofs?




The first two-obse

Double Bell:
(|HV>-|VH>) (|ud>-|du>)

wWZ)=-

wX.)=-v(X)

Xix)=v(X:)

vZ) =

v(X:) =vX.z)
X.x)=- vX.z)

AC, PRL 86, 1911 (2001): 87, 010403 (2001).




Notation for single

Polarization observables:

X=|H><V|+|V><H|
Y=i(|V><H]|-|H><V])
Z=|H><H|-|V><V|

Path observables:
x=|u><d|+|d><u]
y=1(]d><u]-]u><d])
Z=|u><u|-|d><d]




Four gqubits in two photons

week endin,
VOLUME 90, NUMBER 16 PHYSICAL REVIEW LETTERS ESAPRIL’EU%]E

All-Versus-Nothing Violation of Local Realism for Two Entangled Photons

Zeng-Bing Chen.' Jian-Wei Pan,' Yong-De Zhang,1 Caslav Brukner.® and Anton Zeilinger2
'Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230027, China

*Institur fiir Experimentalphysik, Universitat Wien, Boltzmanngasse 5. 1000 Wien, Austria
{Received 18 November 2002; published 24 April 2003)

It 1s shown that the Greenberger-Horne-Zeilinger theorem can be generalized to the case with only
two entangled particles. The reasoning makes use of two photons which are maximally entangled both
in polarization and in spatial degrees of freedom. In contrast to Cabello’s argument of “all versus
nothing™ nonlocality with four photons [Phys. Rev. Lett. 87, 010403 (2001}], our proposal to test the
theorem can be implemented with linear optics and thus is well within the reach of current experimental

technology.
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. . (- ! | .F} = _| .F} X, X, and xg - xb (b); zj. xy, and xy - 2) () 22, zh. and 25 - Zh
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Rome and Hefel experiments

week endin,
PRL 95, 240405 (2005) PHYSICAL REVIEW LETTERS 9 DECEMBER 2005

All-Versus-Nothing Nonlocality Test of Quantum Mechanics by Two-Photon Hyperentanglement

C. Cinelli, M. Barbieri. R. Perris, P. Mataloni, and F. De Martini

Dipartimento di Fisica dell’ Universita “La Sapienza”
and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Roma, 00185 Italy

(Received 27 April 2005; published 9 December 2005)

We report the experimental realization and the characterization of polarization and momentum hyper-
entangled two-photon states, generated by a new parametric source of correlated photon pairs. By
adoption of these states an "all-versus-nothing™ test of quantum mechanics was performed. The two-
photon hyperentangled states are expected to find at an increasing rate a widespread application 1n state
engineering and quantum information.

week endin,
PRL 95, 240406 (2005) PHYSICAL REVIEW LETTERS 9 DECEMBER 2005

All-Versus-Nothing Violation of Local Realism by Two-Photon, Four-Dimensional Entanglement

Tao Yzmg,l Qiang thmg,l Jun thmg,l Juan Yin." Zhi Zhao.'” Marek Zukowski.
Zeng-Bing Chen,"** and Jian-Wei Pan'*"
'Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefer, Anhwi 230026, China
*Physikalisches Institut, Universitit Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany

*Instytut Fizyki Teoretyeznej i Astrofizyki Uniwersytet Gdanski, PL-80-952 Gdansk, Poland
(Received 4 June 2005; published 9 December 20035)

We develop and exploit a source of two-photon, four-dimensional entanglement to report the first two-
particle all-versus-nothing test of local realism with a linear optics setup, but without resorting to a
noncontextuality assumption. Our experimental results are in good agreement with gquantum mechanics
while in extreme contradiction to local realism. Potential applications of our experiment are briefly
discussed.



Rome experiment 2005
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Rome experiment 2005

All-Versus-Nothing Nonlocality Test of Quantum Mechanics by Two-Photon Hyperentanglement

C. Cinelli, M. Barbieri, R. Perris, P Mataloni, and F. De Martini

Dipartimento di Fisica dell” Universita “La Sapienza”
and Consorzio Nazienale Interuniversitario per le Scienze Fisiche della Materia, Roma, 00185 Italy
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Hefel experiment 2005

All-Versus-Nothing Violation of Local Realism by Two-Photon, Four-Dimensional Entanglement

Tao Yang,l Qiang Zhang,l Jun Zhang,1 Juan Yin,! Zhi Zhao,'* Marek Zukowski,?
Zeng-Bing Chen,'™* and Jian-Wei Pan'*'

"Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China
2Physikalisches Institut, Universitit Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
Snstvrut Fizyki Teoretveznej i Astrofizvki Uniwersvter Gdanski, PL-80-052 Gdarisk, Poland
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« Two-observer AVN proof with single-gqubit observables?
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Two-observer AV

Hyperentangled cluster:

|HuHu> + | HdHd> + | VuVu> - | VdVd>

wZ)-=
=\z)
X)) =vix.uz)
TEDE
= - vz)
-z wly.)
ux.)=v(X)
=UZ)M(x)

W) =-Z.)



Two-observer /A

v(X.) =v(X)v(z.)
= - vz)

X Mx)=" W)
(x:) =X )y.)

AC, PRL 95, 210401 (2005).




Rome experiment 2007

Realization and characterization of a 2-photon 4-qubit linear cluster state

Giuseppe Vallonel*, Enrico Pomaricol*, Paolo Mataloni'**, Francesco De Martinil*, Vincenzo Berardi?
I Dipartimento di Fisica dell'Universitd “La Sapienza” and Consorzio Nazionale
Interuniversitario per le Scienze Fisiche della Materia, Roma, 00185 Italy
’Dipartimento Interateneo di Fisica, Universitia e Politecnico di Bari and Consorzio
Nazionale Interuniversitario per le Scienze Fisiche della Materia, Bari, 70126 Italy

PRL 98, 180502 (2007).



Rome experiment 2007

Observable Value W s
ZAZB +0.9283 + 0.0032 v
AATATRE +0.8194 + 0.0049 v
XazaXNp —0.9074 + 0.0037 v v
ZAZB —0.9951 % 0.0009 v v
TALBTR +0.8110 + 0.0050 v v
ZAYyays +0.8071 £ 0.0050 v
Yaza¥r +0.8948 + 0.0040 v
XaXpzp +0.9074 + 0.0037 v v v
YaYpzp —0.8936 + 0.0041 v v
XaraYpynr +0.8177 £ 0.0055 v
YaraXpynr +0.7959 £ 0.0055 v

TABLE I: Experimental values of the observables used for
measuring the entanglement witness V¥V and the expectation
value of § on the cluster state |Cy). The third column (C')
refers to the control measurements needed to verify that X 4,
Ya, za, XpB, YB, yp and zp can be considered as elements
of reality. Each experimental value corresponds to a measure
lasting an average time of 10 sec. In the experimental errors
we considered the poissonian statistic and the uncertainties
due to the manual setting of the polarization analysis wave
plates.

Tr[Spesy] = 3.4145 + 0.0095

PRL 98, 180502 (2007).



Motivation #1: SiX-phc

natmre
* Q. Zhang, A. Goebel, C. Wagenknecht, Y.-A. Chen, B.
Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J.-W. Pan, o distance el
“Experimental quantum teleportation of a two-qubit g forphoson pains
composite system”, .
Nature Physics 2, 678 (2006).

e C.-Y. Lu, X.-Q. Zhou, O. Giuhne, W.-B. Gao, J. Zhang, Z.-
S. Yuan, A. Goebel, T. Yang, and J.-W. Pan,

“Experimental entanglement of six photons in graph states",
Nature Physics 3, 91 (2007).

» Other groups are preparing six-photon six-qubit states.



Motivation #2. Two-photon Six

« J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat,
“Hyper-entangled photons",
Phys. Rev. Lett. 95, 260501 (2005).

EIHH} + |VV}_1 @Elrf} + algg) + |Ir}:]l 'E'y-?-?} + Iff}J]l

pol arization spatial modes energy time

« Other groups are preparing six-qubit two-photon hyper-entangled states.



Problem

o If we distribute n qubits between two parties,
what quantum pure states and distributions of qubits
allow AVN proofs using only single-qubit measurements?




First ingredient: Bipartite

- Enough number of perfect correlations to define bipartite
EPR's elements of reality. Every single-qubit observable
iInvolved in the proof must satisfy EPR's criterion; i.e., the
result of measuring any of Alice's (Bob's) single-qubit
observables must be possible to be predicted with certainty
using the results of spacelike separated single-qubit
measurements on Bob's (Alice's) qubits.



Second ingredient: Algebre

- Enough number of perfect correlations to reach into a
contradiction with EPR's elements of reality. Any of the
observables satisfying EPR's condition cannot have
predefined results, because it is impossible to assign them
values -1 or 1 satisfying all the perfect correlations predicted

by QM.



Perfect correlations, stabili

. Perfect correlations are needed to establish elements of
reality and to prove that they are incompatible with QM.

e Simultaneous eigenstates of a sufficiently large set of
tensor operators products of single-qubit operators.

* \WWe can restrict our attention to X, Y, Z. Stablilizer states!

o Any stabilizer state is local Clifford equivalent to a graph
state. Graph states!!



Graph states

Graph states are a family of multiqubit pure entangled states.

Each graph state is associated to a graph

Vertices: qubits.

Edges: entanglement between the connected qubits.



Graph states are useful

* Initial states for measurement-based quantum computation
(some of them are universal resources)

* Quantum error correction (stabilizer states)
¢ All-versus-nothing (AVN) nonlocality proofs

« Exponentially-growing-with size nonlocality



Graph states: Constructive @

For a given graph G, a preparation of the corresponding graph state |7}
consists:
L. : - \ 03 +[1;
« In associating wich each vertex a qubit in the state |+) = J—i—gl—i
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C, on the qubits a and b

[1 00 0 ) —f—
010 0
Cr — —
““loo1 o
\0 00 —1) A



Graph states: Constructive @

For a given graph G, a preparation of the corresponding graph state |7}
consists:
L. : - \ 03 +[1;
« In associating wich each vertex a qubit in the state |+) = J—i—gl—i
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C, on the qubits a and b
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Graph states: Constructive @

For a given graph G, a preparation of the corresponding graph state |7}
consists:

WSS

« In associating wich each vertex a qubit in the state |+) = V2
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C, on the qubits a and b
b 43
b
|=>

C

=2




Graph states: Constructive ¢

For a given graph G, a preparation of the corresponding graph state |7}
consists:
L. : - \ 03 +[1;
« In associating wich each vertex a qubit in the state |+) = J—i—gl—i
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C, on the qubits a and b
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Graph states: Constructive (

For a given graph G, a preparation of the corresponding graph state |7}
consists:
L. : - \ 03 +[1;
« In associating wich each vertex a qubit in the state |+) = J—i—gl—i
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C, on the qubits a and b
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Graph states: Constructive (

For a given graph G, a preparation of the corresponding graph state |7}
consists:
L. : - \ 03 +[1;
« In associating wich each vertex a qubit in the state |+) = J—i—gl—i
then

* In applying, for each edge between two qubits a and b, the unitary
transformation C, on the qubits a and b

b 37 e —

45 I b 1>
C & *—,




Graph states: Algebraic definitio
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Graph states: Algebraic defini
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Graph states: Entanglement

Property: Two quantum states "have the same
entanglement” iff they are LU -equivalent.

Definition [ L1 -equivalence] : |¢) = |30 Iff there exists a
local unitary transformation U (e U =0 @ ... o U,
where each U; I1s a 1-qubit unitary) such that |¢) = U i)

Definition [ L({'-equivalence] : |¢) =p¢ |3 Iff there exists a
local Clifford transformation C' (l.e. O =C1 @ ... ® O,
where C; € (H,5)) such that |¢) = C'|¥).



Graph states: Entanglement

Graph-based representation of entanglement is not unique:

3G, G/ |G) =y |G'Yand G # G’

b b



Graph states: Entanglement

Theorem [Van den Nest, 2004]:

|Gy = |G iff there exists a sequence of local
complementations which transforms & into &'

Local Complementation according to a: G+ a = GAK y,)
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Graph states: Entanglement

Theorem [Van den Nest, 2004]:
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Graph states: Entanglement

Theorem [Van den Nest, 2004]:

|Gy = |G iff there exists a sequence of local
complementations which transforms & into &'

Local Complementation according to a: G+ a = GAK y,)




Graph states: Entanglemen

The following graphs represent LC-equivalent graph states.
Therefore, they represent LU-equivalent states.
Therefore, they have the same entanglement.

al Ih EII Il:- aI :b a b
C d c d ¢ d de



All graph states up to seve
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Graphs corresponding to all possible graph states, up to
seven qubits, which are not equivalent under single-qubit
transformations and graph isomorphism, M. Hein, J. .
Eisert, and H. J. Briegel, PRA 69, 062311 (2004).
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Problem

o If we distribute n qubits between two parties,
what quantum graph states and distributions of qubits
allow AVN proofs using only single-qubit measurements?




First ingredient: Bipartite elem:

Lemma: A distribution of n qubits between Alice {who
is given n4 qubits) and Bob {(who is given ng qubits)
permits bipartite elements of reality if and only if ny =
ng, and the reduced stabilizer of Alice's (Bob's) qubits
containg all possible variations with repetition of the four
elements, 1. X, Y, and £, choose ny (ng)., and none of
them repeated.

AC & P. Moreno, PRL 99, 220402 (2007).



Second ingredient: Algebraic ¢t

Lemma: Any graph state associated to a connected
graph of three or more vertices leads to an algebraic con-
tradictions with the concept of elements of realitv (when
each qubit is distributed to a different partv).

AC & P. Moreno, PRL 99, 220402 (2007).



Second ingredient: Examples oi
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Four-qubit cluster state

No. 4a

No. 4b No. 4¢

1 3
2N 4
FIG. 1: Bipartite distributions of the 4-qubit linear cluster
state (graph state no. 4 according to Hein ef al. [28]). The
distribution no. 4a permits bipartite elements of reality. The
distribution 4b is phvsically equivalent (it is just relabeling
the basis of the qubits). The distribution 4c is not equivalent
to the other two, but does not permit bipartite elements of

reality.




Four-qubit graph state allowing

. 1 S — S R
%4a) = 5(]00)|00) +01)|01) + |10)|10) — [11)|11)).

]

Alice’s elements of reality Bob's elements of reality

X, = Z3 X, e =
Yi=YsXy Ys=Y122
Zi = Xs Z3 = X129
Xo = X3Zy XNy =22
Yg = Xg}‘:i_. Yd_- = 21Y2

ZQ =X4 Z4 ZZIXE




Bipartite AVN prc

v(X.) =v(X)v(z.)
= - vz)

X Mx)=" W)
(x:) =X )y.)

AC, PRL 95, 210401 (2005).




v(X.) =v(X)v(z.)
= - vz)

XM= viy)
06.) =VXy)




Six-qubit graph states allowing

o 1
|th130) = m(mmomp +[001011) + |010010)

+ |101101)

+|01100T) + 100110
1

Alice’s elements of reality Bob's elements of reality
X1 =Z4X5 Xa =24
Yi=YaXs Ya=V14,

Z1 =Xy Ly =X129
Xo = XyZsXsg X5 =29
Yo = Xu¥5Xe Ys = Z1YaZs

Za = Xy Zs = Z1XaZ3

X3 = XsZg Xe =23
Yg = XE.Yﬁ Yﬁ = ZEYB

Za :Xﬂ ZG:ZQXE




Six-qubit graph states allowing

+[170T00) + |1T1701)).

Alice’s elements of reality Bob's elements of reality
X1 =2Z24X528 Xa=21
Yi =YX Zg Yi=Y12s
Zy =Xy Zy=X1Zs
Xo = XyZs Xs =Z2X3
Yo = XuyY:e s Y = Z1Y2 X3
Za = XsZg Zy = Z1X9
X3 =Zs Xe = Z1X2Z3
Ys = Z5Ys Yo = Z1X0Y3

Zy = Xg Zg = X3




Six-qubit graph states allowing

. 1 o _ o
Uea) = ——=([000000) + (001011} + [010010
|U16a) Zﬁ(l )+ | )+ )

+|011001) + [100110) — |101101)
+/170100) — [1T1711)).

Alice’s elements of reality Bob's elements of reality

X1 = Z4X5Xg Xa=2
Y1 =YaXeXsg Ya =Y12223
Zy =Xy Z4 = X150 75
Xo = XyZ5Xg Xs =2,
Yo = XuYe X Ys = Z1YaZs
Zy = Xy VA AD. OV
Xs = XyXsZg X6 =23
Yy = XuXiYs Yo = Z122Y3

Zg :Xﬂ ZEZZIZEXB




Six-qubit graph states allowing

1
S 1 _ __ o
[W17a) = 2\/§(|DDD +|001101) + |010111)
+(011010) + [100100) + |101001)
2 / —[110011) — [11T111)).
3
Alice’s elements of reality Bob's elements of reality
X1 = Z4X5 Xy =Z1Z2X3
Yi=YaXeZs Yi=Y1X3
Z1 = X4Zg Zy = X129
XNy =Yy Z:Y5 X =2Zq
Yo =YaYsYs Ys =Z1YaZs
Zy = X5 Zy = Z1XaZs
X3 = X5Zs Xe =X17273
Y3 = Z4XsYs Yo = X1Y3

Z3 = Z4Xe Ze = Z2 X3




Six-qubit graph states allowing

1
[P18a) = iuﬁumﬁﬁ) + |001011) + [010111)
2v/2
\\ +|011100) + |100101) + [101110)
: +[110010) + |111001))
3
Alice’s elements of reality Bob's elements of reality
X1 = XX XNy =XoX3
Yj_ = —X4X5Ya3 Y4 = —X1Y2X3
Zl :X4Za Z4 :XIZE
Xo =XuZsZs Xy = Zals
Yo =YaY¥sYs Ys = Z1YaZs
Zz = Z4X5Xa ZE = ZIXE
X3 =ZsZsg XNe = X1Z223
Ya = Zq.ZEYG Yﬁ = Y1Y2Y3

Zy = ZsXe Zg = Z1X9X3




Six-qubit graph states allowing

h104) = éll(mmﬂnﬁ} + |000011) + [001100)
—[001111) + 010101} + |010110)
—[011001) + (011010} + |100101)
—~|100110) + [10100T) + |101010)
+/110000) — [110011) — [111100)

—|T11111)).

Alice’s elements of reality Bob's elements of reality
X1 = Z4YeYs Xa4 = Z21Y2Y3
Yi=-YiXeXg Yi=-Y1X2X3
Zl = Xd__ZE,Zﬁ Z:L == Xlzﬂzﬁ
Xo =YyZeYs X =Y17,Y;

Yo = —-X4Ye Xg Ys = -X1Y2 X3
Zg = Z4X536 ZE = leﬂzﬁ
X3 = Y4Y5Zﬁ Xﬁ == YlYEZB
Yg = —X4X5Y13 Yﬁ = —XlXEYB

Z3 = Z4Z5Xa Zﬁ == leﬂxﬁ




Six-qubit graph states allowing

ﬁuunanan} 4 [00L01T) + [0T0010)
W
+|0T1001) + (100110} + 101101}

+[110T00) + (171711} ),

Lo
575 (1000000} + 001001 + [010011)
72
+|0T1010) + [100111) + [101110)
01

);

+[110100) 4 |11110

3
i1
3
i

+|11|JT

5 [|DDDDDD~ + |001101) + [010111)

'~.

+|011010) + | 100100} 4 [101001)

—|110011) — [111111}),
1,

——(|000000) + [001011) + 010111}

24/2

+|01110

+|110010;

+ [100101) + |101110)

0
0) + [111001)),

e

%(ﬁnnanﬁ} + 000011} + |G01100)
— (001 11T) + 610101 + |[010118)
—[01100T) + |611010) + |T00101)
—[100110) + |T01001) + |T01010)
+|T10008) — [T10011) — [T11100)
—|T1111T3).



Problems

= Which is the maximum degree of nonlocality D for a six-
gubit graph state allowing bipartite elements of reality?

= Which is the maximum D for the perfect correlations of a
n-qubit graph state?

= Which is the relation between D and 7?

= Can these results help us to make a loophole-free
experiment?

(D is defined as the ratio between the QM value and the bound of the
Bell inequality. It is related to the minimum overall detection efficiency
n required for a loophole-free experiment.)
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Next talk



