Dark Matter in Lmu-Ltau Extensions of the Standard Model

Sandhya Choubey Harish-Chandra Research Institute, India

IMHEP 2019 Institute of Physics, February 21, 2019

- Should be massive
- Should be electrically neutral
- Should be present in the early universe
- Should be stable or at least with half life greater than the age of the universe
- Should be non-relativistic

IMHEP 2019

- Should be massive
- Should be electrically neutral
- Should be present in the early universe
- Should be stable or at least with half life greater than the age of the universe
- Should be non-relativistic when it's abundance freezes fermion in doublet repn scalar in doublet repn singlet scalar

singlet fermion

fermion in triplet repn

scalar in triplet repn

- Should be massive
- Should be electrically neutral
- Should be present in the early universe
- Should be stable or at least with half life greater than the age of the universe
- Should be non-relativistic when it's abundance freezes fermion in doublet repn scalar in doublet repn singlet scalar

singlet fermion

IMHEP 2019

...and many more Februa

fermion in triplet repn

scalar in triplet repn

- Should be massive
- Should be electrically neutral
- Should be present in the early universe
- Should be stable or at least with half life greater than the age of the universe need a symmetry
- Should be non-relativistic when it's abundance freezes fermion in doublet repn scalar in doublet repn singlet scalar

singlet fermion

fermion in triplet repn

scalar in triplet repn

Your BSM model should explain all observations

Sandhya Choubey

muon (g-2)

neutrino mixing

neutrino mass

IMHEP 2019

baryon asymmetry

February 21, 2019

inflation

dark energy

flavor anomalies

U(1)_{L_µ-L₇} to explain muon (g-2) *D*(1)_{L_µ-L₇} to explain muon (g-2) *DM and neutrino mass* SC, Rodejohann EPJC 40 (2005)

Biswas, SC, Khan JHEP 1609 (2016) Biswas, SC, Khan JHEP 1702 (2017)

new particles

Gauge	Baryon Fields			Lepton Fields			Scalar Fields		
Group	$\boxed{Q_L^i = (u_L^i, d_L^i)^T}$	u_R^i	d_R^i	$\boxed{L_L^i = (\nu_L^i, e_L^i)^T}$	e_R^i	N_R^i	ϕ_h	ϕ_H	ϕ_{DM}
$\overline{\mathrm{SU}(2)_{\mathrm{L}}}$	2	1	1	2	1	1	2	1	1
U(1) _Y	1/6	2/3	-1/3	-1/2	-1	0	1/2	0	0

Gauge	Baryonic Fields		Scalar Fields				
Group	(Q_L^i, u_R^i, d_R^i)	(L_L^e, e_R, N_R^e)	$(L_L^{\mu}, \mu_R, N_R^{\mu})$	$(L_L^{\tau}, \tau_R, N_R^{\tau})$	ϕ_h	ϕ_H	ϕ_{DM}
$U(1)_{L_{\mu}-L_{ au}}$	0	0	1	-1	0	1	$n_{\mu au}$

Sandhya Choubey

IMHEP 2019

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{DM} + (D_\mu \phi_H)^{\dagger} (D^\mu \phi_H) - V(\phi_h, \phi_H) - \frac{1}{4} F^{\alpha\beta}_{\mu\tau} F_{\mu\tau\alpha\beta}$$

$$\mathcal{L}_{N} = \sum_{i=e,\,\mu,\,\tau} \frac{i}{2} \bar{N}_{i} \gamma^{\mu} D_{\mu} N_{i} - \frac{1}{2} M_{ee} \,\bar{N}_{e}^{c} N_{e} - \frac{1}{2} M_{\mu\tau} \left(\bar{N}_{\mu}^{c} N_{\tau} + \bar{N}_{\tau}^{c} N_{\mu} \right) - \frac{1}{2} h_{e\mu} (\bar{N}_{e}^{c} N_{\mu} + \bar{N}_{\mu}^{c} N_{e}) \phi_{H}^{\dagger} - \frac{1}{2} h_{e\tau} (\bar{N}_{e}^{c} N_{\tau} + \bar{N}_{\tau}^{c} N_{e}) \phi_{H} - \sum_{i=e,\,\mu,\,\tau} y_{i} \bar{L}_{i} \tilde{\phi}_{h} N_{i} + h.c.$$

$$\mathcal{L}_{DM} = (D^{\mu}\phi_{DM})^{\dagger}(D_{\mu}\phi_{DM}) - \mu_{DM}^{2}\phi_{DM}^{\dagger}\phi_{DM} - \lambda_{DM}(\phi_{DM}^{\dagger}\phi_{DM})^{2} -\lambda_{Dh}(\phi_{DM}^{\dagger}\phi_{DM})(\phi_{h}^{\dagger}\phi_{h}) - \lambda_{DH}(\phi_{DM}^{\dagger}\phi_{DM})(\phi_{H}^{\dagger}\phi_{H}).$$

$$V(\phi_h, \phi_H) = \mu_H^2 \phi_H^{\dagger} \phi_H + \lambda_H (\phi_H^{\dagger} \phi_H)^2 + \lambda_{hH} (\phi_h^{\dagger} \phi_h) (\phi_H^{\dagger} \phi_H)$$
$$D_{\nu} X = (\partial_{\nu} + i g_{\mu\tau} Q_{\mu\tau} (X) Z_{\mu\tau\nu}) X \quad F_{\mu\tau}^{\alpha\beta} = \partial^{\alpha} Z_{\mu\tau}^{\beta} - \partial^{\beta} Z_{\mu\tau}^{\alpha}.$$

gauge coupling $L_{\mu} - L_{\tau}$ charge $\Phi_H \text{ or } \Phi_{DM}$

Sandhya Choubey

IMHEP 2019

February 21, 2019

1

 $L_{\mu} - L_{\tau}$ symmetry breaks spontaneously when ϕ_H acquires VEV

 $\mu_h^2 < 0, \ \mu_H^2 < 0 \text{ and } \mu_{DM}^2 > 0$

ground state is defined as $\langle \phi_h \rangle = \frac{v}{\sqrt{2}}, \ \langle \phi_H \rangle = \frac{v_{\mu\tau}}{\sqrt{2}} \text{ and } \langle \phi_{DM} \rangle = 0$

$$\phi_h = \begin{pmatrix} 0\\ \frac{v+H}{\sqrt{2}} \end{pmatrix}, \quad \phi_H = \left(\frac{v_{\mu\tau} + H_{\mu\tau}}{\sqrt{2}}\right)$$

 $h_1 = H \cos \alpha + H_{\mu\tau} \sin \alpha ,$ $h_2 = -H \sin \alpha + H_{\mu\tau} \cos \alpha .$

> Because of our choice of $n_{\mu\tau}$ the $U(1)_{L_{\mu}-L_{\tau}}$ breaks into a residual Z2 symmetry which makes the dark matter stable.

Sandhya Choubey

IMHEP 2019

Ma, Roy, Roy, PLB 525 (1991)

 $a_{\mu}^{\rm th} = 1.1659179090(65) \times 10^{-3}$

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\th} = (29.0 \pm 9.0) \times 10^{-10}$$
$$\Delta a_{\mu}(Z_{\mu\tau}) = \frac{g_{\mu\tau}^2}{8\pi^2} \int_0^1 dx \frac{2x(1-x)^2}{(1-x)^2 + rx} \quad r = (M_{Z_{\mu\tau}}/m_{\mu})^2$$

 $a_{\mu}^{\exp} = 1.16592080(63) \times 10^{-3}$

for $M_{Z_{\mu\tau}} = 100$ MeV and $g_{\mu\tau} = 9 \times 10^{-4}$ the value of $\Delta a_{\mu} = 22.6 \times 10^{-10}$

Sandhya Choubey

IMHEP 2019

$$\begin{split} \mathbf{\mathcal{L}}_{N} &= \sum_{i=e,\,\mu,\,\tau} \frac{i}{2} \bar{N}_{i} \gamma^{\mu} D_{\mu} N_{i} - \frac{1}{2} M_{ee} \, \bar{N}_{e}^{c} N_{e} - \frac{1}{2} M_{\mu\tau} \left(\bar{N}_{\mu}^{c} N_{\tau} + \bar{N}_{\tau}^{c} N_{\mu} \right) \\ &- \frac{1}{2} h_{e\mu} (\bar{N}_{e}^{c} N_{\mu} + \bar{N}_{\mu}^{c} N_{e}) \phi_{H}^{\dagger} - \frac{1}{2} h_{e\tau} (\bar{N}_{e}^{c} N_{\tau} + \bar{N}_{\tau}^{c} N_{e}) \phi_{H} \\ &- \sum_{i=e,\,\mu,\,\tau} y_{i} \bar{L}_{i} \tilde{\phi}_{h} N_{i} + h.c. \end{split}$$

> In the $L_{\mu} - L_{\tau}$ symmetric phase the $v_{\mu\tau} = 0$ and we have exact mu-tau symmetry $\theta_{13} = 0$ and $\theta_{23} = \pi/4$ and 2 of the mass eigenstates are degenerate

Sandhya Choubey

IMHEP 2019

Neutrino Masses and Mixing $m_{\nu} \simeq -M_D M_R^{-1} M_D^T,$ $M = \left(\begin{array}{cc} 0 & M_D \\ M_D^T & M_R \end{array}\right)$ $m_N \simeq M_R.$ $p = h_{e\mu} h_{e\tau} v_{\mu\tau}^2 - M_{ee} M_{\mu\tau} e^{i\xi}.$ $m_{\nu} = \frac{1}{2p} \begin{pmatrix} 2 f_e^2 M_{\mu\tau}^2 e^{i\xi} & -\sqrt{2} f_e f_{\mu} h_{e\tau} v_{\mu\tau} & -\sqrt{2} f_e f_{\tau} h_{e\mu} v_{\mu\tau} \\ -\sqrt{2} f_e f_{\mu} h_{e\tau} v_{\mu\tau} & \frac{f_{\mu}^2 h_{e\tau}^2 v_{\mu\tau}^2 e^{-i\xi}}{M_{\mu\tau}} & \frac{f_{\mu} f_{\tau}}{M_{\mu\tau}} (M_{ee} M_{\mu\tau} - p e^{-i\xi}) \\ -\sqrt{2} f_e f_{\tau} h_{e\mu} v_{\mu\tau} & \frac{f_{\mu} f_{\tau}}{M_{\mu\tau}} (M_{ee} M_{\mu\tau} - p e^{-i\xi}) & \frac{f_{\tau}^2 h_{e\mu}^2 v_{\mu\tau}^2 e^{-i\xi}}{M_{\mu\tau}} \end{pmatrix}$ 0.24 $\begin{array}{rcl} {}^{26} & 0 & \leq & \xi \, [\mathrm{rad}] & \leq & 2\pi \ , \\ {}^{255} & & 1 & \leq & M_{ee}, \, M_{\mu\tau} \, [\mathrm{GeV}] & \leq & 10^4 \ , \\ {}^{25} & & 1 & \leq & V_{e\mu}, \, \, V_{e\tau} \, \, [\mathrm{GeV}] & \leq & 280 \ , \\ {}^{245} & & 0.1 & \leq & \frac{(f_e, \, f_\mu, \, f_\tau)}{10^{-4}} \, [\mathrm{GeV}] \, \leq \, 10 \ . \end{array}$ 8.75 0.22 0.2 θ_{13} [deg] 0.18 3σ range 0.16 8.25 0.14 0.12 01 235 7 7.2 7.4 7.6 7.8 6.8 7.75 47.5 40 42.5 45 50 52.5 $\Delta m_{21}^2 / 10^{-5} [eV^2]$ θ_{23} [deg]

Sandhya Choubey

IMHEP 2019

WIMP Dark Matter Relic Density **Biswas, SC, Khan J**

Boltzmann equation

Direct Detection Constraint

FIMP Dark Matter

FIMP Dark Matter

Boltzmann equation

$$\frac{dY_{\phi_{DM}}}{dz} = \frac{2M_{pl}}{1.66M_{h_2}^2} \frac{z\sqrt{g_{\star}(z)}}{g_s(z)} \left[\sum_{i=1,2} \langle \Gamma_{h_i \to} \phi_{DM}^{\dagger} \phi_{DM} \rangle (Y_i^{eq} - Y_{\phi_{DM}}) \right]
+ \frac{4\pi^2}{45} \frac{M_{pl}M_{h_2}}{1.66} \frac{\sqrt{g_{\star}(z)}}{z^2} \left[\sum_{p=W,Z,h_1,h_2,f} \langle \sigma \mathbf{v}_{p\bar{p} \to \phi_{DM}^{\dagger} \phi_{DM}} \rangle (Y_p^{eq\,2} - Y_{\phi_{DM}}^2) \right]$$

Figure 4: Left panel showing the contributions of decay and annihilation in the total relic density. Right panel: Variation of dark matter relic density with z for four different values of dark matter mass M_{DM} . The other parameters are kept fixed at $M_{Z_{\mu\tau}} = 0.1 \text{ GeV}, g_{\mu\tau} = 9.0 \times 10^{-4}, \alpha = 0.01, \lambda_{Dh} = 9.8 \times 10^{-13}, \lambda_{DH} = 1.3 \times 10^{-11}, M_{DM} = 50.0 \text{ GeV} (\text{LP}), n_{\mu\tau} = 5.5 \times 10^{-5}.$

Sandhya Choubey

IMHEP 2019

FIG. 3. Same as Fig. 2 but focusing on the low mass region. Constraints from CHARM-II and CCFR, Eqs. (15) and (16) are shown separately. We do not attempt a statistical combination of the results. The dashed lines show the expected limit if the trident cross-section could be measured with 10% or 30% accuracy using 5 GeV neutrinos scattering on Argon.

Sandhya Choubey

IMHEI⁸ 2019

The 3.5 keV X-ray line

Consistent with Chandra observations of Perseus cluster

Sandhya Choubey

IMHEP 2019

U(1)_{L_µ-L₇} to explain DM relic density and the 3.5 keV line new particles

Gauge	Baryon Fields			Lepton Fields Scalar					Tields
Group	$\overline{Q_L^i = (u_L^i, d_L^i)^T}$	u_R^i	d_R^i	$\boxed{L_L^i = (\nu_L^i, e_L^i)^T}$	e_R^i	N_R^i	ϕ_h	ϕ_H	η
$SU(2)_L$	2	1	1	2	1	1	2	1	2
$U(1)_{Y}$	1/6	2/3	-1/3	-1/2	-1	0	1/2	0	1/2
\mathbb{Z}_2	. +	+	+	+	+		+	+	

inert doublet

Gauge	Baryonic Fields	Lepton Fields					Scalar Fields		
Group	(Q_L^i, u_R^i, d_R^i)	(L_L^e, e_R, N_R^e)	$(L_L^{\mu}, \mu_R, N_R^{\mu})$	$(L_L^{\tau}, \tau_R, N_R^{\tau})$	ϕ_h	ϕ_H	η		
$\mathrm{U}(1)_{L_{\mu}-L_{\tau}}$	0	0	1	-1	0	1	0		

Sandhya Choubey

IMHEP 2019

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \mathcal{L}_{N} + (D_{\mu}\phi_{H})^{\dagger} (D^{\mu}\phi_{H}) + (D_{\mu}\eta)^{\dagger} (D^{\mu}\eta) + \sum_{j=\mu,\tau} Q^{j} \bar{L}_{j} \gamma_{\rho} L_{j} Z_{\mu\tau}^{\rho} \\ &- \frac{1}{4} F_{\mu\tau\rho\sigma} F_{\mu\tau}{}^{\rho\sigma} - V(\phi_{h}, \phi_{H}, \eta) \,, \\ \\ \mathcal{L}_{N} &= \sum_{i=e,\mu,\tau} \frac{i}{2} \bar{N}_{i} \gamma^{\mu} D_{\mu} N_{i} - \frac{1}{2} M_{ee} \bar{N}_{e}^{c} N_{e} - \frac{1}{2} M_{\mu\tau} \left(\bar{N}_{\mu}^{c} N_{\tau} + \bar{N}_{\tau}^{c} N_{\mu} \right) \\ &- \frac{1}{2} h_{e\mu} (\bar{N}_{e}^{c} N_{\mu} + \bar{N}_{\mu}^{c} N_{e}) \phi_{H}^{\dagger} - \frac{1}{2} h_{e\tau} (\bar{N}_{e}^{c} N_{\tau} + \bar{N}_{\tau}^{c} N_{e}) \phi_{H} \\ &- \sum_{\alpha=e,\mu,\tau} h_{\alpha} \bar{L}_{\alpha} \tilde{\eta} N_{\alpha} + h.c. \,, \end{split}$$

 $V(\phi_{h},\phi_{H},\eta) = -\mu_{H}^{2}\phi_{H}^{\dagger}\phi_{H} - \mu_{h}^{2}\phi_{h}^{\dagger}\phi_{h} + \mu_{\eta}^{2}\eta^{\dagger}\eta + \lambda_{1}(\phi_{h}^{\dagger}\phi_{h})^{2} + \lambda_{2}(\eta^{\dagger}\eta)^{2} + \lambda_{3}(\phi_{H}^{\dagger}\phi_{H})^{2} + \lambda_{12}(\phi_{h}^{\dagger}\phi_{h})(\eta^{\dagger}\eta) + \lambda_{13}(\phi_{h}^{\dagger}\phi_{h})(\phi_{H}^{\dagger}\phi_{H}) + \lambda_{23}(\phi_{H}^{\dagger}\phi_{H})(\eta^{\dagger}\eta) + \lambda_{4}(\phi_{h}^{\dagger}\eta)(\eta^{\dagger}\phi_{h}) + \frac{1}{2}\lambda_{5}\left((\phi_{h}^{\dagger}\eta)^{2} + h.c.\right).$

Sandhya Choubey

IMHEP 2019

The RH Neutrino Masses Dark Matter Lmu-Ltau Symmetric

$$\mathcal{M}_{R} = \begin{pmatrix} M_{ee} & 0 & 0 \\ 0 & 0 & M_{\mu\tau} e^{i\xi} \\ 0 & M_{\mu\tau} e^{i\xi} & 0 \end{pmatrix}$$

Dark Matter

$$M'_{2/3} = \pm M_{\mu\tau} e^{i\xi}$$

 $M'_{1} = M_{ee},$

N₂ and N₃ are exactly degenerate and serve as a two-component DM of the Universe

Sandhya Choubey

IMHEP 2019

The RH Neutrino Masses Dark Matter Lmu-Ltau Symmetric Lmu-Ltau Broken

$$\mathcal{M}_{R} = \begin{pmatrix} M_{ee} & 0 & 0 \\ 0 & 0 & M_{\mu\tau} e^{i\xi} \\ 0 & M_{\mu\tau} e^{i\xi} & 0 \end{pmatrix} \qquad \mathcal{M}_{R} = \begin{pmatrix} M_{ee} & \frac{v_{\mu\tau}}{\sqrt{2}}h_{e\mu} & \frac{v_{\mu\tau}}{\sqrt{2}}h_{e\tau} \\ \frac{v_{\mu\tau}}{\sqrt{2}}h_{e\mu} & 0 & M_{\mu\tau} e^{i\xi} \\ \frac{v_{\mu\tau}}{\sqrt{2}}h_{e\tau} & M_{\mu\tau} e^{i\xi} & 0 \end{pmatrix}$$

Dark Matter

The mass splitting between them is given at first order for $M_{ee} \gg M_{\mu\tau}$ by

 $M'_{2/3} = \pm M_{\mu\tau} e^{i\xi}$ $M'_1 = M_{ee},$

 $\Delta M_{23} = \frac{(h_{e\mu} + h_{e\tau})^2 v_{\mu\tau}^2}{2M_{ee}}$

Sandhya Choubey

IMHEP 2019

The Light Neutrino Mass

 $M_{ij}^{\nu} = \sum_{k} \frac{y_{ik} y_{jk} M_k}{16 \pi^2} \left[\frac{M_{\eta_R^0}^2}{M_{n^0}^2 - M_k^2} \ln \frac{M_{\eta_R^0}^2}{M_k^2} - \frac{M_{\eta_I^0}^2}{M_{n^0}^2 - M_k^2} \ln \frac{M_{\eta_I^0}^2}{M_k^2} \right]$

 $M_{\eta_{R_{I}}^{0}} \sim 10^{6} \text{ GeV}$ $\lambda_{5} \sim 10^{-3}$ $y_{ji}^{2} \sim 10^{-1}$ $M_{\nu} \sim 10^{-11} \text{ GeV}$

Sandhya Choubey

IMHEF 2019

Creating N₂/N₃ by Freeze-in

solve the relevant Boltzmann equation for N_2 and N_3 ,

$$\frac{dY_{N_j}}{dr} = \frac{V_{ij} M_{pl} r \sqrt{g_{\star}(r)}}{1.66 M_{sc}^2 g_s(r)} \left[\sum_{k=1,2} \sum_{i=1,2,3} \langle \Gamma_{h_k \to N_j N_i} \rangle (Y_{h_k} - Y_{N_j} Y_{N_i}) \right] \\ + \frac{V_{ij} M_{pl} r \sqrt{g_{\star}(r)}}{1.66 M_{sc}^2 g_s(r)} \sum_{i=1,2,3} \langle \Gamma_{Z_{\mu\tau} \to N_j N_i} \rangle_{NTH} (Y_{Z_{\mu\tau}} - Y_{N_j} Y_{N_i}) \right]$$

> h1 and h2 are in thermal equilibrium

$$\left\langle \Gamma_{h_k \to N_j N_i} \right\rangle = \Gamma_{h_k \to N_j N_i} \frac{K_1 \left(r \frac{M_{h_k}}{M_{sc}} \right)}{K_2 \left(r \frac{M_{h_k}}{M_{sc}} \right)}$$

modified Bessel Functions

 $Z_{\mu\tau}$ in not in thermal equilibrium since $g_{\mu\tau}$ is very small

Sandhya Choubey

IMHEP 2019

 \Rightarrow First get the non-thermal distribution of $Z_{\mu\tau}$ by solving the BE, next compute the non-thermal average of the decay width $\Gamma_{Z_{\mu\tau} \to N_i N_i}$ and finally solve for the non-thermal abundance of N2 and N3

 $\Omega_{DM}h^2 = 2.755 \times 10^8 \left(\frac{M_{N_2}}{\text{GeV}}\right) Y_{N_2}(T_{\text{Now}}) + 2.755 \times 10^8 \left(\frac{M_{N_3}}{\text{GeV}}\right) Y_{N_3}(T_{\text{Now}})$ IMHE6 2019

Sandhya Choubey

Sandhya Choubey

IMHEP 2019

photon flux for a decaying Dark Matter candidate is given by

$$\Phi = \frac{1}{4\pi M_{N_2} \tau_{N_2}} \int_{l.o.s.} \rho_{N_2}(\vec{r}) d\vec{r}$$

lifetime of the heavier DM particle N_2 .

Sandhya Choubey

IMHE⁸ 2019

$$\Gamma(N_2 \to N_3 \gamma) = (0.72 - 6.6) \times 10^{-52} \,\text{GeV} \left(\frac{M_{N_2}}{3.5 \,\text{keV}}\right) = (0.2 - 1.9) \times 10^{-44} \,\text{GeV} \left(\frac{M_{N_2}}{100 \,\text{GeV}}\right)$$

 $M_{ee} = 11 \text{ TeV}$ and $M_{\mu\tau} = 100 \text{ GeV}$ which gives us M_{N_2} and $M_{N_3} \sim 100 \text{ GeV}$ with opposite CP parities $V_{e\alpha} = \frac{h_{e\alpha}v_{\mu\tau}}{\sqrt{2}} \sim 0.1 \text{ GeV}$ by suitably adjusting the $V_{e\alpha}$ parameters we can generate the 3.5 keV mass gap

$$\Gamma(N_2 \to N_3 \gamma) = \frac{\mu_{23}^2}{4\pi} \,\delta^3 \,\left(1 - P \,\frac{M_{N_3}}{M_{N_2}}\right)^2$$

where $\delta = \frac{M_{N_2}}{2} (1 - \frac{M_{N_3}^2}{M_{N_2}^2})$, P gives the relative CP of the two neutrino states, which in the present model is P = -1. The magnetic moment coefficient μ_{23} in our model is given by

$$\mu_{23} = \sum_{i} \frac{e}{2} \frac{1}{(4\pi)^2} \frac{M_{N_2}}{M_{\eta}^2} (y_{i2} y_{i3}), \qquad \qquad y_{ij} = h_i U_{ij}$$

correct lifetime for 3.5 keV line $\tau_{N_2} \sim \mathcal{O}(10^{-44}) \text{GeV} \sim 10^{19} s > \text{age of universe}$

Sandhya Choubey

IMHEP 2019

- Solution $U(1)_{L_{\mu}}$ -can simultaneously explain muon (g-2), neutrino mixing and dark matter
- > The dark matter could be either WIMP type or FIMP type in this model.
- ≫U(1)_{L_µ-L₇} has exact mu-tau symmetry $\theta_{13} = 0$ and $\theta_{23} = \pi/4$ Breaking it shifts these from maximal and zero, consistent with data
- U(1)L_µ-L_τ naturally can give two nearly degenerate sterile neutrino dark matter, which could explain the observed 3.5 keV line