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Methods for multi-loop computations

» Introduction:

1. Multi-loop amplitudes
2. Tensor Reduction — scalar integrals

» ldentities for reduction to Mis:

1. Integration-by-parts identities
2. Lorentz identities

3. Symmetry relations

4. Schouten identities

» The Laporta Algorithm
1. Reduze 2.
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Methods for multi-loop computations

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD
Cross section for N-particle scattering process:

« as\?2
oN = O’;\?) + 05\}) (ﬁ) + U;\f) (ﬁ) + ...
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Methods for multi-loop computations

Prologue - Perturbative calculations

For the sake of simplicity we work in (massless or massive) QCD
Cross section for N-particle scattering process:

2
o = o+ o) (22) 4o (25) 4.

2w 2w
> LO:
ol z/|MS\?)\2d¢N
» NLO:
olh) z/2Re (M7 M) d¢N+/|M5\?)ﬂ\2d¢N+1
> NNLO:

o® / 2Re (M‘ﬁ)*/vtﬁ) doy + / 2Re (M%M%) dPpat

L
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Point is: To get to NNLO we miss /\/l(,i)
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Methods for multi-loop computations

Point is: To get to NNLO we miss /\/l(,i)

» For a QCD process with N external particles

all momenta py, ..., py are incoming
» Scattering amplitude is My = S(ps, ..., pn)

» How can we compute it up to two loops or more?

6
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Methods for multi-loop computations

» In perturbative QCD:

as

S(le-wPN) = 8(0)(1317 "~apN) + (7) S(l)(ph ~"7pN)

+(

as
2w

2
2
) 5(2)(p17 ey PN) F e



Methods for multi-loop computations

» In perturbative QCD:

(e
S(Pl,-~~>PN) = 8(0)(P17 "~apN) + (ﬁ) S(l)(ph ~~-7PN)
as\? @)
+<27T) S (p1y .oy pn) F ...

» Every term can be expanded in Feynman diagrams

— Diagrammatic approach to multi-loop computations !
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Methods for multi-loop computations

Example (in massless QCD):  q(p1) + G(p2) = Z(ps3) + Z(ps)
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Methods for multi-loop computations

Example (in massless QCD):  q(p1) + G(p2) = Z(ps3) + Z(ps)
> SO(py,...,ps) =~ 2 tree-level diagrams
> 8(1)(p1, ..y pa) = 10 one-loop diagrams
> S@(py, ..., ps) ~ 143 two-loop diagrams

» SC)(p1, ..., ps) = 2922 three-loop diagrams

There is no escape from combinatorics!
Things become very soon very nasty !
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Methods for multi-loop computations

qq — ZZ at I-loop, take sum of all Feynman Diagrams:

M
S() p17' ap4 Z‘T:/ pla"7p4)
f=1
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Methods for multi-loop computations

qq — ZZ at I-loop, take sum of all Feynman Diagrams:

M
/
S( p17' 7p4 ZI P1; .- '7p4)
f=1
where:

TH(pi; ki
]'-()(le . pa) = €5(p3) €5 (pa) T(p2) /HQ kjﬁ u(p1)
-t
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Methods for multi-loop computations

qq — ZZ at I-loop, take sum of all Feynman Diagrams:

M
S() p17' 7p4 Z‘T:/ pla"7p4)
f=1

where:
T i ki
FO (oo pa) = (p3) & (pa) 8(p2) /H@ k# u(pn)
. t
with:

> u(p1), G(p2) are the spinors of the incoming quarks.
> D; are t different propagators.

» TH(p;; ki) is a rank two tensor built out of {p!, k' A, gh¥}

(This structure easily generalises to processes with more/different external legs)
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Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor TH:

10 /36



Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta

from the tensor THV:
kH kY
Dd
/ (K2 + m2)2

10 /36



Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor TH:

kH kv
d _ 2 v
/D k(k2 2)27C(m ) gt

10 /36



Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor TH:

kH kv
d _ 2 v
/D k(k2 2)27C(m ) gt

kr kv 1 m?
v d _ 2 d 2
g" /@ ki(k2+ 2)2_C(m)d N /z) k<k2 e 2)2)—C(m)d

10 /36



Methods for multi-loop computations

Tensor Reduction 1:

Exploiting Lorentz invariance we can project out all loop momenta
from the tensor TH:

kH kv
d _ 2 v
/D k(k2 2)27C(m ) gt

kr kv 1 m?
v d _ 2 d 2
g" /@ v 2)2_C(m)d *)/:D k<k2 2 e 2)2)_C(m)d

so that

[uy

1 1
C(m?) == Dl ——— — Q/Qdki
(m*) d(/ ym " (K2 + m2)?
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Tensor Reduction 2:

More interesting example

kM kY ptp”
@dk —C 2 2\ _uv C 2 2
/ (k2 + m?)((k — p)2 + m2) 1(m*, p7) g"" + Go(m*, p°) 2

multiplying this equation once by g"¥, once by p*p”

k2
/@delDz = d Ci(m?, p?) + Co(m?, p?)

d (k'P)Z, 2 2 2 2 2
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Methods for multi-loop computations

Tensor Reduction 2:

More interesting example

kM kY ptp”
@dk —C 2 2\ _uv C 2 2
/ (k2 + m?)((k — p)2 + m2) 1(m*, p7) g"" + Go(m*, p°) 2

multiplying this equation once by g"¥, once by p*p”

k2
/@delDz = d Ci(m?, p?) + Co(m?, p?)

d (k'P)Z, 2 2 2 2 2
D k7D1D2 =p* [G(m?, p?) + Co(m?, p?) ]

and inverting for C; and C, we find:

2 L o)2
Cl(m2,p2) = ! (/@dk k _ i/@dkM)
(d-1) DDy p? D1 D,

1 k - p)? k2
Co(m?, p?) = d /Qdk( p) _ /dei
(d — 1) p2 D1D2 D1 D2
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Methods for multi-loop computations

These results can be generalised to any number of loops (qG — ZZ again):

!
v - T (pi; ki
T prs ) = & (p2) €4 (o) () ( JTTo% o) D;) o(p)
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Methods for multi-loop computations

These results can be generalised to any number of loops (qG — ZZ again):

Fipr, s pa) = & (p3) €5 (pa) 0(p2) ( /1 H@ b oF ”’b?)u(fvl)

becomes:

FO(pry vy pa) = €5 (ps) €k (ps) G(p2) (Z Ci(p1, -, Pa) T,-“"(l)j)) u(pr)

i=1

where now all dependence from loop momenta k; is contained into the scalar
coeffcients C;.

Tensorial structure is factored out from integrals!
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Methods for multi-loop computations

These results can be generalised to any number of loops (qG — ZZ again):

!
v - T (pi; ki
T prs ) = & (p2) €4 (o) () ( JTTo% o) D;) o(p)

becomes:

FO(pry vy pa) = €5 (ps) €k (ps) G(p2) (Z Ci(p1, -, Pa) T,-“"(l)j)) u(pr)

i=1

where now all dependence from loop momenta k; is contained into the scalar
coeffcients C;.

Tensorial structure is factored out from integrals!

We have to compute the Ci(py, ..., pn) !
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Methods for multi-loop computations

Through tensor reduction every coefficients is given by a linear
combination of scalar integrals of the form

i a

SP .S
I(pj)=/| [ 29k~
P Dyt ... D"

where:

p scal. prod. S;=qn-qm, with qi=pi,...,pn, ki, ..., ki,

7 different (euclidean) propagators D; = (qu + mf),

and aj, b;j are just integer powers.



Methods for multi-loop computations

Irreducible Scalar Products

Given N external momenta, / loop momenta

I 1
p=1 (N + 5~ 2) scalar prod. with 1 loop momentum
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Methods for multi-loop computations

Irreducible Scalar Products

Given N external momenta, / loop momenta

I 1
p=1 (N + 5~ 2) scalar prod. with 1 loop momentum

Given the 7 different propagators, if p >7 — o =p — 7 irreducible
scalar products

14 /36
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The others can be expressed as linear combination of propagators!
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Methods for multi-loop computations

The others can be expressed as linear combination of propagators!

For example integral seen before:

k-
/@deE’)’, with D =k>+m?, Dp=((k—p)?+m?),
12

then:

1

kep=3 [(R 4 m?) = (k= p + m?) 4 p?] =  [D1 — D+ 7]

N |
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Methods for multi-loop computations

The others can be expressed as linear combination of propagators!

For example integral seen before:

k-
/de P with D =k>+m?, Dp=((k—p)?+m?),
DD’
then:
kop= 5[(k2+m2)—((k P+ m?) +p’] = [Dl—D2+p2]

and so finally:

fo
D1 D2

1
D9 k D% /@ k—— )
(/ / +p D1D>
2
p—/@f’k !
2 DD,

— k - pis a reducible scalar product !

15 /36



Methods for multi-loop computations

Note that:

» at 1 loop all scalar products are always reducible !

1. 2 legs: 2 denominators, and 2 scalar products k - k and k- p
2. 3 legs: 3 denominators, and 3 scalar products k - k, k- p1, k- p2

3. etc ...
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Methods for multi-loop computations

Note that:

» at 1 loop all scalar products are always reducible !

1. 2 legs: 2 denominators, and 2 scalar products k - k and k- p
2. 3 legs: 3 denominators, and 3 scalar products k - k, k- p1, k- p2

3. etc ...

» Starting from two loops this is not necessarily true anymore!
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Methods for multi-loop computations

my
2
p m

Example: massive two-loop Sunrise > m
w

m

3 Denominators: Di=kK+m?, Do=P+mi, D3=(k—1I—p)?+m?

5 Scal. products: Si=k-k,S=1-1,S3=k-1,S=k-p, Ss=1-p
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Methods for multi-loop computations

my
2
p m

Example: massive two-loop Sunrise > m
w

m

3 Denominators: Di=kK+m?, Do=P+mi, D3=(k—1I—p)?+m?

5 Scal. products: Si=k-k,S=1-1,S3=k-1,S=k-p, Ss=1-p

2 scalar products are irreducible! — {Sis=k-p, S5 =1-p}

So the most general integral in two-loop sunrise graph is

ng cns
5.4 Sg

Z(m, n2, n3; ng, ns) = /@dk i 4 75
D D% D

with ny, na,n3, na,ns > 0.
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Methods for multi-loop computations

Alternative approach — integral families (see Reduze 2)

» Instead of irreducible scalar products we introduce auxiliary
denominators

» For example, two-loop sunrise again. Instead of taking
{D17 D27 D3a kpa IP}

» We can take two new denominators

{Dh D, Ds, Di= (k—p)?, Ds:(/—P)2}

18

36



Methods for multi-loop computations

» Integral Family for reduction of the two-loop massive sunrise becomes:

Dk D]

Z(m, n2, n3, Na, ns) :/ ni,n,n3 >0 ng,ns €7
A1 2 13 a2 05 0 5 112, =Y, ) .
D" DY D D} D}



Methods for multi-loop computations

» Integral Family for reduction of the two-loop massive sunrise becomes:

D% DI
I(nl, n2, N3, N4, I75) = Dfl Dgz D§73 D[;m D5n5 )

> In this way all scalar products can be expressed as linear combinations of
the 5 denominators !

m,n2,n3 >0, nma,ns €7Z.



Methods for multi-loop computations

» Integral Family for reduction of the two-loop massive sunrise becomes:

D% DI
I(nl, n2, N3, N4, I75) = Dfl Dgz D§73 D[;m D5n5 )

> In this way all scalar products can be expressed as linear combinations of
the 5 denominators !

» The two approaches are completely equivalent!

We stick for now to irreducible scalar products.

m,n2,n3 >0, nma,ns €7Z.



Methods for multi-loop computations

» After removing all reducible scalar products we are left with:

531 Sa(,
/ H 2%k Db pb-

where a;, b; > 0.
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Methods for multi-loop computations

» After removing all reducible scalar products we are left with:
I
S, 52
Z(p;) :/ Ddy. T1 Yo
! 11 ' Df ... DY
where a;, b; > 0.
» Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their
powers and of any scalar products !
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Methods for multi-loop computations

» After removing all reducible scalar products we are left with:
I
S, 52
Z(p;) :/ Ddy. T1 Yo
! 11 ' Df ... DY
where a;, b; > 0.
» Integrals can be classified in topologies:

The topology is defined only by the propagators, regardless of their
powers and of any scalar products !

» Sub-topology tree is obtained removing one or more propagators in
all possible ways.

20
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Methods for multi-loop computations

Example: the sub-topology tree of the two-loop Sunrise is:

1. {D,D:,D3} — /@dk D9
2. {D1,D:} — /’de o9
3. {D,D3} — /de D9

4. {Dy,D3} — /’deDdl

ng cns
St Sg

ny n n3
Dl D2 D3

ng cns
5455

N M2
Dl D2

ny cns
St Se
m n3
D" Dy

ny cns
St Se

ny N3
D2 D3

with

with

with

with

ni,n2,n3 >0, ng,n5s >0

ny,m >0,

ny,n3 >0,

na,n3 >0,

ng, ns > 0

ng, ns > 0

ng, ns >0
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Methods for multi-loop computations

In short...:

» Every multi-loop amplitude can be reduced to scalar integrals

» The scalar integrals can be organised into topologies
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Methods for multi-loop computations

In short...:

» Every multi-loop amplitude can be reduced to scalar integrals

» The scalar integrals can be organised into topologies

How many integrals are we talking about?
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Methods for multi-loop computations

Let us go back to qg -+ ZZ — at 2 loops:
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Let us go back to qg -+ ZZ — at 2 loops:

» We've showed the amplitude can be reduced to scalar coefficients

FD(p1, .., pa) = €(p3) € (pa) T(p2) (2 Ci(p1, - Pa) T,-“”(pj)> u(pr),

i=1

» The Ci(p1, ..., ps) are written as combination of scalar integrals:

P s

2
I(py) = / [k 5,
i=1

b b
DYt ... Dbr
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i=1

» The Ci(p1, ..., ps) are written as combination of scalar integrals:

2 a a
St S5
o) = [ TT2% 5
i=1

b b
DYt ... Dbr

> We can then organise them into 3 topologies
(two planars and one non-planar)

» Remove all reducible scalar products
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Methods for multi-loop computations

Let us go back to qg -+ ZZ — at 2 loops:

» We've showed the amplitude can be reduced to scalar coefficients

FD(p1, .., pa) = €(p3) € (pa) T(p2) (2 Ci(p1, - Pa) T,-“”(pﬂ) u(pr),

i=1

» The Ci(p1, ..., ps) are written as combination of scalar integrals:

2 a a
St S5
I(p,—):/| [99k S——,
i=1

b b
DYt ... Dbr

> We can then organise them into 3 topologies
(two planars and one non-planar)

» Remove all reducible scalar products

— we are left with around 4000 apparently different scalar integrals



Methods for multi-loop computations

Luckly all these integrals are not independent! Many different identities can
be derived among integrals in the same topology.

> Integration-by-parts identities (IBPs)
> Lorentz-invariance identities (Lls)

> Symmetry relations (SR)

> (Schouten pseudo-identities) (Sls)

Large number of identities among integrals in the same topology (and its
sub-topologies).
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Luckly all these integrals are not independent! Many different identities can
be derived among integrals in the same topology.

> Integration-by-parts identities (IBPs)
> Lorentz-invariance identities (Lls)

> Symmetry relations (SR)

> (Schouten pseudo-identities) (Sls)

Large number of identities among integrals in the same topology (and its
sub-topologies).

— Almost all integrals expressed in terms of Master Integrals (Mls).
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Methods for multi-loop computations

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

» The most important class of identities.
Generalisation of Gauss’s theorem in d dimensions

» Any d-dimensional integral is convergent !
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Methods for multi-loop computations

Integration by parts identities (IBPs) [Tkachov, Chetyrkin]

» The most important class of identities.
Generalisation of Gauss’s theorem in d dimensions

» Any d-dimensional integral is convergent !
» Necessary condition for convergence: the integrand be zero on the boundary

/ o

T] o o [ Str..s2 0
"okl \ pb .. pbr

i=1 1 T

J

» In order to deal only with scalar quantities

! a a,

b3} S . 5%

/H Dk —— (w 1") =0 vE = {p1,..., PN K1y oy K1}
" n b br ’ n ) ) i ) )
-1 9 k; Di*...D?

— Differentiation produces integrals in the same (sub-)topology !
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Methods for multi-loop computations

Example IBPs: The lloop tadpole

20~ [ G ey
of/i) k(ak ) (k2+m2)n =(d—2nmZ(n)+2nm° I(n+1)

Recursive relation for reduction to a single Master Integral

26
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Methods for multi-loop computations

which gives for example:

>
(d =2)Z(1) +2m*Z(2) =0 — Z(2)=-— ("2;22)1(1)
| 4
(d —HIZ(2)+4m’ZI(38) =0 — I(3)= +%ﬂl)
>

(d —2)(d —4)(d —6)

(d —6)Z(3) +6m*Z(4) =0 — Z(4)=— yrpe

Z(1)

The topology of the Tadpole has the Master Integrals Z(1).

27 /36



Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

> Integrals are Lorentz scalars:

p,’H — Pfl + 5P,” = P,H + w;wP,'V ) with Wpr = —Wup
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Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

> Integrals are Lorentz scalars:

p,’H — Pfl + 5P,” = P,H + w;wP,'V ) with Wpr = —Wup

Z(pi + dpi) = L(pi)

36
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Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

> Integrals are Lorentz scalars:

p,’H — Pfl + 5P,” = P,H + w;wP,'V ) with Wpr = —Wup

v 0
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j J

36



Methods for multi-loop computations

Lorentz invariance identities (LIs) [Gehrmann, Remiddi]

> Integrals are Lorentz scalars:

p,’H — Pfl + 5P,” = P,H + w;wP,'V ) with Wpr = —Wup

v 0
Z(pi + opi) = Z(pi) = Z(pi) + W Y Piv 5o Z(pi)
j J

» which in turn gives

0 0
i — iy — | Z(pi) = 0.
Z(pj,, apY Pj, 8pﬁ> (pi)

» This can be multiplied by any antisymmetric combination of pIH pj’.’ to give
further scalar relations among the integrals Z(p;)

36



Methods for multi-loop computations

Examples of Lls - 3-point functions

Depend on two momenta pi, p2, one LI:

2
v 'z a
(Pi'p5 =Py py) > (p”‘ap pj,uw> Z(p1, p2) = 0.
J

Jj=1
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Methods for multi-loop computations

Examples of Lls - 3-point functions

Depend on two momenta pi, p2, one LI:

2

(Pi'p5 =Py py) >
j=1

Examples of Lls - 4-point functions

Depend on three momenta p1, p> and ps3:

o
Pjyuafp%,
J

M

(P Py — Pt Py
=1

.
|

3

P
(P} P5 =P PE) 3 <pj,uay
— p

Jj=1 J

3 d
(PSR =P P) D | Piuss
j=1 8pj

2] 0
(pj,uw - Pj,uw> Z(p1,p2) = 0.
J J

9]
- Pj,uapjy> Z(p1, p2,p3) =0,

)
- Pj,uaFJ}L> Z(p1,p2,p3) =0,

- Pjw >I(P1,P27P3)=0~

9o
apf
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Methods for multi-loop computations

Symmetry relations (SRs)

» Sometimes are needed to ensure complete reduction to a minimal set of Mls.

» Shift of loop-momenta with Jacobian = 1. Doesn't change the integral but
transforms the integrand into a linear combination of new integrands
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» Sometimes are needed to ensure complete reduction to a minimal set of Mls.

» Shift of loop-momenta with Jacobian = 1. Doesn't change the integral but
transforms the integrand into a linear combination of new integrands

» Can map different topologies (showing that some topologies are not
independent and must not be reduced)
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Methods for multi-loop computations

Symmetry relations (SRs)
» Sometimes are needed to ensure complete reduction to a minimal set of Mls.

» Shift of loop-momenta with Jacobian = 1. Doesn't change the integral but
transforms the integrand into a linear combination of new integrands

» Can map different topologies (showing that some topologies are not
independent and must not be reduced)

» Can also map integrals in the same topology — Sector Symmetries !

— These identities could reduce the number of independent Mls !

30/36



Methods for multi-loop computations

(Trivial) example on SRs: Two-loop massive sunrise with equal masses

(k-p)™(I-p)™
(k2 + m2)n1(/2 + m2)”2((k — | — p)z + mz)n3

Z(n1, n2, n3; ng, ns) =/’de©dl

(k- p)™(I - p)s
d
/@ kD9 oy

36



Methods for multi-loop computations

(Trivial) example on SRs: Two-loop massive sunrise with equal masses

(k-p)™(I-p)™
(k2 + m2)n1(/2 + m2)”2((k — | — p)z + m2)n3

Z(n1, n2, n3; ng, ns) =/’de©dl

(k- p)™(I - p)s
d
/@ kD9 oy

Using only IBPs and LIs we get 4 Mls:

D9kDI] DkDI| D9kDI]| D9kDI|
M= =——— —— My= | —5—, My= [ ——
D1 D> D3 D?D, D3’ Dy D3 D; Dy D, D3
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(Trivial) example on SRs: Two-loop massive sunrise with equal masses

(k-p)™(I-p)™
(k2 + m2)n1(/2 + m2)”2((k — | — p)z + m2)n3

Z(n1, n2, n3; ng, ns) =/’de©dl

(k- p)™(I - p)s
d
/@ kD9 oy

Using only IBPs and LIs we get 4 Mls:

D9kDI] DkDI| D9kDI]| D9kDI|
M= =——— —— My= | —5—, My= [ ——
D1 D> D3 D?D, D3’ Dy D3 D; Dy D, D3

But we (obviously!) have that:

My = M3z = M, —  only two Mls survive!
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Laporta Algorithm

1. At the beginning IBPs were solved by hand for generic powers n; of the
denominators

2. Laporta realised that increasing number of scalar products and powers of
denominators the system of IBPs becomes apparently overconstraint.

3. — Large redoundancy!
With ordering the equations can be inverted one after the other!

4. The system turns out to be (often) underconstraint!
— All integrals are expressed in function of Master Integrals (Mls).
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» Laporta Algorithm must be implemented in a computer program

> Realistic cases systems of ~ 100000 / 1000000 equations

34 /36



Methods for multi-loop computations

» Laporta Algorithm must be implemented in a computer program
> Realistic cases systems of ~ 100000 / 1000000 equations
» Again qG — ZZ:

1. After tensor reduction ~ 4000 scalar integrals.

2. After solving IBPs + LIs + SRs — ~ 50 Mls.

34 /36



Methods for multi-loop computations

v

Laporta Algorithm must be implemented in a computer program

v

Realistic cases systems of ~ 100000 / 1000000 equations

v

Again qq — ZZ:
1. After tensor reduction ~ 4000 scalar integrals.

2. After solving IBPs + LIs + SRs — ~ 50 Mls.

Problem remains: How to solve the Mls ?

v

— See Lecture 3
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Methods for multi-loop computations

» Laporta's Algorithm implemented in many public and private codes:

1. AIR, C. Anastasiou, A. Lazopoulos
2. FIRE, Smirnov and Smirnov
3. Reduze 2, A. von Manteuffel, C. Studerus
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» Laporta's Algorithm implemented in many public and private codes:

1. AIR, C. Anastasiou, A. Lazopoulos
2. FIRE, Smirnov and Smirnov
3. Reduze 2, A. von Manteuffel, C. Studerus

» Computation of 2 loop corrections to 4-point functions finally “feasible”

1. q@ — 2 partons
2. qq — tt
3. qG — Vi Va
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