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A rough outline of the talk
• Why Supersymmetry? 


• What is the S-term and why is it important? 


• What do we need to turn the S-term inhomogeneous?


• Physics of the inhomogeneous S-term


• Application: 

- RH sleptons in scalar sequestering



Understanding Electroweak Scale

v2ew ⇠ m2
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How do you generate this scale?

Even after you generate this 
— 

how do you make it radiatively stable?
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mass scale we need to control

superpartner masses

In electroweak scale supersymmetry, you control 
electroweak scale by controlling superpartner masses  

Understanding Electroweak Scale



Control superpartner masses

SUSY rotates chirality into scalar sector — gives full control of 
radiative corrections on superpartner masses 

How do we generate small (electroweak scale) superpartner masses?

Understanding Electroweak Scale



m̃2 ⇠ F 2

M2

parameter of mass dimension 2

parametrizes susy breaking scale 

mediation scale 

For Planck mediation:   
M = MPl

F ⇠ 1010�11 GeV

Understanding Electroweak Scale



m̃2 ⇠ F 2

M2

Understanding Electroweak Scale

Smallness of electroweak scale or smallness of superpartner masses 
raises  the question

how do you generate 

p
F ,M ⌧ MPl if M ⌧ MPl

p
F ⌧ M if M ⇠ MPl

parameter of mass dimension 2

parametrizes susy breaking scale 

mediation scale 



Understanding Electroweak Scale

p
F

MPl
⌧ 1

We know how nature does it with QCD 
•

e
� 8⇡2

g2 ⌧ 1

Smallness of electroweak scale or smallness of superpartner masses 
raises  the question

how do you generate 
•



SUSY model in a nut-shell
Skeleton of a complete SUSY model

Dynamical SUSY breaking

in a hidden sector

messenger mechanism

gravity, gauge, gaugino, anomaly etc etc



qcd gauge coupling  
becomes strong

chiral symmetry 
is broken

energy scale 
~ few GeVs

take  qcd

Understanding Electroweak Scale



hidden sector gauge coupling  
becomes strong

supersymmetry 
is broken

energy scale 
Planck scaleTeV

intermediate
scale

just like
qcd

Understanding Electroweak Scale
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What is the S-term and why is it important? 
Before I understand this question let’s visit the question of 

predictability in softly broken supersymmetric theories: 

How much can you predict the 
IR if you have a model of UV 

More importantly:  

How well do you know UV 

if you know IR very well  



Scales in renormalization

MMint1 TeV

Only MSSM fields 

are dynamic SUSY breaking fields 

are also dynamic

renormalization 

is due to 


hidden + MSSM

interactions

renormalization 

is due to 

 MSSM


interactions

Cohen, Roy, Schmaltz
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Consider the first generation particles:  
with MSSM interactions only
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RGEs of SUSY breaking masses
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Consider the first generation particles:
with MSSM + hidden interactions 

RGEs of SUSY breaking masses



RGEs of SUSY breaking masses

RGE for the S-term is homogeneous 

with/without  hidden sector dynamics

! = Tr (Yϕm2
ϕ) = m̃2

Hu
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Hd
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RGEs of SUSY breaking masses

d
dt

! = (⋯) × !

!
μ= 1 TeV

≠ 0 ⟹ !
μ= Mint

≠ 0 ⟹ !
μ= M

≠ 0

You can show that

Irrespective of any hidden sector dynamics



A way to make S-term inhomogeneous

A theory with a non zero 

S-term + no FI for Hypercharge

A theory with a zero 

S-term + FI for Hypercharge

V → V + #! θ2θ̄2

Consider a toy model with SQED and softly broken supersymmetry

and no hidden sector 

FI only runs because of gauge coupling running

d
dt ( !

g 2 ) = 0

=



A way to make S-term inhomogeneous
Consider a toy model with SQED and softly broken supersymmetry


and no hidden sector 

This argument will break down if more operators exist that explicitly involve V

Can’t probably be a superpotential operator

A theory with a non zero 

S-term + no FI for Hypercharge

A theory with a zero 

S-term + FI for Hypercharge

V → V + #! θ2θ̄2

=



A way to make S-term inhomogeneous
Consider a toy model with SQED and softly broken supersymmetry


and no hidden sector 

∫ d4θ f1 (ϕ⋯)† eqV f2 (ϕ⋯) f1, f2 are chiral functions of fields φ with charge q 

∫ d4θ × (#θ2θ̄2 !) × f1 (ϕ⋯)† f2 (ϕ⋯)

A theory with a non zero 

S-term + no FI for Hypercharge

A theory with a zero 

S-term + FI for Hypercharge

V → V + #! θ2θ̄2

=

generates

You break the theorem above 

C-terms



ℒsoft ⊃Cu h †
d q̃Yu ũ

∫ d4θ
k
Λ H†

d eV/2 (QU)

A way to make S-term inhomogeneous
In the MSSM, the operator with lowest dimension would be, for example 

Equivalently,  you can start with a soft operator (rotating k to superspace): 

You are guaranteed to get an Inhomogeneous S-term 



MSSM with inhomogeneous S-term 
Simplify:


• MSSM with only top Yukawa


• One extra soft operator

ℒsoft ⊃Ctyt h †
d q̃3ũ 3 C-terms

Corrections at RGEs one loop order will be confined 

to soft masses for  Hd , q3, and u3    
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First without the C-terms
RGEs for  soft mass-squareds for Hd , q3, and u3 
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Figure 1: Non standard soft supersymmetry breaking terms contributing to the running of the scalar
fields.

mass-squared parameters are given below.
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3.1.1 Detour: consistency check

As a consistency check for the RGEs derived above due to the unconventional ⇠ operator, consider
taking the supersymmetric limit. In particular, we look at the mass parameter m

2
hd

– in the super-

symmetric limit, m
2
hd

should be equal to the Higgsino mass parameter (namely, |µ|
2) at all scales,

lim
⇠!µ

d

dt
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2
hd

� |µ|
2
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= 0 . (3.13)

Staring at Eq. (3.6, 3.12), we see our RGE pass this check.

3.1.2 Towards the full Lagrangian

To formulate the RGEs of the full theory as given in Eq. (2.8), one needs to incorporate important
complexifications:

• If the superpotential in Eq. (3.2) is expanded to include new marginal interactions involving the
D superfield, such as Ȳ QHdD, the accidental global U(1) symmetry with D is lost and new
counter-terms are needed. For example, in the presence of both Y and Ȳ , the operator h

†
d
q̃ũ

shown in Fig. 11 is permitted.

• If one gauges U(1)X , the e↵ect of its D-terms need to be taken into account, even if we refrain
from adding mass term for the gaugino (so that the U(1)R remains unbroken, and we can keep
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Y (Ct + μ) Y† (Ct + μ)†

Next: with the C-terms

X X

Y†

H̃

You can guess that the effects of these diagram will be proportional to 

yt
2 ( Ct + μ

2
− μ

2)
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Next: with the C-terms
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RGE for the S-term



Application



All  scalars including 
scalar Higgses  
are massless

only 
gauginos and Higgsinos 

are massive

The spectrum is independent of 
details of messenger model 

and hidden sector model

scalar sequestering  
is characterized by the spectrum  

at the intermediate scale

Perez, Roy, Schmaltz, 
Phys.Rev. D79 (2009) 095016



Mediation scale

Intermediate scale

Electroweak scale

Spectrum at the Intermediate Scale

Dominated by (superconformal) 
dynamics in hidden sector
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A Sore point of scalar sequestering 

Implies:

Initial condition: m̃2
ϕ = 0

Same as in gaugino mediation

Consider RH slepton mass at the EW scale
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Scalar sequestering with C-terms
Consider RH slepton mass at the EW scale

Take: Ct = − μ = 1 TeV
M1 = 100 GeV



exactly determined by the running of soft Higgs masses, µ-term and trilinear scalar terms.

We note that bµ (⇤int) = 0 as this particular operator is sequestered and as a result, we do

not have the freedom to tune the initial values to match bµ (⇤IR) determined by Eq. (5.12).

Therefore, starting from bµ (⇤int) = 0, we tune At so that we match two bµ (⇤IR) values

coming from Eq. (5.12) and Eq. (3.15).

5.2 Third generation sfermions and Higgs mass

The running of the third generation scalars shown in Eq. (3.4)–Eq. (3.8) with the constraint

m̃
2

hu/d
= � |µ|2 at ⇤int implies that third generation sfermions are larger compared to the

first two generation sfermions. The presence of NH terms appear in the running of the

third generation sleptons only and thus can e↵ect the splitting further. However, for first

two generations, the sfermion masses in the chiral basis are same in the mass basis. For

the third generations, one has to diagonalize mass matrices because of the presence of

large left-right mixing terms, of the form mt [At � (cu + µ) cot �]. For large µ-term, large

o↵-diagonal terms in the mass matrices would lead to eigenvalue repulsion reducing the

right chiral masses. The di↵erence in the first and third generation slepton eigenvalues are

important as large splitting may generate hard leptons which can be probed at the LHC.

We show this feature in the right panel of Fig. 4. In case of large splittings at higher tan �

values one has to consider appropriate values of µ and c so that the slepton masses become

inaccessible at the LHC.

⇤int (GeV) ⇤int (GeV)

0

20

40

60

80

100

120

140

160

180

103 104 105 106 107 108 109 1010 1011

m̃e3 , tan� = 2.5

m̃e1,2 , tan� = 2.5

m̃e3 , tan� = 25

m̃e1,2 , tan� = 25

0

20

40

60

80

100

120

140

160

180

103 104 105 106 107 108 109 1010 1011
0

0.5

1

1.5

2

2.5

3

103 104 105 106 107 108 109 1010 1011

m̃u3 , tan� = 2.5

m̃u1,2 , tan� = 2.5

m̃u3 , tan� = 25

m̃u1,2 , tan� = 25

0

0.5

1

1.5

2

2.5

3

103 104 105 106 107 108 109 1010 1011

m̃
e
(G

eV
)

m̃
u

(G
eV

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40

tan �

m̃
e
3
�

m̃
e
1

m̃
e
1

Figure 4: Left panel: We show the evolution of the third and first generation sleptons

as a function of ⇤int for di↵erent values of tan �. Right panel: The splitting between the

third and first generation sleptons as a function of tan � is shown. We have fixed µ and c

at previously mentioned values.

Another interesting feature is similar to the A-term, the c-terms also enhances the

Higgs quartic contribution, thereby enhancing the Higgs mass at the one loop level [16, 17].

The tree level Higgs mass in our framework is exactly the same as the MSSM case [12].

However, one loop corrections from the dominating top-stop loop gives rise to
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1. RH slepton masses are primarily given in terms of Ct and μ

m̃2
e3

> m̃2
e1,2

because of the initial condition

 m̃2

H = − |μ |2

Scalar sequestering with C-terms
Consider RH slepton mass at the EW scale

2. Third generation RH sleptons are heavier 

Ren. scale



Scalar sequestering with C-terms
Detailed phenomenological questions: 

• Do you get EWSB? 


• Do you get thermal relic? 


• Do you avoid LHC bounds for light sleptons?


• Do you get the right Higgs mass? 


• How big are the flavor changing effects, or (g-2)? 


• Can you still accommodate gauge coupling unification? 


• What is the fine tuning in this model?


For answers to some of these questions look for the forthcoming 
Chakraborty, Roy (Feb, 2019)



Done


