# Going beyond the Standard Model with Flavour

Anirban Kundu University of Calcutta

January 19, 2019 Institute of Physics



# Introduction to flavour physics



### Although you have heard / will hear a lot about BSM, Standard Model is doing extremely well

 $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs} + \mathcal{L}_{\rm fermion}$ 

and all sectors checked (not at same precision level though)

No wonder. It has 19 free parameters

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

— John von Neumann



Although you have heard / will hear a lot about BSM, Standard Model is doing extremely well

 $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs} + \mathcal{L}_{\rm fermion}$ 

and all sectors checked (not at same precision level though)

No wonder. It has 19 free parameters

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

— John von Neumann

13 in the flavour sector: 9 fermion masses + 4 CKM elements



Although you have heard / will hear a lot about BSM, Standard Model is doing extremely well

 $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs} + \mathcal{L}_{\rm fermion}$ 

and all sectors checked (not at same precision level though)

No wonder. It has 19 free parameters

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

— John von Neumann

13 in the flavour sector:9 fermion masses + 4 CKM elements





### The first question in flavour physics:

Who ordered that?



- First generation of flavour physics (pre-1970)
  - Strange particles, parity violation, eightfold way and  $\Omega^-$
  - $K^0 \overline{K}^0$  oscillation, "tiny" CP violation in  $\overline{K}$  decay
  - Cabibbo hypothesis, GIM mechanism
- <sup>2</sup> Second generation of flavour physics (1970 1995)
  - Kobayashi-Maskawa hypothesis
  - $J/\psi$  and  $\Upsilon$  production
  - Observation of  $B^0 \overline{B}{}^0$  oscillation



- First generation of flavour physics (pre-1970)
  - Strange particles, parity violation, eightfold way and  $\Omega^-$
  - $K^0 \overline{K}^0$  oscillation, "tiny" CP violation in K decay
  - Cabibbo hypothesis, GIM mechanism
- 2 Second generation of flavour physics (1970 1995)
  - Kobayashi-Maskawa hypothesis
  - $J/\psi$  and  $\Upsilon$  production
  - Observation of  $B^0 \overline{B}{}^0$  oscillation
- Third generation of flavour physics (1995 present)
  - e<sup>+</sup>e<sup>-</sup> B factories, "large" CP violation in B system
  - Top discovery
  - Observation of  $B_s \overline{B_s}$  and  $D^0 \overline{D}^0$  oscillation
  - Rare B decays, Start of precision flavour physics



- First generation of flavour physics (pre-1970)
  - Strange particles, parity violation, eightfold way and  $\Omega^-$
  - $K^0 \overline{K}^0$  oscillation, "tiny" CP violation in  $\overline{K}$  decay
  - Cabibbo hypothesis, GIM mechanism
- 2 Second generation of flavour physics (1970 1995)
  - Kobayashi-Maskawa hypothesis
  - $J/\psi$  and  $\Upsilon$  production
  - Observation of  $B^0 \overline{B}{}^0$  oscillation
- Third generation of flavour physics (1995 present)
  - $e^+e^- B$  factories, "large" CP violation in B system
  - Top discovery
  - Observation of  $B_s \overline{B_s}$  and  $D^0 \overline{D}^0$  oscillation
  - Rare B decays, Start of precision flavour physics
- Fourth generation of flavour physics (Belle-II, LHCb upgrade)
  - Precision flavour era. Very rare B decays
  - Lepton flavour/universality violation, rare charm and au deca
  - Looking for NP at a level competitive to future colliders

- First generation of flavour physics (pre-1970)
  - Strange particles, parity violation, eightfold way and  $\Omega^-$
  - $K^0 \overline{K}^0$  oscillation, "tiny" CP violation in K decay
  - Cabibbo hypothesis, GIM mechanism
- 2 Second generation of flavour physics (1970 1995)
  - Kobayashi-Maskawa hypothesis
  - $J/\psi$  and  $\Upsilon$  production
  - Observation of  $B^0 \overline{B}{}^0$  oscillation
- Third generation of flavour physics (1995 present)
  - $e^+e^- B$  factories, "large" CP violation in B system
  - Top discovery
  - Observation of  $B_s \overline{B_s}$  and  $D^0 \overline{D}^0$  oscillation
  - Rare B decays, Start of precision flavour physics
- Fourth generation of flavour physics (Belle-II, LHCb upgrade)
  - Precision flavour era. Very rare B decays
  - Lepton flavour/universality violation, rare charm and au decays
  - Looking for NP at a level competitive to future colliders

# B-factories: past, present, and future

BaBar@SLAC : 
$$e^+e^-$$
, 429 fb $^{-1}$ , 4.7  $imes$  10<sup>8</sup>  $Bar{B}$  pairs

Belle@KEK :  $e^+e^-$ , over 1 ab<sup>-1</sup>, 7.72  $\times$  10<sup>8</sup>  $B\bar{B}$  pairs

**LHCb** : 6.8 fb<sup>-1</sup> till 2017 (3.6 fb<sup>-1</sup> at 13 TeV) 7 TeV:  $\sigma(pp \rightarrow b\bar{b}X) = (89.6 \pm 6.4 \pm 15.5) \ \mu b$ scales linearly with  $\sqrt{s}$ 

ATLAS and CMS also have dedicated flavour physics programme



# B-factories: past, present, and future

BaBar@SLAC : 
$$e^+e^-$$
, 429 fb $^{-1}$ , 4.7  $imes$  10<sup>8</sup>  $Bar{B}$  pairs

Belle@KEK :  $e^+e^-$ , over 1 ab<sup>-1</sup>, 7.72 × 10<sup>8</sup>  $B\bar{B}$  pairs

**LHCb** : 6.8 fb<sup>-1</sup> till 2017 (3.6 fb<sup>-1</sup> at 13 TeV) 7 TeV:  $\sigma(pp \rightarrow b\bar{b}X) = (89.6 \pm 6.4 \pm 15.5) \ \mu b$ scales linearly with  $\sqrt{s}$ 

ATLAS and CMS also have dedicated flavour physics programme

### LHCb:

Upgrade I:  $\mathcal{L}_{int} > 50 \text{ fb}^{-1}$ ,  $2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ Phase II with HL-LHC:  $\mathcal{L}_{int} > 300 \text{ fb}^{-1}$ ,  $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ Belle-II:

 $\mathcal{L}_{ ext{int}} = 50 ext{ ab}^{-1}$  in 5 years, can go up even higher



# B-factories: past, present, and future

BaBar@SLAC : 
$$e^+e^-$$
, 429 fb $^{-1}$ , 4.7  $imes$  10<sup>8</sup>  $Bar{B}$  pairs

Belle@KEK :  $e^+e^-$ , over 1 ab<sup>-1</sup>, 7.72 × 10<sup>8</sup>  $B\bar{B}$  pairs

**LHCb** : 6.8 fb<sup>-1</sup> till 2017 (3.6 fb<sup>-1</sup> at 13 TeV) 7 TeV:  $\sigma(pp \rightarrow b\bar{b}X) = (89.6 \pm 6.4 \pm 15.5) \ \mu b$ scales linearly with  $\sqrt{s}$ 

ATLAS and CMS also have dedicated flavour physics programme

### LHCb:

Upgrade I:  $\mathcal{L}_{int} > 50 \text{ fb}^{-1}$ ,  $2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ Phase II with HL-LHC:  $\mathcal{L}_{int} > 300 \text{ fb}^{-1}$ ,  $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ Belle-II:  $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$  in 5 years, can go up even higher



- Better understanding of SM for  $N_{gen} > 1$ — Window to flavour dynamics (e.g.  $B^0 - \overline{B}^0$  mixing,  $b \rightarrow s\gamma$ ,  $Z \rightarrow b\overline{b}$ ,  $B_s \rightarrow \mu\mu$ )
- Better understanding of low-energy QCD
   Form factors, Resummation of higher-order effects, Relative importance of subleading topologies



- Better understanding of SM for N<sub>gen</sub> > 1
   — Window to flavour dynamics (e.g. B<sup>0</sup> – B
  <sup>0</sup> mixing, b → sγ, Z → bb, B<sub>s</sub> → μμ)
- Better understanding of low-energy QCD
   Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
  - New source of CP violation needed for  $n_b/n_\gamma$



- Better understanding of SM for N<sub>gen</sub> > 1
   — Window to flavour dynamics (e.g. B<sup>0</sup> – B
  <sup>0</sup> mixing, b → sγ, Z → bb, B<sub>s</sub> → μμ)
- Better understanding of low-energy QCD
   Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
  - New source of CP violation needed for  $n_b/n_\gamma$
- Indirect window to New Physics
   Only way to look for BSM if Λ > O(1) TeV
   Only probe to flavour structure even if it is not



- Better understanding of SM for  $N_{gen} > 1$ — Window to flavour dynamics (e.g.  $B^0 - \overline{B}^0$  mixing,  $b \rightarrow s\gamma$ ,  $Z \rightarrow b\overline{b}$ ,  $B_s \rightarrow \mu\mu$ )
- Better understanding of low-energy QCD
   Form factors, Resummation of higher-order effects, Relative importance of subleading topologies
- CP violation studies
  - New source of CP violation needed for  $n_b/n_\gamma$
- Indirect window to New Physics
  - Only way to look for BSM if  $\Lambda > \mathcal{O}(1)$  TeV
  - Only probe to flavour structure even if it is not



- Need a basis transformation for quarks
- Mass and Yukawa matrices are diagonalised by same transformation
- GIM to ban tree-level FCNC

$$\begin{aligned} \mathcal{L}_{wk}^{CC} &= -\frac{g}{\sqrt{2}} \bar{u'}_j (\mathcal{U}_{ji}^{\dagger} \mathcal{D}_{ik}) \gamma^{\mu} \mathcal{P}_L d'_k W^+_{\mu} + \text{h.c.} \\ &= -\frac{g}{\sqrt{2}} V_{jk} \bar{u'}_j \gamma^{\mu} \mathcal{P}_L d'_k W^+_{\mu} + \text{h.c.} \end{aligned}$$

 $V\equiv \mathcal{U}^{\dagger}\mathcal{D}$  is the CKM matrix. Three real angles and one CP-violating phase.  $\mathcal{U}^{\dagger}\mathcal{U}=\mathcal{D}^{\dagger}\mathcal{D}=\mathbf{1}\Rightarrow\mathbf{GIM}$ 



- Need a basis transformation for quarks
- Mass and Yukawa matrices are diagonalised by same transformation
- GIM to ban tree-level FCNC

$$\begin{aligned} \mathcal{L}_{wk}^{CC} &= -\frac{g}{\sqrt{2}} \bar{u'}_j (\mathcal{U}_{ji}^{\dagger} \mathcal{D}_{ik}) \gamma^{\mu} \mathcal{P}_L d'_k W_{\mu}^+ + \text{h.c.} \\ &= -\frac{g}{\sqrt{2}} V_{jk} \bar{u'}_j \gamma^{\mu} \mathcal{P}_L d'_k W_{\mu}^+ + \text{h.c.} \end{aligned}$$

 $V \equiv U^{\dagger} D$  is the CKM matrix. Three real angles and one CP-violating phase.  $U^{\dagger} U = D^{\dagger} D = \mathbf{1} \Rightarrow \mathbf{GIM}$ 



$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

 $V_{td} = |V_{td}| \exp(-i\beta), V_{ub} = |V_{ub}| \exp(-i\gamma)$  Wolfenstein

$$\begin{split} \lambda &= 0.224747^{+0.000254}_{-0.000059},\\ \underbrace{\rho(1-\frac{1}{2}\lambda^2)}_{\equiv \ \bar{\rho}} &= 0.1577^{+0.0096}_{-0.0074}, \end{split}$$

 $A = 0.8403^{+0.0056}_{-0.0201},$   $\eta(1 - \frac{1}{2}\lambda^2) = 0.3493^{+0.0095}_{-0.0071}$   $= \overline{\eta}$ 



$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$V_{td} = |V_{td}| \exp(-i\beta), V_{ub} = |V_{ub}| \exp(-i\gamma)$$
 Wolfenstein

$$\begin{split} \lambda &= 0.224747^{+0.000254}_{-0.000059}, \\ \underbrace{\rho(1-\frac{1}{2}\lambda^2)}_{\equiv \ \bar{\rho}} &= 0.1577^{+0.0096}_{-0.0074}, \end{split}$$

$$A = 0.8403^{+0.0056}_{-0.0201},$$
$$\underbrace{\eta(1 - \frac{1}{2}\lambda^2)}_{\equiv \bar{\eta}} = 0.3493^{+0.0095}_{-0.0071}$$

University of Calcutta

$$V_{ud} \, V_{ub}^{*} + \, V_{cd} \, V_{cb}^{*} + \, V_{td} \, V_{tb}^{*} = 1$$



- Nonzero area indicates CP violation
- All UTs must have same area
- Falls short by about a billion



$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 1$$



- Nonzero area indicates CP violation
- All UTs must have same area
- Falls short by about a billion





| α                                                                                                      | $91.6^{+1.7}_{-1.1}$                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \beta \text{ direct} \\ \beta \text{ indirect} \\ \beta \text{ average} \end{array}$ | $\begin{array}{c} 22.14\substack{+0.69\\-0.67}\\ 23.9\pm1.2\\ 22.51\substack{+0.55\\-0.40}\end{array}$ |
| $\gamma$                                                                                               | $65.81\substack{+0.99\\-1.66}$                                                                         |







# How can B Physics unravel BSM?



### If NP is at

- < 1 TeV: within direct reach of LHC@8 TeV, ruled out
- a few TeV: within reach of LHC@13 TeV, data analysis coming up
- > a few TeV: beyond LHC. Maybe Belle-II

### Indirect detection

| Small        |  |  |
|--------------|--|--|
| misalignment |  |  |
|              |  |  |
|              |  |  |



### If NP is at

- < 1 TeV: within direct reach of LHC@8 TeV, ruled out
- a few TeV: within reach of LHC@13 TeV, data analysis coming up
- > a few TeV: beyond LHC. Maybe Belle-II

### Indirect detection

| Flav. structure | $< 1 { m ~TeV}$   | a few TeV | > a few TeV       |
|-----------------|-------------------|-----------|-------------------|
| Anarchy         | huge O(1) ${f X}$ | O(1) X    | small ( $< O(1))$ |
| Small           | Sizable O(1) $X$  | small     | tiny              |
| misalignment    |                   | (O(0.1))  | (O(0.01-0.1))     |
| Alignment       | small             | tiny      | out of reach      |
| (MFV)           | (O(0.1))          | (O(0.01)) | < O(0.01)         |



 $B^0 - \overline{B}^0$  and  $B_s - \overline{B_s}$  mixing have been measured very precisely  $\Delta M_d = 0.5065 \pm 0.0019 \text{ ps}^{-1}$   $\Delta M_s = 17.757 \pm 0.021 \text{ ps}^{-1}$  $\Delta \Gamma_s / \Gamma_s = 0.132 \pm 0.008$   $\tau_s / \tau_d = 0.993 \pm 0.004$ 

 Major uncertainties in ΔM come from decay constants and bag factors

$$\Delta M \approx \frac{G_F^2}{16\pi^2} |V_{tq}^* V_{tb}|^2 M_W^2 S_0(x_t) \eta_B B_B f_B^2 M_B$$

•  $\Delta\Gamma_s$  has  $\sim 15\%$ , mostly from  $1/m_b$  and scale





$$H = \begin{pmatrix} M_q - \frac{i}{2}\Gamma_q & M_q^{12} - \frac{i}{2}\Gamma_q^{12} \\ M_q^{12*} - \frac{i}{2}\Gamma_q^{12*} & M_q - \frac{i}{2}\Gamma_q \end{pmatrix}$$

$$\frac{M_q^{12}}{M_{q,SM}^{12}} \equiv \text{Re}\Delta_q + i\text{Im}\Delta_q = |\Delta_q|\exp(2i\Phi_{q,NP})$$





 $B_s$  plot does not include DØ dimuon



# Caution !!!

Need a better control over nuisance parameters

- Quark masses and CKM elements
- Form factors, decay constants
   Lattice people doing a commendable job
   uncertainty associated with LCD amplitudes
- Subleading  $\Lambda/m$  corrections Also, higher orders in  $\alpha_s$ , but they can be summed in most cases
- renormalization scale  $(\mu)$  dependence



# A few interesting anomalies

[Also, talk by G. Mohanty]



| Experiment      | R(D*)                                           | R(D)                         |
|-----------------|-------------------------------------------------|------------------------------|
| BaBar           | 0.332 +/- 0.024+/-<br>0.018                     | 0.440 +/- 0.058<br>+/- 0.042 |
| BELLE           | 0.293 +/- 0.038 +/-<br>0.015                    | 0.375 +/- 0.064<br>+/- 0.026 |
| BELLE           | 0.302 +/- 0.030 +/-<br>0.011                    | -                            |
| LHCb            | 0.336 +/- 0.027 +/-<br>0.030                    | -                            |
| BELLE           | 0.270 +/- 0.035 <sup>+</sup><br>0.028<br>-0.025 | -                            |
| LHCb            | 0.291 +/- 0.019 +/-<br>0.029                    | -                            |
| Average<br>.txt | 0.306 +/- 0.013 +/-<br>0.007                    | 0.407 +/- 0.039<br>+/- 0.024 |



$${\cal R}(D^{(*)}) = rac{{
m BR}(B 
ightarrow D^{(*)} au 
u)}{{
m BR}(B 
ightarrow D^{(*)} \ell 
u)}$$

|                                                                                                                | R(D)           | R(D*)          |
|----------------------------------------------------------------------------------------------------------------|----------------|----------------|
| D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9, 094008 [arXiv:1606.08030 [hep-ph]]                               | 0.299 +- 0.003 |                |
| F.Bernlochner, Z.Ligeti, M.Papucci, D.Robinson, Phys.Rev. D95 (2017) no.11, 115008 [arXiv:1703.05330 [hep-ph]] | 0.299 +- 0.003 | 0.257 +- 0.003 |
| D.Bigi, P.Gambino, S.Schacht, JHEP 1711 (2017) 061 [arXiv:1707.09509 [hep-ph]]                                 |                | 0.260 +- 0.008 |
| S.Jaiswal, S.Nandi, S.K.Patra, JHEP 1712 (2017) 060 [arXiv:1707.09977 [hep-ph]]                                | 0.299 +- 0.004 | 0.257 +- 0.005 |
| Arithmetic average                                                                                             | 0.299 +- 0.003 | 0.258 +- 0.005 |

2.3 $\sigma$  for R(D), 3.0 $\sigma$  for  $R(D^*)$ , 3.78 $\sigma$  combined with corr.





While we are talking about b 
ightarrow c au 
u

$$\begin{aligned} R_{J/\psi} &= \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)} \\ &= 0.71 \pm 0.17 \pm 0.18 \; (\mathrm{exp}) \,, \;\; 0.283 \pm 0.048 \; (\mathrm{SM}) \end{aligned}$$

And the neutral current  $b o s \ell^+ \ell^-$ 

$$R_{K(K^*)} = \frac{\mathrm{BR}(B \to K(K^*)\mu^+\mu^-)}{\mathrm{BR}(B \to K(K^*)e^+e^-)}$$



While we are talking about  $b \rightarrow c \tau \nu$ 

$$\begin{aligned} R_{J/\psi} &= \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)} \\ &= 0.71 \pm 0.17 \pm 0.18 \; (\mathrm{exp}) \,, \; \; 0.283 \pm 0.048 \; (\mathrm{SM}) \end{aligned}$$

And the neutral current  $b o s \ell^+ \ell^-$ 

$$R_{\mathcal{K}(\mathcal{K}^*)} = \frac{\mathrm{BR}(B \to \mathcal{K}(\mathcal{K}^*)\mu^+\mu^-)}{\mathrm{BR}(B \to \mathcal{K}(\mathcal{K}^*)e^+e^-)}$$

e or  $\mu ?\; B_s o \phi \mu^+ \mu^-$  is also interesting  $\cdots$ 



While we are talking about b 
ightarrow c au 
u

$$\begin{aligned} R_{J/\psi} &= \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)} \\ &= 0.71 \pm 0.17 \pm 0.18 \; (\mathrm{exp}) \,, \; \; 0.283 \pm 0.048 \; (\mathrm{SM}) \end{aligned}$$

And the neutral current  $b o s \ell^+ \ell^-$ 

$$R_{\mathcal{K}(\mathcal{K}^*)} = rac{\mathrm{BR}(B o \mathcal{K}(\mathcal{K}^*) \mu^+ \mu^-)}{\mathrm{BR}(B o \mathcal{K}(\mathcal{K}^*) e^+ e^-)}$$

 $e \text{ or } \mu? \ B_s \to \phi \mu^+ \mu^-$  is also interesting  $\cdots$ 



$$\begin{split} R_K &= 0.745^{+0.090}_{-0.074} \pm 0.036 \qquad q^2 \in [1:6] \ \mathrm{GeV}^2 \,, \\ R^{\mathrm{low}}_{K^*} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \qquad q^2 \in [0.045:1.1] \ \mathrm{GeV}^2 \,, \\ R^{\mathrm{central}}_{K^*} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \qquad q^2 \in [1.1:6] \ \mathrm{GeV}^2 \,. \end{split}$$

$$\frac{d}{dq^2} \text{BR}(B_s \to \phi \mu \mu) \Big|_{q^2 \in [1:6] \text{ GeV}^2} = \begin{cases} \left( 2.58^{+0.33}_{-0.31} \pm 0.08 \pm 0.19 \right) \times 10^{-8} \text{ GeV}^{-2} & \text{(exp.)} \\ (4.81 \pm 0.56) \times 10^{-8} \text{ GeV}^{-2} & \text{(SM)}, \end{cases}$$

Is there some pattern?



But  $B_s/B_d \rightarrow \mu\mu$  is consistent with the SM (Only theory errors are from  $f_{B/B_s}$  and CKM. NLO EW, NNLO QCD, soft photon, large  $\Delta\Gamma_s$  effects taken into account)



while  $B \to K^* \mu \mu$  observable  $P'_5$  shows a deviation





LHCb: two bins deviating by  $2.8\sigma$  and  $3.0\sigma$ Belle confirms with larger uncertainty CMS and ATLAS: Consistent with both LHCb/Belle and SM, large uncertainties



Effective theory approach

$$\mathcal{H}_{ ext{eff}} = (\mathit{CKM})\sum_i \mathit{C}_i \mathit{O}_i$$

Main source of uncertainty: FF in  $\langle M | \mathcal{H}_{eff} | B \rangle$ Ratios are relatively insensitive

Example: 
$$b o s\mu^+\mu^-$$
  
 $\mathcal{H}_{ ext{eff}}^{ ext{SM}} = -rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\sum_i C_i(\mu)O_i(\mu)$ 

with the relevant operators

$$O_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b) F^{\mu\nu}, \quad C_{7} = -0.304$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma^{\mu}P_{L}b) (\bar{\mu}\gamma_{\mu}\mu), \quad C_{9} = 4.211$$

$$O_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma^{\mu}P_{L}b) (\underline{\mu}\gamma_{\mu}\gamma_{5}\mu), \quad C_{10} = -4.103$$



Effective theory approach

$$\mathcal{H}_{ ext{eff}} = (\mathit{CKM})\sum_i \mathit{C}_i \mathit{O}_i$$

Main source of uncertainty: FF in  $\langle M | \mathcal{H}_{eff} | B \rangle$ Ratios are relatively insensitive

Example: 
$$b \rightarrow s\mu^+\mu^-$$
  
 $\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\sum_i C_i(\mu)O_i(\mu)$ 

with the relevant operators

$$O_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b) F^{\mu\nu}, \quad C_{7} = -0.304$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma^{\mu}P_{L}b) (\bar{\mu}\gamma_{\mu}\mu), \quad C_{9} = 4.211$$

$$O_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma^{\mu}P_{L}b) (\bar{\mu}\gamma_{\mu}\gamma_{5}\mu), \quad C_{10} = -4.103$$
BM with flavour







### Top-down:

UV complete theory  $\rightarrow$  Get  $C_i$  at high scale with proper matching

 $\rightarrow$  Run down to  $m_b \rightarrow$  Check consistency with data

### Bottom-up:

Fit data with set of chosen operators  $\rightarrow$  Get the corresponding  $C_i$ 



How reliable are the form factors?

- $B \to K, D$ : Only two FF,  $f_0$  and  $f_1$ , determined over the entire  $q^2$ -range from lattice
- $B \rightarrow K^*, D^*$ : Four FF,  $V, A_0, A_1, A_2$ , lattice not yet complete, HQET is helpful, higher-order corrections can be estimated
- There can be more FF with BSM operators (like tensor)

Are there other pitfalls?  $D^*$  is detected as  $D\pi$ , take finite decay width into consideration Reduces tension to  $2.2\sigma$  [Chavez-Saab and Toledo, 1806.06997] For  $B \to K^{(*)}$ , no estimate for charmonium-dominated bins, have to be removed



How reliable are the form factors?

- $B \to K, D$ : Only two FF,  $f_0$  and  $f_1$ , determined over the entire  $q^2$ -range from lattice
- $B \rightarrow K^*, D^*$ : Four FF,  $V, A_0, A_1, A_2$ , lattice not yet complete, HQET is helpful, higher-order corrections can be estimated
- There can be more FF with BSM operators (like tensor)

Are there other pitfalls?  $D^*$  is detected as  $D\pi$ , take finite decay width into consideration Reduces tension to  $2.2\sigma$  [Chavez-Saab and Toledo, 1806.06997] For  $B \to K^{(*)}$ , no estimate for charmonium-dominated bins, have to be removed



- Tension for CC with  $\ell = \tau$ , comparable with SM tree ( $\sim 15\%$  enhancement in amplitude)
- Tension for NC with  $\ell = \mu$ , comparable with SM loop only. Destructive interference needed



- Tension for CC with  $\ell = \tau$ , comparable with SM tree ( $\sim 15\%$  enhancement in amplitude)
- Tension for NC with  $\ell = \mu$ , comparable with SM loop only. Destructive interference needed
- Consider a new operator involving au. Rotate the leptonic  $( au,\mu)$  basis to  $( au',\mu')$  [Glashow, Guadagnoli, Lane

 $au= au'\cos heta+\mu'\sin heta\,,\quad 
u_ au'=
u_ au\cos heta+
u_\mu\sin heta$ 

If the mixing angle  $\theta$  is small,  $\sin^2 \theta$  suppression makes the BSM tree comparable with SM loop



- Tension for CC with  $\ell = \tau$ , comparable with SM tree ( $\sim 15\%$  enhancement in amplitude)
- Tension for NC with  $\ell = \mu$ , comparable with SM loop only. Destructive interference needed
- Consider a new operator involving au. Rotate the leptonic  $( au, \mu)$  basis to  $( au', \mu')$  [Glashow, Guadagnoli, Lane]

$$au = au' \cos heta + \mu' \sin heta \,, \quad 
u_{ au}' = 
u_{ au} \cos heta + 
u_{\mu} \sin heta$$

• If the mixing angle  $\theta$  is small,  $\sin^2 \theta$  suppression makes the BSM tree comparable with SM loop



A simultaneous solution?

$$\mathcal{O}_{\rm I} = \sqrt{3} A_1 (\bar{Q}_{2L} \gamma^{\mu} L_{3L})_3 (\bar{L}_{3L} \gamma_{\mu} Q_{3L})_3 -2 A_2 (\bar{Q}_{2L} \gamma^{\mu} L_{3L})_1 (\bar{L}_{3L} \gamma_{\mu} Q_{3L})_1$$

- Only 3rd gen leptons, but can rotate to get muons
- Can give a good fit to R(D),  $R(D^*)$ ,  $R_K$ ,  $R_{K^*}$ ,  $R_{J/\psi}$ , BR( $B_s \rightarrow \phi \mu \mu$ ), BR( $B_s \rightarrow \mu \mu$ ) and within limits for  $b \rightarrow s+$ invisible and  $B \rightarrow K^{(*)} \mu \tau$
- Much improved  $\chi^2$  compared to the SM

$$\chi^{2} = \sum_{i=1}^{8} \frac{\left(\mathcal{O}_{i}^{\exp} - \mathcal{O}_{i}^{th}\right)^{2}}{\left(\Delta \mathcal{O}_{i}^{\exp}\right)^{2} + \left(\Delta \mathcal{O}_{i}^{th}\right)^{2}}$$

•  $\chi^2/d.o.f. = 1.5$  (this model), 6.1 (SM), with  $A_1 = 0.028/\text{TeV}^2$ ,  $A_2 = -2.90/\text{TeV}^2$ ,  $|\sin \theta| = 0.018$ ,  $C_9^{\text{NP}} = -C_{10}^{\text{NP}} = -0.61$ 



- ullet For these models  $\mathcal{C}_9^{ ext{NP}}=-\mathcal{C}_{10}^{ ext{NP}}$  : only LH currents
- $B_{\rm s} 
  ightarrow au^+ au^-$  gets sizable contribution from  $C_{
  m 10}$ , not  $C_{
  m 9}$
- $R_K$  and  $R_{K^*}$  need at least one of  $C_9$  and  $C_{10}$  to be significant
- This is ruled out by  $B_s o au^+ au^-$  (as well as by  $\Delta M_s$  )
- We need to break  $C_0 = -C_{10}$  introduce RH currents

$$\mathcal{O}_{\text{II}} = \sqrt{3} A_1 \left[ -(Q_{2L}, Q_{3L})_3 (L_{3L}, L_{3L})_3 + \frac{1}{2} (Q_{2L}, L_{3L})_3 (L_{3L}, Q_{3L})_3 \right] \\ + \sqrt{2} A_5 (Q_{2L}, Q_{3L})_1 \{\tau_R, \tau_R\} \\ = \frac{3 A_1}{4} (c, b) (\tau, \nu_\tau) + \frac{3 A_1}{4} (s, b) (\tau, \tau) + A_5 (s, b) \{\tau, \tau\} \\ + \frac{3 A_1}{4} (s, t) (\nu_\tau, \tau) + A_5 (c, t) \{\tau, \tau\} + \frac{3 A_1}{4} (c, t) (\nu_\tau, \nu_\tau)$$

with  $\{x, y\} \equiv \bar{x}_R \gamma^\mu y_R$ ,  $(x, y) \equiv \bar{x}_L \gamma^\mu y_L \quad \forall x, y$ 



- ullet For these models  $\mathcal{C}_9^{ ext{NP}}=-\mathcal{C}_{10}^{ ext{NP}}$  : only LH currents
- $B_s 
  ightarrow au^+ au^-$  gets sizable contribution from  $C_{10}$ , not  $C_9$
- $R_{K}$  and  $R_{K^{*}}$  need at least one of  $C_{9}$  and  $C_{10}$  to be significant
- This is ruled out by  $B_s o au^+ au^-$  (as well as by  $\Delta M_s$ )
- We need to break  $C_0 = -C_{10}$  introduce RH currents

$$\begin{aligned} \mathcal{O}_{\mathrm{II}} &= \sqrt{3} \, A_1 \, \left[ -(Q_{2L}, Q_{3L})_3 \, (L_{3L}, L_{3L})_3 + \frac{1}{2} \, (Q_{2L}, L_{3L})_3 \, (L_{3L}, Q_{3L})_3 \right] \\ &+ \sqrt{2} \, A_5 \, (Q_{2L}, Q_{3L})_1 \, \{\tau_R, \tau_R\} \\ &= \frac{3 \, A_1}{4} \, (c, b) \, (\tau, \nu_\tau) + \frac{3 \, A_1}{4} \, (s, b) (\tau, \tau) + A_5 \, (s, b) \, \{\tau, \tau\} \\ &+ \frac{3 \, A_1}{4} \, (s, t) \, (\nu_\tau, \tau) + A_5 (c, t) \{\tau, \tau\} + \frac{3 \, A_1}{4} (c, t) \, (\nu_\tau, \nu_\tau) \end{aligned}$$

with  $\{x, y\} \equiv \bar{x}_R \gamma^\mu y_R$ ,  $(x, y) \equiv \bar{x}_L \gamma^\mu y_L \quad \forall x, y$ 



Can also play the same game with

$$\begin{aligned} \mathcal{O}_{\mathrm{III}} &= -\sqrt{3} \, A_1 \, (Q_{2L}, Q_{3L})_3 \, (L_{3L}, L_{3L})_3 + A_1 \, (Q_{2L}, Q_{3L})_1 \, (L_{3L}, L_{3L})_1 \\ &+ \sqrt{2} \, A_5 \, (Q_{2L}, Q_{3L})_1 \, \{\tau_R, \tau_R\} \\ &= A_1 \, (c, b) \, (\tau, \nu_\tau) + A_1 \, (s, b) \, (\tau, \tau) + A_5 \, (s, b) \, \{\tau, \tau\} \\ &+ A_1 \, (s, t) \, (\nu_\tau, \tau) + A_1 \, (c, t) (\nu_\tau, \nu_\tau) + A_5 \, (c, t) \, \{\tau, \tau\} \end{aligned}$$

| Best fit points      | Model II | Model III |
|----------------------|----------|-----------|
| $ \sin \theta $      | 0.016    | 0.016     |
| $A_1$ in TeV $^{-2}$ | -3.88    | -2.91     |
| $A_5$ in TeV $^{-2}$ | -2.61    | 0.66      |





[An ongoing analysis taking all ~ 160 observables into account shows a slightly different fit for these models. Also, Model I seems to be allowed. (Biswas, Calcuttavala, Patra, Priv. Comm.)



# Something futuristic: $b \rightarrow s + \text{ invisibles at Belle-II}$

[Calcuttawala, AK, Nandi, Patra 2016]



### • SM: $b \rightarrow s \nu \bar{\nu}$ , only penguin and box



- Not always related to  $b o s \ell^+ \ell^-$ :
  - Leptons can be R with no neutrino counterpart

2 
$$\epsilon_{ab} \overline{L}_{I}^{a} \gamma^{\mu} Q_{I}^{b}$$
:  $b \rightarrow \nu$ ,  $t \rightarrow \ell$ 

3 The invisibles can be something different!



• SM:  $b \rightarrow s \nu \bar{\nu}$ , only penguin and box



• Not always related to  $b o s \ell^+ \ell^-$ :

Leptons can be R with no neutrino counterpart

2) 
$$\epsilon_{ab} \overline{L}_{L}^{a} \gamma^{\mu} Q_{L}^{b}$$
:  $b \rightarrow \nu$ ,  $t \rightarrow \ell$ 

The invisibles can be something different!

BR,  $d\Gamma/dq^2$ ,  $F'_T(q^2)$  (neutrinos),  $F'_L(q^2)$  (light scalars



• SM:  $b \rightarrow s \nu \bar{\nu}$ , only penguin and box



• Not always related to  $b 
ightarrow s \ell^+ \ell^-$ :

Leptons can be R with no neutrino counterpart

2 
$$\epsilon_{ab} \overline{L}_{L}^{a} \gamma^{\mu} Q_{L}^{b}$$
:  $b \to \nu$ ,  $t \to \ell$ 

The invisibles can be something different!

Observables:

BR,  $d\Gamma/dq^2$ ,  $F'_T(q^2)$  (neutrinos),  $F'_L(q^2)$  (light scalars)



$$\mathcal{H}_{\mathrm{eff}} = rac{4 \, G_F}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \, C_{SM} \left[ O_{SM} + C_1' O_{V_1} + C_2' O_{V_2} 
ight] \, ,$$

$$\begin{aligned} O_{SM} &= O_{V_1} &= \left( \bar{s}_L \gamma^\mu b_L \right) \left( \bar{\nu}_{iL} \gamma_\mu \nu_{iL} \right) \,, \\ O_{V_2} &= \left( \bar{s}_R \gamma^\mu b_R \right) \left( \bar{\nu}_{iL} \gamma_\mu \nu_{iL} \right) \,. \end{aligned}$$



$$\mathrm{Br}(B 
ightarrow \mathcal{K}(\mathcal{K}^*) 
u ar{
u}) < 1.6(2.7) imes 10^{-5}$$

### Detection efficiencies are small (Belle, 1303.3719)

| Mode                                  | $N_{ m tot}$ | $N_{\rm sig}$                                              | Significance | $\epsilon, 10^{-4}$ | Upper limit            |
|---------------------------------------|--------------|------------------------------------------------------------|--------------|---------------------|------------------------|
| $B^+ \to K^+ \nu \bar{\nu}$           | 43           | $13.3^{+7.4}_{-6.6}(\mathrm{stat}) \pm 2.3(\mathrm{syst})$ | $2.0\sigma$  | 5.68                | $< 5.5 \times 10^{-5}$ |
| $B^0 \rightarrow K^0_s \nu \bar{\nu}$ | 4            | $1.8^{+3.3}_{-2.4}(\text{stat}) \pm 1.0(\text{syst})$      | $0.7\sigma$  | 0.84                | $<9.7\times10^{-5}$    |
| $B^+ \to K^{*+} \nu \bar{\nu}$        | 21           | $-1.7^{+1.7}_{-1.1}$ (stat) $\pm 1.5$ (syst)               | _            | 1.47                | $<4.0\times10^{-5}$    |
| $B^0 \to K^{*0} \nu \bar{\nu}$        | 10           | $-2.3^{+10.2}_{-3.5}(\rm{stat})\pm0.9(\rm{syst})$          | -            | 1.44                | $< 5.5 \times 10^{-5}$ |



 $B \rightarrow K^* \nu \bar{\nu}$  (50 and 2 ab<sup>-1</sup>)



 $F_T$ ,  $B \rightarrow X_s \nu \bar{\nu}$  (50 ab<sup>-1</sup>)





It can also be light invisible scalars (DM?)

$$\mathcal{L}_{b\to sSS} = C_{S_1} m_b \bar{s}_L b_R S^2 + C_{S_2} m_b \bar{b}_L s_R S^2 + \text{H.c.}$$
(1)

Higgs portal DM –  $\langle S \rangle =$  0, hSS coupling small to evade LHC limits





### $\overline{B ightarrow K}$ and $\overline{B} ightarrow K^{*}$ for $m_{S} = 0.5$ (1.8) GeV, $\mathcal{L}_{\mathrm{int}} = 50$ ab $^{-1}$



**BSM** with flavour

JNIVERSITY OF

ALCUTTA

### To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the *B* sector (also in *K* and probably *D*)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!



### To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the *B* sector (also in *K* and probably *D*)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!



### To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the *B* sector (also in *K* and probably *D*)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!

Thank you!

