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Quantum Information Theory

Born out of Classical Information Theory

1

Mathematical theory of storage, transmission & processing of information

Quantum Information Theory: how these tasks can be accomplished using

guantum-mechanical systems
as information carriers (e.g. photons, electrons,...)
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The underlying_ —;@ively new featuD
quantum mechanics

These can be exploited to:

- Improve the performance of certain
Information-processing tasks

- accomplish tasks which are
Impossible in the classical realm !
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= He posed 2 questions:
= (Q1) What is the limit to which information
can be reliably compressed ?

srelevance: physical limit on storage

= (Q2) What is the maximum amount of information that can
be transmitted reliably per use of a communications

channel ?

= relevance: noise in communications channels

= Information = data =signals= messages = outputs of a source
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W CAMBRIDGE Classical Information Theory:1948, Claude Shannon

= He posed 2 questions:

= (Q1) What is the limit to which information
can be reliably compressed ?

= (Al) Shannon’s Source Coding Theorem:

data compression limit = Shannon entropy of
the source

= (Q2) What is the maximum amount of information that can
be transmitted reliably per use of a communications

channel ?

= (A2) Shannon’s Noisy Channel Coding Theorem:

maximum rate of info transmission: given in terms of the
mutual information
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= Shannon: information —s==b—  ncertainty

= Information gain = decrease in uncertainty of an event
= measure of information <= measure of uncertainty

Surprisal or Self-information:
= Consider an event described by a random variable (r.v.)

X ~ p(X) (p.m.f); ° X € J (finite alphabet)
= A measure of uncertainty in getting outcome X
y(x)=—logp(x) e

= a highly improbable outcome is surprising!

log =log,

= only depends on P(X) -- notonvalues X takenby X
= continuous; additive for independent events
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= Defn: Shannon entropy H(X) of a discrete r.v. X ~ p(x),

Xed
H(X) =E(r(X)) == p(x)log p(x) log = log,
xed
= Convention: 0log0=0 -~ Eviggwlog w=0

(If an event has zero probability, it does not contribute to the entropy)

H(X) : a measure of uncertainty of the r.v. X

= also quantifies the amount of info we gain on average
when we learn the value of ¥

H(X)=H(py)=H({p(x)}) Py ={P(X)} _
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X ~ p(x) J €{0,1} P(0) = p; p(1) =1-p;

H(X)=-plog p—(1-p)log(l-p) =h(p)

] 1.0 T
Properties I

o P=0=x=1 h(p)=0 h(p) +
P=1=Xx=0 no uncertainty I

O p:O5h(p):1 maximum

uncertainty

® Concave function of P

00 R S S |
® Continuous function of [
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Operational Significance of the Shannon Entropy

= optimal rate of data compression for a
classical memoryless (i.1.d.) information source

Classical Information Source

= Outputs/signals : sequences of letters from a finite set J

J :source alphabet
(i) binary alphabet J €{0,1}
(i1) telegraph English : 26 letters + a space

(1i1) written English : 26 letters in upper & lower case + punctuation



& CAMBRIDGE  Simplest example: a memoryless source
= successive signals: independent of each other

«characterized by a probability distribution { P(U)}__

=On each use of the source, a letter U € J emitted with prob P(U)

Modelled by a sequence of i.i.d. random variables
Uu,u,,. .U | U ~p) ueJ
p(u)=PU, =u), ued v1<k<n.

= Signal emitted by 1 uses of the source: Q — (u1’ uz,___, un) — Q(”)

p(u)=PU, =u,U, =u,,...,.U, =u,)=p(u,) p(u,)...p(u,)

= Shannon entropy of the H (U) '— —Z p(u) |Og p(U)

source.:
ued
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(A) There is redundancy in the info emitted by the source

-- an info source typically produces some outputs more
frequently than others:

In English text ‘e’ occurs more frequently than “z’.

--during data compression one exploits this redundancy in the
data to form the most compressed version possible

= Variable length coding:

-- more frequently occurring signals (e.g ‘e’) assigned shorter descriptions
(fewer bits) than the less frequent ones (e.g. ‘z’)

= Fixed length coding:
-- identify a set of signals which have high prob of occurrence: typical signals

-- assign unique fixed length (I) binary strings to each of them

-- all other signal (atypical) assigned a single binary string of same length (I)
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= Defn: Consider an 1.1.d. info source :
Uu,u,,.U.; pu);uel

Forany &>0, sequences U= (U,U,,...u )€ J" for which

2—n(H(U)+8) < p(Ul,Uz’---Un) < 2-”(H(U)—8)’

where H (U ) — Shannon entropy of the source

are called g — typical sequences

Tg(n) = & —typical set =set of & — typical sequences

s| Note: Typical sequences are almost equiprobable

vueT™, pu)=2""
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Operational Significance of the Shannon Entropy

= (Q) What is the optimal rate of data compression for
such a source?

[ min. # of bits needed to store the signals emitted
per use of the source] (for reliable data compression)

= Optimal rate is evaluated in the asymptotic limit N — o
N = number of uses of the source

(n)

error

\

= One requires —>0;:;NnN—>w

= (A) optimal rate of data compression = H (U)

Shannon entropy of the source
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Compression-Decompression Scheme

Suppose U,,U,,..U,; U, ~p(u); ueJ isani.i.d. information
Shannon entropy H (U ) source

= A compression scheme of rate R:

E,:u=(u,u,,..u) > X=X XX ) 40,1
eJ”
When is this a compression scheme? m, = I_nR—|

= Decompression: z)n;{(),1}m“ > " o

= Average probability of error: p{V= Z p(U)P (D, (E,(U)) =)

= Compr.-decompr. scheme reliable if py —>0 as N—>®
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= Shannon’s Source Coding Theorem:

Suppose U,,U,,..U,; U, ~p(u); ued isani.i.d. information
Shannon entropy H (U ) source

= Suppose R > H (U): then there exists a reliable compression
scheme of rate R for the source.

= If R<H(U) then any compression scheme of rate R

will not be reliable.
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&V CAMBRIDGE ENtropies for a pair of random variables

= Consider a pair of discrete random variables
X ~p(x); xedy and Y ~p(y);yeld,

Given their joint probabilities P(X =X,Y =y)=p(X,y) ;
& their conditional probabilities P(Y =y | X =x) = p(y|X) ;

= Joint entropy: H(X,Y)::—Z Z p(x,y) log p(x,y)

Xxely yely
= Conditional entropy:

H(Y [ X):= > p(x)H(Y | X =X) H(Y|X)>0

XEJX

=3 p(x)| -3 p(y[x) log p(y|x)|==2 > P(x.y) log p(y|x)

Xedy yedy xely yely
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= Relative Entropy: Measure of the “distance” between two
probability distributions p={p(x)} . ; q={a(x)} .

pP(x)
D _ |
(plla)=>_ p(x) og(q( )j

xel

convention: 0log (gj =0 : ulog (%) =00 YUu>0
u

e D(pllg)=0

e D(pl|lg)=0 if&onlyif P=C
= Nnot symmetric;

= BUT not a true distance « does not satisfy the triangle
Inequality
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= Mutual Information: Measure of the amount of info one
r.v. contains about another r.v. X ~ p(x), Y ~ p(y)

. p(X, y)
1(X,Y):= I
e ;y:p(x 2 Og(p(x)p(y)j

I(X :Y) — D(va ” Px pY)
P ={ P Y5 Px ={P(X)} 5y ={P(Y)],

= Chain rules: H(X,Y)=H(Y | X)+H(X)
(X :Y)=H(X)+H((Y) -H(X,Y)
=H(X) -H(X]Y)
=H() -H(|X) ’
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Let X ~ p(x), Y ~ p(Y) be discrete random variables: Then,

= H(X)>0, with equality if & only if X is deterministic
« H(X) <log|d|,if xeJ °
= Subadditivity: H(X,Y)<H(X)+H(Y),

= Concavity: if Px & P are 2 prob. distributions,
H(pr +(1_l)pv)Zﬂ'H(px)"F(l_/l)H(pY)’
= H(Y | X) >0, orequivalently H(X,Y)>H(Y), ¢

= 1[(X:Y)20 withequalityif &onlyif X & Y

are independent
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= So far.......

. - ’ t -
= Classical Data Compression: answer to Shannon’s 1° question

(Q1) What is the limit to which information can be reliably
compressed ?

(A1) Shannon’s Source Coding Theorem:
data compression limit = Shannon entropy of the source

= Classical entropies and their properties
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= Shannon’s 2™ question

= (Q2) What is the maximum amount of information that can
be transmitted reliably per use of a communications

channel?

The biggest hurdle in the path of efficient transmission of info
IS the presence of noise in the communications channel

= Noise distorts the information sent through the channel.

input

noisy channel

output

output #* input

—>

= To combat the effects of noise: use error-correcting codes
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To overcome the effects of noise:

Instead of transmitting the original messages,

-- the sender encodes her messages into suitable codewords
-- these codewords are then sent through (multiple uses of)

the channel
Alice Bob
codeword
_ > encoding [— — N(n) > decoding-—?
Alice’s Input output Bob’s
message S N uses of N D, inference

s Error-correcting code: C,=(,,D,):
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= The idea behind the encoding:

= To Introduce redundancy in the message so that upon
decoding, Bob can retrieve the original message with a
low probability of error:

= The amount of redundancy which needs to be added -
depends on the noise in the channel
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Example

= Memoryless binary symmetric channel (m.b.s.c.)

= It transmits single bits

= effect of the noise: to flip
the bit with probability p

Repetition Code

codewords

= the 3 bits are sent through 3 successive uses of the m.b.s.c.

1_
O>p<i :
1 P > 1
1-p
= Encoding: o > 000
1 > 111
m S
HPPOse 000 m.b.s.c.
codeword

> 010

(Bob receives)

= Decoding : (majority voting)

010

> (0 (Bob infers)



I UNIVERSITY OF
&Y CAMBRIDGE

= Probability of error for the m.b.s.c. :

= without encoding = p

= With encoding = Prob (2 or more bits flipped) :=q

Inference possible inputs output of 3 uses
of am.b.s.c.

0" O®O T 010
1 < @1@ —

= Prove: q<pifp<1/2 -- In this case encoding helps!

= (Encoding - Decoding) : Repetition Code.
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= | Information transmission is said to be reliable if:
--| the probability of error in decoding the output
vanishes asymptotically in the number of uses of the channel

s [AIMm: to achieve reliable information transmission

whilst optimizing the

= the amount of information that can be sent

per use of the channel
—

= | The optimal rate of reliable info transmission: <capacity >

N~
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Discrete classical channel N
J, = input alphabet; J, =output alphabet

N uses of N

> (n) >
N output X(n)

input x"

= conditional probabilities ;

p(y™ [x™)

= known to sender & receiver
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Jy

= Shannon proved: it is possible to choose a subset of input

_ sequences--
such that there exists only :

— 1 highly likely input corresponding to a given input

= Use these input sequences as codewords
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J N %

Alice noisy channel Bob
M finite set of messages
(n)
me M x (M) y m' e M
>l encoding > N(n) > decoding |——>
Alice’s Input output _Bc;b S
inference
Message S N uses of N D,

(n) _ .
= codeword: X — (X11X2,---,Xn), (n) (n)
(n) .
output: y(”) =Y, Yoreens Vo ); NV p(y™™ | x*)

= Error-correcting code: C, =(&E,,D,):
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N
me M () y™ m'e M
> encoding | N > decoding |——>
Alice’s Input output _Bob S
message S P,  inference

= ITm =m then an error occurs!

= Info transmission is reliable if: Prob. of error—0 as N —> ®©

= Rate of info = number of bits of message transmitted

transmission per use of the channel -

= Aim: achieve reliable transmission whilst maximizing the rate
= Shannon: there is a fundamental limit on the rate of reliable

Info transmission ; property of the channel

= Capacity: maximum rate of reliable information
transmission
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= Shannon in his Noisy Channel Coding Theorem:

-- obtained an explicit expression for the capacity of a

memoryless classical channel n

p(y™ [ xX™) =] ] p(y; I %)

I=1

Memoryless (classical or qguantum) channels

= action of each use of the channel is identical and it is
Independent for different uses

-- 1.e., the noise affecting states transmitted through the
channel on successive uses Is assumed to be uncorrelated.
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= Classical memoryless channel: a schematic representation

X ~ p(x) Y
_ > N >
input X output Y
R (T R

= channel: a set of conditional probs. { P(Y| X)}

« Capacity| C(N) = max (X :Y)

AP} AN

input distributions mutual information

(X :Y)=H(X)+H(Y)=H(X.Y)
Shannon Entropy H(X)= —Z p(x)log p(x)
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= Shannon’s Noisy Channel Coding Theorem:

= For a memoryless channel:

X ~ p(x) Y
> N S

input OUtpUt

p(y [x)

Optimal rate of reliable info transmission = capacity

C(N)= max I(X:Y)
{P(¥)}

® Sketch of proof
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= Supposedly von Neumann asked Shannon to call this quantity
entropy, saying

“You should call it ‘entropy’ for two reasons, first, the function is
already in use in thermodynamics, second, and most importantly,
most people don’t know what entropy really is, & If you use
entropy’ in an argument, you will win every time.”
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Relation between Shannon entropy & thermodynamic entropy
_ - total # of
S :=klogQ microstates

= Suppose the ™ microstate occurs with prob. P,

consider V  replicas of the system

= Then on average Vv_=~[vp, ] replicas are in the ¢ state

v

s |Total # of O V! v

Vg Vo v,
V'V, LV,

: by Stirling’s
microstates v, !Vz !"Vr ! (by g’s)

= Th.dyn.entropy of compound S — _ky R
system of V replicas v Zr: P 109 P,

'\

S=S,/v= —[(Z p,logp, =k H ({ pr})< Shannon
o entropy




