Residual Flavor Symmetries in the $u_{\mu}\nu_{\tau}$ Sector

Probir Roy

Centre for Astroparticle Physics and Space Science Bose Institute, Kolkata

IMHEP 2019, IOPB

Collaborators R. Sinha and A. Ghosal of SINP

Probir Roy Residual Flavor Symmetries in the $\nu_{\mu}\nu_{\tau}$ Sector

< ロ > < 同 > < 回 > < 回 > .

PLAN OF THE TALK

- INTRODUCTION
- NEUTRINO RESIDUAL FLAVOR SYMMETRIES
- NEUTRINO MIXING ANGLES AND PHASES
- NUMERICAL ANALYSIS
- NEUTRINOLESS DOUBLE BETA DECAY
- CP ASYMMETRY IN LONG-BASELINE OSCILLATIONS
- FLAVOR FLUX RATIOS AT NEUTRINO TELESCOPES
- CONCLUSIONS

1. INTRODUCTION

Regularities observed in neutrino mixing over the years:

1. Atmospheric mixing angle θ_{23} is close to maximal value $\pi/4$. 2. Solar mixing angle θ_{12} is not far from tribimaximal value $\sin^{-1}(\frac{1}{\sqrt{3}}) \sim 35.26^{\circ}$.

3. Reactor mixing angle θ_{12} not far from tribimaximal value 0°.

4. Dirac CP phase δ is close to the maximal value $3\pi/2$.

Current best-fit values

 $\theta_{12} = 33.82^{\circ}, \ \theta_{23} = 49.6^{\circ}(NO), 49.8^{\circ}(IO), \ \delta = 215^{\circ}(NO), 284^{\circ}(IO)$

 \Rightarrow Some kind of discrete symmetry in the flavor space of neutrinos.

2. NEUTRINO RESIDUAL FLAVOR SYMMETRIES

Work with Majorana neutrinos

$$-\mathcal{L}_{\nu}^{\text{mass}} = \frac{1}{2} \overline{\nu_{\ell L}^{C}} (M_{\nu})_{\ell m} \nu_{m} + \text{h.c.}, \quad (M_{\nu})_{\ell m} = (M_{\nu})_{m\ell}$$

 $U^T M_{\nu} U = M_d = \text{diag}(m_1, m_2, m_3), \text{ with } m_{1,2,3} \text{ assumed } > 0.$

Perhaps there is a residual symmetry G with

 $G^T M_{\nu}G =$? RHS can be $+ M_{\nu}, -M_{\nu}, +M_{\nu}^*, -M_{\nu}^*$.

G is a discrete symmetry. Questions:

- 1. What is G?
- 2. What are the characteristic phenomenological predictions of G?
- 3. How do these predictions compare with current experiment?
- 4. Will distinctive predictions from G be testable in future set-ups?
- 5. Can G be embedded in a larger symmetry group which in turn comes from a GUT? $(\Box \rightarrow A) = (\Box \rightarrow A)$

We deal with exact symmetries: perturbations introduce too many parameters.

1. Historically, first $\mu\tau$ exchange symmetry ($\mu\tau S$);

Fukushima and Nishiura (1997), Review by King (2017)

Invariance under $\nu_{L\ell} \rightarrow G_{\ell m} \nu_{Lm}$ $G = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ and $G^T M_{\nu} G = M_{\nu}$. Obtainable from S_4 Altarelli and Feruglio (2010)

$$M_{\nu}^{\mu\tau S} = \begin{pmatrix} x & a & -a \\ a & y & c \\ -a & c & y \end{pmatrix}, \ x, a, c, y \text{ complex mass-dimensional}$$

 $\Rightarrow \theta_{13} = 0$ ruled out at $10\sigma, \theta_{23} = \pi/4$ (disfavored). No observable Dirac CP violation. Strong experimental hints to the contrary.

Abandoned! < -> < -> < -> < => < => < =>

2. Next, $\mu\tau$ exchange antisymmetry ($\mu\tau A$).

Grimus et al (2006)

Same G but $G^T M_{\nu} G = -M_{\nu}$. Obtainable from \mathbb{Z}_4

Altarelli and Feruglio (2010), Joshipura (2015)

$$\Rightarrow M_{\nu}^{\mu\tau S} = \begin{pmatrix} 0 & a & a \\ a & y & 0 \\ a & 0 & -y \end{pmatrix}$$

 $\Rightarrow \theta_{13} = 0$ ruled out at $10\sigma, \theta_{23} = \pi/4$ (disfavored).

Same consequences as $\mu\tau S$ + one massless and two degenerate neutrinos (ruled out by $\Delta m_{21}^2 \neq 0 \neq \Delta m_{32}^2$). Proponents considered perturbations \rightarrow too complicated.

Abandoned!

3. Now, CP extended $\mu\tau$ symmetry (CP $\mu\tau S$)

Harrison and Scott (2002) Grimus & Lavoura (2004) Mohapatra & Nishi (2015)

 $G^T M_{\nu} G = M_{\nu}^*$. Obtainable from S_4

$$\Rightarrow M_{\nu}^{CP\mu\tau S} = \begin{pmatrix} x_1 & a & -a \\ a & y & c_1 \\ a^* & c_1 & y^* \end{pmatrix}$$

Symmetry transformation: $\nu_{L\ell} \rightarrow i G_{\ell m} \gamma^0 \nu_{Lm}^C$.

Admits $\theta_{13} \neq 0$, Majorana phases 0 or π . $\theta_{23} = \pi/4$ and Dirac phase δ either $\pi/2$ or $3\pi/2$ (both in tension with latest data).

4. Next, CP extended $\mu\tau$ antisymmetry (CP $\mu\tau A$) Samanta, PR, Ghosal (2018)

 $G^T M_\nu G = -M_\nu^*.$

Obtainable from $\nu_{L\ell} \rightarrow -G_{\ell m} \gamma^0 \nu_{Lm}^C$

 $M_{\nu}^{CP\mu\tau S} = -iM_{\nu}^{CP\mu\tau S}$

Phenomenology identical to that of $CP^{\mu\tau S}$. Leptogenesis with minimal seesaw (two heavy RH neutrinos N_1, N_2) worked out in detail by SRG.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

5. Mixed (θ) $\mu\tau$ exchange symmetry ($\mu\tau\theta S$) Introduces one extra parameter: mixing angle θ . Now,

$$G^{ heta} = egin{pmatrix} -1 & 0 & 0 \ 0 & -\cos heta & \sin heta \ 0 & \sin heta & \cos heta \end{pmatrix} ext{ and } G^{ op} M_{
u} G = M_{
u}.$$

 $\theta \to \pi/2$ lets $\mu \tau \theta S \to \mu \tau S$.

$$\mathcal{M}_{\nu}^{\mu\tau\theta S} = \begin{pmatrix} x & a & -a\frac{1-c_{\theta}}{s_{\theta}} \\ a & y & c \\ -a\frac{1-c_{\theta}}{s_{\theta}} & c & y+2c\frac{c_{\theta}}{s_{\theta}} \end{pmatrix}$$

Though $\theta_{23} \neq \pi/4, \theta_{13} = 0.$

Excluded!

A modification, proposed by Samanta, Sinha, Ghosal (2018) is still allowed.

6. Mixed (θ) $\mu\tau$ exchange antisymmetry ($\mu\tau\theta A$). Same G^{θ} but $G^{T}M_{\nu}G = -M_{\nu}$.

$$M_{
u}^{\mu au heta A} = egin{pmatrix} x & a & arac{1+c_{ heta}}{s_{ heta}} \ a & y & yrac{c_{ heta}}{s_{ heta}} \ arac{1+c_{ heta}}{s_{ heta}} & yrac{c_{ heta}}{s_{ heta}} & -y \end{pmatrix}.$$

 $\theta \to \pi/2$ lets $\mu \tau \theta A \to \mu \tau A$. Once again, $\theta_{13} = 0$.

Excluded!

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

7. CP-transformed mixed $\mu\tau$ symmetry (CP $\mu\tau\theta$ S). Chen et al (2016)

Now, $(G^{\theta})^T M_{\nu} G^{\theta} = M_{\nu}^*$.

$$M_{\nu}^{CP\mu\tau\theta S} = \begin{pmatrix} x_1 & a_1 + ia_2 & -a_1 \frac{1 - c_{\theta}}{s_{\theta}} + ia_2 \frac{1 + c_{\theta}}{s_{\theta}} \\ a_1 + ia_2 & y_1 + iy_2 & c_1 + iy_2 \frac{c_{\theta}}{s_{\theta}} \\ -a_1 \frac{1 - c_{\theta}}{s_{\theta}} + ia_2 \frac{1 + c_{\theta}}{s_{\theta}} & c_1 + iy_2 \frac{c_{\theta}}{s_{\theta}} & -iy_2 + 2c_1 \frac{c_{\theta}}{s_{\theta}} \end{pmatrix}$$

with $x, a_{1,2}, y_{1,2}$ and c_1 as real mass-dimensional parameters. $\Rightarrow \theta_{13} \neq 0, \theta_{23} \neq \pi/4$ and δ not fixed:

$$\sin \delta = \pm \frac{\sin \theta}{\sin 2\theta_{23}}.$$

Note that, for $\theta \to \pi/2$, $CP\mu\tau\theta S \to CP\mu\tau S$.

- 4 同 2 4 回 2 4 U

8. CP-transformed mixed $\mu\tau$ antisymmetry (CP $\mu\tau\theta A$).

Sinha, Roy, Ghosal (2018) Now, $(G^{\theta})^T M_{\nu} G^{\theta} = -M_{\nu}^*$. One obtains $M_{\nu}^{CP\mu\tau\theta A} = i M_{\nu}^{CP\mu\tau S}$.

Phenomenology identical to that of $M_{\nu}^{CP\mu\tau\theta S}$.

Implications of leptonic CP violation in long-baseline experiments, $0\nu\beta\beta$ decay and flavor flux ratios at neutrino telescopes worked out in detail by SRG.

イロン 人間 とくほ とくほ とうほう

3. NEUTRINO MIXING ANGLES AND PHASES

Lam's observation:

$$\mathcal{G}^{\theta}U^* = U\widetilde{d}, \hspace{0.2cm} \widetilde{d} = ext{diag}(\widetilde{d}_1, \widetilde{d}_2, \widetilde{d}_3), \hspace{0.2cm} d_{1,2,3} = \pm 1.$$

 $U = \operatorname{diag}(e^{i\phi_1}, e^{i\phi_2}, e^{i\phi_3})U_{\mathrm{PMNS}},$

Algebraic matching leads to

$$e^{ilpha}= ilde{d}_1 ilde{d}_2,\,\,e^{2i(\delta-rac{eta}{2})}= ilde{d}_1 ilde{d}_3$$

 $\Rightarrow \alpha = 0 \text{ or } \pi, \text{ and } \beta = 2\delta \text{ or } (2\delta - \pi).$

Moreover, $\cot 2\theta_{23} = \cot \theta \cos(\phi_2 - \phi_3)$, $\sin \delta = \pm \sin \theta / \sin 2\theta_{23}$, i.e. $\theta \to \pi/2 \Rightarrow \theta_{23} \to \frac{\pi}{4}$. In general, $\theta_{23} \neq \pi/4$ and $\delta \neq 0$ or π .

4.NUMERICAL ANALYSIS

Input mixing angles and mass-squared differences from latest
global analysis.Esteban et al (2017)Neutrino mass sum $m_1 + m_2 + m_3 < 0.17$ eV from Planck data.
Aghanim et al (2016)

Table: Input 3σ ranges used in the analysis

Values	θ_{12}	θ_{23}	θ_{13}	Δm_{21}^2	$ \Delta m_{31}^2 $
	degrees	degrees	degrees	$10^{-5} eV^2$	$10^{-3} (eV^2)$
NO	31.42 to 36.05	40.3 to 51.5	8.09 to 8.98	6.80 to 8.02	2.399 to 2.593
IO	31.43 to 36.06	41.3 to 51.7	8.14 to 9.01	6.80 to 8.02	2.399 to 2.593

Table: Output values of the parameters of M_{ν}

Values	10 ³ x	$10^{3}a_{1}$	$10^{3}a_{2}$	$10^{3}y_{1}$	$10^{3}y_{1}$	10 ³ c	$\theta(^{\circ})$
NO	-22 to 22	-45 to 45	-32 to 32	-35 to 35	-45 to 45	-35 to 35	12 to 164
IO	-25 to 25	-45 to 45	-4 to 4	-25 to 25	-35 to 35	-25 to 25	2 to 156

Table: Predictions on the light neutrino masses.

Normal	Ordering $(m_3 > 1)$	<i>m</i> ₂)	Inverted Ordering $(m_3 < m_1)$		
$10^3 m_1 (eV)$	$10^{-3} m_2 (eV)$	$10^3 m_3 (eV)$	$10^3 m_1 (eV)$	$10^3 m_2 (eV)$	$10^3 m_3 (eV)$
$8.4 \times 10^{-2} - 49$	9 - 51	50 - 71	48 - 64	49 - 66	$4.4 \times 10^{-2} - 42$

Neutrino masses for normal (left) and inverted (right) ordering against the lightest mass eigenvalue. The red, green and blue bands refer to m_1, m_2 and m_1 respectively.

5. NEUTRINOLESS DOUBLE BETA DECAY

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Half-life $T_{1/2}^{0\nu} = G_{0\nu} |\mathcal{M}|^2 |M_{\nu}^{ee}|^2 m_e^{-2},$ $G_{0\nu}$ = two-body phase space factor, \mathcal{M} = nuclear matrix element, $M_{\nu}^{ee} = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i\alpha} + s_{13}^2 m_3 e^{i(\beta - 2\delta)}$ Four cases in our model. (i) $|M_{\mu\nu}^{ee}| = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 + s_{13}^2 m_3$ for $\alpha = 0, \beta = 2\delta$, (ii) $|M_{\nu}^{ee}| = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 - s_{13}^2 m_3$ for $\alpha = 0, \beta = 2\delta - \pi$, (iii) $|M_{tt}^{ee}| = c_{12}^2 c_{13}^2 m_1 - s_{12}^2 c_{13}^2 m_2 + s_{13}^2 m_3$ for $\alpha = \pi, \beta = 2\delta$ and (iv) $|M_{\nu}^{ee}| = c_{12}^2 c_{13}^2 m_1 - s_{12}^2 c_{13}^2 m_2 - s_{13}^2 m_3$ for $\alpha = \pi, \beta = 2\delta - \pi$.

Plots of $|M_{\nu}^{ee}|$ versus the minimum neutrino mass m_{min}

The four plots correspond to four possible choices of α and β .

6. CP ASYMMETRY IN NEUTRINO OSCILLATIONS

Experimental CP asymmetry

$$A_{\mu e} = \frac{2\sqrt{P_{\rm atm}}\sqrt{P_{\rm sol}}\sin\Delta_{32}\sin\delta}{P_{\rm atm} + P_{\rm sol} + 2\sqrt{P_{\rm atm}}\sqrt{P_{\rm sol}}\cos\Delta_{32}\cos\delta}$$

with

$$\begin{split} \sqrt{P_{\rm atm}} &\equiv s_{23} s_{13} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \sin \Delta_{31}, \\ \sqrt{P_{\rm sol}} &\equiv 2 c_{12} s_{12} c_{23} c_{13} \frac{\sin(aL)}{aL} \sin \Delta_{21}, \end{split}$$

 $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}, \ a = \frac{G_F N_e}{\sqrt{2}} \simeq 3500 \text{km}^{-1}, \ N_e = \text{electron density in the medium}$ sin δ and cos δ can have four different combinations.

Table: Four possibilities for $A_{\mu e}$

Possibilities	$\sin \delta$	$\cos\delta$
Case A	$+\sin heta(\sin2 heta_{23})^{-1}$	$+(\sin 2\theta_{23})^{-1}\sqrt{\cos^2\theta\sin^22\theta_{23}-\sin^2\theta\cos^22\theta_{23}}$
Case B	$-\sin heta(\sin 2 heta_{23})^{-1}$	$+(\sin 2\theta_{23})^{-1}\sqrt{\cos^2\theta\sin^22\theta_{23}-\sin^2\theta\cos^22\theta_{23}}$
Case C	$+\sin\theta(\sin 2\theta_{23})^{-1}$	$-(\sin 2\theta_{23})^{-1}\sqrt{\cos^2\theta\sin^22\theta_{23}-\sin^2\theta\cos^22\theta_{23}}$
Case D	$-\sin heta(\sin 2 heta_{23})^{-1}$	$-(\sin 2\theta_{23})^{-1}\sqrt{\cos^2\theta\sin^22\theta_{23}-\sin^2\theta\cos^22\theta_{23}}$

Plots of $A_{\mu e}$ against beam energy *E* for different baselines lengths of T2K, NO ν A and DUNE respectively.

The numerical distinction between NO and IO is insignificant for the 3σ range of θ_{23} .

Residual Flavor Symmetries in the $u_{\mu}
u_{\tau}$ Sector

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

CP asymmetry parameter $A_{\mu e}$ vs. baseline length L for cases A,B,C,D.

- 1. For a fixed beam energy of E = 1GeV.
- 2. Plots are practically indistinguishable for NO and IO.

3. The bands are due to 3σ range θ_{23} while the other parameters are kept at their best fit values.

< ロ > < 同 > < 回 > < 回 > .

7. FLAVOR FLUX RATIOS AT NEUTRINO TELESCOPES

Source: Cosmic *pp* collisions (TeV-PeV) $\rightarrow \pi^+\pi^- \rightarrow \mu^+\mu^-\nu_\mu\bar{\nu}_\mu \rightarrow e^+e^-2\nu_\mu 2\bar{\nu}_\mu\nu_e\bar{\nu}_e$

 $\Rightarrow \{\phi_{\nu_e}^{\mathcal{S}}, \phi_{\bar{\nu}_e}^{\mathcal{S}}, \phi_{\nu_{\mu}}^{\mathcal{S}}, \phi_{\bar{\nu}_{\mu}}^{\mathcal{S}}, \phi_{\nu_{\tau}}^{\mathcal{S}}, \phi_{\bar{\nu}_{\tau}}^{\mathcal{S}}\} = \phi_0 \Big\{ \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3}, 0, 0 \Big\}.$

Source: Cosmic $p\gamma$ collisions (GeV-10²GeV) $\rightarrow \pi^{+} \rightarrow \mu^{+}\nu_{\mu} \rightarrow e^{+}\nu_{e} + \bar{\nu}_{\mu}.$ $\Rightarrow \{\phi_{\nu_{e}}^{S}, \phi_{\bar{\nu}_{e}}^{S}, \phi_{\nu_{\mu}}^{S}, \phi_{\bar{\nu}_{\tau}}^{S}, \phi_{\bar{\nu}_{\tau}}^{S}\} = \phi_{0}\{\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}, 0, 0\}.$ With $\phi_{\ell}^{S} \equiv \phi_{\nu_{\ell}}^{S} + \phi_{\bar{\nu}_{\ell}}^{S},$ $\{\phi_{e}^{S}, \phi_{\mu}^{S}, \phi_{\tau}^{S}\} = \phi_{0}\{\frac{1}{3}, \frac{2}{3}, 0\}$ for both sources, ϕ_{0} =overall normalization.

Flux at source $S \rightarrow$ flux at telescope T changed by neutrino oscillations averaged over many periods.

=

Effectively, $P(\nu_m \to \nu_\ell) = P(\bar{\nu}_m \to \bar{\nu}_\ell) \simeq \sum_i |U_{ei}|^2 |U_{mi}|^2$ and $\phi_\ell^T = \sum_i \sum_m \phi_m^S |U_{\ell i}|^2 |U_{m i}|^2 = \frac{\phi_0}{3} \sum_i |U_{\ell i}|^2 (|U_{e i}|^2 + 2|U_{\mu i}|^2).$

It follows from the unitarity of U that $\phi_{\ell}^{T} = \frac{\phi_{0}}{3} [1 + \sum_{i} |U_{\ell i}|^{2} (|U_{\mu i}|^{2} - |U_{\tau i}|^{2})]$ which vanishes for exact $\mu \tau$ symmetry or antisymmetry, but is nonzero in general.

Neglect $\mathcal{O}(\sin^2 \theta_{13}) \approx 0.01$ terms and define flavor flux ratios $R_e \equiv \phi_e (\phi_\mu + \phi_\tau)^{-1}, R_\mu \equiv \phi_\mu (\phi_e + \phi_\tau)^{-1}, R_\tau \equiv \phi_\tau (\phi_\mu + \phi_e)^{-1}.$ Now,

$$\begin{split} R_e &\approx \frac{1 + \frac{1}{2}\sin^2 2\theta_{12}\cos 2\theta_{23} + \frac{1}{2}\sin 4\theta_{12}\sin 2\theta_{23}s_{13}\cos \delta}{2 - \frac{1}{2}\sin^2 2\theta_{12}\cos 2\theta_{23} - \frac{1}{2}\sin 4\theta_{12}\sin 2\theta_{23}s_{13}\cos \delta}, \\ R_\mu &\approx \frac{1 + \{c_{23}^2(1 - \frac{1}{2}\sin^2 2\theta_{12}) - s_{23}^2\}\cos 2\theta_{23} - \frac{1}{4}\sin 4\theta_{12}\sin 2\theta_{23}s_{13}\cos \delta(4c_{23}^2 - 1)}{2 - \cos^2 2\theta_{23} + \frac{1}{2}\sin^2 2\theta_{12}\cos 2\theta_{23}c_{23}^2 + \frac{1}{4}(3 - 4s_{23}^2)\sin 4\theta_{12}\sin 2\theta_{23}s_{13}\cos \delta}, \\ R_\tau &\approx \frac{1 + \{s_{23}^2(1 - \frac{1}{2}\sin^2 2\theta_{12}) + c_{23}^2\}\cos 2\theta_{23} - \frac{1}{4}\sin 4\theta_{12}\sin 2\theta_{23}s_{13}\cos \delta(4s_{23}^2 - 1)}{2 + \cos^2 2\theta_{23} + \frac{1}{2}\sin^2 2\theta_{12}\cos 2\theta_{23}c_{23}^2 + \frac{1}{4}(3 - 4c_{23}^2)\sin 4\theta_{12}\sin 2\theta_{23}s_{13}\cos \delta}. \end{split}$$

Dependence on $\cos \delta$ makes R_{ℓ} double-valued except at $\theta = \pi/4$ ($\cos \delta = 0$ when $R_{e} = R_{\mu} = R_{\tau} = \frac{1}{2}$).

Flux ratios $R_{e,\mu,\tau}$ vs. θ for NO; range of θ : $12^{\circ} - 164^{\circ}$

Flux ratios $R_{e,\mu,\tau}$ vs. θ for IO; range of θ : $2^{\circ} - 156^{\circ}$

Continuous bands because of 3σ variation in input parameters.

Drastic change in R_e from 1/2 (as θ moves away from $\pi/2$) can be used to pinpoint θ .

8. CONCLUSIONS

- Different aspects of flavor symmetries in the $\nu_{\mu}\nu_{\tau}$ sector outlined.
- CP transformed mixed ν_{μ} - ν_{τ} antisymmetry in M_{ν} proposed.
- With input neutrino neutrino mixing angles and mass-squared differences (3σ), ranges of values of neutrino masses for NO and IO given.
- Specific prediction on the $\beta\beta$ 0 ν process to be tested crucially by nEXO.
- Neutrino flavor flux ratios, when measured, will give information on θ .
- Specific predictions on neutrino-antineutrino flavor flux ratios to be measured in neutrino telescopes.