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The first paper on “quantum nonios




EPR: QM is “incomplete™

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EinsTEIN, B. PopoLsky AND N. RoSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

According to EPR, any satisfactory physical theory must be:

(1) Correct.

(2) “Complete”.



EPR’s elements of reality

“If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a
physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.”



EPR’s elements of reality

“Without in any way disturbing a system” = Spacelike separation.

“Predict with certainty” = Perfect correlations.



Bohm’s version of EPR’s argu
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Bohm’s version of EPR’s arg

* X, and Y, are both “elements of reality”.

* In QM, X, and Y, are incompatible observables
(Heisenberg’s uncertainty principle).

— QM Is iIncomplete (according to EPR).
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Bell's theorem

It is impossible to complete QM with elements of reality because some
predictions of QM cannot be reproduced with elements of reality.



The CHSH inequality
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The CHSH inequality
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The CHSH inequality Is viola
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Aspect’s experiments

VOLUME 47, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AucGusr 1981

Experimental Tests of Realistic Local Theories via Bell’s Theorem

Alain Aspect, Philippe Grangier; and Gérard Roger
Institut d’Optique Theovique et Appliquee, Univeysile Payis-Sud, F-91406 Ovsay, France

(Received 30 March 1981)

We have measured the linear polarization correlation of the photons emitted in a radia-
tive atomic cascade of caleium. A high-efficiency source provided an improved statistical
accuracy and an ability to perform new tests. Our results, in excellent agreement with
the gquantum mechanical predictions, strongly violate the generalized Bell’s inequalities,
and rule out the whole class of realistic local theories. No significant change in results
was observed with source-polarizer separations of up to 6.5 m,

VoLuMmE 49, NUMBER 2 PHYSICAL REVIEW LETTERS 12 Jury 1982

Experimental Realization of Einstein-Podolsky-Rosen- Bohm Gedankenexperiment:
A New Violation of Bell’s Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger
Institut d’Optique Théorique et Appliquée,‘lﬂbomtaire associé au Centve National de la Recherche Scientifique,
Universite Pavis -Sud, F-91406 Orsay, France
(Received 30 December 1981)

The linear-polarization correlation of pairs of photons emitted in a radiative cascade of
calcium has been measured. The new experimental scheme, using two-chamnel polarizers
(i.e., optical analogs of Stern-Gerlach filters), is a straightforward transposition of Ein-
stein-Podolsky-Rosen-Bohm gedankenexperiment, The present results, in excellent
agreement with the quantum mechanical predictions, lead to the greatest violation of gen-
eralized Bell’s inequalities ever achieved.

VoLUuME 49, NUMBER 25 PHYSICAL REVIEW LETTERS 20 DECEMBER 1982

Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers

Alain Aspect, Jean Dalibard,("J and Gérard Roger
Institut d’Optiqgue Théovigque et Appliquée, F-91406 Ovsay Cédex, France

(Received 27 September 1982)

Correlations of linear polarizations of pairs of photons have been measured with
time-varying analyzers. The analyzer in each leg of the apparatus is an acousto-opti-
cal switch followed by two linear polarizers. The switches operate at incommensurate
frequencies near 50 MHz. Each analyzer amounts to a polarizer which jumps between
two orientations in a time short compared with the photon transit time. The results
are in good agreement with quantum mechanical predictions but violate Bell’s inequal-
ities by 5 standard deviations.



Loophole-free Bell experime

So far, the results of any performed Bell experiment admit an
Interpretation in terms of local realistic theories.

A loophole-free experiment would require:

e Spacelike separation between Alice’s measurement choice
and Bob’s measurement in order to exclude the possibility
that Alice's measurement choice influences the result of
Bob's measurement (locality loophole).

o Sufficiently large number of detections of the prepared
particles in order to exclude the possibility that the
nondetections correspond to local hidden-variable
Instructions (detection loophole).



Photons, ions... the good

* Photons are the best candidates for closing the locality
loophole. For instance, one can do a Bell experiment with
pairs of polarization-entangled photons separated d = 400 m,
which is not subject to the locality loophole (Innsbruck 98).

* lons are the best candidates for closing the detection
loophole. For instance, one can do a Bell experiment with
pairs of trapped ions with a detection efficiency n =1
(Boulder 01, Maryland 08).



Photons, ions... the bad ne

» Photo-detection efficiency (n = 0.05-0.33) is not high
enough to close the detection loophole ( > 0.83 is required
for the CHSH inequality).

e Separation between trapped ions (d =1 m in the Maryland
08 experiment) is not enough to close the locality loophole
(d > 15 km is required for the Maryland 08 experiment).



Problem

44 years after Bell's original paper we do not have a
loophole-free Bell experiment!




Proposals for loophole-fre

= Eberhard-Kwiat: Bell inequalities for non-maximally entangled
states (assuming photodetectors with n > 0.67 efficiency).

=  Fry: spin measurements of atoms using a polarized pulse of laser
light.

= Grangier: homodyne measurements.

= Simon-Weinfurter: entanglement swapping between two atom-
photon pairs.

= Proposals for excluding some specific classes of local hidden-
variables: Santos, Zukowski.

= Bipartite Bell inequalities exhibiting exponentially-growing-with-
size nonlocality + two-photon hyperentanglement.



Entanglement, nonlocalit

= A state is (Popescu's) nonlocal if it cannot be prepared by local
Interactions and classical communication.

= A state violates a specific Bell inequality if the results of the
experiment cannot be reproduced by any possible model with
local properties and no communication.

= | prefer to call (Popescu's) nonlocality just “entanglement”.
= Entanglement is a physical resource.

= (My) nonlocality is the price realistic theories have to pay to
reproduce quantum mechanics.

= My point: “Measures of (Popescu’s) nonlocality” might be not
appropriate “measures of how conclusive a Bell experiment is”.
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Hardy’s nonlocality proof

Any pure two-qubit entangled, but not maximally
entangled, state can be written as

A+B+)+c,_

A+B-)+c_,

i) =c,, A-B+)+c_|A-B-)




Hardy’s nonlocality proof

Therefore,

P (A=+1 B=+1)=|c,,

n

‘ 2

L. Hardy, PRL 71, 1665 (1993).



Hardy’s nonlocality proof

B=+1

P(A=+1B=+1)=|c
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Hardy’s nonlocality proof

B=+1




Hardy’s nonlocality proof

B=+1
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Hardy’s nonlocality proof

B=+1

H b:+1
Never



Rotationally invariant proof

Prepare the 8-qubit state

\n>=%(\¢o¢o>+ﬁ\¢o¢1>+ﬁ\¢l¢o>)

where

o) =|v ) ®|p )= %Q0101>—|0110>—|1001>+|1010>)
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AC, PRL 91, 230403 (2003).



Rotationally invariant proof

The local (4-qubit) observables are:

F=- ¢o><¢o‘+‘¢1><¢1‘
G = —|Wo (o +|wi)(vi]

where

vi)="Pyld))
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Rotationally invariant proof

This Is Alice



Rotationally invariant proof

Let us suppose that she measures G...



Rotationally invariant proof

...and obtains the result 1



Rotationally invariant proof

Then, If Bob (whose measurement is spacelike separated from Alice’s
decision) measures F, he always obtains 1...



Rotationally invariant proof

...even if Bob rotates his apparatus



Rotationally invariant proof

He always obtains 1!



Rotationally invariant proof

Even if Alice has rotated her apparatus!



Rotationally invariant proof

In any way!



Rotationally invariant proof

Analogously, if Bob measures G and obtains 1...



Rotationally invariant proof

...then he can predict that, if Alice measures F, she
always obtains 1



Rotationally invariant proof

Even if Alice rotates her apparatus!



Rotationally invariant proof

...0or Bob!



Rotationally invariant proof

If Alice and Bob measure G, sometimes (in 8% of the
cases) they both obtain 1...



Rotationally invariant proof

In those cases, what if, instead of measuring G, they
had measured F?



Rotationally invariant proof

If EPR’s elements of reality do exist, then, at least in 8%
of the cases, both of them would have obtained F=1



Rotationally invariant proof

However, they NEVER both obtain 1!!!



Hardy’s nonlocality proof

B=+1

H b:+1
Never



Extended Hardy’s nonlocality proc
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Hardy’s is a particular case 0l

~1<P(A, =1,B,=1)-P(A, =1,B, = -1)
-P(A =-1B,=1)-P(A =-1,B, =-1)<0

(ABy)+(AB,)+(ABy)—(AB,)|<2
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Bell inequalities and quantum
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Bell inequalities and quantum |

= Entanglement witnesses
= State analysis and discrimination
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‘ = Entanglement-assisted reduction of communication



Entanglement-assisted reduction

Rules



Entanglement-assisted reduction

Rules
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Entanglement-assisted reduction

Rules

P(x,=0)=Pkx,=1)=1/2 P(x,=0)=Px,=1)=1/2
x,€{0,1} xz€ {0,1}
> <




Entanglement-assisted reductio

Rules
P(x,=0)=Px,=1)=1/2 Px,=0)=P(x,=1)=1/2
x,€{0,1} xz€ {0,1}
<
—>»> <
Vi€ {_191} V5€ {_191}

Py,=—1)=P@y,=1)=1/2 Py,=—1)=P@y,=1)=1/2



Entanglement-assisted reduction

Rules

=y
x,€{0,1} xz€ {0,1}
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Entanglement-assisted reduction

Rules

f=y,y,(~1""

x,€{0,1} S, xz€ {0,1}
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Entanglement-assisted reduction

Rules

f=y,y,(~1""

x,€{0,1} S, xz€ {0,1}
> > <
—>> < <
yAE{_lal} Sp Vz€ {_191}
\4 \4




Entanglement-assisted reductio

Optimal classical protocol

f=yy,(-D""

x,€40,1} S, =Y, x,€40,1}
—>»> > <
> < <

yAe{_lal} Sp= Vs Vi€ {_191}



Entanglement-assisted reductio

Optimal classical protocol

f=yy,(-D""

x,€40,1} S, =Y, x,€40,1}
—>»> > <
> < <
yAe{_lal} Sp= Vs Vz€ {_191}
\/ \4
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Entanglement-assisted reductic

Optimal classical protocol
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Entanglement-assisted reductic

Quantum protocol

If Alice and Bob share pairs in the state

v )= (01)-10)




Entanglement-assisted reductio

Quantum protocol
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Entanglement-assisted reductio

Quantum protocol
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Entanglement-assisted reductio
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Entanglement-assisted reductio

Quantum protocol
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Entanglement-assisted reductio

Quantum protocol

f=yy (D"
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Entanglement-assisted reductio

Quantum protocol

f=yy (D"
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Entanglement-assisted reductio

Quantum protocol

f=yy (D"
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Entanglement-assisted reduc

P =7 [P(AB, =1+ P(A B, =1)+ P(AB, =1)+ P(AB, =-1]

L LA+ (A +(AB)-(A8B)
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In the next lecture

= (GHZ: Beating EPR using their own weapons (perfect
correlations)

= Mermin inequality: Violation that grows exponentially
= Bipartite AVN

= Bipartite AVN with only single-qubit measurements



