March of Standard Model: covering electroweak and top physics at the LHC

Only few selected topics with a bit of bias towards CMS experiment

Kajari Mazumdar TIFR, Mumbai, India

International Meeting on HEP, IOP, Bhubaneswar

17 - 22 January, 2019

1

Discovery of neutral current interaction in Gargamelle bubble chamber (1973) \rightarrow Nobel Prize (1979)

Discovery of W & Z in UA1, UA2 experiments (1983) → Nobel Prize (1984)

Higgs discovery by ATLAS and CMS (2012) \rightarrow Nobel Prize (2013)

HEP is knocking at the heaven's door

- We have come a long way; but still miles to go before we sleep!
- Direct searches at the LHC has not yet yielded any positive indication for existence of beyond Standard Model (SM) physics at TeV energy scale or higher.
- Surely with only about few % of promised LHC data delivered till now, *THERE IS HOPE*.
 - → This hope is sustained by the exciting deviations from SM in B-physics based on several measurements.
 - → These could be hints for New Physics (NP) at much higher energy scale than accessible directly at colliders.
- Progress in our field is also ushered in by caring for *"big answerable questions"* and the mode of finding the *knowable unknowns*.
- LHC is testing the limits of Standard Model:

 → it has found the last missing member of the particle zoo: The Higgs boson.
 → it is probing the nature of interactions it envisages at highest energy accessible.

SM is gaining grounds again!

- Being a broad-band machine, as opposed to an e+e- collider, LHC explores the SM dynamics, from flavour physics in B decays at GeV scale to TeV scale scattering of vector boson pairs.
- SM measurements: crucial component of the physics programme at the LHC.
 → quite often there are unsung ballads!
 - \rightarrow huge global efforts by theory and experimental communities.
- Since it is not known in which process and at which energy NP effects will show up, extensive tests for the consistency of SM must be made:
 - \rightarrow via precise measurements of known reactions.
- Other strategies:
- → New Physics contribution can be modeled via effective field theory (EFT)
- ➔ Fundamental parameters are extracted from wide ranges of measurements.
- ➔ Global fit to all electroweak parameters of the SM

Essentials of effective field theory approach

- Minimal extension of SM assumes
- i) No new states
- ii) New operators with dim > 4
- Universal model-independent parametrization of new physics above mass reach
- \rightarrow at $\sqrt{s} = m_z$, modified couplings would lead to rescaling of SM cross section.
- At $\sqrt{s} >> m_z$, there are many observables and many possibilities.
- → Systematic Taylor expansion of all observables, up to certain order, can be made.

SM back in spotlight

- Quite often SM process are backgrounds to search for new physics
- There are also processes which are being observed for the first time.
 → either due to large luminosity
 - \rightarrow or large available energy making the process accessible kinematically.

ALL are needed for a complete job at LHC.

Standard Model Production Cross Section Measurements

Status: July 2018

Stairways to heaven: (BSM enthusiasts call it hell)

- widely different processes
- confirms the predictive power of the Standard Model
- huge progress on theoretical calculations (NNLO revolution)

Examples: new SM processes measured at the LHC

Many other processes eg in top sector: ttW, ttyy, ttbb,...

IMHEP, Kajari Mazumdar

Drell-Yan process

- Candle measurement at hadron colliders
- Provides test of perturbative calculations in SM including higher order effects.
- Background to many processes, including search for beyond standard model (BSM)

2000

- At leading order Z has only longitudinal boost
- With higher order corrections Z has also transverse boost
 → non-zero transverse momentum
- Measurements show need to include leading-log resummation.
- Related kinematic variable with better accuracy for measurement of angles than muon momenta

CMS 19.7 fb⁻¹ (8 TeV)
10⁹
10⁸
10⁷
10⁶

$$(\mathbf{q})$$

 (\mathbf{q})
 $($

CMS SMP-17-002 1710.07955 JHEP 03 (2018) 172

$$\phi^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \,\sin(\theta^*_{\eta})$$

Precision measurement (better than 0.1%) confirms SM predictions,

Global electroweak fit -> needs the Higgs boson

Discovery of Higgs over-constrains the fit and dramatically improves predictability.

Additional inputs from LHC underlines need for precision measurements:

Multiboson productions

- Electroweak production of gauge bosons at LHC → vector boson fusion/scattering
- Anomalous gauge couplings: triple and quartic \rightarrow accessible for the first time!

• Includes WH, ZH couplings!

VBF, VBS, and Triboson Cross Section Measurements Status: July 2018

EW processes where Higgs plays critical role

- Unitarity: \rightarrow for only Z and γ exchanged processes, the amplitude of (longitudinal) W₁W₁ scattering violates unitarity
- Higgs boson acts as "moderator" to unitarise • high-energy longitudinal vector boson scattering.

$$A_{Z,\gamma} \left(W^+ W^- \to W^+ W^- \right) \propto \frac{1}{\upsilon^2} \left(s + t \right)$$
$$A_H \left(W^+ W^- \to W^+ W^- \right) \propto -\frac{m_H^2}{\upsilon^2} \left(\frac{s}{s - m_H^2} + \frac{t}{t - m_H^2} \right)$$

Look in VBS scattering for bump in high dijet invariant mass distributions.

Same-sign WW selection greatly reduces strong production.

Strong production

Removes s-channel Higgs process:

EW VBS

CMS SMP-17-004 1709.05833 PRL

CMS observation with 5.5σ Signal strength: 0.9 ± 2.2

Fiducial x-sec: 3.83 ±0.66(stat) ±0.35(syst) fb

WZ vector boson scattering

- At higher values of m_T (WZ) anomalous coupling effects may show up.
- Fiducial cross section $\sigma(pp \rightarrow WZ) = 3.18 + 0.71 = 0.63$ fb

No deviation from SM observed.

Inclusive WZ production

- Sensitive to WWZ coupling
- \rightarrow Only TGC with W & Z are allowed in SM

CMS PAS SMP-18-002

- σ(pp→WZ) = 48.09 +2.98 -2.78 pb
 - \rightarrow Compare with SM prediction at NNLO: 49.98 ±~ 2%
- → higher order contributions at LHC must be taken into account

Top physics

- Really special → heaviest fundamental particle seen till now from Naturs's basket.
 → discovered 25 yrs. back , but several properties were not measured until now.
 eg., couplings to weak gauge boson and Higgs boson
- Plays an important role in m_H stabilization
- Testing ground for perturbative calculations (NNLO + α^{3}_{EW}
- Rates and kinematics are sensitive to m_t , α_{s} PDF
- Top decays before hadronization → spin info passed on to daughter (spin-flip time-scale larger than lifetime and QCD time-scale)
- Background for many searches of Higgs boson and new particle beyond SM physics.
- Top as portal to BSM? \rightarrow eg., in production (Z' \rightarrow tt), in decay (t \rightarrow H⁺ b)
- New interaction can be described in EFT 22.1.19
 IMHEP, Kajari Mazumdar

A la F. Maltoni

- It is rich, strong, naked, popular
- It goes beyond

Inclusive top production rates

Large energy available at the LHC opens up the possibility for production of multiple heavy particles In a given interaction.

Top quark pair production and top mass

- Great improvements during last several years → precision ~ 0.3%
 → hadronization model uncertainties one of the main limitations
- a la P.Nason: direct measurements measure the pole mass up to corrections of the order of a hadronic scale.
- Differences in measurement using various event generators could be due to nonperturbative effects, parton shower modeling as well as interface with NLO 22.1.19
 IMHEP, Kajari Mazumdar

Single top quark production

Tops playing in doubles vs. single vector boson

3 exclusive analyses:

i) Same sign dilepton pair for ttW

ii) 3 lepton for ttZ

iii) 4 lepton for ttZ

$$\sigma({\rm pp} \to {\rm t\bar{t}W^+}) = 0.58 \pm 0.09\,({\rm stat})^{+0.09}_{-0.08}\,({\rm syst})\,{\rm pb},$$

 $\sigma(\mathrm{pp} \rightarrow \mathrm{t\bar{t}W^{-}}) = 0.19 \pm 0.07 \,(\mathrm{stat}) \pm 0.06 \,(\mathrm{syst}) \,\mathrm{pb}.$

$$\sigma(pp \to t\bar{t}W) = 0.77^{+0.12}_{-0.11} (\text{stat})^{+0.13}_{-0.12} (\text{syst}) \text{ pb},$$

$$\sigma(pp \to t\bar{t}Z) = 0.99^{+0.09}_{-0.08} (\text{stat})^{+0.12}_{-0.10} (\text{syst}) \text{ pb}.$$

- General good agreement between prediction and data
- Interpretation of the measurement in the context of EFT
- No identifiable operator found which affects ttW cross section independently.

Single top quark in association with a photon

CMS Top-17-016 arXiv: 1808.02913 PRL

$$\Gamma_{\mu}(q^2) = -ie \left\{ \gamma_{\mu} \left[F_{1V}(q^2) + F_{1A}(q^2)\gamma_5 \right] + \frac{\sigma_{\mu\nu}}{2m_t} q^{\nu} \left[iF_{2V}(q^2) + F_{2A}(q^2)\gamma_5 \right] \right\}$$

$$F_{1V}(0) = Q_t,$$

$$F_{2V}(0) = a_t Q_t,$$

$$F_{2A}(0) = d_t \frac{2m_t}{e}$$

F: form factors, known to 1-loop in EW and 2-loops in QCD a_t: anomalous magnetic moment, =0.02 in SM d_t: electric dipole moment, violates CP conservation ~ 10⁻³⁰ e in SM

- Cross section sensitive to BSM
- Extremely difficult to measure a_t and d_t due to vanishing lifetime of top in terms of dim-5 operators, in EFT $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2} \left[c \, \bar{t}_L \sigma_{\mu\nu} t_R + c^* \, \bar{t}_R \sigma_{\mu\nu} t_L \right] F^{\mu\nu}$$

$$\sigma(pp \rightarrow t \gamma) * Br(t \rightarrow \mu \nu b) = 115 \pm 17 \text{ (stat)} \pm 30 \text{ (syst) fb}$$

4.4 σ observation , consistent with SM

Single top in association with W

 $\sigma(tW) = 63.1 \pm 1.8(stat) \pm 6.4(syst) \pm 2.1(lumi) \text{ pb}$ $\sigma(tW) \text{ SM, NLO + NNLL } = 71.7 \pm 1.8(scale) \pm 3.4(PDF) \text{ pb}$

- WWbb production
- Crucial: Interference of tt production at NLO with tW production

CMS Top-17-018 arXiv: 1805.07399 JHEP10(2018)117

ATLAS JHEP arXiv:1612.07231

tW NLO-interference

Use techniques of

- diagram removal,
- diagram subtraction
- handlie leptonic decays
 w/o narrow width approx.

Single top in association with Z

complementary to ttZ

Top-Z coupling,

Sensitive to WWZ vertex

- First observation by CMS using
- \rightarrow final state : 3 ℓ + b-jet + forward jet
- → L = 77.4/ fb (2016+2017 data of CMS)
- Observed (expected) significance 8.2(7.7) σ

$$\sigma(tZq \to t\ell^+\ell^-q) = 111 \pm 13(stat)_{-9}^{+11}(syst)$$
 fb

 $\sigma(tZq, Z \rightarrow \ell \ell) \sim 94.2 \pm 3.1 \text{ fb}$ (NLO SM scale uncert)

Single top in association with Higgs

 tHq process exposes the relative sign of Htt & HWW couplings via interference. (ttH cannot)

- Large enhancement for negative relative sign between κ_t and κ_V in tHq production e.g., $\sigma_{tHq}(\kappa_V = -\kappa_t = 1) = 792.7$ fb.
- Combined limit on $\sigma(tHq+tHW+ttH)xBR(H\rightarrow WW^*, \tau\tau, ZZ, bb, gg)$
- Exclude : yt below -0.9

CMS HIG-18-009 1811.09696 PRD

Kν

Precision for W mass

• Currently, $m_W = 80370 \pm 7$ stat $\pm 11 \exp$ syst $\pm 14 \mod$ syst MeV = 80370 ± 19 MeV (global fit: $\rightarrow 8$ MeV!)

- Ultimate goal $\Delta m_{\rm W}$ 5 MeV \rightarrow achievable in future with low luminosity runs
- Though only moderate increase in CM energy, extremely high luminosity helps in fantastic precision in crucial inputs of SM: W and top masses.
- Ultimate precision at LHC in m(W) : 0.02%, m(top): 0.3%
- Need to understand the systematics: experimental AND theoretical.

Physics potential of high luminosity & high energy LHC

Today discuss only briefly about HL-LHC

Reference Parameters:

HL-LHC: \lor s = 14 TeV; L = 3 ab⁻¹ for ATLAS and CMS, for LHCb: 50 \rightarrow 300 fb⁻¹ **HE-LHC:** \lor s = 27 TeV; L = 15 ab⁻¹ for ATLAS and CMS, for LHCb: 3 ab⁻¹

Year-long workshop to document E_{beam} dependence of achievable physics. Reports are being finalized for final Jamboree at CERN in March, 2019.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HLHELHCWorkshop

LHC / HL-LHC Plan

Future of LHC: HL-LHC

We live in **data-driven times**, experimental results guide us to the next stage.

 \checkmark Find the detailed characteristics \rightarrow 300 /fb is not enough!

Experimental Challenge at High Luminosity LHC

Scale of electroweak physics does not change with luminosity

Tracking, Calorimetry and Triggering, in particular for low to medium p_{T} objects, need fine granular and radiation hard detectors, new strategies in DAQ and Software. 22.1.19

Electroweak physics at HL-LHC

1. Test the SM theory of EWSB via a comprehensive portfolio of (multi) boson production measurements : rich sector, always!

Most significant motivations:

(i) Check the role of Higgs in restoring the unitarity of gauge boson interactions \rightarrow measure W₁ W₁ scattering in W[±] W[±] production via vector boson fusion

(ii) Test electroweak gauge invariant effective field theory \rightarrow measure triple and quartic gauge interactions in V₁V₂ scattering, V_{1'2} = W, Z

Caveat: all the processes have very small rate, interesting physics lies at the high tail of transverse momentum, invariant mass, etc. .

- 2. Improve the precision of EW observables, eg., M_W , sin² ϑ_W
- 3. Produce precision constraints on PDFs (eg. lepton charge asymmetry in W events)
- 4. Test predictions of perturbative QCD vs. anomalous effect due to BSM
 → differential distributions reveal the effect of higher order quantum corrections.

Vector boson scattering

• Signal $V_{L}V_{L}$: ~ 5 to 10% of the total VV scattering rate; background: $V_{L}V_{T}V_{T}V_{T}$

Top physics at HL-LHC

- Large rate allows to investigate new phase-space corners using boosted tops
- FCNC processes accessible , eg., Br.(t \rightarrow c γ) =1.5* 10⁻⁴
- Anomalous ttZ coupling from differential distributions
- Study 4top (tttt) production \rightarrow sensitive to BSM \rightarrow measure σ_{tttt} with 9% statistical uncertianty
- Top mass crucial input for electroweak fit
 → must be measured precisely
- i) Traditional method systematics dominated \rightarrow reconstruct invariant mass of top decay products For 3/ab, $\Delta m_t = 0.2 \text{ GeV}$ (~ 0.1 %)

$\sigma_{ m tt}$	~ 1 nb	→ 3B top pairs
$\sigma_{t-channel}$	~ 200 pb	\rightarrow 600M tops
$\sigma_{s-channel}$	~ 10 pb	\rightarrow 30M tops
$\sigma_{ m tty/V/H}$	~ 1 pb	\rightarrow 3M top pairs
σ_{tH}	~ 10 fb	\rightarrow 30k tops
σ_{tttt}	~ 9 fb	

- \rightarrow mainly due to theory uncertainty related to "pole" mass of top
- ii) Measure decay length of b-hadrons in tt decays to achieve $\Delta m_{t} = 0.6 \& 0.4 \text{ GeV}$

iii) Use t \rightarrow Wb $\rightarrow \ell v + (J/\psi + X)$ to achieve $\Delta m_t = 0.8 \& 0.6 \text{ GeV}$

FCNC in top production

- FCNC involving top is less constrained
- Can be studied better in inclusive single top production processes
- Use model-independent effective Lagrangian: $\mathfrak{L} = \frac{\kappa_{tqg}}{\Lambda} g_s \overline{q} \sigma^{\mu\nu} \frac{\lambda^a}{2} t G^a_{\mu\nu}$

95% CL upper limit on effective coupling: better by order of magnitude compared to current limits

$$|\kappa_{\rm tcg}|/\Lambda < 5.2 \times 10^{-3} \ (9.1 \times 10^{-3}) \ {\rm TeV^{-1}}$$

Integrated luminosity [ab-1]

Forward backward asymmetry in dilepton events

- Asymmetry arises due to vector and axial vector couplings of leptons to weak, neutral gauge boson $A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$ $\cos \theta^* = \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{\sqrt{M^2(M^2 + P_T^2)}} \times \frac{1}{1}$
- angle ϑ^* measured in Collins-Soper frame, defined in terms of lab kinematics.
- Effective weak mixing angle sensitive to additional gauge boson Z' \rightarrow mass & rapidity dependence of A_{FB} used to extract $\sin^2 \theta_{eff}^{\text{lept}}$
- Accurate measurement of $\sin^2 \theta_{eff}^{lept}$ can be used to constrain PDFs

CMS

Conclusion

• Standard Model is marching confidently, withstanding all weathers.!

 \rightarrow presented a small sample of interesting results from LHC experiments in the electroweak and top quark sectors.

• Particle physics has entered an era of uncertainty: with LHC machine operational since almost a decade.

 \rightarrow it is not clear if Nature cares for *naturalness*.

• Luminosity drives our ability to measure low cross-section processes.

 \rightarrow as LHC accumulates more data we must extensively search for deviations from predictions of Standard Model since production of new, heavy particles at the LHC in next few years is almost impossible.

• May be the Indian community gears up for what is realistically possible at the LHC?

Thank you!

Backup

Roadmap of the LHC

$$H/Z \rightarrow J/\psi + \gamma$$

CMS SPM-17-012 arXiv: 1810.0046 EPJC

- Higgs coupling to 2nd generation fermion: test of nature of Yukawa coupling
- Can be probed via $H \rightarrow J/\psi + \gamma \rightarrow sensitive to BSM$ Br = 3.25*10⁻⁶ Br = 5.48*10⁻⁸
- Branching ratio for H larger than $(Z \rightarrow J/\psi + \gamma)$
- But Z production: much higher

Dalitz decays of Higgs

Channel	Polarization	σ (fb) at 95% CL	$\mathcal{B}(\mathrm{Z}(\mathrm{H}) ightarrow \mathrm{J}/\psi\gamma)$ at 95% CL	$\frac{\mathcal{B}(Z (H) \rightarrow J/\psi\gamma)}{\mathcal{B}_{SM}(Z (H) \rightarrow J/\psi\gamma)}$
	Unpolarized	$4.6(5.3^{+2.3}_{-1.6})$	$1.4~(1.6^{+0.7}_{-0.5}) imes 10^{-6}$	15 (18)
$Z \rightarrow J/\psi \gamma$	Transverse	$5.0(5.9^{+2.5}_{-1.7})$	$1.5~(1.7^{+0.7}_{-0.5}) imes 10^{-6}$	16 (19)
	Longitudinal	$3.9(4.6^{+2.0}_{-1.4})$	$1.2~(1.4^{+0.6}_{-0.4}) imes 10^{-6}$	13 (15)
${ m H} ightarrow { m J}/\psi \gamma$	Transverse	$2.5(1.7^{+0.8}_{-0.5})$	$7.6~(5.2^{+2.4}_{-1.6}) imes10^{-4}$	260 (170)

Spin density matrix in ttbar events

ttbar production rate depends on Spin correlations and top polariztion Due to parity invariance of QCD tops are produced mainly unpolarized. Spins of top-pairs are strongly correlated, depends on m_{tt} Low m m_{tt} : RR/LL helicity pairs dominate High m_{tt} : RL/LR helicity pairs dominate

Measure multiple differential distributions to constrain BSM

$$\frac{l}{\sigma}\frac{d\sigma}{d\cos\theta_{+}^{i}d\cos\theta_{-}^{j}} = \frac{l}{2}(l+B_{+}^{i}\cos\theta_{+}^{i}+B_{-}^{j}\cos\theta_{-}^{j}-C_{ij}\cos\theta_{+}^{i}d\cos\theta_{-}^{j})$$

Can be reduced to single differential eqns. In terms of polarization coeff., s (B) diagonal and off-diagonal elements of spin-density matr Differential cross section analysis with dilepton angular distribution

Flat angular distribution → unpolarized tops Consistent with NLO SM predictions

θ

Light-by-light Scattering

- Select ultra-peripheral collisions in PbPb
- Exclusive 2-photon final state selection
- Small acoplanarity (< 0.01)
- Small diphoton p_T (< 1 GeV)
- 14 events found, 3.8 background events est.
- Similar to ATLAS result: arXiv:1702.01625

arXiv:1810.04602

