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Who can be a DM candidate
Should be massive
Should be electrically neutral

Should be non-relativistic

Should be stable or at least with half life greater than the 
age of the universe

Should be present in the early universe
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Your BSM model should 
explain all observations 

neutrin
o mass
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muon (g-2)
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dark energy
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        to explain muon (g-2) 
DM and neutrino mass

the present model remains invariant under the SU(3)c ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)
Lµ�L⌧

gauge

symmetry. This model is free from axial vector and mixed gravitational gauge anomalies as

these anomalies cancel between second and third generations of leptons without the requirement

of any additional chiral fermion. The full particle content of our model and their respective

charges under SU(2)L ⇥ U(1)Y ⇥ U(1)
Lµ�L⌧

gauge groups are listed in Tables I and II. In order

to break the U(1)
Lµ�L⌧

symmetry spontaneously, we need a complex scalar field �H with a non-

trivial Lµ�L⌧ charge assignment such that the Lµ�L⌧ symmetry is broken spontaneously when

�H picks up a vacuum expectation value vµ⌧ . Spontaneous breaking of the Lµ � L⌧ symmetry

generates mass for the extra neutral gauge boson Zµ⌧ . It has been shown that the spontaneously

broken Lµ�L⌧ model can explain the anomalous muon g� 2 signal. The Lµ�L⌧ symmetry is a

flavor symmetry and hence can be used to explain the peculiar mixing pattern of the neutrinos

[89]. In our model we generate small neutrino masses through the Type-I seesaw mechanism.

To that end we introduce three right handed neutrinos (Ne, Nµ, N⌧ ) with Lµ � L⌧ charges of

0, 1 and �1 respectively, such that their presence do not introduce any further anomaly. In

the U(1)
Lµ�L⌧

symmetric limit the right-handed neutrino mass has exact µ � ⌧ symmetry. We

will show that the spontaneous breaking of the gauged U(1)
Lµ�L⌧

symmetry leads to additional

terms in the right-handed neutrino mass matrix, providing a natural explanation of the neutrino

masses and mixing parameters observed in neutrino oscillation experiments, given in Eq. (1).

We also add another complex scalar field �DM in the model, with a chosen Lµ � L⌧ charge nµ⌧

such that the Lagrangian does not contain any term with odd power of �DM . Also the scalar

field �DM does not acquire any VEV and consequently in this model �DM becomes odd under a

remnant Z2 symmetry after the spontaneous breaking of the gauged U(1)
Lµ�L⌧

symmetry, which

ensure its stability. Hence �DM can be a viable dark matter candidate.
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Table I: Particle contents and their corresponding charges under SM gauge group.

We now write the Lagrangian of present model, which is given by

L = LSM + LN + LDM + (Dµ�H)
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where LSM is the usual SM Lagrangian while the Lagrangian for the right handed neutrinos

containing their kinetic energy terms, mass terms and Yukawa terms with the SM lepton doublets,

is denoted by LN which can be written as
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X
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with �̃h = i �2�
⇤
h
and Mee, Mµ⌧ are constants having dimension of mass while the Yukawa

couplings heµ, he⌧ and yi are dimensionless constants. In Eq. (4), LDM represents the dark sector

Lagrangian including the interactions of �DM with other scalar fields. The expression of LDM is

given by

LDM = (Dµ
�DM)†(Dµ�DM)� µ

2
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�
†
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�DM)2
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†
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Moreover, the quantity V (�h,�H) in Eq. (4) contains all the self interaction of �H and its inter-

action with SM Higgs doublet. Therefore,

V (�h,�H) = µ
2

H
�
†
H
�H + �H(�

†
H
�H)

2 + �hH(�
†
h
�h)(�

†
H
�H) . (7)

The expressions of all the covariant derivatives appearing in Eqs. (4)-(6) can be written in a

generic form which is given as

D⌫X = (@⌫ + i gµ⌧ Qµ⌧ (X)Zµ⌧ ⌫
)X , (8)

where X is any field which is singlet under SM gauge group but has a Lµ � L⌧ charge Qµ⌧ (X)

(see Table II) and gµ⌧ is the gauge coupling of the U(1)
Lµ�L⌧

group. Furthermore, the last term

in Eq. (4) represents the kinetic term for the extra neutral gauge boson Zµ⌧ in terms of its field

strength tensor F ↵�

µ⌧
= @

↵
Z

�

µ⌧
� @

�
Z

↵

µ⌧
.

The Lµ � L⌧ symmetry breaks spontaneously when �H acquires VEV and consequently the

corresponding gauge field Zµ⌧ becomes massive, MZµ⌧ = gµ⌧ vµ⌧ . In the unitary gauge, the
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containing their kinetic energy terms, mass terms and Yukawa terms with the SM lepton doublets,

is denoted by LN which can be written as
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and Mee, Mµ⌧ are constants having dimension of mass while the Yukawa
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given by
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The expressions of all the covariant derivatives appearing in Eqs. (4)-(6) can be written in a

generic form which is given as
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group. Furthermore, the last term
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The Lµ � L⌧ symmetry breaks spontaneously when �H acquires VEV and consequently the

corresponding gauge field Zµ⌧ becomes massive, MZµ⌧ = gµ⌧ vµ⌧ . In the unitary gauge, the

6
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gauge coupling

 8



 Sandhya Choubey                  IMHEP 2019                  February 21, 2019         9

Gauge

Group

U(1)
Lµ�L⌧

Baryonic Fields

(Qi

L
, ui

R
, di

R
)

0

Lepton Fields

(Le

L
, eR, N e

R
) (Lµ

L
, µR, N

µ

R
) (L⌧

L
, ⌧R, N ⌧

R
)

0 1 �1

Scalar Fields

�h �H �DM

0 1 nµ⌧

Table II: Particle contents and their corresponding charges under U(1)
Lµ�L⌧

.

where LSM is the usual SM Lagrangian while the Lagrangian for the right handed neutrinos

containing their kinetic energy terms, mass terms and Yukawa terms with the SM lepton doublets,

is denoted by LN which can be written as

LN =
X

i=e, µ, ⌧

i

2
N̄i�

µ
DµNi �

1

2
Mee N̄

c
e
Ne �

1

2
Mµ⌧ (N̄ c

µ
N⌧ + N̄ c

⌧
Nµ)

�
1

2
heµ(N̄ c

e
Nµ + N̄ c

µ
Ne)�

†
H
�

1

2
he⌧ (N̄ c

e
N⌧ + N̄ c

⌧
Ne)�H

�

X

i=e, µ, ⌧

yiL̄i�̃hNi + h.c. (5)

with �̃h = i �2�
⇤
h
and Mee, Mµ⌧ are constants having dimension of mass while the Yukawa

couplings heµ, he⌧ and yi are dimensionless constants. In Eq. (4), LDM represents the dark sector

Lagrangian including the interactions of �DM with other scalar fields. The expression of LDM is

given by

LDM = (Dµ
�DM)†(Dµ�DM)� µ

2

DM
�
†
DM

�DM � �DM(�†
DM

�DM)2

��Dh(�
†
DM

�DM)(�†
h
�h)� �DH(�

†
DM

�DM)(�†
H
�H) . (6)

Moreover, the quantity V (�h,�H) in Eq. (4) contains all the self interaction of �H and its inter-

action with SM Higgs doublet. Therefore,

V (�h,�H) = µ
2

H
�
†
H
�H + �H(�

†
H
�H)

2 + �hH(�
†
h
�h)(�

†
H
�H) . (7)

The expressions of all the covariant derivatives appearing in Eqs. (4)-(6) can be written in a

generic form which is given as

D⌫X = (@⌫ + i gµ⌧ Qµ⌧ (X)Zµ⌧ ⌫
)X , (8)

where X is any field which is singlet under SM gauge group but has a Lµ � L⌧ charge Qµ⌧ (X)

(see Table II) and gµ⌧ is the gauge coupling of the U(1)
Lµ�L⌧

group. Furthermore, the last term

in Eq. (4) represents the kinetic term for the extra neutral gauge boson Zµ⌧ in terms of its field

strength tensor F ↵�

µ⌧
= @

↵
Z

�

µ⌧
� @

�
Z

↵

µ⌧
.

The Lµ � L⌧ symmetry breaks spontaneously when �H acquires VEV and consequently the

corresponding gauge field Zµ⌧ becomes massive, MZµ⌧ = gµ⌧ vµ⌧ . In the unitary gauge, the

6
expressions of �h and �H after spontaneous breaking of the SU(2)L ⇥ U(1)Y ⇥ U(1)

Lµ�L⌧
gauge

symmetry are

�h =

0

@
0

v +H
p
2

1

A , �H =

✓
vµ⌧ +Hµ⌧

p
2

◆
, (9)

where v and vµ⌧ are the VEVs of �h and �H respectively. Presence of the mutual interaction

term in Eq. (7) between �h and �H introduces mass mixing between the scalar fields H and Hµ⌧ .

The scalar mass matrix with o↵-diagonal elements proportional to �hH is given by

M
2

scalar
=

0

B@
2�h v

2
�hH vµ⌧ v

�hH vµ⌧ v 2�H v
2

µ⌧

1

CA . (10)

From the expression of M2

scalar
it is evident that if �hH = 0 (i.e. the interaction between �h and

�H is absent), there is no mixing between H and Hµ⌧ and hence they can represent two physical

states. In our model however �hH 6= 0 and consequently the states representing the physical

scalars will be obtained after the diagonalization of matrix M
2

scalar
. The new physical states

which are linear combinations of H and Hµ⌧ can be written as

h1 = H cos↵ +Hµ⌧ sin↵ ,

h2 = �H sin↵ +Hµ⌧ cos↵ . (11)

The mixing angle ↵ and the corresponding eigenvalues (masses of h1 and h2) are given by

tan 2↵ =
�hH vµ⌧ v

�hv
2 � �Hv

2
µ⌧

, (12)

M
2

h1
= �hv

2 + �Hv
2

µ⌧
+
q
(�hv

2 � �Hv
2
µ⌧
)2 + (�hH v vµ⌧ )2 , (13)

M
2

h2
= �hv

2 + �Hv
2

µ⌧
�

q
(�hv

2 � �Hv
2
µ⌧
)2 + (�hH v vµ⌧ )2 . (14)

We have considered h1 as the SM-like Higgs boson 2 which has recently been discovered by

ATLAS [90] and CMS [91] collaborations. Therefore its mass Mh1 and VEV v are kept fixed

at 125.5 GeV and 246 GeV respectively. The mass of dark matter candidate �DM takes the

following form

M
2

DM
= µ

2

DM
+

�Dh v
2

2
+

�DH v
2

µ⌧

2
. (15)

2 Eq. (13, 14) are valid whenMh1 > Mh2 . On the other hand, the expressions ofMh1 andMh2 will be interchanged

for Mh2 > Mh1 resulting an change in sign to the mixing angle ↵.
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In this model our ground state is defined as h�hi =
v
p
2
, h�Hi =

vµ⌧
p
2
and h�DMi = 0 this requires

µ
2

h
< 0, µ

2

H
< 0 and µ

2

DM
> 0. (16)

The stability of the ground state (vacuum) requires the following inequalities [92] among the

quartic couplings of scalar fields

�h � 0,�H � 0,�DM � 0,

�hH � �2
p
�h �H ,

�Dh � �2
p
�h �DM ,

�DH � �2
p
�H �DM ,q

�hH + 2
p
�h �H

q
�Dh + 2

p
�h �DM

q
�DH + 2

p
�H �DM

+2
p
�h�H�DM + �hH

p
�DM + �Dh

p
�H + �DH

p
�h � 0 . (17)

Besides the above inequalities, the upper bound on quartic, gauge and Yukawa couplings can

be obtained from the condition of perturbativity. For a scalar quartic coupling � (� = �h, �H ,

�DM , �hH , �Dh, �DH) this condition will be ensured when [93]

� < 4⇡ , (18)

while for gauge coupling gµ⌧ and Yukawa coupling y (y = ye, yµ, y⌧ , heµ and he⌧ ) it is [93]

gµ⌧ , y <

p
4⇡ . (19)

The above quadratic and quartic couplings of scalars fields �h and �H namely µ
2

h
, µ2

H
, �h, �H

and �hH can be expressed in terms of physical scalar masses (Mh1 , Mh2), mixing angle ↵ and

VEVs (v, vµ⌧ ), which have been given in [92].

III. MUON (g � 2)

It is well known that from the Dirac equation, the magnetic moment of muon ~M can be

written in terms of its spin (~S), which is

~M = gµ
e

2mµ

~S, (20)

where mµ is the mass of muon and gµ = 2 is the gyromagnetic ratio. However, if we calculate gµ
using QFT then contributions arising from loop corrections slightly shift the value of gµ from 2.

Hence one can define a quantity aµ which describes the deviation of gµ from its tree level value,

aµ =
gµ � 2

2
. (21)
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Because of our choice of       the                 breaks into a residual Z2 
symmetry which makes the dark matter stable.  
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In general, the contribution to the theoretical value of aµ (ath
µ
) comes from the following sources

[74]

a
th

µ
= a

QED

µ
+ a

EW

µ
+ a

Had

µ
, (22)

where the contributions arising from Quantum Electrodynamics (QED), Electroweak theory and

hadronic process are denoted by aQED

µ
, aEW

µ
and aHad

µ
, respectively. The SM prediction of aµ

including the above terms is [75]

a
th

µ
= 1.1659179090(65)⇥ 10�3

. (23)

On the other hand, aµ has been precisely measured experimentally, initially by the CERN ex-

periments and later on by the E821 experiment, and the current average experimental value is

[78]

a
exp

µ
= 1.16592080(63)⇥ 10�3

. (24)

From the above one can see that although the theoretically predicted and the experimentally

measured values of aµ are quite close to each other, there still exists some discrepancy between

these two quantities at the 3.2� significance which is [75],

�aµ = a
exp

µ
� a

th

µ
= (29.0± 9.0)⇥ 10�10

. (25)

Therefore, in order to reduce the di↵erence between a
exp

µ
and a

th

µ
we need to explore BSM scenarios

where we can get extra contributions from some extra diagrams. In our U(1)
Lµ�L⌧

model we have

an additional one loop diagram compared to the SM, which is mediated by the extra neutral gauge

boson Zµ⌧ and gives nonzero contribution to a
th

µ
as shown in Fig. 1. The additional contribution

to a
th

µ
from this diagram is given by [76, 77],

�aµ(Zµ⌧ ) =
g
2

µ⌧

8⇡2

Z
1

0

dx
2x(1� x)2

(1� x)2 + rx
, (26)

where, r = (MZµ⌧/mµ)2 is the square of the ratio between masses of gauge boson (Zµ⌧ ) and

muon. As mentioned in the Introduction, although a O(100 MeV) Zµ⌧ is allowed, its coupling

strength (gµ⌧ ) is strongly constrained to be less than ⇠ 10�3 from the measurement of neutrino

trident cross section by experiments like CHARM-II [94] and CCFR [95]. In our analysis, we

find that for MZµ⌧ = 100 MeV and gµ⌧ = 9 ⇥ 10�4 the value of �aµ = 22.6 ⇥ 10�10, which lies

around the ballpark value given in Eq. (25). In what follows, we will use MZµ⌧ = 100 MeV and

gµ⌧ = 9.0 ⇥ 10�3 as our benchmark point for the analyses of neutrino masses and dark matter

phenomenology.
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�

µ µ

Zµ⌧

Figure 1: One loop Feynman diagram contributing to muon (g�2), mediated by the extra gauge boson

Zµ⌧ .

IV. NEUTRINO MASSES AND MIXING

Majorana neutrino masses are generated via the Type-I seesaw mechanism by the addition

of three right handed neutrinos to the model. Using Eq. (5) we can write the Majorana mass

matrix for the three right handed neutrinos as

MR =

0

BBBBBBBBB@

Mee

vµ⌧
p
2
heµ

vµ⌧
p
2
he⌧

vµ⌧
p
2
heµ 0 Mµ⌧ e

i⇠

vµ⌧
p
2
he⌧ Mµ⌧ e

i⇠ 0

1

CCCCCCCCCA

, (27)

where all parameters in MR in general can be complex. However, by proper phase rotation one

can choose all the elements expect the µ⌧ component of MR to be real [83]. Thus, MR depends

on the real parameters Mee, Mµ⌧ , heµ and he⌧ and the phase ⇠. On other hand, from the Yukawa

term in Eq. (5) one can easily see that the Dirac mass matrix MD between left handed and right

handed neutrinos is diagonal and for simplicity we have chosen all the Yukawa couplings (ye, yµ
and y⌧ ) are real. The expression of MD is

MD =

0

BBBBB@

fe 0 0

0 fµ 0

0 0 f⌧

1

CCCCCA
, (28)
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µ
) comes from the following sources

[74]

a
th

µ
= a

QED

µ
+ a

EW

µ
+ a

Had

µ
, (22)

where the contributions arising from Quantum Electrodynamics (QED), Electroweak theory and

hadronic process are denoted by aQED

µ
, aEW

µ
and aHad

µ
, respectively. The SM prediction of aµ

including the above terms is [75]

a
th

µ
= 1.1659179090(65)⇥ 10�3

. (23)

On the other hand, aµ has been precisely measured experimentally, initially by the CERN ex-

periments and later on by the E821 experiment, and the current average experimental value is

[78]

a
exp

µ
= 1.16592080(63)⇥ 10�3

. (24)

From the above one can see that although the theoretically predicted and the experimentally

measured values of aµ are quite close to each other, there still exists some discrepancy between

these two quantities at the 3.2� significance which is [75],

�aµ = a
exp

µ
� a

th

µ
= (29.0± 9.0)⇥ 10�10

. (25)

Therefore, in order to reduce the di↵erence between a
exp

µ
and a

th

µ
we need to explore BSM scenarios

where we can get extra contributions from some extra diagrams. In our U(1)
Lµ�L⌧

model we have

an additional one loop diagram compared to the SM, which is mediated by the extra neutral gauge

boson Zµ⌧ and gives nonzero contribution to a
th

µ
as shown in Fig. 1. The additional contribution

to a
th

µ
from this diagram is given by [76, 77],

�aµ(Zµ⌧ ) =
g
2

µ⌧

8⇡2

Z
1

0

dx
2x(1� x)2

(1� x)2 + rx
, (26)

where, r = (MZµ⌧/mµ)2 is the square of the ratio between masses of gauge boson (Zµ⌧ ) and

muon. As mentioned in the Introduction, although a O(100 MeV) Zµ⌧ is allowed, its coupling

strength (gµ⌧ ) is strongly constrained to be less than ⇠ 10�3 from the measurement of neutrino

trident cross section by experiments like CHARM-II [94] and CCFR [95]. In our analysis, we

find that for MZµ⌧ = 100 MeV and gµ⌧ = 9 ⇥ 10�4 the value of �aµ = 22.6 ⇥ 10�10, which lies

around the ballpark value given in Eq. (25). In what follows, we will use MZµ⌧ = 100 MeV and

gµ⌧ = 9.0 ⇥ 10�3 as our benchmark point for the analyses of neutrino masses and dark matter

phenomenology.
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Gauge

Group

U(1)
Lµ�L⌧

Baryonic Fields

(Qi

L
, ui

R
, di

R
)

0

Lepton Fields

(Le

L
, eR, N e

R
) (Lµ

L
, µR, N

µ

R
) (L⌧

L
, ⌧R, N ⌧

R
)

0 1 �1

Scalar Fields

�h �H �DM

0 1 nµ⌧

Table II: Particle contents and their corresponding charges under U(1)
Lµ�L⌧

.

where LSM is the usual SM Lagrangian while the Lagrangian for the right handed neutrinos

containing their kinetic energy terms, mass terms and Yukawa terms with the SM lepton doublets,

is denoted by LN which can be written as

LN =
X

i=e, µ, ⌧

i

2
N̄i�

µ
DµNi �

1

2
Mee N̄

c
e
Ne �

1

2
Mµ⌧ (N̄ c

µ
N⌧ + N̄ c

⌧
Nµ)

�
1

2
heµ(N̄ c

e
Nµ + N̄ c

µ
Ne)�

†
H
�

1

2
he⌧ (N̄ c

e
N⌧ + N̄ c

⌧
Ne)�H

�

X

i=e, µ, ⌧

yiL̄i�̃hNi + h.c. (5)

with �̃h = i �2�
⇤
h
and Mee, Mµ⌧ are constants having dimension of mass while the Yukawa

couplings heµ, he⌧ and yi are dimensionless constants. In Eq. (4), LDM represents the dark sector

Lagrangian including the interactions of �DM with other scalar fields. The expression of LDM is

given by

LDM = (Dµ
�DM)†(Dµ�DM)� µ

2

DM
�
†
DM

�DM � �DM(�†
DM

�DM)2

��Dh(�
†
DM

�DM)(�†
h
�h)� �DH(�

†
DM

�DM)(�†
H
�H) . (6)

Moreover, the quantity V (�h,�H) in Eq. (4) contains all the self interaction of �H and its inter-

action with SM Higgs doublet. Therefore,

V (�h,�H) = µ
2

H
�
†
H
�H + �H(�

†
H
�H)

2 + �hH(�
†
h
�h)(�

†
H
�H) . (7)

The expressions of all the covariant derivatives appearing in Eqs. (4)-(6) can be written in a

generic form which is given as

D⌫X = (@⌫ + i gµ⌧ Qµ⌧ (X)Zµ⌧ ⌫
)X , (8)

where X is any field which is singlet under SM gauge group but has a Lµ � L⌧ charge Qµ⌧ (X)

(see Table II) and gµ⌧ is the gauge coupling of the U(1)
Lµ�L⌧

group. Furthermore, the last term

in Eq. (4) represents the kinetic term for the extra neutral gauge boson Zµ⌧ in terms of its field

strength tensor F ↵�

µ⌧
= @

↵
Z

�

µ⌧
� @

�
Z

↵

µ⌧
.

The Lµ � L⌧ symmetry breaks spontaneously when �H acquires VEV and consequently the

corresponding gauge field Zµ⌧ becomes massive, MZµ⌧ = gµ⌧ vµ⌧ . In the unitary gauge, the

6

�

µ µ

Zµ⌧

Figure 1: One loop Feynman diagram contributing to muon (g�2), mediated by the extra gauge boson

Zµ⌧ .

IV. NEUTRINO MASSES AND MIXING

Majorana neutrino masses are generated via the Type-I seesaw mechanism by the addition

of three right handed neutrinos to the model. Using Eq. (5) we can write the Majorana mass

matrix for the three right handed neutrinos as

MR =

0

BBBBBBBBB@

Mee

vµ⌧
p
2
heµ

vµ⌧
p
2
he⌧

vµ⌧
p
2
heµ 0 Mµ⌧ e

i⇠

vµ⌧
p
2
he⌧ Mµ⌧ e

i⇠ 0

1

CCCCCCCCCA

, (27)

where all parameters in MR in general can be complex. However, by proper phase rotation one

can choose all the elements expect the µ⌧ component of MR to be real [83]. Thus, MR depends

on the real parameters Mee, Mµ⌧ , heµ and he⌧ and the phase ⇠. On other hand, from the Yukawa

term in Eq. (5) one can easily see that the Dirac mass matrix MD between left handed and right

handed neutrinos is diagonal and for simplicity we have chosen all the Yukawa couplings (ye, yµ
and y⌧ ) are real. The expression of MD is

MD =

0

BBBBB@

fe 0 0

0 fµ 0

0 0 f⌧

1

CCCCCA
, (28)
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10In the                symmetric phase the              and we have exact 
mu-tau symmetry                                                   and 2 of the  

   mass eigenstates are degenerate

Lµ � L⌧ vµ⌧ = 0

✓13 = 0 and ✓23 = ⇡/4
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where fi =
yi
p
2
v with i = e, µ and ⌧ . Now, with respect to the basis

⇣
⌫↵L (N↵R)c

⌘T
and

((⌫↵L)
c

N↵R)
T we can write the mass matrix of both left as well as right handed neutrinos

which is given as

M =

 
0 MD

M
T

D
MR

!
, (29)

where M is a 6 ⇥ 6 matrix and both MD and MR are 3 ⇥ 3 matrices given by Eqs. (27) and

(28). After diagonalisztion of the matrix M one obtains two fermionic states for each generation

which are Majorana in nature. Therefore we have altogether six Majorana neutrinos, out of

which three are light and rest are heavy. Using block diagonalisation technique, we can find the

mass matrices for light as well as heavy neutrinos which are given as

m⌫ ' �MD M
�1

R
M

T

D
, (30)

mN ' MR . (31)

Here both m⌫ and mN are complex symmetric matrices. Also Eqs. (30-31) are derived using

an assumption that MD ⌧ MR i.e. the eigenvalues of MD is much less than those of MR and

therefore terms with higher powers of MD/MR are neglected. Using the expressions of MR and

MD given in Eqs. (27-28) the light neutrino mass matrix in this model takes the following form

m⌫ =
1

2 p

0

BBBBB@

2 f 2

e
M

2

µ⌧
e
i⇠

�
p
2 fefµ he⌧vµ⌧ �

p
2 fef⌧ heµvµ⌧

�
p
2 fefµ he⌧vµ⌧

f
2

µ
h
2

e⌧
v
2

µ⌧
e
�i⇠

Mµ⌧

fµ f⌧

Mµ⌧

(Mee Mµ⌧ � p e
�i⇠)

�
p
2 fef⌧ heµvµ⌧

fµ f⌧

Mµ⌧

(Mee Mµ⌧ � p e
�i⇠)

f
2

⌧
h
2

eµ
v
2

µ⌧
e
�i⇠

Mµ⌧

1

CCCCCA
, (32)

where p = heµ he⌧ v
2

µ⌧
�Mee Mµ⌧ e

i⇠. The masses and mixing angles of the light neutrinos are found

by diagonalising this matrix [96] and are compared against the corresponding experimentally

allowed ranges obtained from global analysis of the data (cf. Eq. (1)).

There are eight independent parameters in the light neutrino mass matrix m⌫ , namely, fe,

fµ, f⌧ , Mµ⌧ , Mee, Ve⌧ = vµ⌧p
2
he⌧ , Veµ = vµ⌧p

2
heµ and ⇠. All of these parameters have mass

dimension GeV except the dimensionless phase factor ⇠ which is in radian. In order to find the

model parameter space allowed by the neutrino oscillation experiments, we have varied the above

mentioned parameters in the following range

0  ⇠ [rad]  2⇡ ,

1  Mee, Mµ⌧ [GeV]  104 ,

1  Veµ, Ve⌧ [GeV]  280 ,

0.1 
(fe, fµ, f⌧ )

10�4
[GeV]  10 .

(33)
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i⇠. The masses and mixing angles of the light neutrinos are found

by diagonalising this matrix [96] and are compared against the corresponding experimentally

allowed ranges obtained from global analysis of the data (cf. Eq. (1)).

There are eight independent parameters in the light neutrino mass matrix m⌫ , namely, fe,

fµ, f⌧ , Mµ⌧ , Mee, Ve⌧ = vµ⌧p
2
he⌧ , Veµ = vµ⌧p

2
heµ and ⇠. All of these parameters have mass

dimension GeV except the dimensionless phase factor ⇠ which is in radian. In order to find the

model parameter space allowed by the neutrino oscillation experiments, we have varied the above

mentioned parameters in the following range

0  ⇠ [rad]  2⇡ ,

1  Mee, Mµ⌧ [GeV]  104 ,
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where fi =
yi
p
2
v with i = e, µ and ⌧ . Now, with respect to the basis

⇣
⌫↵L (N↵R)c

⌘T
and

((⌫↵L)
c

N↵R)
T we can write the mass matrix of both left as well as right handed neutrinos
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0 MD
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!
, (29)
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V. DARK MATTER

Being stable as well as electrically neutral, �DM can serve as a dark matter candidate. In this

section, we will compute the relic abundance of �DM at the present epoch and its spin independent

scattering cross section relevant for direct detection experiments. The viability of �DM as a dark

matter candidate will be tested by comparing its relic abundance and spin independent scattering

cross section with the results obtained from Planck and LUX experiments. Finally, at the end

of this section we will compute the �-ray flux due to the annihilation of �DM and compare this

flux with Fermi-LAT observed �-ray excess from the regions close to the Galactic Centre (GC).

A. Relic Density

In the present model, since �DM is a complex scalar field with a nonzero Lµ �L⌧ charge nµ⌧ ,

therefore we have a non-self-conjugate DM scenario where DM particle and its antiparticle are

di↵erent with respect to nµ⌧ . In this work we assume that there is no asymmetry between the

number densities of �DM and �
†
DM

in the early Universe. The evolution of total DM number

density n (n = n�DM + n
�
†
DM

) is governed by the well known Boltzmann equation which is given

by [20]

dn

dt
+ 3nH = �

1

2
h�vi

�
n
2
� n

2

eq

�
, (34)

where neq is the sum of equilibrium number densities of both �DM , �†
DM

and H is the Hubble

parameter. Moreover, h� vi is the thermally averaged annihilation cross section between �DM and

�
†
DM

for the processes shown in Fig. 7 3. In this work, we have considered DM mass in the range

30 GeV to 500 GeV. Therefore depending on the value of MDM , �DM and �
†
DM

can annihilate

into the following final states: �DM�
†
DM

! ff̄ , W+
W

�, ZZ, Zµ⌧Zµ⌧ , h1h1, h2h2, h1h2, N1N̄2

and N1N̄3 where f is any SM fermion. The expressions of h� vi involving actual annihilation

cross section � and modified Bessel functions is given in [20]. The factor 1/2 appearing in the

right hand side of the Boltzmann equation is due to the non-self-conjugate nature of DM [20]. In

terms of two dimensionless quantities Y and x the above equation can be written in the following

form

dY

dx
= �

✓
45G

⇡

◆� 1
2 MDM

p
g?

x2

1

2
h�vi

�
Y

2
� (Y eq)2

�
, (35)

3 We have not shown Zµ⌧ mediated diagrams as the coupling strength of Zµ⌧ with �DM and �†
DM is proportional

to gµ⌧ which is needed to be very small (⇠ 10�3) for the explanation of muon (g � 2) anomaly (see Section

III).
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Figure 7: Feynman diagrams dominantly contributing to the annihilation cross section and hence to-

wards the relic density of �DM and �†
DM

.

where Y = n

s
is the total comoving number density of �DM and �

†
DM

and x = MDM
T

where T is

the temperature of the Universe. Also, Newton’s gravitational constant is denoted by G while g?
is a function of e↵ective degrees of freedom corresponding to both energy and entropy densities

of the Universe [20]. Therefore, the relic density of �DM and �
†
DM

at the present epoch is given

by [97, 98]

⌦DMh
2 = 2.755⇥ 108

✓
MDM

GeV

◆
Y (T0) . (36)

Y (T0) is the total comoving number density of �DM and �
†
DM

for the present temperature of the

Universe (T0 ⇠ 10�13 GeV), which can be obtained by solving Eq. (35).

B. Direct detection

Dark matter direct detection experiments use the principle of elastic scattering between dark

matter particles and detector nuclei. If DM particles scatter o↵ the detector nuclei elastically

then the information about the nature of DM particles and their interaction type with SM

particles (quarks) can be obtained by measuring the recoil energy of the nuclei. Since the DM

particles are nonrelativistic (cold dark matter), therefore the energy deposited to the nuclei are

extremely small (⇠ keV range). Hence in order to measure it accurately, low background as well

as low threshold detector is required. In the present model, the elastic scattering of both �DM

and �
†
DM

can occur only through the exchange of scalar bosons h1, h2. Unlike the other U(1)

extensions of the SM where the extra neutral gauge bosons can interact with the quarks (such

as U(1)B�L model [92]), here Zµ⌧ does not couple with the quark sector and consequently, the

spin independent scattering cross sections of the DM particle and its antiparticle are equal. The
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Figure 9: Left (Right) Panel: Variation of relic density ⌦DMh2 with respect to the DM mass MDM for

three di↵erent value of mixing angle ↵ (Mh2), while other the values of parameters have been kept fixed

at �DH = 0.01, �Dh = 0.001, and Mh2 = 200 GeV (↵ = 0.045 rad).

(⌦DMh
2 = 0.1197) only around the two resonance regions where the mass of DM is nearly equal

to half of the mediator mass i.e. MDM ⇠ Mhi/2 (i = 1, 2). Therefore the first resonance occurs

when DM mass is around 62 GeV and it is due to the SM-like Higgs boson h1 while the second

one is due to extra Higgs boson h2 of mass 200 GeV. Like the left panel of Fig. 9, the right panel

also shows the variation of ⌦DMh
2 with MDM but in this case three di↵erent plots are generated

for three di↵erent values of Mh2 = 200 GeV (blue dashed dot line), 300 GeV (green dashed

line) and 400 GeV (red solid line), respectively. Similar to the left panel, here also the DM relic

density satisfies the Planck limit only around the resonance regions. However in this plot, as we

have varied the mass of h2, therefore instead of getting a single resonance region for h2 (as in the

left panel) we have found three resonance regions at MDM ⇠ 100 GeV, 150 GeV and 200 GeV

for Mh2 = 200 GeV, 300 GeV and 400 GeV, respectively. For all three cases the resonance due

to the SM-like Higgs boson h1 occurs at the same value of MDM ⇠ 62.5 GeV as we have fixed

the mass of h1 at 125.5 GeV. Plots in both panels are generated for nµ⌧ = 0.15.

Left and right panels of Fig. 10 represent the variation of relic density ⌦DMh
2 with the dark

matter mass �DM for there di↵erent values of parameter �DH and �Dh, respectively. These

plots also show the appearance of two resonance regions due to the two mediating scalar bosons.

However, from this figure one can notice the e↵ect of parameters �Dh and �DH on the DM relic

density with respect to the variation of MDM . In the low mass region (MDM
<
⇠ 80 GeV), SM-like

Higgs boson mediated diagrams dominantly contribute to the pair annihilation processes of �DM
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Figure 10: Left (Right) Panel: Variation of relic density ⌦h2 with respect to the mass of the dark matter

MDM for three di↵erent value of �DH (�Dh), while other parameters value are kept fixed at Mh2 = 200

GeV, ↵ = 0.045 rad and �Dh = 0.001 (�DH = 0.01).

and �
†
DM

while the contribution of extra Higgs mediated diagrams become superior for the high

DM mass region (MDM
>
⇠ 80 GeV). From the expression of �DM �

†
DM

h1 vertex factor given in

Table III, one can see that the e↵ect of the parameter �DH on h�vi is mixing angle suppressed

(i.e. multiplied by sin↵). Therefore, in the left panel for low DM mass region the e↵ect of �DH

to ⌦DMh
2 is small. On the other hand, in the expression of vertex factor of �DM �

†
DM

h1, the

parameter �Dh appears with cos↵ and hence we see a considerable e↵ect of �Dh on ⌦DMh
2 in

the right panel (low DM mass region). For the extreme right region of both panels (MDM
>
⇠

200 GeV), the dominant pair annihilation channel is �DM�
†
DM

! h2h2. Hence, the impact of

�DH and �Dh to ⌦DMh
2 can well be understood from the expression of �DM�

†
DM

h2h2 vertex

factor (see Table III). In the intermediate region (80GeV < MDM < 200GeV), �DM�
†
DM

!

W
+
W

�, ZZ and h1h1 channels mainly contribute to DM relic density and in the right panel for

100GeV < MDM < 200GeV, the variation of ⌦DMh
2 with respect to �Dh resulting from DM

pair annihilation into h1h1 final state.

In the left panel of Fig. 11, we show the allowed values of Mh2 which reproduce the correct

DM relic density for the variation of MDM in the range 30 GeV to 500 GeV. In this plot we

have varied the mass of extra Higgs boson Mh2 in the range 60 GeV to 450 GeV and �DH from

0.001 to 0.1. From this plot it is evident that for a particular value of dark matter mass the

corresponding allowed values of Mh2 lie around 2MDM . The reason behind this nature is that

the relic abundance of dark matter (both �DM and �
†
DM

) satisfies the observed DM density

21
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Figure 8: Feynman diagram for the elastic scattering of �DM and �†
DM

with detector nucleon (N).

expression of spin independent scattering cross section of DM with nucleon (N) is given by

�SI =
µ
2

4⇡

"
MN fN cos↵

MDM v

 
tan↵ g

�DM�
†
DMh2

M
2

h2

�

g
�DM�

†
DMh1

M
2

h1

!#2
,

(37)

where µ is the reduced mass between DM and N while fN ⇠ 0.3 [99] is the nuclear form factor.

g
�DM�

†
DMhi

is the vertex factor involving fields �DM , �†
DM

and hi (i = 1, 2) and its expression is

given in Table III.

C. Results

We have computed the relic density of DM using micrOMEGAs [100] package and the im-

plementation of the present model in micrOMEGAS has been done using the LanHEP [101]

package. For the relic density calculation, we have considered the following benchmark values of

the parameters related to the neutrino sector,

• Masses of the three heavy neutrinos: MN1 = 332.88 GeV, MN2 = 279.06 GeV and MN3 =

168.28GeV,

• Yukawa couplings: heµ = 2.44 and he⌧ = 1.28.

We have checked that these adopted values of right handed neutrino masses and Yukawa couplings

reproduce all the experimentally measurable quantities of the neutrino sector within their 1�

range [12]. Moreover like the previous section, here also we have used our benchmark point

MZµ⌧ = 100 MeV and gµ⌧ = 9⇥ 10�4, which are required to explain the muon (g� 2) anomaly.
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Figure 11: Left Panel: Allowed values of Mh2 with respect to the variation of the dark matter mass

MDM for two di↵erent value of mixing angle ↵. Right panel: Variation of spin independent scattering

cross sections of dark matter with its mass. All the points in both plots satisfy the Planck limit on

DM relic density in 1� range (⌦DMh2 = 0.1197 ± 0.0022 [18]) and these two plots are generated for

�Dh = 0.001.

only around the resonance regions (when mediator mass Mhi ⇠ 2 ⇥ MDM , i = 1, 2 see Fig. 9

and Fig. 10). The allowed range of Mh2 for a particular DM mass does not vary much for the

change of mixing angle ↵ from 0.01 rad (red coloured region) to 0.05 rad (green colour region).

Moreover, we restrict Mh2 upto 430 GeV to remain within the perturbative regime (�H < 4 ⇡)

and hence the relic density condition is not satisfied beyond MDM = 215GeV Furthermore, near

MDM ⇠ 60 GeV, one can see that a broad range of Mh2 values are allowed, which indicates that

in this region the SM-like Higgs contributes dominantly giving the wide range of Mh2 values for

which the DM relic density is satisfied. Spin independent elastic scattering cross section (�SI) of

DM with with its mass has been plotted in the the right panel of Fig. 11 for two di↵erent values

of ↵ = 0.01 rad (green coloured region) and 0.05 rad (red coloured region) respectively. This

plot is also generated for 60GeV  Mh2  430 GeV, 0.001  �DH  0.1 and �Dh = 0.001 and

all the points within the red and green coloured patch satisfy the Planck result. For comparison

with current experimental limits on �
SI from DM direct detection experiments we have plotted

the result of LUX-2016 (blue solid line) in the same figure. Moreover, we have also shown the

predicted results from the “ton-scale” direct detection experiments like XENON 1T [23] (blue

dashed line) and DARWIN [103] (long dashed purple line). From this figure it is evident that

the validity of our model can be explored in near future by these “ton-scale” experiments.
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Figure 2: Feynman diagrams for the dark matter production processes from the annihilations and decays

of di↵erent SM and BSM particles.

Vertex Vertex Factor

a b c gabc

�DM �
†
DM

h1 �(�Dhv cos↵+ �DHvµ⌧ sin↵)

�DM �
†
DM

h2 (�Dhv sin↵� �DHvµ⌧ cos↵)

�DM �
†
DM

Z
⇢
µ⌧ nµ⌧gµ⌧ (p2 � p1)⇢

N̄iNi Z
⇢
µ⌧

gµ⌧

2
�
⇢
�
5

Table III: Relevant couplings required to compute Feynman diagrams given in Fig. 2.

gauge boson Zµ⌧ involves gµ⌧ and nµ⌧ . For the dark matter to be a suitable FIMP candidate,

the cross section of the diagrams listed in Fig. 2 should be very small. The complete expressions
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for the contribution from each of the diagrams is given in Appendix A and B. The processes

involving h1 and h2 can be easily made feeble enough by taking �Dh and �DH ⇠ 10�12. As

we will see later, the other important production mechanism of �DM is shown by the Feynman

diagram where N2 and N3 annihilate to �DM via the new gauge boson Zµ⌧ . The expression for

the cross section of this process is given in Eq. (A10) in Appendix A. We see that the cross

section for this process is proportional to ⇠ g
4
µ⌧
n
2
µ⌧
/102. Since we fix gµ⌧ = 9 ⇥ 10�4 to explain

the anomalous muon (g � 2), we take nµ⌧ ⇠ 10�5 to keep �
NjNj!�

†
DM�DM

small enough so that

�DM stays out of chemical equilibrium. This choice for nµ⌧ also ensures that there is a remnant

Z2 symmetry even when U(1)
Lµ�L⌧

symmetry is broken spontaneously, which enables �DM to

be stable. Thus, �DM behaves as a FIMP dark matter, it stays out of thermal equilibrium at all

times, and is produced by the freeze-in mechanism.

The evolution of comoving number density of FIMP produced from the decays as well as anni-

hilations of the SM and BSM particles is governed by the Boltzmann equation. The Boltzmann

equation in terms of the comoving number density of �DM is given below. This equation contains

both decay as well as annihilation terms. While deriving the Boltzmann equation for the FIMP

�DM , we have taken all the particles except �DM in thermal equilibrium and hence their number

densities follow the Maxwell-Boltzmann distribution function.
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In the above equation Y�DM =
n�DM

s
is the comoving number density, n�DM represents the actual

number density of the dark matter candidate �DM while s is the entropy of the Universe. The

quantity z =
⇤

T
, where ⇤ is some mass scale and here it corresponds to the mass of the second

Higgs h2 (⇤ ⇠ Mh2). The temperature of the Universe is denoted by T and Mpl = 1.22 ⇥ 1019

GeV is the Planck mass. The function g?(z) is related to the degrees of freedom and has the

following expression,

p
g?(z) =

gs(z)p
g⇢(z)

✓
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d ln gs(z)

d lnz

◆
. (20)

In the above equation gs(z) and g⇢(z) are the e↵ective degrees of freedom corresponding to the

entropy and energy densities of the Universe. If the decaying particles (h1, h2) are in thermal
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Z2 symmetry even when U(1)
Lµ�L⌧

symmetry is broken spontaneously, which enables �DM to

be stable. Thus, �DM behaves as a FIMP dark matter, it stays out of thermal equilibrium at all

times, and is produced by the freeze-in mechanism.

The evolution of comoving number density of FIMP produced from the decays as well as anni-

hilations of the SM and BSM particles is governed by the Boltzmann equation. The Boltzmann

equation in terms of the comoving number density of �DM is given below. This equation contains

both decay as well as annihilation terms. While deriving the Boltzmann equation for the FIMP

�DM , we have taken all the particles except �DM in thermal equilibrium and hence their number

densities follow the Maxwell-Boltzmann distribution function.
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In the above equation Y�DM =
n�DM

s
is the comoving number density, n�DM represents the actual

number density of the dark matter candidate �DM while s is the entropy of the Universe. The

quantity z =
⇤

T
, where ⇤ is some mass scale and here it corresponds to the mass of the second

Higgs h2 (⇤ ⇠ Mh2). The temperature of the Universe is denoted by T and Mpl = 1.22 ⇥ 1019

GeV is the Planck mass. The function g?(z) is related to the degrees of freedom and has the

following expression,
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In the above equation gs(z) and g⇢(z) are the e↵ective degrees of freedom corresponding to the

entropy and energy densities of the Universe. If the decaying particles (h1, h2) are in thermal
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times, and is produced by the freeze-in mechanism.
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hilations of the SM and BSM particles is governed by the Boltzmann equation. The Boltzmann

equation in terms of the comoving number density of �DM is given below. This equation contains
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In the above equation Y�DM =
n�DM

s
is the comoving number density, n�DM represents the actual

number density of the dark matter candidate �DM while s is the entropy of the Universe. The

quantity z =
⇤

T
, where ⇤ is some mass scale and here it corresponds to the mass of the second

Higgs h2 (⇤ ⇠ Mh2). The temperature of the Universe is denoted by T and Mpl = 1.22 ⇥ 1019

GeV is the Planck mass. The function g?(z) is related to the degrees of freedom and has the

following expression,
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In the above equation gs(z) and g⇢(z) are the e↵ective degrees of freedom corresponding to the

entropy and energy densities of the Universe. If the decaying particles (h1, h2) are in thermal
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for the contribution from each of the diagrams is given in Appendix A and B. The processes

involving h1 and h2 can be easily made feeble enough by taking �Dh and �DH ⇠ 10�12. As

we will see later, the other important production mechanism of �DM is shown by the Feynman

diagram where N2 and N3 annihilate to �DM via the new gauge boson Zµ⌧ . The expression for

the cross section of this process is given in Eq. (A10) in Appendix A. We see that the cross

section for this process is proportional to ⇠ g
4
µ⌧
n
2
µ⌧
/102. Since we fix gµ⌧ = 9 ⇥ 10�4 to explain

the anomalous muon (g � 2), we take nµ⌧ ⇠ 10�5 to keep �
NjNj!�

†
DM�DM

small enough so that

�DM stays out of chemical equilibrium. This choice for nµ⌧ also ensures that there is a remnant

Z2 symmetry even when U(1)
Lµ�L⌧

symmetry is broken spontaneously, which enables �DM to

be stable. Thus, �DM behaves as a FIMP dark matter, it stays out of thermal equilibrium at all

times, and is produced by the freeze-in mechanism.

The evolution of comoving number density of FIMP produced from the decays as well as anni-

hilations of the SM and BSM particles is governed by the Boltzmann equation. The Boltzmann

equation in terms of the comoving number density of �DM is given below. This equation contains

both decay as well as annihilation terms. While deriving the Boltzmann equation for the FIMP

�DM , we have taken all the particles except �DM in thermal equilibrium and hence their number

densities follow the Maxwell-Boltzmann distribution function.
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In the above equation Y�DM =
n�DM

s
is the comoving number density, n�DM represents the actual

number density of the dark matter candidate �DM while s is the entropy of the Universe. The

quantity z =
⇤

T
, where ⇤ is some mass scale and here it corresponds to the mass of the second

Higgs h2 (⇤ ⇠ Mh2). The temperature of the Universe is denoted by T and Mpl = 1.22 ⇥ 1019

GeV is the Planck mass. The function g?(z) is related to the degrees of freedom and has the

following expression,

p
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gs(z)p
g⇢(z)
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In the above equation gs(z) and g⇢(z) are the e↵ective degrees of freedom corresponding to the

entropy and energy densities of the Universe. If the decaying particles (h1, h2) are in thermal

11

V. DARK MATTER

Being stable as well as electrically neutral, �DM can serve as a dark matter candidate. In this

section, we will compute the relic abundance of �DM at the present epoch and its spin independent

scattering cross section relevant for direct detection experiments. The viability of �DM as a dark

matter candidate will be tested by comparing its relic abundance and spin independent scattering

cross section with the results obtained from Planck and LUX experiments. Finally, at the end

of this section we will compute the �-ray flux due to the annihilation of �DM and compare this

flux with Fermi-LAT observed �-ray excess from the regions close to the Galactic Centre (GC).

A. Relic Density

In the present model, since �DM is a complex scalar field with a nonzero Lµ �L⌧ charge nµ⌧ ,

therefore we have a non-self-conjugate DM scenario where DM particle and its antiparticle are

di↵erent with respect to nµ⌧ . In this work we assume that there is no asymmetry between the

number densities of �DM and �
†
DM

in the early Universe. The evolution of total DM number

density n (n = n�DM + n
�
†
DM

) is governed by the well known Boltzmann equation which is given

by [20]

dn

dt
+ 3nH = �

1

2
h�vi

�
n
2
� n

2

eq

�
, (34)

where neq is the sum of equilibrium number densities of both �DM , �†
DM

and H is the Hubble

parameter. Moreover, h� vi is the thermally averaged annihilation cross section between �DM and

�
†
DM

for the processes shown in Fig. 7 3. In this work, we have considered DM mass in the range

30 GeV to 500 GeV. Therefore depending on the value of MDM , �DM and �
†
DM

can annihilate

into the following final states: �DM�
†
DM

! ff̄ , W+
W

�, ZZ, Zµ⌧Zµ⌧ , h1h1, h2h2, h1h2, N1N̄2

and N1N̄3 where f is any SM fermion. The expressions of h� vi involving actual annihilation

cross section � and modified Bessel functions is given in [20]. The factor 1/2 appearing in the

right hand side of the Boltzmann equation is due to the non-self-conjugate nature of DM [20]. In

terms of two dimensionless quantities Y and x the above equation can be written in the following

form

dY

dx
= �

✓
45G

⇡

◆� 1
2 MDM

p
g?

x2

1

2
h�vi

�
Y

2
� (Y eq)2

�
, (35)

3 We have not shown Zµ⌧ mediated diagrams as the coupling strength of Zµ⌧ with �DM and �†
DM is proportional

to gµ⌧ which is needed to be very small (⇠ 10�3) for the explanation of muon (g � 2) anomaly (see Section

III).
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Figure 4: Left panel showing the contributions of decay and annihilation in the total relic density. Right

panel: Variation of dark matter relic density with z for four di↵erent values of dark matter mass MDM .

The other parameters are kept fixed at MZµ⌧ = 0.1 GeV, gµ⌧ = 9.0⇥10�4, ↵ = 0.01, �Dh = 9.8⇥10�13,

�DH = 1.3⇥ 10�11, MDM = 50.0 GeV (LP), nµ⌧ = 5.5⇥ 10�5.

GeV and 50 GeV, the relic density is seen to rise with MDM . This agrees with the expression

for relic density given in Eq. (23). However, if we take a slightly higher value of dark matter

mass, MDM = 60 GeV (blue dotted line), the relic density decreases instead of increasing. This

is because MDM = 60 GeV is very close to half of the SM like Higgs boson mass (⇠ Mh1/2)

and the decay mode h1 ! �DM�
†
DM

becomes phase space suppressed. Therefore, it reduces the

contribution arising from h1 decay and hence the final relic density of dark matter.

The contributions to ⌦h2 arising from the decays of h1, h2 and the annihilations of SM

as well as BSM particles are shown respectively in left and right panels of Fig. 5. Here we

define a quantity
⌦h�i
⌦ (

⌦h�vi
⌦ ) which represents the fractional contribution of a particular decay

(annihilation) channel to dark matter relic density. In the left-panel of Fig. 5, the contribution

from h2 decay has been shown by the green dashed-dotted line and that from h1 decay has

been shown by the red dashed line, while the total decay contribution to the dark matter relic

density is represented by the black solid line. From this plot one can see that, initially for low

values of z (z < 10, corresponding to higher temperatures), the extra Higgs contribution to

⌦h2 is more because of its high mass. On the other hand, for higher values of z (z > 10),

the SM-like Higgs decay contribution starts dominating. In the right panel of Fig. 5, we show

the contribution coming from di↵erent annihilation channels. The total contribution from all

the annihilation channels is represented by the black solid line while the other lines show the

contribution of individual channels. From this plot it is clearly seen that, the two dominating

15



 Sandhya Choubey                  IMHEP 2019                  February 21, 2019         17Figure 1: Bounds in the gµ⌧ -MZµ⌧ plane from di↵erent experiments and allowed region to satisfy relic

density (red dots) and muon (g � 2) excess in 2� range (grey shaded region).

in ±2� range [44]. As will be discussed in much detail later, the red dots in this figure span the

parameter region which can satisfy the dark matter relic abundance (cf. Eq. (24)). We see that

for gµ⌧ � 3⇥ 10�3 no red points exist because the contribution from the Zµ⌧ mediated diagram

to the relic abundance becomes too large. See Appendix A, for the expression of cross section of

N̄i Ni ! �
†
DM

�DM , i = 2, 3. The region of the parameter space compatible with both the dark

matter relic abundance and muon (g � 2) lies in the narrow overlapping zone. The benchmark

point (values of gµ⌧ and MZµ⌧ ) used in all further results shown in this work is marked by the

star in Fig. 1 and corresponds to MZµ⌧ = 100 MeV and gµ⌧ = 9⇥10�4. Such low mass Zµ⌧ gauge

boson can be searched by looking 2µ + /ET final states in LHC or future collider experiments

[50, 51]. For these values of the parameters, the contribution to muon (g � 2) from Eq. (13)

comes out to be

�aµ = 22.6⇥ 10�10
, (15)

which lies within the ±2� range of the observed value [44].

The neutrino mass generation via the Type-I seesaw has been discussed in detail in [32]. From

the neutrino part of the Lagrangian given in the Eq. (2), we can write down the Majorana mass

8
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FIG. 3. Same as Fig. 2 but focusing on the low mass region.
Constraints from CHARM-II and CCFR, Eqs. (15) and (16)
are shown separately. We do not attempt a statistical com-
bination of the results. The dashed lines show the expected
limit if the trident cross-section could be measured with 10%
or 30% accuracy using 5 GeV neutrinos scattering on Argon.

muon-neutrinos. Implementing the phase space integra-
tions that correspond to the signal selection criteria of
CCFR and CHARM-II, we arrive to the sensitivity plots
in Figs. 2 and 3. Our results show that the parameter
space favored by the muon g � 2 discrepancy is entirely
ruled-out above mZ0 & 400 MeV, proving the importance
of neutrino trident production for tests of physics beyond
the SM.

Other constraints and future possibilities. As can be
seen from Fig. 2, the region between 5 . mZ0 . 50 GeV
is independently constrained by searches for the SM Z
decay to four leptons at the LHC [24, 25]. The bound
obtained by recasting the ATLAS search [25], based on
the full 7+8 TeV data set, extends down to g0 ⇠ 10�2

at mZ0 ⇠ 10 GeV. However, the sensitivity diminishes
at low mZ0 because of the cuts employed in this specific
LHC search, and in particular on the invariant mass of
same flavor opposite sign leptons. The clear sensitivity
of high-energy colliders to this region of parameter space
motivates a dedicated search targeting the specific topol-
ogy of an on-shell Z0 emitted from the muonic decay of
the Z vector-boson and consequently decaying into a pair
of muons. At quite low mZ0 a complication arises as the
Z0 becomes more boosted and the muons originating from
its decay are more tightly collimated, forming a so-called
“lepton-jet” [31]. Thus, low-mass leptonic Z0 points to
an interesting prospect of a search for events with two
opposite-sign muons in addition to one muon-jet, alto-
gether reconstructing the Z boson.

Searches at B-factories for four lepton events can also
be sensitive to the low mZ0 region. A search by BaBar
looked at the pair production of two narrow resonances,
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FIG. 4. Expected number of trident events per ton of Argon
and per 1020 POT at the LBNE near detector for a neutrino
energy of E⌫ = 5 GeV as a function of the Z0 mass. The
horizontal line shows the SM prediction. The purple (dark
grey) region corresponds to Z0 masses and couplings that yield
a contribution to the muon g-2 in the range �aµ = (2.9 ±
1.8)⇥ 10�9. The light grey region is excluded by CCFR.

each decaying into a µ+µ� (or e+e�) pair [32]. While
that search was optimized to an underlying two-body
event topology, with two equal masses, rather than one
resonance, we can use it to gain insight on the poten-
tial sensitivity of a dedicated search of Z0. Requiring the
Z0 to contribute less than 10 events in each, 100 MeV
wide, bin of the µ+µ� invariant mass distribution shown
in ref. [32], we estimate a sensitivity to a coupling at
the level of g0 ⇠ 2 ⇥ 10�2 for Z0 masses in the range
0.5 . mZ0 . 5 GeV. Dedicated analyses of BaBar and
Belle data, as well as future searches at Belle II might be
able to probe couplings down to few⇥10�3 over a wide
kinematic window of mZ0 , open for direct Z0 production
with subsequent decay to muon pairs.

Perhaps even more interestingly, the low mZ0 region
can be e�ciently explored at the planned neutrino facil-
ity LBNE, with its lower energy and higher luminosity, as
compared to past neutrino beam experiments. In Fig. 4
we show an estimate for the expected number of trident
events per ton of Argon and per 1020 protons-on-target
(POT) at the near detector at a LBNE-like run where
for simplicity we set the neutrino energy to E⌫ = 5 GeV.
For our estimate we use the expected charged current
rates from [33] and the charged current cross sections
from [34]. With about one year of data (corresponding to
⇠ 6⇥1020 POT [35]) and a ⇠ 18 ton Argon near detector
setup [36], we expect O(100) trident events in the region
of parameter space favored by the muon g-2 anomaly
with ⇠ 30 � 100% contribution from new physics. Need-
less to say, a more thorough study is needed before the
precise sensitivity can be established. Nevertheless, these

Altamannshofer et al, PRL 113 (2014)
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Consistent with Chandra observations of Perseus cluster

XMM-Newton



 Sandhya Choubey                  IMHEP 2019                  February 21, 2019        

        to explain DM relic 
density and the 3.5 keV line

 20
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j = µ(⌧) where Lj = (⌫j j)T . Here, one of the scalar doublets namely ⌘ which is odd under

Z2 symmetry, does not have any Yukawa interaction involving only SM fermions and acts like

an inert doublet. For the same symmetry reason it does not have any VEV. The field strength

tensor for the extra neutral gauge field Zµ⌧ corresponding to gauge group U(1)
Lµ�L⌧

is denoted

by Fµ⌧ . In principle we should include a mixing term between the SM neutral gauge boson Z and

the new neutral gauge boson Zµ⌧ . The experimental bound restricts this mixing to be < 10�3

br the LEP II [65, 66]. In this work we assume no mixing between the neutral gauge bosons

of SM and U(1)Lµ�L⌧ . Indeed, if such mixing is generated at the loop level, we expect it to be
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suppressed not only by loop factors, but also by the gauge coupling gµ⌧
1 rendering it negligible

in our discussion. The Lagrangian for the three RH neutrinos LN after obeying all the symmetry

has the following form,
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where ⌘̃ = i�2⌘
⇤. The potential V (�h,�H , ⌘) in Eq. (1) contains all possible interaction terms

involving the two SM scalar doublets and one SM scalar singlet,
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After spontaneous breaking of U(1)
Lµ�L⌧

and SU(2)L ⇥ U(1)Y , the scalars take the following

form,
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There is mixing between the neutral components of �h and �H , and the o↵ diagonal elements of

the mass matrix are proportional to the parameter �13. After diagonalising the mass matrix one

obtains two physical scalar states h1 and h2. Masses of h1, h2 and mixing angle ↵ are given by

M
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. (7)

The lighter Higgs state h1, for small mixing angle ↵ and vµ⌧ � v, behaves as the Standard Model

Higgs observed at the LHC [67, 68] and therefore we will take its mass to be 125.5 GeV. From the

1 In this work, to maintain the nonthermal nature of our DM candidates we consider gµ⌧ ⇠ 10�11 (see Section

V).
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where the terms involving the VEV vµ⌧ appear after U(1)

Lµ�L⌧
breaking. In the limit that

U(1)
Lµ�L⌧

is unbroken, the RH neutrino mass matrix is given by

MR =

0

BBBBB@

Mee 0 0

0 0 Mµ⌧ e
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0 Mµ⌧ e
i⇠ 0

1

CCCCCA
. (14)

Eigenvalues of Eq. (14) are

M
0
2/3 = ±Mµ⌧e

i⇠

M
0
1 = Mee , (15)

giving very naturally two degenerate RH neutrinos with opposite parity. The U(1)
Lµ�L⌧

breaking

terms in Eq. (13) brings corrections to the RH neutrino mass spectrum, breaking the degeneracy

between N2 and N3. The mass splitting between them is given at first order for Mee � Mµ⌧ by

�M23 =
(heµ + he⌧ )2v2µ⌧

2Mee

. (16)

Hence, the mass splitting between N2 and N3 depends on the U(1)
Lµ�L⌧

breaking VEV vµ⌧ and

the Yukawa couplings heµ and he⌧ . In what follows, we will see that vµ⌧ will be determined by

the choice of the Zµ⌧ gauge boson. However, the Yukawa couplings heµ and he⌧ can be suitably

adjusted to yield a mass splitting of 3.5 keV, needed to explain the 3.5 keV X-ray line from

N2 ! N3� decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot be

generated by the Type-I seesaw mechanism since the normal Yukawa term involving the RH

neutrinos, lepton doublets and the standard model Higgs �h is forbidden by the Z2 symmetry.

The other Yukawa term between the RH neutrinos, lepton doublets and inert doublet ⌘ is allowed,

but ⌘ does not take any VEV. Hence, there is no mass term for the light neutrinos at the tree-

level. However, masses for the light neutrinos gets generated radiatively at the one-loop level [64]

through the diagram shown in Fig. 1, giving the following mass matrix for the light neutrinos

[64]
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where Mk is the mass of kth RH neutrino while M⌘
0
R, ⌘

0
I
is the mass of ⌘0

R, I
. The quantities

yji = hjUji, where hj are the Yukawa couplings in the last term of Eq. (2) and Uji are the
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 N2 and N3 are exactly degenerate 
and serve as a two-component DM 
of the Universe
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be expressed in the following form,
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The mass term for the extra neutral gauge boson Zµ⌧ is also generated when �H acquires a

nonzero VEV vµ⌧ such that

MZµ⌧ = gµ⌧ vµ⌧ , (12)

where gµ⌧ is the gauge coupling corresponding to gauge group U(1)
Lµ�L⌧

. In this model all

three RH neutrinos are odd under the Z2 symmetry. However, the mass of N1 comes out to

be higher than that of N2 and N3, so that N1 can decay to the lighter RH neutrinos. Also,

we will see in Section III that the masses of N2 and N3 are nearly degenerate because of the

Lµ � L⌧ symmetry, so that both can play the role of dark matter candidate. Furthermore, in

Section IV we will show that the RH neutrinos can be produced by the freeze-in mechanism in

the early Universe, which requires a tiny gauge coupling gµ⌧ ⇠ O(10�11). Thus, in order to have

a TeV scale gauge boson Zµ⌧ we need large vµ⌧ . Therefore, by choosing appropriate values of

the relevant model parameters we can make the masses of inert doublet components higher than

the reheat temperature of the universe so that their e↵ect on the production of N2 and N3 can

be safely neglected.

III. HEAVY AND LIGHT NEUTRINO MASSES

In this section we will show how the U(1)
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symmetry determines the mass spectrum and

mixing angles of all the six neutrinos, the three heavy ones as well as the three light ones. The

relevant part of the Lagrangian was given in Eq. (2) where the first term gives the kinetic part
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Figure 1: Radiative neutrino mass generation by one loop.

elements of the RH neutrino mixing matrix since the flavour basis (N↵, ↵ = 1, 2, 3) of the

RH neutrinos and their mass basis (Ni, i = 1, 2 3) are related by a unitary transformation,

N↵ =
P

U↵iNi. If we put this relation into the last term of Eq. (2), one can write the Yukawa

term involving SM leptons and RH neutrinos in the following way

LN � hjL̄j ⌘̃UjiNi = yjiL̄j ⌘̃Ni . (18)
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In this work we have considered the masses of inert scalars greater than the reheat temperature

of the Universe, i.e. M⌘
0
R, I

⇠ 106 GeV. The masses of RH neutrinos we consider to be around

⇠ 100 GeV. If we take the parameter �5 ⇠ 10�3 and v = 246 GeV, then to obtain the neutrino

masses of the order of M⌫ ⇠ 10�11 GeV, we need y
2
ji
⇠ 10�1 which can be easily obtained. The

U(1)
Lµ�L⌧

breaking ensures that the mixing angle ✓13 is non-zero and ✓23 is non-maximal.

IV. PRODUCTION OF DARK MATTER

We consider the non-thermal production of dark matter candidates. Hence, the initial number

densities of these particles are assumed to be negligibly small and their interactions with the

particles in the thermal bath are also extremely feeble. As mentioned before, the lighter RH

neutrino states N2 and N3 are our dark matter candidates, stabilised by the Z2 symmetry.

Because of their gauge and Z2 charges they could be produced only through the decay of Zµ⌧

and h1
2 and h2 bosons. In what follows, we will see that the dominant production channel

2 Since the mass of the SM-like Higgs has to be kept at 125.5 GeV, the decay channel h1 ! NiNj will be

kinematically allowed only for lighter Ni/Nj masses.
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In this work we have considered the masses of inert scalars greater than the reheat temperature

of the Universe, i.e. M⌘
0
R, I

⇠ 106 GeV. The masses of RH neutrinos we consider to be around

⇠ 100 GeV. If we take the parameter �5 ⇠ 10�3 and v = 246 GeV, then to obtain the neutrino

masses of the order of M⌫ ⇠ 10�11 GeV, we need y
2
ji
⇠ 10�1 which can be easily obtained. The

U(1)
Lµ�L⌧

breaking ensures that the mixing angle ✓13 is non-zero and ✓23 is non-maximal.

IV. PRODUCTION OF DARK MATTER

We consider the non-thermal production of dark matter candidates. Hence, the initial number

densities of these particles are assumed to be negligibly small and their interactions with the

particles in the thermal bath are also extremely feeble. As mentioned before, the lighter RH

neutrino states N2 and N3 are our dark matter candidates, stabilised by the Z2 symmetry.

Because of their gauge and Z2 charges they could be produced only through the decay of Zµ⌧

and h1
2 and h2 bosons. In what follows, we will see that the dominant production channel

2 Since the mass of the SM-like Higgs has to be kept at 125.5 GeV, the decay channel h1 ! NiNj will be

kinematically allowed only for lighter Ni/Nj masses.
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where the first term in the RHS represents the production of Zµ⌧ from the decays of scalars h1

and h2 while the second term describing the depletion of Zµ⌧ due to its all possible decay modes.

The expressions of collision terms Chi!Zµ⌧Zµ⌧ and C
Zµ⌧! all are given in Appendix A. Note that

generically also scattering processes, which change the Zµ⌧ number, are present, but those give a

subleading contribution compared to the decay (see e.g. the Appendix of [51] for a discussion).

Once we numerically evaluate the non thermal momentum distribution of the gauge boson

Zµ⌧ , we can easily determine the number density of Zµ⌧ using following relation
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Here T0 is the initial temperature and Msc is some reference mass scale. In this work we take

T0 = 10 TeV and Msc = Mh1 = 125.5 GeV, the mass of SM Higgs boson. The entropy density of

the Universe is given by [69],
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Therefore, after determining the number density of Zµ⌧ and the entropy of the Universe one can

determine the comoving number density using the following relation,

YZµ⌧ =
nZµ⌧
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. (28)

Finally, to determine the comoving number densities of DM components N2 and N3, we need

to solve the relevant Boltzmann equation for N2 and N3, which can be written in a generic form,
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is a function of g⇢(r) and gs(r).

The parameter Vij = 2 for i = j and equal to 1 otherwise. The first term in the above equation

represents the production of Nj from the decays of scalar fields h1 and h2. Since these scalar

fields remain in thermal equilibrium throughout their cosmological evolution, one can consider
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their distribution function as Maxwell-Boltzmann distribution. Therefore the thermal averaged

decay width for a process h(k) ! Nj Ni is given by [70]
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thermal equilibrium (due to very small value of gµ⌧ ), one cannot assume a Maxwell-Boltzmann

distribution function for Zµ⌧ . The distribution fZµ⌧ of Zµ⌧ can be found by solving Eq. (24) and

we have shown it in Fig. 2. Although the shape of the distribution is similar in both cases but

they di↵er by magnitude because in the current case Zµ⌧ is always out of equilibrium and never

attains equilibrium value. Once we get the distribution function fZµ⌧ the non-thermal average

of decay width for the process Zµ⌧ ! NjNi can be computed as follows

h�Zµ⌧!NjNiiNTH = MZµ⌧�Zµ⌧!NjNi
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All the relevant decay widths of h2 and Zµ⌧ needed in Eq. (29) are given in AppendixA in detail.

After solving the above Boltzmann equations for j=2 and j=3, we can determine the comoving
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for the RH neutrinos is via the decay of Zµ⌧ . In order for the total abundances of N2, N3 to
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need to know the distribution function of mother particle Zµ⌧ by solving the relevant Boltzmann

equation. The most general form of the Boltzmann equation describing the distribution function

of any species can be expressed as,

L̂ [f ] = C [f ] (20)

where L̂ is the Liouville operator and f is the distribution function which we want to compute

while in the RHS the term C contains interaction processes which are responsible for changing

the number density of the species under considering. C is known as the collision term. If one

considers an isotropic and homogeneous Universe then using the FRW metric, the Liouville

operator 3 takes the following form,

L̂ =
@

@t
�H p

@

@p
, (21)

where p is magnitude of three momentum and H is the Hubble parameter. Now, we change the

variables (p, t) to a new set of variables (⇠p, r) using a transformation as mentioned in Ref. [19]
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T
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Msc is some reference mass scale. Using the time-Temperature relationship dT
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, the Liouville operator defined in Eq. (21) can be reduced to the following

form containing a derivative with respect to a single variable, i.e.
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where gs(T ) and g
0
s
(T ) are the e↵ective number of degrees of freedom (d.o.f) related to entropy

of the Universe and its derivative with respect to the temperature T .

The Boltzmann equation to determine the distribution function (fZµ⌧ ) of Zµ⌧ is then given

by,

L̂fZµ⌧ =
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i=1,2

C
hi!Zµ⌧Zµ⌧ + C

Zµ⌧! all
, (24)

3 General form of the Liouville operator is, L̂ = p↵ @
@x↵ � �↵

��p
�p� @

@p↵ where p↵ is the four momentum and �↵
��

is the a�ne connection by which gravitational interaction enters in the equation.
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number density of the DM candidates N2 and N3. Therefore, one can easily determine the total

DM relic density for N2 and N3 candidates by using the following relation [71],
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2 = 2.755⇥ 108
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Figure 3: Left panel: Variation of relic density with r and contributions from h2 and Zµ⌧ in the DM

production. Right panel: Variation of comoving number density of Zµ⌧ and N2, N3 with r for three

di↵erent values of gauge boson mass. Other parameters have been kept fixed at gµ⌧ = 1.01 ⇥ 10�11,

mixing angle ↵ = 0.01, gauge boson mass MZµ⌧ = 1 TeV, DM mass MDM = 100 GeV, BSM Higgs mass

Mh2 = 5 TeV and RH neutrinos masses MN1 = 150 GeV and MDM = MN2 ' MN3 = 100 GeV.

Using Eqs. (29), (30), (31) and (32) we numerically compute the DM abundance. In the left

panel of Fig. 3 we show the time evolution of the DM relic density with r(= Mh1/T ). The left

panel of the this figure shows the comparative contribution for the two DM production channels,

Zµ⌧ ! NiNj and h2 ! NiNj. We have taken masses of the RH neutrinos N2 and N3 as 100 GeV

and hence the decay of SM-like Higgs h1 to a pair of RH neutrinos is kinematically forbidden.

From the left panel we see that for the large value of BSM Higgs mass (Mh2 ⇠ 5 TeV), the

DM production at low r (which corresponds to high T ) is dominated by h2 decay. However, as

the temperature of the universe falls and goes below the mass of the Zµ⌧ gauge bosons, they

get produced, and for high value of r (which corresponds to comparably lower temperature of

the universe), the DM production via the Zµ⌧ decay channel dominates. The reason for this

13
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dominance can be understood as follows. From Eqs. (A3) and (A7) given in Appendix A, we

see that the decay width �Zµ⌧!NiNj / MZµ⌧ g
2
µ⌧

while �h2!NiNj / Mh2he↵he�, where he↵he� are

products of two any of the Yukawa couplings heµ and he⌧ that appeared in Eq. (2). Since we

have chosen MZµ⌧ ⇠ Mh2 we can write

�Zµ⌧!NiNj

�h2!NiNj

/
g
2
µ⌧

he↵he�

, (33)

Since the Yukawa couplings he↵ appear as the U(1)
Lµ�L⌧

breaking terms in the RH neutrino mass

matrix which instruments the splitting of 3.5 keV between N2 and N3 we have from Eq. (13)

Ve↵ =
he↵vµ⌧
p
2

⇠ 0.1 GeV . (34)

Inserting this in Eq. (33) and using the relation MZµ⌧ = gµ⌧vµ⌧ we get

�Zµ⌧!NiNj

�h2!NiNj

/
M

2
Zµ⌧

V 2
e↵

, (35)

explaining the dominance of the Zµ⌧ decay channel.

In the right panel of Fig. 3 we show the variation of the comoving number densities of the

Zµ⌧ gauge boson vis-a-vis that of the sum of N2 and N3. We show this as function of r for three

di↵erent values of the gauge boson mass MZµ⌧ .

The abundance YZµ⌧ (indicated by the dash line) has an initial rise, then flattens and finally

decays. One can see from Eq. (24) that there are two collision terms in the Boltzmann Equation,

one for Zµ⌧ production and another one for its decay to all possible channels and they are active

at di↵erent times. Note that the maximal abundance of Zµ⌧ can be easily estimated also by the

analytic formula for FIMP production, i.e. for MZµ⌧ ⌧ Mh2

⌦FI
h
2 = 1.09⇥ 1027

g

g
3/2
S

MZµ⌧

M
2
h2

�h2!Zµ⌧Zµ⌧ ⇠ 2.18⇥ 1024
g
2
µ⌧
Mh2

32⇡MZµ⌧

= 8.54; , (36)

where g counts the number of internal degrees of freedom of the mother particle. According to

eq. (32) this corresponds to YZµ⌧ = 0.3 ⇥ 10�10 and is in perfect agreement with the plateau in

Fig. 3. One interesting point to note is that as we increase the Zµ⌧ mass MZµ⌧ , keeping gµ⌧ fixed,

the DM abundance decreases instead of increasing, as explained by the relation above. In the

same figure also the production of dark matter as a result of the out-of-equilibrium decay of Zµ⌧

can be seen beautifully. Less production of Zµ⌧ results in lower DM abundance, since practically

every Zµ⌧ produces two Dark Matter particles.

The left panel of Fig. 4 shows the variation of relic density with the parameter r for di↵erent

initial temperature Tini (temperature where DM relic density is taken as zero). Important point
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where g counts the number of internal degrees of freedom of the mother particle. According to

eq. (32) this corresponds to YZµ⌧ = 0.3 ⇥ 10�10 and is in perfect agreement with the plateau in
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the DM abundance decreases instead of increasing, as explained by the relation above. In the

same figure also the production of dark matter as a result of the out-of-equilibrium decay of Zµ⌧

can be seen beautifully. Less production of Zµ⌧ results in lower DM abundance, since practically

every Zµ⌧ produces two Dark Matter particles.
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Figure 6: Radiative decay of RH neutrino (N2 ! N3 �) and 3.55 keV �-line.

as N2 ! N3 �, we need not only a mass splitting between the two fermion states of ⇠ 3.5 keV,

but also a decay width of the unstable DM given as,

�(N2 ! N3�) = (0.72� 6.6)⇥ 10�52 GeV
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Here we are assuming that the density of N2 is approximately half of the DM density and rescaled

the result of [24] accordingly.

The relevant decay diagrams for N2 are shown in Fig. 6. We consider N2 to be slightly heavier

than N3 (⇠ 3.5 keV) so that it can produce the 3.5 keV �-ray line. As discussed before, the 3.5

keV mass splitting between nearly-degenerate N2 and N3 can be easily achieved in our model

via the U(1)
Lµ�L⌧

symmetry and its breaking parameters. So we take Ve↵ = he↵vµ⌧p
2

⇠ 0.1 GeV

(↵ = µ, ⌧) and by suitably adjusting the Ve↵ parameters we can generate the 3.5 keV mass gap

between N2 and N3. For the U(1)
Lµ�L⌧

conserving leading terms in Eq. (13) we take the values

Mee = 11 TeV and Mµ⌧ = 100 GeV which gives us MN2 and MN3 ⇠ 100 GeV with opposite CP

parities [59]. Ref. [59] has pointed out that if N2 and N3 have opposite CP, then the transition

from N2 to N3 is governed only by the magnetic moment term (µ23), generated at one loop level

as shown in Figure 6. Therefore, the e↵ective Lagrangian for the decay process N2 ! N3 � is

given as
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In determining the expression for the above decay process we consider the ratio of lepton mass

to RH neutrino mass to be very small ( Ml
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⌧ 1). Also, the ratio of the RH neutrino mass and

the inert doublet mass is very small i.e.
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Figure 5: Left (Right) panel: Variation of relic density with r for di↵erent values of DM mass (Contri-

butions in the relic density of DM from di↵erent channels of Zµ⌧ ), while the other parameters have been

kept fixed at gµ⌧ = 1.01⇥10�11, mixing angle ↵ = 0.01, gauge boson mass MZµ⌧ = 1 TeV (MDM = 100

GeV), BSM Higgs mass Mh2 = 5 TeV and RH neutrinos masses MN1 = 150 GeV, MDM = MN2 ' MN3

= 100 GeV.

channels. The relative contributions among the di↵erent channels is seen to di↵er significantly

and the decay rate into N2N3 dominates naturally producing equal populations of the two Dark

Matter candidates. Indeed, to produce degenerate neutrinos i.e. MN2 ' MN3 , we have considered

relatively small values of heµvµ⌧p
2

and he⌧vµ⌧p
2

(⇠ 0.1), as discussed before. Therefore, the elements of

the unitary matrix which relate the flavour and mass basis of the RH neutrinos take the following

form, U11 ⇠ 1, U12, U13, U21, U31 ⇠ 0.01, U22 = U23 = 1p
2
and U32 = �U33 = �

1p
2
. Therefore, it

is clear from the couplings (as listed in Eq. (A4)) that the dominant channel for DM production

is Zµ⌧ ! N2N3, while the other channels will be suppressed which is clearly visible in the right

panel of Fig. 3. Similar considerations will also be true for the N3 DM production channels.

VI. 3.5 KEV � RAY LINE

Finally, we come to the explanation of the 3.5 keV �-ray line from the RH neutrino radiative

decay N2 ! N3 �. Since the photon flux for a decaying Dark Matter candidate is given by

� =
1

4⇡MN2⌧N2

Z

l.o.s.

⇢N2(~r)d~r (37)

where the last integral over the N2 density is computed along the line of sight and ⌧N2 is the

lifetime of the heavier DM particle N2. In order to explain the 3.5 keV line from a decay such
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as N2 ! N3 �, we need not only a mass splitting between the two fermion states of ⇠ 3.5 keV,

but also a decay width of the unstable DM given as,

�(N2 ! N3�) = (0.72� 6.6)⇥ 10�52 GeV
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Here we are assuming that the density of N2 is approximately half of the DM density and rescaled

the result of [24] accordingly.

The relevant decay diagrams for N2 are shown in Fig. 6. We consider N2 to be slightly heavier

than N3 (⇠ 3.5 keV) so that it can produce the 3.5 keV �-ray line. As discussed before, the 3.5

keV mass splitting between nearly-degenerate N2 and N3 can be easily achieved in our model

via the U(1)
Lµ�L⌧

symmetry and its breaking parameters. So we take Ve↵ = he↵vµ⌧p
2

⇠ 0.1 GeV

(↵ = µ, ⌧) and by suitably adjusting the Ve↵ parameters we can generate the 3.5 keV mass gap

between N2 and N3. For the U(1)
Lµ�L⌧

conserving leading terms in Eq. (13) we take the values

Mee = 11 TeV and Mµ⌧ = 100 GeV which gives us MN2 and MN3 ⇠ 100 GeV with opposite CP

parities [59]. Ref. [59] has pointed out that if N2 and N3 have opposite CP, then the transition

from N2 to N3 is governed only by the magnetic moment term (µ23), generated at one loop level

as shown in Figure 6. Therefore, the e↵ective Lagrangian for the decay process N2 ! N3 � is

given as

Leff ⇡ i
µ23

2
N̄2 �

µ⌫
N3 Fµ⌫ . (39)

In determining the expression for the above decay process we consider the ratio of lepton mass

to RH neutrino mass to be very small ( Ml
MN2

⌧ 1). Also, the ratio of the RH neutrino mass and

the inert doublet mass is very small i.e.
MN2
M⌘

⌧ 1. The decay width of N2 comes out as [72],

�(N2 ! N3�) =
µ
2
23
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than N3 (⇠ 3.5 keV) so that it can produce the 3.5 keV �-ray line. As discussed before, the 3.5

keV mass splitting between nearly-degenerate N2 and N3 can be easily achieved in our model

via the U(1)
Lµ�L⌧

symmetry and its breaking parameters. So we take Ve↵ = he↵vµ⌧p
2
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(↵ = µ, ⌧) and by suitably adjusting the Ve↵ parameters we can generate the 3.5 keV mass gap

between N2 and N3. For the U(1)
Lµ�L⌧

conserving leading terms in Eq. (13) we take the values

Mee = 11 TeV and Mµ⌧ = 100 GeV which gives us MN2 and MN3 ⇠ 100 GeV with opposite CP

parities [59]. Ref. [59] has pointed out that if N2 and N3 have opposite CP, then the transition

from N2 to N3 is governed only by the magnetic moment term (µ23), generated at one loop level

as shown in Figure 6. Therefore, the e↵ective Lagrangian for the decay process N2 ! N3 � is

given as
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In determining the expression for the above decay process we consider the ratio of lepton mass

to RH neutrino mass to be very small ( Ml
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⌧ 1). Also, the ratio of the RH neutrino mass and

the inert doublet mass is very small i.e.
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⌧ 1. The decay width of N2 comes out as [72],
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where � =
MN2
2 (1�

M
2
N3

M
2
N2

), P gives the relative CP of the two neutrino states, which in the present

model is P = �1. The magnetic moment coe�cient µ23 in our model is given by

µ23 =
X

i

e

2

1

(4⇡)2
MN2

M2
⌘

(yi2yi3) , (41)

where yij = hiUij being the derived Yukawa couplings given in Eq. (18) . The values of the

parameters appearing in the N2 decay width are intimately related with those that determine

the light neutrino masses. In Section III, we had set the parameter values to explain the tiny

neutrino mass in the following order,

M⌘ = 106 GeV,MN2 = 100GeV, (yij)
2 = 10�1

. (42)

Using these in the Eq. (18) we get µ23 ⇠ O(10�14) GeV�1. Using Eq. (40), for DM mass around

100 GeV, � ' 3.5 keV and µ23 ⇠ 10�14 GeV�1, we get the lifetime of N2 of the order O(10�44)

GeV, which is exactly what is needed to give the 3.5 keV line. Note that the lifetime of N2 is

then around 1019 sec and hence greater than the age of the universe (1017 sec). Hence the present

model can naturally explain the origin of the claimed 3.5 keV line.

VII. CONCLUSION

In the present work we extended the SM gauge group by a local U(1)Lµ�L⌧ gauge group and

a Z2 discrete symmetry. The particles spectrum was extended by three RH neutrinos, one inert

doublet and one SM gauge singlet scalar. We showed that this model explains the observed 3.5

keV line consistently with the relic dark matter abundance in the framework of a model that

generates light neutrino masses radiatively. The Type I seesaw in this model is forbidden by the

Z2 symmetry but tiny neutrino masses are generated via a one-loop diagram involving the RH

neutrino and the inert doublet which does not take any VEV. We considered inert scalar masses

⇠ 106 GeV, which is higher than the reheat temperature, and RH neutrino masses ⇠ 100 GeV.

Then for parameter choices �5 ⇠ 10�3 and Yukawa couplings y2
ji
⇠ 10�1 we can get light neutrino

masses M⌫ ⇠ 0.01 eV. The RH neutrino mass matrix in our model is non-diagonal and carries

the Lµ � L⌧ flavour structure which ensures that two of the RH neutrino remain degenerate in

the U(1)Lµ�L⌧ symmetric limit. The spontaneous breaking of the U(1)Lµ�L⌧ gauge symmetry

generates terms in the RH neutrino mass matrix that splits the two degenerate RH neutrinos by

3.5 keV, while the third one remains heavier. The two nearly degenerate neutrinos form the two-

component DM in our model. We showed that the RH neutrinos are predominately produced by

the decay of the extra neutral gauge boson Zµ⌧ , which are taken in the 1 TeV mass range in our

model. The production of RH neutrinos from decay of the additional scalar h2 is subdominant,
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⌧N2 ⇠ O(10�44)GeV ⇠ 1019s > age of universe
correct lifetime for 3.5 keV line



Conclusions
Gauged               can simultaneously explain muon (g-2), 
neutrino mixing and dark matter 

The dark matter could be either WIMP type or FIMP type in this 
model. 

               has exact mu-tau symmetry                                 
Breaking it shifts these from maximal and zero, consistent with 
data 

                 naturally can give two nearly degenerate sterile 
neutrino dark matter, which could explain the observed 3.5 keV 
line

U(1)Lµ�L⌧

U(1)Lµ�L⌧

U(1)Lµ�L⌧ ✓13 = 0 and ✓23 = ⇡/4


