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Introduction

Cryptography

Art of Cryptography

In a cryptosystem, if Alice wishes to send messages to Bob then:

I Alice must have an encoding key, which allows her to encrypt
her message.

I Bob also must have the matching decoding key, which allows
Bob to decrypt the encrypted message.
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Introduction

Cryptography

Private key cryptography
A simple, yet highly effective private key cryptosystem is the
Vernam cipher, sometimes called a one time pad cryptosystem.

Figure: One time pad cryptosystem.
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Introduction

Cryptography

Difficulties in Private Key

I The key bits cannot be reused for any future protocol.

I key bits must be delivered in advance, guarded assiduously until
used.

Possible Solutions

I Public key cryptosystems

I Security based on computational complexity
I Can be broken by quantum computers!

I Quantum cryptography

1. Security based on Laws of Physics
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Introduction

Quantum key distribution Protocol

Quantum key distribution Protocols (QKD)

I BB84 protocol [C. H. Bennett, G. Brassard, 1984].

{| 0z〉, | 1z〉, | 0x〉, | 1x〉}.

I Ekert’s QKD protocol [A. K. Ekert, PRL 91].

|Φ+〉AB =
1√
2

[| 0z〉A| 0z〉B + | 1z〉A| 1z〉B ]

=
1√
2

[| 0x〉A| 0x〉B + | 1x〉A| 1x〉B ] .

Key: {| 0z〉, | 0x〉} 7→ 0 and {| 1z〉, | 1x〉} 7→ 1.

Is QKD unconditional secure?
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Introduction

Quantum key distribution Protocol

Possible attacks on BB84-QKD protocols

An adversary could easily manipulate the apparatus such that the QKD
scheme becomes completely insecure.

For example, instead of encoding and measuring in two different bases,

Alice always use the same basis.

The eavesdropper can

measure the photon in

this basis without

disturbing it.

∴ She can learn the bit
perfectly.
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Introduction

Quantum key distribution Protocol

Possible attacks on Ekert’s protocols

Here, Alice and Bob assumed that |Φ+〉AB ∈ C2 ⊗ C2 is a two qubit state
and producing the following correlations:

P(ab|σxσx) = P(ab|σzσz) =
1

2
if a = b

P(ab|σxσz) = P(ab|σzσx) =
1

4
for all, a, b

A separable (hence insecure) state ρAB ∈ C4 ⊗ C4 also gives the same

correlations.

ρAB =
1

4

1∑
u,v=0

|u0z v1
z 〉A〈u0z v1

z | ⊗ |u0z v1
z 〉B〈u0z v1

z |

where the measurements are σz ⊗ I for the setting ‘0’ and I ⊗ σz for the
setting ‘1’.
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Introduction

Quantum key distribution Protocol

Possible attacks on Ekert’s protocols

Eve can now have a perfect copy of the local states of Alice and Bob, for
instance if they share the tripartite state

ρABE =
1∑

u,v=0

|u0z v1
z 〉A〈u0z v1

z | ⊗ |u0z v1
z 〉B〈u0z v1

z | ⊗ |u0z v1
z 〉E 〈u0z v1

z |

Thus, the security proofs only hold when the dimension of the system is
known, which cannot be assumed if the adversary supplies the devices.

For the security proof of quantum key distribution, it is, therefore,
assumed that the devices are trustworthy and work exactly as specified.



Device-independent quantum key distribution based on Hardy’s paradox

Introduction

Quantum key distribution Protocol

Possible attacks on Ekert’s protocols

Eve can now have a perfect copy of the local states of Alice and Bob, for
instance if they share the tripartite state

ρABE =
1∑

u,v=0

|u0z v1
z 〉A〈u0z v1

z | ⊗ |u0z v1
z 〉B〈u0z v1

z | ⊗ |u0z v1
z 〉E 〈u0z v1

z |

Thus, the security proofs only hold when the dimension of the system is
known, which cannot be assumed if the adversary supplies the devices.

For the security proof of quantum key distribution, it is, therefore,
assumed that the devices are trustworthy and work exactly as specified.



Device-independent quantum key distribution based on Hardy’s paradox

Introduction

Quantum key distribution Protocol

Possible attacks on Ekert’s protocols

Eve can now have a perfect copy of the local states of Alice and Bob, for
instance if they share the tripartite state

ρABE =
1∑

u,v=0

|u0z v1
z 〉A〈u0z v1

z | ⊗ |u0z v1
z 〉B〈u0z v1

z | ⊗ |u0z v1
z 〉E 〈u0z v1

z |

Thus, the security proofs only hold when the dimension of the system is
known, which cannot be assumed if the adversary supplies the devices.

For the security proof of quantum key distribution, it is, therefore,
assumed that the devices are trustworthy and work exactly as specified.



Device-independent quantum key distribution based on Hardy’s paradox

Introduction

Quantum key distribution Protocol

Assumptions (Hidden) for secure QKD

QKD is often claimed to be unconditionally secure but, it actually
does make certain assumptions.

I The assumption always present in any key agreement is that
Alice and Bob have secure laboratories. This assumption is
crucial and cannot be removed.

I A further assumption is that Alice and Bob have complete
control over their physical devices (i.e., only the quantum
channel is corrupted) and know their exact and complete
specification.
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Introduction

Quantum key distribution Protocol

Minimum assumptions

Goal: To reduce the above assumptions to a minimum, in particular, to
remove all assumptions about the exact working of the physical devices.

I Therefore, the devices could be manufactured by the adversary.

I The security should only rely on testable features of the devices, for
example, the statistics of their behaviour.

I The honest parties would then only need to trust their ability to do
classical calculations (to compute the statistics) and the shielding of
their laboratories.
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Introduction

What is Device-independent QKD Protocol?

Device-independent QKD

In a device-independent QKD analysis, Alice and Bob would not
only distrust the source of particles, but they would also distrust
their measuring apparatuses.

I They assume that the measurement directions may for
instance drift with time due to imperfections in the
apparatuses, or the entire apparatuses may be untrusted
because they have been fabricated by a malicious party.

I Also they cannot even make assumptions about the dimension
of the Hilbert space in which they are defined.
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Introduction

What is Device-independent QKD Protocol?

Device-independent quantum key distribution

X 

a 

Alice 

Y 

b 

Bob 

Figure: Alice and Bob see their quantum devices as black boxes producing classical outputs, a and b, as a
function of classical inputs X and Y.

Goal of Alice & Bob: From the observed statistics, and without
making any assumption on the internal working of the devices, they
should be able to conclude whether they can establish a secret key secure
against a quantum eavesdropper.
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Introduction

What is Device-independent QKD Protocol?

Previous works on Device-independent QKD

I In 2007, Aćın et al., introduced a device-independent QKD
protocol based on Bell-CHSH inequality secure against
collective attacks.

I In 2011, Masanes et al. provided a more general security
scheme based on causally independent measurement
processes.

But the security of all these protocols is undermined as the
measurement at step k may depend on the classical or quantum
memory of all previous inputs and outputs.

Recently secure protocols where device re-use is allowed were
introduced.
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Hardy’s Paradox

Hardy’s Paradox [L. Hardy, PRL 1992].

Consider a physical system consisting of two subsystems shared between
Alice and Bob.

A0/A1

↓
B0/B1

↓

Alice Bob

↓
a = 0/1

↓
b = 0/1

Hardy’s conditions: P(A0 = 0,B0 = 0) = q > 0
(L.Hardy ,PRL, 92) P(A1 = 0,B0 = 0) = 0

P(A0 = 0,B1 = 0) = 0
P(A1 = 1,B1 = 1) = 0

This set of conditions cannot be satisfied by any LHVT.
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Hardy’s Paradox

Proof:

A0/A1

↓
B0/B1

↓

Alice Bob

↓
a = 0/1

↓
b = 0/1

Hardy’s Conditions
P(A0 = 0, B0 = 0) = q > 0
P(A1 = 0, B0 = 0) = 0
P(A0 = 0, B1 = 0) = 0
P(A1 = 1, B1 = 1) = 0

First P(A0 = 0,B0 = 0) = q > 0
Second P(A1 = 0,B0 = 0) = 0 =⇒ A1 = 1
Third P(A0 = 0,B1 = 0) = 0 =⇒ B1 = 1

Last P(A1 = 1,B1 = 1) = 0 contradiction...



Device-independent quantum key distribution based on Hardy’s paradox

Hardy’s Paradox

Proof:

A0/A1

↓
B0/B1

↓

Alice Bob

↓
a = 0/1

↓
b = 0/1

Hardy’s Conditions
P(A0 = 0, B0 = 0) = q > 0
P(A1 = 0, B0 = 0) = 0
P(A0 = 0, B1 = 0) = 0
P(A1 = 1, B1 = 1) = 0

First P(A0 = 0,B0 = 0) = q > 0

Second P(A1 = 0,B0 = 0) = 0

=⇒ A1 = 1
Third P(A0 = 0,B1 = 0) = 0 =⇒ B1 = 1
Last P(A1 = 1,B1 = 1) = 0 contradiction...



Device-independent quantum key distribution based on Hardy’s paradox

Hardy’s Paradox

Proof:

A0/A1

↓
B0/B1

↓

Alice Bob

↓
a = 0/1

↓
b = 0/1

Hardy’s Conditions
P(A0 = 0, B0 = 0) = q > 0
P(A1 = 0, B0 = 0) = 0
P(A0 = 0, B1 = 0) = 0
P(A1 = 1, B1 = 1) = 0

First P(A0 = 0,B0 = 0) = q > 0
Second P(A1 = 0,B0 = 0) = 0 =⇒ A1 = 1

Third P(A0 = 0,B1 = 0) =

0 =⇒ B1 = 1
Last P(A1 = 1,B1 = 1) = 0 contradiction...



Device-independent quantum key distribution based on Hardy’s paradox

Hardy’s Paradox

Hardy’s argument and two qubit entangled state

The product states associated with all the conditions

|φ3〉 = |A0 = 0〉|B0 = 0〉; P(A0 = 0,B0 = 0) = q > 0
|φ2〉 = |A1 = 0〉|B0 = 0〉; P(A1 = 0,B0 = 0) = 0
|φ1〉 = |A0 = 0〉|B1 = 0〉; P(A0 = 0,B1 = 0) = 0
|φ0〉 = |A1 = 1〉|B1 = 1〉; P(A1 = 1,B1 = 1) = 0,

where |Xi = j〉 denotes the eigenstate of the observable Xi for the outcome j .

Let |X1 = 0〉 = αX |X0 = 0〉+ βX |X0 = 1〉 and
|X1 = 1〉 = β∗X |X0 = 0〉 − α∗X |X0 = 1〉, where |αX |2 + |βX |2 = 1 and
0 < |αX | < 1 for X = A,B.

Let S = {|φ0〉, |φ1〉, |φ2〉}, then dim(S)=3.

If |ψ〉 satisfies the Hardy’s conditions, then |ψ〉 ⊥ S . i.e., |ψ〉 ∈ S⊥.

∴ |ψ〉 is unique pure entangled state [G. Kar, PLA 1997].
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Hardy’s Paradox

Gram-Schmidt orthonormalization to find the Hardy-type state |ψ〉:

|φ′0〉 = |φ0〉
|φ′i 〉 =

|φi 〉−
∑i−1

j=0 〈φ
′
j |φi 〉|φ′j 〉√

1−
∑i−1

j=1 |〈φ
′
j |φi 〉|2

i = 1, 2.

|φ0〉 = | A1 = 1〉| B1 = 1〉
|φ1〉 = | A1 = 0〉| B0 = 0〉
|φ2〉 = | A0 = 0〉| B1 = 0〉
|φ3〉 = | A0 = 0〉| B0 = 0〉

∴ The Hardy state |ψ〉:

|ψ〉 =
|φ3〉 −

∑2
i=0〈φ′i |φ〉|φ′i 〉√

1−
∑2

i=0 |〈φ′i |φ3〉|2
.

The probability q for this state:

q = |〈ψ|φ3〉|2 = 1−
∑7

i=1 |〈φ′i |φ3〉|2 = |αAαB |2|βAβB |2
1−|αAαB |2 .

The maximum value of q is 5
√
5−11
2 = 0.0901699 for

|αA| = |βB | =
√√

5−1
2 [T. F. Jordan, PRA 1994].
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Hardy’s Paradox

Device-independence of Hardy-test [Rabelo et.al., PRL 2012]

If the maximum success probability qmax = 5
√
5−11
2 is observed in a

Hardy test, the state of the system is equivalent to

|ψH〉12 ⊗ | η〉1′2′ ,

where |ψH〉12 is the unique two-qubit Hardy state for qmax .
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Device-independent QKD based on Hardy’s test

Device-independent QKD based on Hardy’s argument

S1. Alice and Bob share many copies of Hardy states |ψ〉

21Alice Bob
|yÒ

S2. For each |ψ〉, Alice randomly chooses whether to measure
A0, or A1 on her qubit. Bob does the same, measures (B0

or B1) on his qubit.

S3. Both announce their results but not measurement settings
for all runs.
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A0/A1
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Device-independent QKD based on Hardy’s test

Cont....Protocol

S4. Check for eavesdropping:

For some randomly selected runs, Alice and Bob both
announce their measurement choices (Ai ,Bj) and check
the corresponding outcomes (a, b) are satisfied the
Hardy’s argument.

S5. From rest of the runs they generate the desire key:
For |ψ〉,

P(A1 = 0,B1 = 0) > P(A0 = 0,B0 = 0) > 0 and
P(A0 = 0,B1 = 0) = P(A1 = 0,B0 = 0) = 0.

Hence, they have correlated settings for (0, 0) outcomes.
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Device-independent QKD based on Hardy’s test

Table for generating key

Run
Alice Bob Useful

Measurement Outcome Measurement Outcome for Key
basis(As) (a) basis(Bt) (b) (Bit value)

...
...

...
...

...
i1 A0 0 B1 1
i2 A0 0 B0 0 X(0)
i3 A1 1 B1 0
i4 A0 1 B1 1
i5 A1 0 B1 0 X(1)
i6 A0 0 B0 0 X(0)
i7 A0 1 B0 1
i8 A1 0 B1 0 X(1)
...

...
...

...
...

ik A1 1 B0 1
ik+1 A0 0 B1 1
ik+2 A1 0 B1 0 X(1)
ik+3 A1 1 B0 1
...

...
...

...
...
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Device-independent QKD based on Hardy’s test

Device-independent QKD

I Alice and Bob choose their settings and the Hardy state |ψ〉
corresponding to maximum probability of success qmax = 0.0901699
i.e.,

|αA| = |βB | =

√√
5− 1

2
and |ψ〉 = |ψH〉.

I For |ψH〉,
P(A0 = 0,B0 = 0) = 0.0901699 < P(A1 = 0,B1 = 0) = 0.236068.

So, Alice and Bob further drop some runs of settings 1 to make
equal number of 0s and 1s in the key.

I Key rate: 2∗0.0901699
4 = 0.04509.

I But for non-uniform settings e.g.,
(A0/B0 : A1/B1) = (0.618 : 0.382), the key rate is 0.06888.
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So, Alice and Bob further drop some runs of settings 1 to make
equal number of 0s and 1s in the key.

I Key rate: 2∗0.0901699
4 = 0.04509.

I But for non-uniform settings e.g.,
(A0/B0 : A1/B1) = (0.618 : 0.382), the key rate is 0.06888.
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Hardy paradox in Noise Case

P(A0 = 0,B0 = 0) ≥ q − ε,
P(A1 = 0,B0 = 0) ≤ ε,
P(A0 = 0,B1 = 0) ≤ ε,
P(A1 = 1,B1 = 1) ≤ ε.

Goal: For ε > 0 small enough the protocol remains secure against
general attacks.

In other words,

Pguess(A|a = b = 0) = max
As

P(As |a = b = 0) ≤ G (ε).

where G is a concave function.
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Device-independent QKD based on Hardy’s test

Noisy Case

How to calculate G?

To find G we first use Bayes rule to express the conditional probability
P(A0|a = 0, b = 0) as

P(A0|a = 0, b = 0) =
x

x + y

where

x ≡ P(a = 0, b = 0|A0,B0)P(A0,B0) +

P(a = 0, b = 0|A0,B1)P(A0,B1)

y ≡ P(a = 0, b = 0|A1,B0)P(A1,B0) +

P(a = 0, b = 0|A1,B1)P(A1,B1)

Similarly we have P(A1|a = 0, b = 0) = y
x+y .
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Device-independent QKD based on Hardy’s test

Noisy Case

Guessing probability

Let g0 = P(A0|a = 0, b = 0), g1 = P(A1|a = 0, b = 0) and

G ≥ max{g0, g1}.
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Figure: Guessing probability with
uniform settings.
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Figure: Non-uniform settings: 0 is
chosen with the probability 0.61803405.
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Noisy Case

Key rate
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A: uniform settings, no dropping
B: uniform settings, dropping

C: nonuniform settings, no dropping
D: nonuniform settings, dropping

ρ(η) =
(1− η)

2
I + η|ψH〉〈ψH |
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Conclusion

I In our QKD protocol, the bits used for secret key do not come
from the results of the measurements on an entangled state
but from the choices of settings which are harder for an
eavesdropper to influence.

I Instead of a single security parameter (a violation of some Bell
inequality) a set of them is used to estimate the level of trust
in the secrecy of the key.

I Ref.: arXiv:1308.6447.
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