
FORTRAN 77 4.0 User’s Guide

A Sun Microsystems, Inc. Business

Part No.: 802-2997-10
Revision A, November 1995

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.



Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution
and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system and from the Berkeley 4.3 BSD system, licensed from the University of
California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
SunSoft, A Sun Microsystems, Inc. Business, Sun, Sun Microsystems, the Sun logo, Sun Microsystems Computer Corporation, the Sun
Microsystems Computer Corporation logo, the SunSoft logo, Solaris, SunOS, and OpenWindows are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript
are trademarks of Adobe Systems, Inc. Intel® is a registered trademark of Intel Corporation. Pentium™ is a trademark of Intel Corporation.
Cray® is a registered trademark of Cray Research, Inc. VAX® and VMS® are registered trademarks of Digital Equipment Corporation. CDC
is a registered trademark of Control Data Corporation. UNIVAC is a registered trademark of UNISYS Corporation. All other product, service,
or company names mentioned herein are claimed as trademarks and trade names by their respective companies.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, Inc. in the United
States and may be protected as trademarks in other countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811,
SPARCengine, SPARCprinter, SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK™ and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license agreements.

X Window System is a trademark of the X Consortium.

Some of the material in this manual is based on the Bell Laboratories document entitled “A Portable Fortran 77 Compiler,” by S. I. Feldman
and P. J. Weinberger, dated August 1, 1978. Material on the I/O Library is derived from the paper entitled “Introduction to the f77 I/O
Library,” by David L. Wasley, University of California, Berkeley, California 94720. Further work was done at Sun Microsystems.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN, THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE
PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.



iii FORTRAN 77 User’s Guide

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Operating Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Abbreviations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Mixing Languages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 New Features and Behavior Changes  . . . . . . . . . . . . . . . . 4

Features in 4.0 that are New  Since 3.0/3.0.1. . . . . . . . . . . . . . 4

Features in 3.0.1 that are New  Since 3.0. . . . . . . . . . . . . . . . . . 6

Features in 3.0 that are New  Since 2.0/2.0.1. . . . . . . . . . . . . . 7

Differences for FORTRAN in Solaris 2.x/1.x /x86 . . . . . . . . . 9

Behavior Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



iv FORTRAN 77 User’s Guide

1.5 Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

FORTRAN 77 3.0/3.0.1 to 4.0  . . . . . . . . . . . . . . . . . . . . . . . . . . 15

BCP: Running Applications from Solaris 1.x in 2.x  . . . . . . . . 15

Application Development in Solaris 2.x for 1.x  . . . . . . . . . . . 16

1.6 Text Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Program Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Performance Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.10 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. The Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Uses of the Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A Quick Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Using f77  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Compiling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Renaming the Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Compile Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Command-line Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Compile-Link Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Command-Line File Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Language Preprocessor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Separate Compiling and Linking . . . . . . . . . . . . . . . . . . . . . . . 25

Consistent Compiling and Linking  . . . . . . . . . . . . . . . . . . . . . 26

Unrecognized Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Contents v

2.4 Option Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Most Useful Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Actions Summary (Actions and Options Sorted by Action) 28

Debugging Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Floating-point Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Library Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Licensing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Performance Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Parallelization Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Profiling Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Alignment Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Backward Compatibility and Legacy Options  . . . . . . . . . . . . 32

Miscellaneous Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Options Summary (Options and Actions Sorted by Option) 34

2.8 Options Details (Options and Actions Sorted by Option) 39

2.9  Directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

General Directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Parallel Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.10 Native Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Compile-Time Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . 97

Localizing and Installing the Files  . . . . . . . . . . . . . . . . . . . . . . 97

Using the File After Installation . . . . . . . . . . . . . . . . . . . . . . . . 99

2.11 Miscellaneous Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



vi FORTRAN 77 User’s Guide

Floating-Point Hardware Type . . . . . . . . . . . . . . . . . . . . . . . . . 99

Many Options on Short Commands. . . . . . . . . . . . . . . . . . . . . 99

Align Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Optimizer Out of Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

BCP Mode: How to Make 1.x Applications Under 2.x . . . . . . 105

3. File System and FORTRAN 77 I/O. . . . . . . . . . . . . . . . . . . . . . . 109

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 File Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 Path Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Relative Path Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Absolute Path Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.5 Redirection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Output/Truncate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Output/Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.6 Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4. Disk and Tape Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 File Access from FORTRAN 77 Programs . . . . . . . . . . . . . 117

Accessing Named Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Accessing Unnamed Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Passing File Names to Programs. . . . . . . . . . . . . . . . . . . . . . . . 120

Direct I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Internal Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Contents vii

4.2  Tape I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Using TOPEN for Tape I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

FORTRAN 77 Formatted I/O for Tape. . . . . . . . . . . . . . . . . . . 128

FORTRAN 77 Unformatted I/O for Tape  . . . . . . . . . . . . . . . . 128

Tape File Representation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

End-of-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Access on Multiple-File Tapes . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5. Program Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1 Simple Program Builds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Scripts or Aliases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Program Builds with the make Program . . . . . . . . . . . . . . 132

The makefile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

The C Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Macros with make. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Overriding of Macro Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Suffix Rules in make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Change Tracking and Control with SCCS . . . . . . . . . . . . . 138

Putting Files under SCCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Making the SCCS Directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Inserting SCCS ID Keywords  . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Creating SCCS Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Checking Files Out and In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



viii FORTRAN 77 User’s Guide

6. Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Libraries in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Advantages of Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Debug Aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Consistent Compile and Link . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Fast Directory Cache for the Link-editor . . . . . . . . . . . . . . . . . 147

6.2 Library Search Paths and Order . . . . . . . . . . . . . . . . . . . . . 149

Order of Paths Critical for Compile (Solaris 1.x)  . . . . . . . . . . 149

Error: Library not Found  . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Search Order for Library Search Paths . . . . . . . . . . . . . . . . . . . 151

6.3 Static Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Features of Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Sample Creation of a Static Library  . . . . . . . . . . . . . . . . . . . . . 155

6.4 Dynamic Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Performance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Position-Independent Code and -pic . . . . . . . . . . . . . . . . . . . 160

Binding Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A Simple Dynamic Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Dynamic Library for Exporting Initialized Data. . . . . . . . . . . 164

6.5 Libraries Provided with the Compiler . . . . . . . . . . . . . . . . 168

6.6 Shippable Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7. Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.1 Global Program Checking (-Xlist ) . . . . . . . . . . . . . . . . . 173



Contents ix

Errors in General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

How to Use Global Program Checking  . . . . . . . . . . . . . . . . . . 176

Suboptions for Global Checking Across Routines  . . . . . . . . . 182

7.2 Special Compiler Options (-C , -u , -U , -V, -xld ) . . . . . . . 189

Subscript Bounds (-C )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Undeclared Variable Types (-u ) . . . . . . . . . . . . . . . . . . . . . . . . 189

Case-Sensitive Variable Recognition (-U )  . . . . . . . . . . . . . . . . 190

Version Checking (-V )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D Comment Line Debug Print Statements (-xld )  . . . . . . . . . 190

7.3 The Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Sample Program for Debugging . . . . . . . . . . . . . . . . . . . . . . . . 192

Sample dbx  Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Segmentation Fault—Finding the Line Number. . . . . . . . . . . 196

Exceptions—Finding the Line Number . . . . . . . . . . . . . . . . . . 198

Bus Error—Finding the Line Number . . . . . . . . . . . . . . . . . . . 199

Trace of Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Array Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Intrinsic Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Complex Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Miscellaneous Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Main Features of the Debugger. . . . . . . . . . . . . . . . . . . . . . . . . 207



x FORTRAN 77 User’s Guide

7.4 Debugging of Parallelized Code. . . . . . . . . . . . . . . . . . . . . 208

7.5 Compiler Messages in Listing (error ) . . . . . . . . . . . . . . . 208

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

error  Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8. Floating Point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.1 The General Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.2 IEEE Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.3 IEEE Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Detecting a Floating-point Exception. . . . . . . . . . . . . . . . . . . . 218

Generating a Signal for a Floating-point Exception . . . . . . . . 218

Default Signal Handlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.4 IEEE Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Flags and ieee_flags() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Values and ieee_values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Exception Handlers and ieee_handler() . . . . . . . . . . . . . . 226

Retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Nonstandard Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Messages about Floating-point Exceptions . . . . . . . . . . . . . . . 236

8.5 Debugging IEEE Exceptions . . . . . . . . . . . . . . . . . . . . . . . . 236

8.6 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.7 Miscellaneous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Kinds of Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Simple Underflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Continuing with Wrong Answer  . . . . . . . . . . . . . . . . . . . . . . . 240



Contents xi

Excessive Underflow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9. Porting from Other FORTRAN 77s  . . . . . . . . . . . . . . . . . . . . . . 247

9.1 General Hints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.2 Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9.3 Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

9.4 Carriage-Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

9.5 File Equates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

9.6 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

9.7 Hollerith. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

9.8 Porting Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Typical Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Troubleshooting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

10. Profiling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.2 The time  Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

iMPact FORTRAN 77 MP Notes . . . . . . . . . . . . . . . . . . . . . . . . 264

10.3 The gprof  Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Compiling and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

The gprof  Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

10.4 The tcov  Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Compiling and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



xii FORTRAN 77 User’s Guide

The tcov  Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

10.5 I/O Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

10.6 Missing Profile Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

11. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

11.1 Why Tune Code?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

11.2 Algorithm Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

11.3 Tuning Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11.4 Loop Jamming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11.5 Benchmark Case History . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

11.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

12. C–FORTRAN 77 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

12.1 Sample Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

12.2 How to Use this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

12.3 Getting It Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Function or Subroutine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Data Type Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Case Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Underscore in Names of Routines  . . . . . . . . . . . . . . . . . . . . . . 288

Argument-Passing by Reference or Value . . . . . . . . . . . . . . . . 289

Arguments and Order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Array Indexing and Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Libraries and Linking with the f77  Command  . . . . . . . . . . . 291

File Descriptors and stdio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292



Contents xiii

File Permissions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

12.4 FORTRAN 77 Calls C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Arguments Passed by Reference (f77  Calls C). . . . . . . . . . . . 293

Arguments Passed by Value (f77  Calls C) . . . . . . . . . . . . . . . 303

Function Return Values (f77  Calls C) . . . . . . . . . . . . . . . . . . . 306

Labeled Common (f77  Calls C) . . . . . . . . . . . . . . . . . . . . . . . . 314

Sharing I/O (f77  Calls C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Alternate Returns (f77  Calls C) - N/A . . . . . . . . . . . . . . . . . . 317

12.5 C Calls FORTRAN 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Arguments Passed by Reference (C Calls f77 ). . . . . . . . . . . . 317

Arguments Passed by Value (C Calls f77 ) - N/A . . . . . . . . . 323

Function Return Values (C Calls f77 ) . . . . . . . . . . . . . . . . . . . 323

Labeled Common (C Calls f77 ) . . . . . . . . . . . . . . . . . . . . . . . . 331

Sharing I/O (C Calls f77 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Alternate Returns (C Calls f77 ) . . . . . . . . . . . . . . . . . . . . . . . . 334

A. Runtime Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

A.1 Operating System Error Messages . . . . . . . . . . . . . . . . . . . 335

A.2 Signal Handler Error Messages  . . . . . . . . . . . . . . . . . . . . . 336

A.3 I/O Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

B. XView Toolkit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

B.1 XView Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342



xiv FORTRAN 77 User’s Guide

B.2 FORTRAN 77 Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Compiling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Initializing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Header Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Generic Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Attribute Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Attribute Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Code Fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

B.3 C to FORTRAN 77  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Sample Translation: C Function Returning Something . . . . . 351

Sample Translation: C Function Returning Nothing  . . . . . . . 352

B.4 Sample Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

B.5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

C. iMPact: Multiple Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Automatic Parallelization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Explicit Parallelizing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

The libthread  Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Parallel Options and the Directives  . . . . . . . . . . . . . . . . . . . . . 360

Rules and Restrictions for Parallelization . . . . . . . . . . . . . . . . 360

Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



Contents xv

C.2 Speed Gained or Lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

C.3 Number of Processors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

C.4 Automatic Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 363

What You Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

What the Compiler Does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Automatic Parallelization Criteria . . . . . . . . . . . . . . . . . . . . . . 365

Reduction for Automatic Parallelizing  . . . . . . . . . . . . . . . . . . 369

C.5 Explicit Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

What You Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

What the Compiler Does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Parallel Directive Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

DOALL Directive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

DOSERIAL Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

DOSERIAL* Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Interaction between DOSERIAL* and DOALL . . . . . . . . . . . . . 387

Exceptions for Explicit Parallelization . . . . . . . . . . . . . . . . . . . 388

Risk with Explicit Parallelization: Nondeterministic Results 393

Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Alternate Syntax for Directives . . . . . . . . . . . . . . . . . . . . . . . . . 397

C.6 Debugging Tips and Hints for Parallelized Code. . . . . . . 399

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Join the SunPro SIG Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423



xvi FORTRAN 77 User’s Guide



xvii

Figures

Figure 3-1 File System Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 3-2 Relative Path Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 3-3 Absolute Path Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



xviii FORTRAN 77 User’s Guide



xix

Tables

Table 1-1 Features in 4.0 that are New since 3.0/3.0.1  . . . . . . . . . . . . . . . 5

Table 1-2 Features in 3.0.1 that are New since 3.0 . . . . . . . . . . . . . . . . . . . 6

Table 1-3 Features in 3.0 that are New Since 2.0/2.0.1 . . . . . . . . . . . . . . . 7

Table 2-1 File Name Suffixes FORTRAN 77 Recognizes  . . . . . . . . . . . . . 24

Table 2-2 Most Useful Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 2-3 Debugging Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2-4 Floating-Point Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2-5 Library Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 2-6 Licensing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 2-7 Performance Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 2-8 Parallelization Options (SPARC, 2.x) . . . . . . . . . . . . . . . . . . . . . 31

Table 2-9 Profiling Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 2-10 Alignment Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 2-11 Backward Compatibility Options . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 2-12 Miscellaneous Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 2-13 Options Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xx FORTRAN 77 User’s Guide

Table 2-14 Default Search Paths for Include Files . . . . . . . . . . . . . . . . . . . . 55

Table 2-15 -xcache  Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 2-16 -xchip  Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 2-17 -xtarget  Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 6-1 Major Libraries Provided with the Compiler  . . . . . . . . . . . . . . 168

Table 8-1 ieee_flags  Argument Meanings . . . . . . . . . . . . . . . . . . . . . . 221

Table 8-2 Functions for Using IEEE Values  . . . . . . . . . . . . . . . . . . . . . . . . 225

Table 9-1 Time Functions Available to FORTRAN 77. . . . . . . . . . . . . . . . 248

Table 9-2 Summary: VMS FORTRAN 77 System Routines . . . . . . . . . . . 249

Table 9-3 Maximum Characters in Data Types  . . . . . . . . . . . . . . . . . . . . . 253

Table 12-1 Argument Sizes and Alignments—Pass by Reference. . . . . . . 287

Table 12-2 Characteristics of Three I/O Systems. . . . . . . . . . . . . . . . . . . . . 292

Table B-1 C and FORTRAN 77 Declarations. . . . . . . . . . . . . . . . . . . . . . . . 350

Table C-1 Parallel Options for f77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Table C-2 Parallel Directives for f77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Table C-1 Reductions Recognized by the Compiler. . . . . . . . . . . . . . . . . . 371

Table C-2 DOALL Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Table C-3 Exceptions that Prevent Explicit Parallelizing  . . . . . . . . . . . . . 389

Table C-3 Overview of Alternate Directive Syntax for f77  . . . . . . . . . . . 397

Table C-1 DOALL Qualifiers (Cray Style) . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Table C-2 DOALL Cray Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398



xxi

Preface

This preface is organized into the following sections:

Purpose and Audience
This guide shows how to use the SunSoft™ compiler, FORTRAN 77 4.0. It
describes the following aspects of this compiler:

• Using the compiler command and options
• Global program consistency checking across routines.
• Using iMPact™ multiprocessor FORTRAN 77 MP
• Debugging FORTRAN 77
• Using IEEE floating point with FORTRAN 77
• Making and using libraries
• Using some utilities and development tools
• Mixing C and FORTRAN 77
• Profiling and tuning FORTRAN 77

Purpose and Audience page xxi

How This Book is Organized page xxii

Related Documentation page xxiii

Conventions in Text page xxvii



xxii FORTRAN 77 User’s Guide

This guide is for scientists and engineers with the following background:

• Thorough knowledge and experience with FORTRAN 77 programming
• General knowledge and understanding of some operating system
• Familiarity with the Solaris™ or UNIX® commands cd , pwd, ls , cat .

This manual does not teach programming or the FORTRAN 77 language. For
details on a language feature or a library routine, see the FORTRAN 77 4.0
Reference Manual.

How This Book is Organized
This book is organized as follows.

At the end of the book is an invitation to join the SunPro SIG.

Chapter 1, Introduction page 1

Chapter 2, The Compiler page 19

Chapter 3, File System and FORTRAN 77 I/O page 109

Chapter 4, Disk and Tape Files page 117

Chapter 5, Program Development page 131

Chapter 6, Libraries page 145

Chapter 7, Debugging page 173

Chapter 8, Floating Point page 215

Chapter 9, Porting from Other FORTRAN 77s page 247

Chapter 10, Profiling page 261

Chapter 11, Performance page 273

Chapter 12, C–FORTRAN 77 Interface page 283

Appendix A,  Runtime Error Messages page 335

Appendix B,  XView Toolkit page 341

Appendix C,  iMPact: Multiple Processors page 357



xxiii

Related Documentation
The following documentation is included with FORTRAN 77:

• Manuals
• Paper manuals (hard copy)
• On-line manuals

• On-line man pages
• f77 -help  variations
• On-line READMEs directory of information files and feedback form
• SunPro SIG (Sun Programmer Special Interest Group) publications and files

Manuals

On-line Manuals
The on-line manuals viewing system displays and searches on-line versions of
manuals. It uses dynamically linked cross-references. It is included on the CD-
ROM and can be installed to hard disc during installation. Installing and
starting it is described in the installation manual.

Related Manuals
The following documents are provided on-line or in hard copy, as indicated.

Title Hard Copy On-line

FORTRAN 77 4.0 User’s Guide X X

FORTRAN 77 4.0 Reference Manual X X

Debugging a Program X X

Incremental Link Editor X X

Numerical Computation Guide X X

What Every Computer Scientist Should Know About
Floating-Point Arithmetic

X

Installing SunSoft Developer Products on Solaris X X



xxiv FORTRAN 77 User’s Guide

The following documents are also relevant:

• IEEE and ISO POSIX.1 Standard. See POSIX Library, page 136.

• American National Standard Programming Language FORTRAN,ANSI X3.9-
1978, April 1978, American National Standards Institute, Inc.

man Pages

A man page, short for manual page, is a document about a command, function,
subroutine, or collection of such things. It answers the questions “What does it
do?” and “How do you use it?”. A man page serves two major functions:

• Memory jogger—A man page reminds the user of details, such as arguments
and syntax. It assumes you knew and forgot, and is not a tutorial.

• Quick reference—A man page helps find something fast. It is brief and
describes the highlights only. It is a quick reference, not a complete reference.

Usage
To display a man page on line, use the man command.

Example: Display the f77 man  page:

Example: Display the man page for the man command:

Example: Display man page one-line summaries with key word xyz:

The above commands require the windex  data base, usually installed by a
system administrator; see -w  for the catman  (1M) command

demo$ man f77

demo$ man man

demo$ man -k xyz
or
demo$ apropos xyz



xxv

Operating System man Pages and FORTRAN 77 man Pages
Some man pages have two versions—one for the operating system and one for
FORTRAN 77. The default paths cause man to show the one for FORTRAN 77,
but you can direct man to search in the operating system man pages directory
first.

Example: One way to display the operating system man page for ctime :

The man command also uses the MANPATH environment variable, which can
determine the set of man pages that are accessed. See man(1).

Related man Pages
The following man pages may be of interest to FORTRAN 77 users.

demo$ man -M /usr/man ctime

man Page Contents

f77 (1) Invoke the FORTRAN 77 compiler

asa (1) Print files having Fortran carriage-control

dbx (1) Debug by a command-line-driven debugger

debugger (1) Debug by a graphical-user-interface debugger

fsplit (1) Print files having Fortran carriage-control

ieee_flags (3M) Examine, set, or clear floating-point exception bits

ieee_handler (3M) Handle exceptions

matherr (3M) Error handling

ild (1) Incremental link editor for object files

ld (1) Link editor for object files

xview (7) OpenWindows parameters, XView Toolkit programming



xxvi FORTRAN 77 User’s Guide

f77 -help  Variations

The following variations are meant to suggest other possibilities.

READMEs

The READMEs directory contains information files that describe the new
features, software incompatibilities, software bugs, and information that was
discovered after the manuals were printed. The location of this directory
depends on the Solaris 1.x/2.x and where your software is installed:

The contents are:

f77 -help | more The list does not scroll off the screen.

f77 -help | grep "par" Show only parallel options.

f77 -help | grep "lib" Show only library options.

f77 -help | lp Print a copy on paper.

f77 -help > MyWay Put list onto a file, regroup, reorder, delete, …

f77 -help | tail Show how to send feedback to Sun.

f77 -xhelp=readme Display the on-line READMEs file.

Standard Installation Nonstandard Installation to / my/ dir/

Solaris 1.x /usr/lang/READMEs/ / my/ dir/READMEs/

Solaris 2.x /opt/SUNWspro/READMEs/ / my/ dir/SUNWspro/READMEs/

File Contents

feedback email template file for sending feedback comments to Sun

fortran f77  bugs, new features. behavior changes, documentation errata

ratfor.ps Ratfor User’s Guide, a PostScript™ file. Print it with lp  on any
PostScript-compatible printer that has Palatino font. View it online
with imagetool . (Solaris 1.x: print with lpr ; view with pageview .)



xxvii

Sun Programmer Special Interest Group (SIG)

The SIG membership entitles you to other documentation and software. A
membership form is included at the very end of this book. See “Join the SunPro
SIG Today,” on page 405.

Conventions in Text
We use the following conventions in this manual to display information.

• We show code listing examples in boxes:

• The plain Courier font  shows prompts, coding, and generally anything
that is computer output.

•  In dialogs, the boldface Courier font  shows text you type in:

• Italics indicate general arguments or parameters that you replace with the
appropriate input. Italics also indicate emphasis.

• The small clear triangle ∆ shows a blank space where that is significant:

• We generally tag nonstandard features with a small black diamond (♦). A
program that uses a nonstandard feature does not conform to the ANSI
X3.9-1978 standard, as described in American National Standard Programming
Language FORTRAN 77, ANSI X3.9-1978, April 1978, American National
Standards Institute, Inc., abbreviated as the FORTRAN 77 Standard.

• We usually show FORTRAN 77 examples in tab format, not fixed columns.
Also, we use uppercase and lowercase, because any one case is misleading.

• We usually abbreviate FORTRAN 77 as f77 .

WRITE( *, * ) 'Hello world'

demo% echo hello
hello
demo%

∆∆36.001



xxviii FORTRAN 77 User’s Guide



 1

Introduction 1

This chapter is organized into the following sections:

The FORTRAN 77 compiler comes with a programming environment that
contains certain operating system calls and support libraries. It integrates with
other SunSoft development tools, such as the Debugger, make, MakeTool, and
SCCS. Some examples assume you have installed the Source Compatibility
Package.

The FORTRAN 77 compiler is available in various packages and
configurations:

• Alone, or as part of a package, such as the FORTRAN 77 WorkShop™
• With or without the iMPact™ MT/MP multiple processor package

Operating Environments page 2

Standards page 3

Extensions page 3

New Features and Behavior Changes page 4

Compatibility page 15

Text Editing page 16

Program Development page 16

Debugging page 17

Performance Library page 18

Licensing page 18



 2 FORTRAN 77 User’s Guide

1

1.1 Operating Environments
Each release of f77  is available first on SPARC systems under the Solaris 2.x
operating environment. For information on other current platforms or
operating environments, see the /READMEs/fortran_77  file.

The previous major release was ported to Solaris™ 1.x and to Intel® 80386-
compatible computers running Solaris 2.x for x86, and some features remain in
this guide identified as being “Solaris 1.x only” or “x86 only,” and sometimes
“(1.x only)” or “(x86)”.

Most aspects of FORTRAN 77 under 2.x, 1.x, and x86 are the same, including
functionality, behavior, and features.

The iMPact multiprocessor FORTRAN 77 features are available only on
SPARC, in Solaris 2.3, and later.

Definitions

The Solaris 2.x operating environment includes, among other components:

• The SunOS™ 5.x operating system, which is based on the System V
Release 4 (SVR4) UNIX operating system, and the ONC+™ family of
published networking protocols and distributed services, including
ToolTalk™

• The OpenWindows™ 3.x application development platform

The Solaris 1.x operating environment includes, among other components:

• The SunOS 4.1.x operating system, which is based on the UCB 4.3 BSD
operating system

• The OpenWindows 3.x application development platform

Abbreviations

For simplicity:

• Solaris 2.x is an abbreviation for “Solaris 2.3 and later.”
• Solaris 1.x is an abbreviation for “Solaris 1.1.3 and later.”
• SunOS 5.x is an abbreviation for “SunOS 5.3 and later.”
• SunOS 4.1.x is an abbreviation for “SunOS 4.1.3 and later.”



Introduction  3

1

1.2 Standards
This compiler is an enhanced FORTRAN 77 development system which:

• Conforms to the ANSI X3.9-1978 FORTRAN 77 standard and the
corresponding International Standards Organization number is ISO 1539-
1980. NIST (formerly GSA and NBS) validates it at appropriate intervals.

• Conforms to the standards FIPS 69-1, BS 6832, and MIL-STD-1753.

• Provides an IEEE standard 754-1985 floating-point package.

• Provides support on SPARC® systems for optimization exploiting features
of SPARC V8, including the SuperSPARC™ implementation. These features
are defined in the SPARC Architecture Manual: Version 8.

1.3 Extensions
This FORTRAN 77 compiler provides the following features or extensions:

• Global program checking across routines for consistency of arguments,
commons, parameters, etc.

• The iMPact multiprocessor FORTRAN 77 package (Solaris 2.x, SPARC only)

iMPact FORTRAN 77 includes automatic and explicit loop parallelization, is
integrated tightly with optimization, and requires a separate license.

• Many VAX®/VMS® FORTRAN 77 5.0 extensions, including:
• NAMELIST
• DO WHILE
• Structures, records, unions, maps
• Variable format expressions

• You can write FORTRAN 77 programs with many VMS extensions, such as
the following, so that these programs run with the same source code on both
SPARC and VAX systems:
• Recursion
• Pointers
• Double-precision complex
• Quadruple-precision real (SPARC only)
• Quadruple-precision complex (SPARC only)



 4 FORTRAN 77 User’s Guide

1

Mixing Languages

On Solaris systems, routines written in C, C++, or Pascal can be combined with
FORTRAN 77 programs, since these languages have common calling
conventions.

Optimization

f77  has global, peephole, and potential parallelization optimizations. As a
result, you can create FORTRAN 77 applications that execute significantly
faster. Benchmarks show that even without parallelization, optimized
applications can run significantly faster, with an additional reduction in code
size when compared to unoptimized code.

1.4 New Features and Behavior Changes
This section lists the new features and behavior changes.

Features in 4.0 that are New  Since 3.0/3.0.1

f77  4.0 includes the following features that are new or changed since 3.0/3.0.1:

• The DOSERIAL and DOSERIAL* parallel directives have been added, and the
DOALL directive expanded; see “Explicit Parallelization” on page 374.

• A directive for unrolling loops has been added. See “The UNROLL
Directive” on page 94.

• The -I dir option now also affects the f77 INCLUDE  statement, not only the
preprocessor #include directive.

• The Incremental Linker is available. It provides faster linking and speeds up
development. See “-xildon” on page 80.

• The -oldstruct  command-line option has been deleted.

• The following new synonyms have been added: -xautopar , -xdepend ,
-xexplicitpar , -xloopinfo , -xparallel , -xreduction , and
-xvpara .

• The -stackvar  restrictions EQUIVALANCE, NAMELIST, STRUCTURE, and
RECORD have been removed. See “–stackvar” on page 72.



Introduction  5

1

• New options have been added (and some changed):

Table 1-1 Features in 4.0 that are New since 3.0/3.0.1

-arg=local Pass by value result.

-copyargs Allow assignment to constant arguments.

-dbl Double the default size for integers, reals, and so forth.

-ext_names= e Make external names with or without underscores.

-fns Turn on SPARC non-standard floating-point mode (SPARC, 2.x).

-fround= r Set the IEEE rounding mode in effect at startup (SPARC, 2.x).

-fsimple [=n] Allow levels of simple floating-point model.

-ftrap= t Set the IEEE trapping mode in effect at startup (SPARC, 2.x).

-mp=x Use either Sun-style or Cray-style MP directives (SPARC, 2.x).

-O5 Attempt the highest level of optimization.

-pad= p Pad local variables or common blocks

-vax= v Specify a choice of VMS features to use.

-xarch= a Limit the set of instructions the compiler may use (SPARC, 2.x).

-xcache =c Define the cache properties for use by the optimizer (SPARC, 2.x).

-xchip= c Specify the target processor for use by the optimizer (SPARC, 2.x).

-xhelp= h Show help information for README file or for options (flags).

-xildoff Turn off the Incremental Linker (SPARC, 2.x).

-xildon Turn on the Incremental Linker (SPARC, 2.x).

-xprofile= p Collect data for a profile or use a profile to optimize (SPARC, 2.x).

-xregs= r Specify the usage of registers for the generated code (SPARC, 2.x).

-xsafe=mem Allow compiler to assume no memory-based traps (SPARC, 2.x).

-xspace Do no optimizations that increase the code size (SPARC, 2.x).

-xtarget= t Specify target system for instruction set (SPARC, 2.x).

-ztext Do not make the library if relocations remain.



 6 FORTRAN 77 User’s Guide

1

• DO-loop code is now implemented differently to allow better optimization
and loop parallelization. Legal DO-loops behave exactly the same as before;
however, illegal DO-loops—zero-step, loop variable modified within the
loop—may display a different behavior.

• Full 64-bit integers have been added. With -dbl , integers not declared with
a specified size are turned into full 64-bit integers. See “-dbl” on page 44.

• The following libV77  library routines: date , mvbits , ran , and secnds ,
are now folded into the libF77  library. That is, you no longer need to
compile with the -lV77  option to get these routines.

• The OPEN statement now contains a new keyword specifier, ACTION=act,
where act is READ, WRITE, or READWRITE. See the description in the chapter,
“Statements,” in the FORTRAN 77 4.0 Reference Manual.

Features in 3.0.1 that are New  Since 3.0.

A summary of the new features for 3.0.1 is provided in the following table.

Table 1-2 Features in 3.0.1 that are New since 3.0

New or Changed Feature User’s Guide
Reference
Manual

Ported to Solaris 1.x

Added global program checking: -Xlist  (arguments, commons, parameters, …) page 83, page 173

Improved the -Xlist  output format page 173, …

Added the following options:

-nocx Smaller executable file—shrink by about 128K bytes (SPARC only). page 60

-xlibmopt Use a library of selected math routines optimized for performance. page 82

-xnolibmopt Reset -fast  so it does not use the library of selected math routines. page 83

-Zlp Prepare code for the loop profiler (2.x, SPARC only) page 91

Improved parallelization— do 25% more loops (private arrays, better fusion, …) page 357

Documented TMPDIR environment variable (for runtime scratch files directory) Ch 4, OPEN

Documented the -unroll= n option to do loop unrolling. page 73

Libraries: Made extensive bug fixes to the XView  library bindings n/a

              Added the Xlib  library bindings to the installation CD page 168

                 Added the POSIX library to the installation CD (2.x only) page 168



Introduction  7

1

Features in 3.0 that are New  Since 2.0/2.0.1

For 3.0, the major new feature is iMPact multiprocessor FORTRAN 77. A
summary of all the new features is provided in the following table.

Table 1-3 Features in 3.0 that are New Since 2.0/2.0.1

New or Changed Feature User Guide
Reference
Manual

Added the optional iMPact multiprocessor FORTRAN 77 package (2.x, SPARC only) page 357, …

Updated etime —for multiprocessors: it returns wall clock time, and v(2)  is 0.0
                                            (Solaris 2.x, SPARC only)

n/a Ch. 7,
dtime, etime

Added checking for changing a constant at runtime. Trying to change a constant triggers a seg-
mentation fault (SIGSEGV). In previous releases, these codes ran, but some had unpredictable
answers and no warning.

n/a Ch. 4,
PARAMETER

Improved array processing to allow better optimization n/a

Improved subscript checking of -C  to check the range on each subscript individually
(Previously, it checked the range of the array as a whole.)

page 189

Improved the execution speed for optimized code n/a

Added the new multi-thread-safe FORTRAN 77 library (Solaris 2.x, SPARC only) page 168

Increased the default limit on number of continuation lines from 19 to 99 Ch. 1

Improved compilation speed for:

Compiles with no optimization n/a

Programs with a large number of symbols n/a

Eliminated the limit on symbol table size, and changed -Nn  to do nothing page 62

Added the following options:

-386 Generate code for 80386 (x86 only). page 39

-486 Generate code for 80486 (x86 only). page 39

-autopar Parallelize automatically (Solaris 2.x, SPARC only). page 40

-cg92 Generate code to run on SPARC V8 architecture (SPARC only). page 43

-depend Data dependencies, analyze loops (SPARC only). page 45

-fsimple Simple floating-point model. page 51

-fstore Force floating-point precision of expressions (x86 only). page 52

-loopinfo Loop info, show which loops are parallelized (Solaris 2.x, SPARC only). page 58

-mt Multithread safe libs, use for low level threads (Solaris 2.x, SPARC only). page 59

-pentium Generate code for pentium (x86 only). page 67



 8 FORTRAN 77 User’s Guide

1

 Other software changes that affect FORTRAN 77 are:

• Using the debugger requires the SC3.0.1 debugger release.

• A new fix-and-continue feature is now in the debugger: to fix a routine,
compile only that one routine, then link and run your program.

• In the debugger, watch for any change to the value of a variable.

• Some debugger commands have changed. For a complete list, in dbx, type:
help changes .

• An optional multiple thread library, libthread , is now available from
SunSoft.

• For the linker debug aids, see ld (1), or try: -Qoption ld -Dhelp
(Solaris 2.3 only)

-reduction Reduction loops, analyze loops for reduction (Solaris 2.x, SPARC only). page 70

-stackvar Stack the local variables to allow better optimizing with parallelizing. page 72

-vpara Verbose parallelization, show warnings (Solaris 2.x, SPARC only). page 74

-noautopar , -nodepend , -noexplicitpar , -noreduction  (Solaris 2.x, SPARC only) page 60, …

-nofstore (x86 only) page 61

-xa , -xcg year, -xlibmil , -xlicinfo , -xnolib , -xO [n], -xpg , -xsb , -xsbfast
                            (synonyms for compatibility with C)

page 75, …

Added parallel directive C$PAR DOALL, explicit parallelization (2.x, SPARC only) page 378 Ch. 1,
directives

Deleted the option -cg87  (It was present for Solaris 1.x only). page 10

Deleted descriptions for the following obsolete options. They do nothing, but they do not
break make files in this release: -66 , -align _ block_, -pipe , -r4 , -w66

n/a

Table 1-3 Features in 3.0 that are New Since 2.0/2.0.1 (Continued)

New or Changed Feature User Guide
Reference
Manual



Introduction  9

1

Differences for FORTRAN in Solaris 2.x/1.x /x86

Most aspects of FORTRAN under 2.x, 1.x, and x86 are the same, including
functionality, behavior, and features. There are some differences, however. The
following is a summary of some of those differences:

• Multiprocessor FORTRAN 77 is for Solaris 2.x for SPARC only.

• The POSIX library is for Solaris 2.x only.

• Some options work under Solaris 2.x only:

-autopar , -dy , -dn , -explicitpar , -G , -h , -loopinfo , -noautopar ,
-nodepend , -noexplicitpar , -noreduction , -reduction , -R ,
-vpara , -xF , -xs , -Zlp , -Ztha

• Some options are under Solaris 1.x only:

-align, -bsdmalloc

• Some options are under Solaris x86 only:

-386 , -486 , -fstore , -nofstore , -pentium

• Procedures for building a dynamic shared library differ. See “Dynamic
Libraries” on page 158.

• Calls, usage, and return codes of signal handlers differ. See “Exception
Handlers and ieee_handler()” on page 226.

• Paths for shared libraries and installation are different. For installation,
these paths are:
• Solaris 2.x: /opt/SUNWspro/SC4.0
• Solaris 1.x: /usr/lang/SC4.0

See also “Search Order for Library Search Paths” on page 151.



 10 FORTRAN 77 User’s Guide

1

Behavior Changes

The behavior of some features has changed.

Sun 4/1xx and Sun 4/2xx Systems

Some older Sun workstations do not work with this compiler.

• Solaris 1.x—Applications built with this compiler are incompatible with the
Sun 4/1xx and Sun 4/2xx systems under Solaris 1.x.

• Solaris 2.x—In principle, applications built with this compiler under Solaris
2.x run on Sun 4/1xx and 4/2xx systems under Solaris 2.x, but very slowly.

Upgrading from 3.0

The -Xlist  option output includes error messages about any inconsistent
arguments, commons, parameters, and so forth. Earlier versions of -Xlist
output did not include these error messages.

The -Xlist  option output does not include an index. Earlier versions of
-Xlist  output did.

Upgrading from 2.0/2.0.1

If you are upgrading from FORTRAN 77 2.0/2.0.1, the following behavior
changes may affect your programs. See also the previous section, “Upgrading
from 3.0.”

• Possible slower loading: more global symbols than before

To provide for the fix-and-continue feature, all local variables are available
globally to the debugger in a way that requires that they be loaded at link
time. This feature can increase load time.

•  Changing a constant

The 3.0/3.0.1 release improves runtime error checking by preventing the
changing of a constant. Trying to change a constant triggers a SIGSEGV. In
previous releases, such programs did run, but some produced unpredictable
answers without warning.



Introduction  11

1

Example: Trying to change a constant:

An error message results: possible attempt to modify constant .

Workaround:
• General: Do not change a constant. If you must change something, make it

a variable, not a constant.
• Specific: In the above example, change the PARAMETER statement to a

DATA statement, that is:

• Number of processors for FORTRAN 77 MP

The number of processors requested by all programs (users) must not
exceed the total number of processors available, otherwise performance
could be seriously degraded.

Example: If there are 4 processors on the system, and if each of three
programs requests two processors, performance can be seriously degraded.

• Do not call alarm()  from an MP program.

• Subscript checking at runtime with -C

The subscript checking has been improved with this release. With -C , now
each subscript of an array is checked. Before, only the total offset was
checked.

PARAMETER (arg=2.71828)
CALL  sbrtn5 ( arg )
...
END
SUBROUTINE  sbrtn5 ( x )
x = 3.14159
RETURN
END

Change:
To:

PARAMETER (arg=2.71828)
DATA arg/2.71828/



 12 FORTRAN 77 User’s Guide

1

Example: A program that ran with no error message, but now displays one:

• Debugging FORTRAN programs that use other languages

If you debug FORTRAN programs that use other languages, you can use the
new dbx language  command.

Sometimes confusion results about which language dbx  is debugging. The
language  command can fix both confusions.
• If dbx  is confused about the programming language, you can specify the

language. Type language fortran  or language c , for example.

Example: Specifying to dbx  the programming language:

• If you are confused, ask dbx  about the language. Type language .

Example: Querying dbx  which programming language:

• Output from an exception handler is unpredictable

If you make your own exception handler, avoid doing any FORTRAN 77
output from it. If you must do some, then call abort right after the output.
This reduces the risk of a system freeze. FORTRAN I/O from an exception
handler amounts to recursive I/O. See the next paragraph.

• Recursive I/O does not work reliably

If you list a function in an I/O list, and if that function does I/O, then
during runtime the execution freezes, or some other unpredictable problem
arises. This risk exists independent of parallelization.

DIMENSION a(10,10)
a(11,1) = 0
END

(dbx) language fortran
(dbx)

(dbx) language
fortran
(dbx)



Introduction  13

1

Example: Recursive I/O that fails intermittently:

Workaround—Avoid recursive I/O.

• IOINIT

The IOINIT  routine ignores CCTL, BZRO, APND. There is no workaround.

The IOINIT  routine uses a different labeled common, and communicates
internal flags to the runtime I/O system. Previous releases put the internal
flags into the labeled common:

COMMON /IOIFLG/ IEOF, ICTL, IBZR

This is not a feature you would use intentionally, but if you had a labeled
common named IOIFLG , it could result in serious errors.

The current release uses the labeled common:

COMMON /_ _IOIFLG/ IEOF, ICTL, IBZR

The two leading underscores take this out of the user name space, so it is
safer from accidental errors. Names starting with underscores are reserved
for the compiler.

• dtime  and etime  in iMPact FORTRAN 77 MP

dtime  has always returned the CPU time. In MP, dtime  returns the sum of
all the CPU times, so dtime  can return an unexpectedly large number. This
breaks most megaflops calculations.

Workaround—Use etime , which was changed to return wall clock time in
an MP program. Wall clock time does not break most megaflops
calculations.

PRINT *, x, f(x)
END
FUNCTION f(x)
PRINT *, x
RETURN
END



 14 FORTRAN 77 User’s Guide

1

Upgrading from 1.4

If you are upgrading from FORTRAN 77 1.4, the following behavior changes
may affect your programs, but see also “Upgrading from 2.0/2.0.1” on
page 10” and “Upgrading from 3.0” on page 10.

• Debugging optimized code

You can now compile with both -g  and -O  options. That is, you can now
debug with optimized code.
• If you have make files that rely on -g  overriding -O , then you must revise

those make files, because -g  does not override -O .
• If you have makefiles that check for warning messages, such as: -g

overrides -O , you must revise those makefiles.
• The combination -O4 -g  turns off the inlining that you usually get with

-O4 . A warning message is issued.

• Using quadruple precision trigonometric functions

The precision of PI matches what is used in the expression where PI occurs.
It was restricted to 66 bits in the 1.4 release.

• Debugging block data subprograms

There is a behavior change from FORTRAN 1.4 in debugging block data
subprograms.

Symptom—If you are debugging a main program that uses a block data
subprogram, then the debugger cannot find variables that are in the block
data subprogram.

Fix—In the debugger, use the func  command with the name of the block
data subprogram.

Example: Program with block data:

PROGRAM my_main
COMMON /stuff/ x, y, z
PRINT *, x
END
BLOCK DATA  init
COMMON /stuff/ a/1.0/, b/2.0/, c/3.0/
END



Introduction  15

1

To debug the above block data program:

1.5 Compatibility
The FORTRAN 77 4.0 source is compatible with FORTRAN 77 3.0/3.0.1 (or
earlier), except for minor changes due to operating system changes and bug
fixes.

FORTRAN 77 3.0/3.0.1 to 4.0

Executables (a.out ), libraries (.a ), and object files (.o ) compiled and linked in
FORTRAN 77 3.0/3.0.1 under Solaris 2.x are compatible with FORTRAN 77 4.0
under Solaris 2.x.

BCP: Running Applications from Solaris 1.x in 2.x

You must install the Binary Compatibility Package for the executable to run.

Executables compiled and linked in Solaris 1.x do run in Solaris 2.3 and later,
but they do not run as fast as when they are compiled and linked under the
appropriate Solaris release.

Libraries (.a ) and object files (.o ) compiled and linked in FORTRAN 77 2.0.1
under Solaris 1.x are not compatible with FORTRAN 77 4.0 under Solaris 2.x.

In dbx , if you type: (dbx)  print a

then dbx  cannot find a.

However, if you first type: (dbx) func init

followed by: (dbx) print a

then dbx  finds a.



 16 FORTRAN 77 User’s Guide

1

Application Development in Solaris 2.x for 1.x

Under Solaris 2.x, you can make executables and libraries for Solaris 1.x, but it
is not recommended. For the compiler to do this correctly, first install the
Binary Compatibility Package. Then, to make it all work, you must:

• Use the Solaris 1.x compiler in BCP mode.

• Use the Solaris 1.x linker (ld ), with -qpath  set to the path for the 1.x ld .

• Link with the Solaris 1.x libraries. If you receive error messages like: bad
magic number , check the -L  options and the LD_LIBRARY_PATH
environment variable.

See “BCP Mode: How to Make 1.x Applications Under 2.x” on page 105.

1.6 Text Editing
In the Solaris environment, several text editors are available.

vi A traditional text editor for source programs is vi , the Unix visual display
editor. For more information, read the vi (1) man page.

textedit A point-and-click-interface text editor available with OpenWindows.

xemacs Xemacs is an Emacs editor that provides interfaces to the selection service and
to the ToolTalk™ service.

The SPARCworks package uses these two interfaces to provide simple, yet
useful, editor integration with two SPARCworks tools: the SourceBrowser and
the Debugger. xemacs  is available in the SPARCworks package.

1.7 Program Development
The following utilities provide assistance in the development of software
programs in FORTRAN 77.

asa This utility is a FORTRAN 77 output filter for printing files that have
FORTRAN 77 carriage-control characters in column one. The UNIX
implementation on this system does not use carriage-control since UNIX



Introduction  17

1

systems provide no explicit printer files. Use asa  when you want to transform
files formatted with FORTRAN 77 carriage-control conventions into files
formatted according to UNIX line-printer conventions. See asa (1).

fsplit This utility splits one FORTRAN 77 file of several routines into several files, so
that there is one routine per file.

gprof This utility profiles by procedure. For Solaris 2.x, when the operating system is
installed, gprof  is included if you do a developer install, rather than an end
user install; it is also included if you install the SUNWbtool  package.

sbrowser The SourceBrowser is a source code and call graph browser that finds
occurrences of any symbol in all source files, including header files. It is
included with dbx .

tcov This utility profiles by statement.

1.8 Debugging
For debugging, the following utilities are available:

error A utility to insert compiler error messages at the offending source file line. For
Solaris 2.x, when the operating system is installed, error  is included if you do
a developer install, rather than an end user install; it is also included if you
install the SUNWbtool  package.

-Xlist An option to check across routines for consistency of arguments, commons,
and so on.

dbx An interactive symbolic debugger that understands this FORTRAN 77
compiler.

debugger A graphical user interface to the dbx  debugger.



 18 FORTRAN 77 User’s Guide

1

1.9 Performance Library
The SunSoft Performance Library is a library of subroutines and functions to
perform useful operations in computational linear algebra and Fourier
transforms.

It is based on the standard libraries BLAS1, BLAS2, BLAS3, LINPACK, LAPACK,
FFTPACK, and VFFTPACK.

Each subprogram in the SunSoft Performance Library performs the same
operation and has the same interface as the standard version, but is generally
much faster and sometimes more accurate.

See the performance_library  information file and the libsunperf
Reference Manual PostScript files in the READMEs/ directory.

1.10 Licensing
This compiler uses network licensing, as described in the manual Installing
SunSoft Developer Products (SPARC/Solaris).

If you invoke the compiler, and a license is available, the compiler starts. If no
license is available, your request for a license is put on a queue, and your
compile continues when a license becomes available. A single license can be
used for any number of simultaneous compiles by a single user on a single
machine.

To run FORTRAN 77 and the various utilities, several licenses may be required,
depending on the package you have purchased:

• For FORTRAN 77 4.0, purchase and install a FORTRAN 77 4.0 license.

• For dbx , debugger , and so forth, purchase and install a SPARCworks (or
ProWorks) 4.0 license.

• For the iMPact multiprocessor FORTRAN 77 features, purchase and install a
separate iMPact multiprocessor license.

Usually a WorkShop includes all the necessary licenses.



 19

The Compiler 2

This chapter is organized into the following sections:

2.1 Uses of the Compiler
The major use of f77  is to compile source file(s) to make an executable file.

The generated executable file is an a.out  file. By default, f77  automatically
invokes a linker.

Other common uses are listed below.

Uses of the Compiler page 19

A Quick Start page 20

Compile Command page 23

Option Syntax page 26

Most Useful Options page 27

Actions Summary (Actions and Options Sorted by Action) page 28

Options Summary (Options and Actions Sorted by Option) page 34

Options Details (Options and Actions Sorted by Option) page 39

Directives page 93

Native Language Support page 95

Miscellaneous Tips page 99



 20 FORTRAN 77 User’s Guide

2

Some other uses of f77  are:

• Generate an executable for multiple processors, -autopar .

• Do global program checking across source files and subroutines, -Xlist .

• Translate source files to:
• Relocatable binary (.o ) files; later they can be linked into an executable

(a.ou t) file or static library (.a)  file
• A dynamic shared library (.so ) file, -G

• Link .o  files into an executable load module (a.out ) file.

• Relink only the changed files, -xildon

The Incremental Link Editor, ild , is sometimes used in place of the
standard linker, ld , for faster development. See “-xildon” on page 80 for
more information.

• Prepare for debugging, -g .

• Prepare for profiling by statement or procedure, -pg .

• Prepare for profiling by parallelized loop, -Zlp .

• Show the commands built by the compiler, but do not execute, -dryrun .

• Perform a simple check for ANSI standard conformance, -ansi .

2.2 A Quick Start
This section provides a quick overview of how to compile and run Fortran
programs in a Sun system. It is meant for the experienced user who knows
FORTRAN 77 thoroughly (but not necessarily Sun or UNIX versions) and who
needs to start writing and running programs immediately.

Using f77

Using f77 involves three steps:

1. Create a FORTRAN 77 source file with a .f , .for , or .F  file suffix.

2. Compile this source file and link, using the f77  command.

3. Execute the program by typing the name of the executable file.



The Compiler  21

2

Example: This program displays a message on the screen:

Compiling

Example: Compile and link using the f77  command, as follows:

In the above example, f77  compiles greetings.f  and puts the executable
code on the a.out  file.

Running

Example: Run the program by typing a.out  on the command line:

demo% cat greetings.f
PROGRAM GREETINGS
PRINT *, 'Real programmers hack FORTRAN 77!'
END

demo$

demo% f77 -fast greetings.f
greetings.f:
MAIN greetings:
demo%

demo% a.out
 Real programmers hack FORTRAN 77!
demo%



 22 FORTRAN 77 User’s Guide

2

Renaming the Executables

It is awkward to have the result of every compilation on a file called a.out ,
Moreover, if such a file exists, it is overwritten. For good housekeeping, do one
of the following:

•  After each compilation, use mv to change the name of a.out :

• On the command line, use -o  to rename the output executable file:

The above command places the executable code on the greetings  file.

Either way,  run the program by typing the name of the executable file:

If you are not familiar with the UNIX file system, read Chapter 3, “File System
and FORTRAN 77 I/O,” or refer to any introductory UNIX book.

demo% mv a.out greetings

demo% f77 –o greetings -fast greetings.f
greetings.f:
MAIN greetings:
demo%

demo% greetings
 Real programmers hack FORTRAN 77!
demo%



The Compiler  23

2

2.3 Compile Command
Before you use any release of f77 , it must be installed and licensed. Read the
manual, Installing SunSoft Developer Products (SPARC/Solaris).

Command-line Syntax

The syntax of a simple compiler command is as follows:

where sfn is a FORTRAN 77 source file name that ends in .f , .F, or .for ; options
is one or more of the compiler options.

Example: A compile command with two files:

Example: A compile command, same files, with some options:

A more general form of the compiler command is:

fn is a file name, not necessarily a name of an f77  source file. See “Command-
Line File Names” on page 24.

f77  [ options] sfn …

 demo% f77  growth.f  fft.f

 demo% f77  -g  -u  growth.f  fft.f

f77  [ options] fn …  [ -l x]



 24 FORTRAN 77 User’s Guide

2

Compile-Link Sequence

With the above commands, if you successfully compile the files growth.f  and
fft.f , the object files, growth.o  and fft. o, are generated, then an
executable file is created with the default name a.out .

The files, growth.o  and fft.o,  are not removed. If there is more than one
object file (.o  file), then the object files are not removed. This protocol results
in easier relinking if there is a linking error.

If the compile fails, you receive an error message for each error, and no a.out
and .o  files are generated.

The general compiler driver f77  does the following:

• Calls f77pass1 , the FORTRAN 77 front end
• Calls the code generator, and optionally the optimizer
• Calls ld , the linker, which generates the executable file

The optimizer/inliner is optional.

Command-Line File Names

If a file name in the command line has any of the suffixes: .f , .for , .F , .r , .s ,
.S , .il , or .o , then the compiler recognizes it and takes appropriate action. If
a file name has some other suffix or no suffix, it is passed to the linker.

fl.f → f77 → f77pass1 → optimizer/inliner → code generator → fl.o → ld  → a.out

Table 2-1 File Name Suffixes FORTRAN 77 Recognizes

 Suffix  Language Action

.f FORTRAN 77 Compile FORTRAN 77 source files, put object files in
current directory; default name of object file is that of the
source but with .o  suffix.

.for FORTRAN 77 Same as .f .

.F FORTRAN 77 Apply the C preprocessor to the FORTRAN 77 source file
before FORTRAN 77 compiles it.

.r Ratfor Process Ratfor source files before compiling.



The Compiler  25

2

Language Preprocessor

The cpp  program is the C language preprocessor, which is invoked during the
first pass of a FORTRAN 77 compilation if the source file name has the .F
extension. Its main uses for FORTRAN 77 are for constant definitions and
conditional compilation. See cpp (1), or –Dnm, page 43.

Separate Compiling and Linking

You can compile and link in separate steps, a method you would usually opt
for if one of several source files has been changed. This way, you need not
recompile all the other source files.

Example: Compile and link in separate steps:

Of course, every file named in the first step (as a .f  file) must also be named in
the second step (as a .o  file).

.s Assembler Assemble source files with the assembler.

.S Assembler Apply the C preprocessor to the assembler source file
before assembling it.

.il Inline
expansion

Process inline expansion code template files. The compiler
uses these to expand inline calls to selected routines. Since
it’s the compiler, not the linker, that does this, be sure to
include these .il  files in the compile command.

.o Object Files Pass object files through to the linker.

demo% f77  -c file1.f  file2.f file3.f (Make .o  files)
demo% f77  file1.o  file2.o file3.o              (Make a.out  file)

Table 2-1 File Name Suffixes FORTRAN 77 Recognizes (Continued)

 Suffix  Language Action



 26 FORTRAN 77 User’s Guide

2

Consistent Compiling and Linking

Be consistent with compiling and linking. If you compile and link in separate
steps, and you compile any subprogram with any of these options, then be sure
to link with the same options.

–a , –autopar , –cg89, –cg92 , –dalign , -dbl , -explicitpar , –f ,
–fast , -misalign , –p , -parallel , –pg , -r8 , -xarch= a, -xcache= c,
-xchip= c, xprofile= p, -xtarget= t, -Zlp , -Ztha

Example: Compile sbr.f  with –a  and smain.f  without it:

Unrecognized Arguments

Any arguments f77  does not recognize are taken to be one of the following:

• Linker option arguments
• Names of f77 -compatible object programs, maybe from a previous run
• Libraries of f77 -compatible routines

The basic distinction is option or non-option:

• Unrecognized options (with a - ) generate f77  warnings.
• Unrecognized non-options (no - ) generate no f77  warnings. However, they

are passed to the linker and if the linker does not recognize them, they
generate linker error messages.

2.4 Option Syntax
Some general guidelines for options are:

• -l x is the option to link with library lib x.a . It is always safer, but not
required, to put -l x after the list of file names.

• In general, processing of the compiler options is from left to right, so
selective overriding of macros can be done.
• The above rule does not apply to linker options.
• The -I , -L , and -R  options accumulate, not override

 demo% f77 -c -a sbr.f
 demo% f77 -c smain.f
 demo% f77 -a sbr.o smain.o { pass –a  to the linker}



The Compiler  27

2

• Square brackets enclose parts of the option that can be omitted. For
example, in the -O[ n]  option, the n can be omitted, as in -O  alone.

Files and results of compilations are linked in the order given to make an
executable program, named a.out  by default, or with a name specified by -o .

2.5 Most Useful Options
f77  has many features (options), but the short list below is a good and
adequate start, for the following reasons:

• Most users of f77  use these options.
• Most f77 development can be (and is) done with only these options.

You may need other options for performance improvement and special
problems. The best way to find the option you need is to scan the next section,
where all options are grouped by what they do.

Check the “Details” for risks, caveats, restrictions, interactions, and examples.

Table 2-2 Most Useful Options

Action Option Details

Debug—global program checking across routines for
consistency of arguments, commons, …

-Xlist page 83

Debug—produce additional symbol table information for
the debugger.

–g page 52

Performance—invoke the optimizer to produce faster
running programs..

–O[ n] page 63

Performance—produce reasonably efficient compilation and
run times using a selection of options

–fast page 48

Bind as dynamic (or static) any library listed later in the
command: -Bdynamic , -Bstatic

–Bx page 41

Library—Allow or disallow dynamic libraries for the entire
executable: -dy , -dn (Solaris 2.x only)

–dx page 45

Compile only—Suppress linking; make a .o  file for each
source file.

–c page 42

Output file—Name the final output file nm instead of
a.out .

–o  nm page 65

Profile—Profile by procedure for gprof . –pg page 67



 28 FORTRAN 77 User’s Guide

2

2.6 Actions Summary (Actions and Options Sorted by Action)
Check the section, “Options Details (Options and Actions Sorted by Option),”
for risks, caveats, restrictions, interactions, and examples.

Debugging Options

For the following debugging options, those that are most useful to the most
users are listed first, and then in decreasing order of usefulness.

Floating-point Options

For the following floating-point options, those with the greatest impact to the
most users, and that are easiest to use, are listed first, and then in decreasing
order of impact and ease of use.

Table 2-3 Debugging Options

Action Option Details

Compile for use with the debugger. –g page 52

Global program checking (GPC)—arguments, commons, …. -Xlist page 83

Check for subscripts out of range. -C page 42

Undeclared variables—show a warning message. -u page 73

Uppercase identifiers—leave in the original case. -U page 73

Version ID—show ID along with name of each compiler pass. -V page 74

Specify what VMS features to extend. -vax= v page 74

Allow debugging by dbx  without .o  files (Solaris 2.x only). -xs page 86

Table 2-4 Floating-Point Options

Action Option Details

Turn on SPARC nonstandard floating-point (2.x, SPARC only). -fns page 48

Set IEEE rounding mode in effect at startup (2.x, SPARC only). -fround= r page 50

Set IEEE trapping mode in effect at startup (2.x, SPARC only). -ftrap= t page 52



The Compiler  29

2

Library Options

For the following library options, those that are most useful, to the most users,
are listed first, and then in decreasing order of usefulness.

Licensing Options

The following options are for licensing.

Table 2-5 Library Options

Action Option Details

Bind as dynamic or static any library listed later in command. –Bx page 41

Allow or disallow dynamic libraries for executable (2.x). –dx page 45

Build a dynamic shared library (2.x). –G page 52

Search for libraries in this directory first. -L dir page 56

Link with library lib x. -l x page 57

Multithread safe libraries, low level threads (2.x, SPARC). -mt page 59

No automatic libraries. -nolib page 61

No inline templates. -nolibmil page 62

No run path in executable (2.x). -norunpath page 62

Library—do not make library if relocations remain. (2.x) -ztext page 92

Table 2-6 Licensing Options

Action Option Details

Do not queue the license request. -noqueue page 62

Show license server user IDs. -xlicinfo page 82



 30 FORTRAN 77 User’s Guide

2

Performance Options

For the following performance options, those with the greatest impact to the
most users, and that are easiest to use, are listed first, and then in decreasing
order of impact and ease of use.

Table 2-7 Performance Options

Action Option Details

Faster execution—make executable run faster. –fast page 48

Optimize for execution time. -O[ n] page 63

Target—specify target instruction set (2.x, SPARC). -xtarget= t page 87

Collect or use data for a profile to optimize (2.x, SPARC). -xprofile= p page 84

Double load—allow f77  to use double load/store (SPARC). –dalign page 44

Arithmetic—use simple arithmetic model. -fsimple page 51

Arithmetic—use SPARC non-standard floating point (SPARC). -fns page 50

Inline templates—select best. -libmil page 58

Traps—assume no memory-based traps (2.x, SPARC only). -xsafe=mem page 86

Unroll loops—allow optimizer to unroll loops n times. -unroll= n page 73

Fast math—use special fast math routines (SPARC only). -xlibmopt page 82

Architecture—limit the set of instructions (2.x, SPARC). -xarch= a page 75

Chip—specify target processor for use by f77  (2.x, SPARC). -xchip= c page 78

No fast math—reset -fast  not to use -xlibmopt  (SPARC). -xnolibmopt page 83

Data dependencies—analyze loops (SPARC). -depend page 45

Inline the specified user routines to optimize for speed. -inline= rlst page 56

Do no optimizations that increase code size (SPARC, 2.x). -xspace page 86

malloc —Use faster malloc  (Solaris 1.x). -bsdmalloc page 42

386—generate code for 80386 (x86). -386 page 39

486—generate code for 80486 (x86). -486 page 39

Pentium—generate code for pentium (x86). -pentium page 67



The Compiler  31

2

Parallelization Options

For the following parallelization options, those with the greatest impact to the
most users, and that are easiest to use, are listed first, and then in decreasing
order of impact and ease of use.

Profiling Options

For the following profiling options, those that are most useful, to the most
users, are listed first, and then in decreasing order of usefulness.

Table 2-8 Parallelization Options (SPARC, 2.x)

Action Option Details

Parallelize loops automatically. -autopar page 59

Parallelize explicitly specified loops. -explicitpar page 67

Parallelize reduction loops. -reduction page 70

Parallelize with -autopar -explicitpar -depend . -parallel page 67

Specify the style for MP directives (cray  or sun ). -mp=x page 59

Prepare loops for profiling parallelization. -Zlp page 91

Show which loops are parallelized, at compile time. -loopinfo page 58

Prepare for thread analyzing by tha . -Ztha page 93

Stack local variables to optimize with parallelization. -stackvar page 72

Show warnings about parallelization. -vpara page 74

No automatic parallelization. -noautopar page 60

No -depend . -nodepend page 61

No explicit parallelization. -noexplicitpar page 61

No reduction. -noreduction page 62

Table 2-9 Profiling Options

Action—Do Profile by: Option Details

Basic block for tcov , old style. -a page 39

Procedure for gprof . -pg page 67

Procedure for prof . -p page 65

Loops for parallelization (SPARC, 2.x). -loopinfo page 58

Basic block for tcov , new style(SPARC, 2.x). -xprofile=tcov page 84



 32 FORTRAN 77 User’s Guide

2

Alignment Options

The following options are for alignment variations.

Backward Compatibility and Legacy Options

The following options are provided for backward compatibility and certain
legacy capabilities.

Table 2-10 Alignment Options

Action Option Details

Align on 8-byte boundaries (SPARC). -f page 47

Allow for misaligned data (SPARC). -misalign page 58

Specify what VMS alignment features to use -vax= v page 74

Align a common block on page boundaries. (1.x, SPARC). –align _ b_ page 40

Table 2-11 Backward Compatibility Options

Action Option Details

Allow assignment to constant arguments. -copyargs page 43

External name—make external names without underscores. -ext_names= e page 47

Nonstandard arithmetic—allow nonstandard arithmetic. –fnonstd page 49

Host—optimize performance for the host system. -native page 60

Output—use old style list-directed output. -oldldo page 65

DOloops—use one trip DO loops. -onetrip page 65



The Compiler  33

2

Miscellaneous Options

The following miscellaneous options are listed alphabetically by the action
they perform, but with 1.x and x86 options at the end. The topic of the action is
provided in the first word or word phrase.

Table 2-12 Miscellaneous Options

Action Option Details

ANSI conformance—identify many non-ANSI extensions. –ansi page 40

Pass by value result. -arg=local page 40

Compile only, do not make a.out, do not execute. -c page 42

Turn unsized integers into true 64-bit integers. -dbl page 44

Preprocessor—define name for use by preprocessor. –Dname page 43

Command—show commands built by driver. –dryrun page 45

Line length—extend source length maximum to 132. –e page 46

Preprocessor—use cpp . –F page 47

Options—show the list of options. Same as –help . -help page 49

Integers, short—make default integer size two bytes. -i2 page 55

Integers, standard—make default integer size four bytes. -i4 page 56

Inset the include  path. -I loc page 54

Table sizes—reset internal compiler tables. -N [cdlnqsx ]k page 62

Output—rename file. -o outfil page 65

Position-independent code—produce. -pic page 68

Position-independent code—with 32-bit addresses (SPARC). -PIC page 68

Pass option list to program. -Qoption pr op page 68

REAL to DOUBLE—interpret REAL as REAL*8. -r8 page 70

Symbol table—strip executable of symbol table. -s page 71

SourceBrowser—compile for the SourceBrowser. -sb page 71

SourceBrowser—compile fast for the SourceBrowser. -sbfast page 71

Quiet compile, prompt only—reduce number of messages. -silent page 71

Assembly source—generate only assembly source code. -S page 71

Reorder functions—enable reordering of functions (2.x). -xF page 80

Turns off the incremental linker and forces the use of ld . -xildoff page 80

Turns on the incremental linker. -xildon page 80



 34 FORTRAN 77 User’s Guide

2

2.7 Options Summary (Options and Actions Sorted by Option)
The following table summarizes all options. The option –help  displays
essentially this list, as does the man f77  command. Check “Details” for risks,
tradeoffs, side effects, restrictions, interactions, and examples.

VMS FORTRAN—include more VMS extensions. -xl [d] page 81

Specify usage of registers for generated code (SPARC, 2.x). -xregs= r page 85

Warning suppression—do not show warnings. -w page 75

Smaller executable file—shrink by about 128K bytes (1.x). -nocx page 60

Force precision of expressions (x86). -fstore page 52

No forcing of expression precision (x86). -nofstore page 61

Table 2-13 Options Summary

Option Action Details

-386 Generate code for 80386 (x86 only). page 39

-486 Generate code for 80486 (x86 only). page 39

-a Profile by basic block for tcov. page 39

-align _block_ Align a common block on a page boundary (Solaris 1.x, SPARC only). page 40

-ansi ANSI conformance check—identify many non-ANSI extensions. page 40

-autopar iMPact—Parallelize loops automatically (Solaris 2.x, SPARC only). page 40

-B x Bind as dynamic or static any library listed later in the command. page 41

-bsdmalloc Use faster malloc (Solaris 1.x only). page 42

-C Subscripts—runtime check for array subscripts out of range. page 42

-c Compile only, do not produce executables. page 42

-copyargs Allow assignment to constant arguments. page 43

-cg89 Generate code for generic SPARC architecture (SPARC only). page 42

-cg92 Generate code for SPARC V8 architecture (SPARC only). page 43

-D name Preprocessor symbol—define symbol nm for the preprocessor. page 43

-dalign Double align—allow f77 to use double-word load/store (SPARC only). page 44

-dbl Double the default size for integers, reals, and so forth. page 44

-depend Analyze loops for data dependencies (SPARC only). page 45

Table 2-12 Miscellaneous Options (Continued)

Action Option Details



The Compiler  35

2

-dryrun Show commands built by driver, but do not execute. page 45

-d x Allow or disallow dynamic libraries for the entire executable (Solaris 2.x only). page 45

-e Line length—extend the source line maximum length to 132 columns. page 46

-explicitpar iMPact—Parallelize loops explicitly (Solaris 2.x, SPARC only). page 46

-ext_names= e Make external names with or without underscores. page 47

-F Apply the C preprocessor before compiling. page 47

-f Align on 8-byte boundaries (SPARC only). page 47

-fast Optimize for speed of execution using a selection of options. page 48

-flags Synonym for -help. page 49

-fnonstd Performance—do nonstandard initialization of floating-point hardware. page 49

-fns Use the SPARC nonstandard floating-point mode (SPARC, Solaris 2.x only). page 50

-fround= r Set the IEEE rounding mode in effect at startup (SPARC, Solaris 2.x only). page 50

-fsimple Performance—allow simple floating-point model. page 51

-fstore Force precision of floating-point expressions (x86 only). page 52

-ftrap= t Set floating-point trapping mode in effect at startup (SPARC, Solaris 2.x only) page 52

-G Library—build a dynamic shared library (Solaris 2.x only). page 52

-g Compile for debugging. page 52

-h name Library—name the dynamic shared library nm (Solaris 2.x only). page 53

-help Options—show a list of option summaries. page 54

-I loc Add dir to the include file search path. page 54

-i2 Integers—make the default integer size two bytes. page 55

-i4 Integers—make the default integer size four bytes. page 56

-inline= rlst Inline—request inlining of the specified user routines for faster execution. page 56

-Kpic Synonym for -pic. page 56

-KPIC Synonym for -PIC. page 56

-L dir Library—search for libraries in the dir directory first. page 56

-libmil Inline the selected library routines for optimization. page 58

-loopinfo iMPact—Show which loops are parallelized (Solaris 2.x, SPARC only). page 58

-l x Library—link with library libx.a. page 57

-misalign Align—allow for misaligned data (SPARC only). page 58

-mp=x Specify the style for MP directives (Solaris 2.x, SPARC only). page 59

Table 2-13 Options Summary (Continued)

Option Action Details



 36 FORTRAN 77 User’s Guide

2

-mt Multithread safe libraries—use for low level threads (Solaris 2.x, SPARC only). page 59

-native Optimize performance for the host system. page 60

-noautopar iMPact—Do not parallelize automatically (Solaris 2.x, SPARC only).. page 60

-nocx Make executable file smaller (SPARC only). page 60

-nodepend Cancel -depend in command line (SPARC only). page 61

-noexplicitpar iMPact—Do not parallelize explicitly (Solaris 2.x, SPARC only). page 61

-nofstore Do not force precision of expression (x86 only). page 61

-nolib Library—Do not link with system libraries. page 61

-nolibmil No inline templates—reset –fast not to include inline templates. page 62

-noqueue License—do not queue a license request. page 62

-noreduction iMPact—do no reduction with parallelization (Solaris 2.x, SPARC only). page 62

-norunpath Library—put no run path in executable (Solaris 2.x only). page 62

-N[cdlnqsx] k Table sizes—reset internal compiler tables. page 62

-O[ n] Performance—optimize for execution time. page 63

-o outfil Output file—name the executable file nm instead of a.out. page 65

-oldldo Output—use old list-directed output. page 65

-onetrip DO loops—use one trip DO loops. page 65

-p Profile by procedure for prof. page 65

-pad [=p] Insert padding for efficient use of cache. page 65

-parallel iMPact—Parallelize with: -autopar, -explicitpar, -depend (SPARC, 2.x). page 67

-pentium Generate code for Pentium (x86 only). page 67

-pg Profile by procedure for prof. page 67

-pic Library—produce position-independent code for shared library. page 68

-PIC Library—similar to -pic, but with 32-bit addresses (SPARC only). page 68

-Qoption  pro op Option—pass option list to the program pr. page 68

-R list Library—store library paths in executable (Solaris 2.x only). page 69

-r8 Set 8 byte default for REAL,INTEGER, and LOGICAL. page 70

-reduction iMPact—do reduction loops (Solaris 2.x, SPARC only). page 70

-S Assembly source—generate and leave only assembly source code. page 71

-s Symbol table—strip the executable file of its symbol table. page 71

-sb SourceBrowser—produce table information for the SourceBrowser. page 71

Table 2-13 Options Summary (Continued)

Option Action Details



The Compiler  37

2

-sbfast Similar to -sb, but faster, and makes no object files. page 71

-silent Show prompt only, reduce number of compiler messages. page 71

-stackvar Allocate local variables on the stack for better optimizing with parallelization. page 72

-temp= dir Temporary files—define directory for temporary files. page 73

-time Time for execution—show for each compilation pass. page 73

-U Uppercase identifiers—leave identifiers in the original case. page 73

-u Report undeclared variables. page 73

-unroll= n Performance—unroll loops: direct the optimizer on unrolling loops. page 73

-V Version ID—similar to -v, but also show version ID. page 74

-v Show name of each compiler pass. page 74

-vax= v Specify some coice of VMS features to use. page 74

-vpara iMPact—show verbose parallelization warnings (Solaris 2.x, SPARC only). page 74

-w Warnings—do not show warnings. page 75

-xa Synonym for -a. page 75

-xarch= a Limit the instructions f77 can use (SPARC, Solaris 2.x only). page 75

-xautopar Synonym for -autopar (Solaris 2.x only). page 77

-xcache= c Define cache properties for the optimizer (SPARC, Solaris 2.x only). page 77

-xchip= c Specify processor for the optimizer (SPARC, Solaris 2.x only). page 78

-xcg89 Synonym for -cg89. page 78

-xcg92 Synonym for -cg92. page 78

-xdepend Synonym for -depend (Solaris 2.x only). page 79

-xexplicitpar Synonym for -explicitpar (Solaris 2.x only). page 79

-xF Function reorder—allow function-level reordering (Solaris 2.x only). page 80

-xhelp= h Show help information for README file or options (flags). page 80

-xildoff Turn off the Incremental Linker. (SPARC, Solaris 2.x only). page 80

-xildon Turn on the Incremental Linker (SPARC, Solaris 2.x only). page 80

-xinline= rlst Synonym for -inline=rlst. page 81

-xl Extend the language with more VMS FORTRAN features. page 81

-xld VMS—Debug comments: extended language, VMS, plus debug comments. page 82

-xlibmil Synonym for -libmil. page 82

-xlibmopt Use library of optimized math routines (SPARC only). page 82

Table 2-13 Options Summary (Continued)

Option Action Details



 38 FORTRAN 77 User’s Guide

2

-xlicinfo License information—show license server user IDs. page 82

-Xlist Do global program checking. page 83

-xloopinfo Synonym for -loopinfo (Solaris 2.x only). page 83

-xnolib Synonym for -nolib. page 83

-xnolibmil Synonym for -nolibmil. page 83

-xnolibmopt Do not use fast math library (SPARC only). page 83

-xO[ n] Synonym for -O[n]. page 83

-xparallel Synonym for -parallel (Solaris 2.x only). page 83

-xpg Synonym for -pg. page 83

-xprofile= p Collect or use data for profile to optimize (SPARC, Solaris 2.x only). page 84

-xreduction Synonym for -reduction (Solaris 2.x only). page 70

-xregs= r Specify register usage (SPARC, Solaris 2.x only). page 85

-xsafe=mem Assume no memory-based traps (SPARC, Solaris 2.x only). page 86

-xspace Do not increase code size (SPARC, Solaris 2.x only). page 86

-xs Allow debugging by dbx without object (.o) files (Solaris 2.x only). page 86

-xsb Synonym for -sb. page 86

-xsbfast Synonym for -sbfast. page 86

-xtarget= t Specify system for optimization (SPARC, Solaris 2.x only). page 87

-xtime Synonym for -time. page 91

-xunroll= n Synonym for -unroll=n. page 91

-xvpara Synonym for -vpara (Solaris 2.x only). page 91

-Zlp iMPact—prepare for profiling by looptool (Solaris 2.x, SPARC only). page 91

-ztext Library—make no library with relocations (Solaris 2.x only). page 92

-Ztha iMPact— prepare for Thread Analyzer (Solaris 2.x, SPARC only). page 93

Table 2-13 Options Summary (Continued)

Option Action Details



The Compiler  39

2

2.8 Options Details (Options and Actions Sorted by Option)
This section shows all f77  options, including various risks, restrictions,
caveats, interactions, examples, and other details.

-386 Generate code for 80386 (x86 only).

Generate code that exploits features available on Intel 80386 compatible
processors. The default is -386 .

-486 Generate code for 80486 (x86 only).

Generate code that exploits features available on Intel 80486 compatible
processors. The default is -386 . Code compiled with -486  does run on 80386
hardware, but it may run slightly slower.

–a Profile by basic block for tcov .

This is the old style of basic block profiling for tcov . See -xprofile=tcov  for
information on the new style of profiling and the tcov (1) man page for more
details. Also see the manual, Profiling Tools.

Insert code to count the times each basic block is run. This invokes a runtime
recording mechanism that creates one .d  file for every .f  file (at normal
termination). The .d  file accumulates execution data for the corresponding
source file. The tcov (1) utility can then be run on the source file to generate
statistics about the program. -pg  and gprof  are complementary to -a  and
tcov .

If set at compile-time, the TCOVDIR environment variable specifies the
directory of where the .d  files are located. If this variable is not set, then the .d
files remain in the same directory as the .f  files.

The -xprofile=tcov  and the -a  options are compatible in a single
executable. That is, you can link a program that contains some files which have
been compiled with -xprofile=tcov , and others with -a . You cannot
compile a single file with both options.

If you compile and link in separate steps, and you compile with -a , then be
sure to link with -a . You can mix -a  with -On; in some earlier versions -a
overrode -On. For another way, read Performance Tuning an Application.



 40 FORTRAN 77 User’s Guide

2

–align _ b_ Align a common block on a page boundary (Solaris 1.x, SPARC only).

For the common block whose FORTRAN name is b, align it on a page
boundary. Its size is increased to a whole number of pages, and its first byte is
placed at the beginning of a page. The space is required between -align  and
_b_. This is a linker option.

Inert. The -align  option is for compatibility with older versions, and is an
inert option. It is recognized, so it does not break any old make files, but it does
not do anything.

Example: Do page-alignment for the common block named buffo :

This option applies to uninitialized data only. If any variable of the common
block is initialized in a DATA statement, then the block will not be aligned.

If you do not use the -U  option, then use lowercase for the common block
name. If you do use -U , then use the case of the common block name in your
source code.

–ansi ANSI conformance check—identify many non-ANSI extensions.

–arg=local Pass by value result.

When you compile with this option, f77  uses copy restore to retain the
association of dummy arguments with the actual arguments between references
to functions or subroutines with entry statements.

-autopar iMPact—Parallelize loops automatically (Solaris 2.x, SPARC only).

Find and parallelize appropriate loops for multiple processors. Do dependence
analysis (analyze loops for inter-iteration data dependence) and do loop
restructuring. If optimization is not at -O3  or higher, raise it to -O3 .

-autopar  reduces the utility of debugging (-g ) in that you cannot print
variables with dbx , but you can still use the dbx where  command to get a
symbolic traceback.

 demo% f77 -align _buffo_ growth.f

Solaris 1.x

Solaris 2.x



The Compiler  41

2

Avoid -autopar  if you do your own thread management. See note under –mt.

The -autopar  option requires the iMPact FORTRAN 77 multiprocessor
enhancement package. To get faster code, this option requires a multiple
processor system. On a single-processor system the generated code usually
runs slower.

Example: Automatic parallelization (assumes you set number of processors):

Refer to Appendix C,  “iMPact: Multiple Processors."

To request a number of processors, at runtime set the PARALLEL environment
variable. The default is 1. Remember:

• Do not request more processors than are available.

• If N is the number of processors on the machine, then for a one-user,
multiprocessor system, try PARALLEL=N-1 .

See Section C.3, “Number of Processors.”

If you use -autopar  and compile and link in one step, then linking
automatically includes the microtasking library and the threads-safe
FORTRAN runtime library. If you use -autopar  and compile and link in
separate steps, then you must also link with -autopar .

–Bx Bind as dynamic or static any library listed later in the command.

The x must be dynamic  or static . No space is allowed between -B  and
dynamic  or static .

• –Bdynamic : Prefer dynamic binding (try for shared libraries).
• -Bstatic :   Require static binding (no shared libraries).

If you use neither -Bdynamic  nor -Bstatic , the default applies: dynamic .

Also note:

demo% f77 -autopar any.f



 42 FORTRAN 77 User’s Guide

2

• If you specify static , but it finds only a dynamic version, then the library
is not linked, and you get a warning that the “library was not found.”

• If you specify dynamic , but it finds only a static version, then the library is
linked, and you get no warning.

You can toggle -Bstatic  and -Bdynamic  on the command line. That is, you
can link some libraries statically and some dynamically by specifying
-Bstatic  and -Bdynamic  any number of times on the command line.

These are loader and linker options. If you compile and link in separate steps,
and you need -B x, then you need it in the link step.

-bsdmalloc Use faster malloc  (Solaris 1.x only).

Use the faster malloc  from the library libbsdmalloc.a . This malloc  is
faster but less memory efficient. This option causes the following items to be
passed to the linker (Solaris 1.1.2 and 1.1.3 only):

-u _malloc /lib/libbsdmalloc.a

–C Subscripts—runtime check for array subscripts out of range.

Check for subscripts outside the declared bounds. This helps catch some
causes of the dreaded segmentation fault.

If f77  detects such an out-of-range condition at compile time, it issues an error
message and does not make an executable. If f77  cannot determine such an
out-of-range condition until runtime, it inserts range-checking code into the
executable. Naturally this option can increase execution time, and the increase
may vary from trivial to significant. Some developers debug with -C , then
recompile without -C  for the final production executable.

–c Compile only, do not produce executables.

Suppress linking. Make a .o  file for each source file.

–cg89 Generate code for generic SPARC architecture (SPARC only).

This option is a macro for: -xarch=v7 -xchip=old -xcache=64/32/1
(Solaris 2.x only).



The Compiler  43

2

-cg92 Generate code for SPARC V8 architecture (SPARC only).

This option is a macro for:
-xarch=v8 -xchip=super -xcache=16/64/4:1024/64/1  (Solaris 2.x only).

-copyargs Allow assignment to constant arguments.

Allow a subprogram to change a dummy argument that is a constant. This
option is provided only to allow legacy code to compile and execute without a
runtime error for changing a constant.

• Without -copyargs , if you pass a constant argument to a subroutine, and
then within the subroutine try to change that constant, the run aborts.

• With -copyargs , if you pass a constant argument to a subroutine, and then
within the subroutine change that constant, the run does not necessarily
abort.

Code that aborts unless compiled with -copyargs  is, of course, not
FORTRAN standard compliant. Also, such code is often unpredictable.

–Dnm Preprocessor symbol—define symbol nm for the preprocessor.

-D nm=def

Define nm to be def

-D nm

Define nm to be 1

For .F  files only: Define nm to be def using the C preprocessor, cpp (1), as if by
#define . If no definition is given, the name is assigned the value 1.

Following are the predefined values:

• The compiler version is predefined (in hex) in _ _SUNPRO_F77

Example: For FORTRAN 77 4.0, _ _SUNPRO_F77=0x40

• The following values are predefined on appropriate systems:

_ _sparc , _ _unix , _ _sun , _ _i386 , _ _SVR4, _ _SunOS_5_3



 44 FORTRAN 77 User’s Guide

2

For instance, the value _ _i386  is defined on systems compatible with the
80386 (including the 80486), and it is not defined on SPARC systems. You
can use these values in such preprocessor conditionals as the following.

#ifdef _ _sparc

• From earlier releases, these values (with no underscores) are also
predefined, but they may be deleted in a future release:

sparc , unix , sun , i386

–dalign Double align—allow f77  to use double-word load/store (SPARC only).

Allow f77  to generate double-word load/store instructions (wherever
possible) for faster execution.

Using this option automatically triggers the –f  option, which causes all
double-precision and quadruple-precision data types (both real and complex)
to be double aligned.

Using both -dbl  and -dalign  also causes 64-bit integer data type to be 8-byte
aligned.

With -dalign , you may not get ANSI standard FORTRAN 77 alignment. It is
a trade-off of portability for speed.

If you compile one subprogram with -dalign , compile all subprograms of the
program with –dalign .

-dbl Double the default size for integers, reals, and so forth.

With -dbl , f77  sets the default size for REAL,INTEGER, and LOGICAL to 8, and
for COMPLEX to 16.

For SPARC: f77  also sets the default size for DOUBLE PRECISION to 16, and for
DOUBLE COMPLEX to 32.

This option applies to variables, parameters, constants, and functions.

-dbl  allows INTEGER*8 ,  but we recommend that you not use INTEGER*8 in
your code, since the program will not compile if you omit -dbl . Instead, use
INTEGER (without * n) and compile with -dbl , which automatically converts
INTEGER to 64-bit integers.



The Compiler  45

2

Example: Compile with and without -dbl :

Compare -dbl  with -r8 :

• For all of the floating point data types, -dbl  works the same as -r8 ; using
both -r8  and-dbl  produces the same results as using only -dbl .

• For INTEGER and LOGICAL data types, -dbl  is different from -r8 :
• With -dbl , f77  allocates 8 bytes, and does 8-byte arithmetic
• With -r8 , f77  allocates 8 bytes, and does only 4-byte arithmetic

-depend Analyze loops for data dependencies (SPARC only).

Analyze loops for inter-iteration data dependencies and do loop restructuring.
The -depend  option is ignored unless you also use -O3  or -O4 . Dependence
analysis is also included with -autopar  or -parallel . The dependence
analysis is done at compile time.

The iMPact FORTRAN 77 multiprocessor package is not required for -depend .

–dryrun Show commands built by driver, but do not execute.

–dx Allow or disallow dynamic libraries for the entire executable (Solaris 2.x only).

The x must be y  or n. No space is allowed between -d  and y  or n.

• -dy : Yes—allow dynamically bound libraries (allow shared libraries).
• -dn : No—do not allow dynamically bound libraries (no shared libraries).

If you have neither -dy  nor -dn , you get the default: -dy .

These apply to the whole executable. Use only once on the command line.

If a.out  uses only static libraries, then -dy  causes a few seconds delay at
runtime it makes the dynamic linker be invoked when a.out  is run. This takes
a few seconds to invoke and find that no dynamic libraries are needed.

-d binding is a loader and linker option. If you compile and link in separate
steps, and you need -d binding, then you need it in the link step.

INTEGER x {With -dbl, compiles x as 64-bit; without -dbl, compiles x as 32-bit}
INTEGER*8 y {With -dbl, compiles y as 64-bit; without -dbl, does not compile}



 46 FORTRAN 77 User’s Guide

2

–e Line length—extend the source line maximum length to 132 columns.

Accept lines up to 132 characters long. The compiler pads on the right with
trailing blanks to column 132. If you use continuation lines while compiling
with -e , then do not split character constants across lines, otherwise,
unnecessary blanks may be inserted in the constants.

-explicitpar iMPact—Parallelize loops explicitly (Solaris 2.x, SPARC only).

You do the dependency analysis: analyze and specify loops for inter-iteration
data dependencies. The software parallelizes the specified loops. If
optimization is not at -O3  or higher, then it is raised to -O3 . Avoid
-explicitpar  if you do your own thread management. See –mt.

-explicitpar  reduces the utility of debugging (-g ) in that you cannot print
variables, but you can use the dbx where  command to get a symbolic
traceback.

The -explicitpar  option requires the iMPact FORTRAN 77 multiprocessor
enhancement package. To get faster code, this option requires a multiprocessor
system. On a single-processor system the generated code usually runs slower.

Refer to Appendix C,  “iMPact: Multiple Processors."

Summary: To parallelize explicitly, do the following:

1. Analyze the loops to find those that are safe to parallelize.

2. Insert C$PAR DOALL immediately before the safe loops.

3. Compile with the -explicitpar  option.

Example: Insert a parallel directive immediately before the loop:

       ...
C$PAR DOALL

 do i = 1, n
a(i) = b(i) * c(i)
 end do

       ...



The Compiler  47

2

Example: Compile to explicitly parallelize:

Do not apply an explicit parallel directive to a reduction loop. The explicit
parallelization is done, but the reduction aspect of the loop is not done, and the
results can be incorrect. The results of the calculations can even be
indeterminate: you can get incorrect results, possibly different ones with each
run, and with no warnings.

If you use -explicitpar  and compile and link in one step, then linking
automatically includes the microtasking library and the threads-safe
FORTRAN runtime library. If you use -explicitpar  and compile and link in
separate steps, then you must also link with -explicitpar .

-ext_names= e Make external names with or without underscores.

e must be either plain  or underscore . The default is underscore .

plain : Do not use trailing underscores.

underscores : Use trailing underscores.

An external name is a name of a subroutine, function, block data subprogram,
or labeled common. This option affects both the name in the routine itself and,
of course, the name used in the calling statement (both symdefs and symrefs).

–F Apply the C preprocessor before compiling.

Apply the cpp preprocessor to .F  files and put the result in the file with the
suffix changed to .f , but do not compile.

–f Align on 8-byte boundaries (SPARC only).

Align all COMMON blocks and all double-precision and quadruple-precision
local data on 8-byte boundaries. This applies to both real and complex data.

Using both -dbl  and -f  also causes 64-bit integer data type to be 8-byte
aligned.

Resulting code may not be standard and may not be portable.

 demo% f77 -explicitpar any.f



 48 FORTRAN 77 User’s Guide

2

If you compile with -f  for any subprogram of a program, then compile all
subprograms of that program with -f .

–fast Optimize for speed of execution using a selection of options.

Select options that optimize for speed of execution without excessive
compilation time. This option provides close-to-the-maximum performance for
many applications.

If you compile and link in separate steps, and you compile with -fast , then
be sure to link with -fast .

Note – Details of what -fast  provides vary with the compiler. See the
documentation about C, C++, FORTRAN 77, Fortran 90, or Pascal for specifics.

-fast  selects the following options:

• The -native  best floating-point option

If the program is intended to run on a different target than the compilation
machine, follow the -fast  with a code-generator option. For SPARC, an
example is: -fast -cg89

• The –O3 optimization level option

For subprograms that benefit from more optimization, follow –fast  with
-O4  or -O5 : -fast -O4 . Using -fast -O4  pair is not the same as using the
-O4 -fast  pair. The last specification of each pair takes precedence.

Example: Overriding part of -fast  (note warning message):

• The -libmil  option for system-supplied inline expansion templates

For C functions that depend on exception handling specified by SVID (as do
some libm  programs), follow -fast  by -nolibmil : -fast –nolibmil .
With -libmil , exceptions cannot be detected with errno  or matherr (3m).

demo% f77 -silent  -fast -O4  forfast.f
f77: Warning: -O4 overwrites previously set optimization level
              of -O3
demo%



The Compiler  49

2

• The -fsimple  option for a simple floating-point model

–fsimple  is unsuitable if strict IEEE 754 standards compliance is required.

• The –dalign  option to generate double loads and stores (SPARC only)

Using this option may not generate the ANSI standard FORTRAN 77
alignment.

• The -xlibmopt  option (SPARC only)

• For x86 only: The -nofstore  option, so it does not force floating-point
expressions to the precision of the destination variable.

• For Solaris 2.x only: -fns -ftrap=%none ; that is, turn off all trapping. In
previous releases, the -fast  macro option included -fnonstd;  now it
does not.

-flags Synonym for -help .

–fnonstd Performance—do nonstandard initialization of floating-point hardware.

Do nonstandard initialization of floating-point arithmetic hardware:

• Abort on exceptions
• Flush denormalized numbers to zero if it will improve speed

Where x does not cause total underflow, x is a denormalized number if and only
if |x| is in one of the ranges indicated:

See the Numerical Computation Guide for details on denormalized numbers.

The standard initialization of floating-point is the default:

• IEEE 754 floating-point arithmetic is nonstop.
• Underflows are gradual.

Data Type Range

REAL 0.0  < |x| < 1.17549435e-38

DOUBLE PRECISION 0.0  < |x| < 2.22507385072014e-308



 50 FORTRAN 77 User’s Guide

2

Specifying –fnonstd  during the link step is approximately equivalent to the
following two calls at the beginning of a FORTRAN 77 main program.

The nonstandard_arithmetic()  routine is equivalent to the obsolete
abrupt_underflow()  routine.

On some floating-point hardware, the nonstandard_arithmetic()  call
causes all underflows to produce zero rather than a possibly subnormal
number, as the IEEE standard requires. This may be faster. See
ieee_functions (3m).

The –fnonstd  option allows hardware traps to be enabled for floating-point
overflow, division by zero, and invalid operation exceptions. These are
converted into SIGFPE signals, and if the program has no SIGFPE handler, it
terminates with a dump of memory to a core  file. See ieee_handler (3m).

This option is a synonym for -fns -ftrap=common  (Solaris 2.x only).

-fns Use the SPARC nonstandard floating-point mode (SPARC, Solaris 2.x only).

The default is the SPARC standard floating-point mode.

If you compile one routine with -fns , then compile all the program routines
with the –fns  option; otherwise, you can get unexpected results.

-fround= r Set the IEEE rounding mode in effect at startup (SPARC, Solaris 2.x only).

r must be one of: nearest , tozero , negative , positive .

The default is -fround=nearest .

This option sets the IEEE 754 rounding mode that:

• Can be used by the compiler in evaluating constant expressions.
• Is established at runtime during the program initialization.

The meanings are the same as those for the ieee_flags  function.

If you compile one routine with -fround= r, compile all the program routines
with the same –fround= r option; otherwise, you can get unexpected results.

i=ieee_handler("set", "common", SIGFPE_ABORT)
call nonstandard_arithmetic()



The Compiler  51

2

-fsimple[= n] Performance—allow simple floating-point model.

Allow the optimizer to make simplifying assumptions concerning floating-
point arithmetic.

If n is present, it must be 0, 1, or 2. The defaults are:

• If there is no -fsimple [=n] then the compiler uses -fsimple=0
• If there is only -fsimple  then the compiler uses -fsimple=1

-fsimple=0

Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

-fsimple=1

Allow conservative simplifications. The resulting code does not strictly
conform to IEEE 754, but numeric results of most programs are unchanged.

With -fsimple=1 , the optimizer can assume the following:
• IEEE 754 default rounding/trapping modes do not change after process

initialization.
• Computations producing no visible result other than potential floating

point exceptions may be deleted.
• Computations with Infinity or NaNs as operands need not propagate

NaNs to their results; e.g., x*0  may be replaced by 0.
• Computations do not depend on sign of zero.

With -fsimple=1 , the optimizer is not allowed to optimize completely
without regard to roundoff or exceptions. In particular, a floating-point
computation cannot be replaced by one that produces different results with
rounding modes held constant at run time. -fast  implies -fsimple=1 .

-fsimple=2

Permit aggressive floating point optimizations that may cause many
programs to produce different numeric results due to changes in rounding.

For example, in a given loop, permit the optimizer to replace all
computations of x/y  with x*z , where z=1/y , x/y  is guaranteed to be
evaluated at least once in the loop, and the values of y  and z  are known to
have constant values during execution of the loop.



 52 FORTRAN 77 User’s Guide

2

Even with -fsimple=2 , the optimizer still is not permitted to introduce a
floating point exception in a program that otherwise produces none.

-fstore Force precision of floating-point expressions (x86 only).

Use the precision of destination variable. This option applies to assignment
statements only. Unless -fast  is on, the default is -fstore .

-ftrap= t Set floating-point trapping mode in effect at startup (SPARC, Solaris 2.x only)

t is a comma-separated list that consists of one or more of the following:

%all , %none, common, [no%]invalid , [no%]overflow , [no%]underflow ,
[no%]division , [no%]inexact .

The default is -ftrap=%none . Where the % is shown, it is a required character.

This option sets the IEEE 754 trapping modes that are established at program
initialization. Processing is left-to-right. The common exceptions, by definition,
are invalid, division by zero, and overflow. For example: -ftrap=overflow .

Example: -ftrap=%all,no%inexact  means set all traps, except inexact .

The meanings for -ftrap= t are the same as for ieee_flags() , except that:

• %all  turns on all the trapping modes.
• %none, the default, turns off all trapping modes.
• A no%prefix turns off that specific trapping mode.

If you compile one routine with -ftrap= t, compile all routines of the program
with the same -ftrap= t option; otherwise, you can get unexpected results.

–G Library—build a dynamic shared library (Solaris 2.x only).

Direct the linker to build a shared dynamic library. Without -G , the linker builds
an executable file. With -G , it builds a dynamic library. This option does not
automatically turn on -ztext  as it did in the previous release.

–g Compile for debugging.

Produce additional symbol table information for the debuggers, dbx (1) and
debugger (1).



The Compiler  53

2

If you plan to debug, you get more debugging power if you compile with -g
before using the debuggers. The –g  option suppresses the automatic inlining
you usually get with –O4,  but does not suppress –On.

For SPARC, Solaris 2.x: The - g option makes -xildon  the default incremental
linker option (see “-xildon” on page 80). That is, with -g , the compiler default
behavior is to automatically invoke ild  in place of ld , unless the -G  option is
present, or any source file is named on the command line.

The utility of debugging is reduced when options -autopar,
-explicitpar , or -parallel  are used with -g in that you cannot print
variables with dbx , but you can still use the dbx where  command to get a
symbolic traceback.

–On (and parallelization) limits –g  in the following ways:

• Local variables cannot be printed (optimizer can put them on the stack)
• Cannot step through a routine line by line (optimizer can change the order)

You can get around some -On limits on -g  in either of two ways:

• Recompile all routines with -O1  or no -On at all
• Recompile only the routine you need to debug using fix and continue

If you are upgrading from prior to 2.0, note the following side effects of -g  not
suppressing –On:

• Old makefiles that rely on -g  overriding -O  must be changed.

• Old makefiles that check for the warning: -g overrides -O , must be
changed.

–hnm Library—name the dynamic shared library nm (Solaris 2.x only).

The -h nm option assigns a name to a shared dynamic library, and allows
versions of a shared dynamic library. A space between -h  and nm is optional.
In general, nm must be the same as what follows the -o .

This is a loader option. The compile-time loader assigns the specified name to
the shared dynamic library being created, and it records the name in the library
file as the internal name of the library.



 54 FORTRAN 77 User’s Guide

2

If there is no -h nm option, then no internal name is recorded in the library file.
Every executable file has a list of needed shared library files. When the runtime
linker links the library into an executable file, the linker copies the internal
name from the library into that list of needed shared library files.

If there is no internal name of a shared library, then the linker copies the path
of the shared library file instead.

Example: One way to use the -h  option:

1. Make and use one version of a shared library.

2. Make and use a second version of the library.

–help Options—show a list of option summaries.

Show a of this list of option summaries and show how to send feedback
comments to Sun. See also -xhelp=h.

–I dir Add dir to the include file search path.

Insert the directory dir at the start of the include file search path. No space is
allowed between -I  and dir. Invalid directories are just ignored with no
warning message.

The include file search path is the list of directories searched for include files.
This search path is used by:

• The preprocessor directive #include
• The f77  statement INCLUDE

demo% ld -G -o libxyz.1 -h libxyz.1  ... Create shared library
demo% ln libxyz.1 libxyz.so Make link libxyz.so  to libxyz.1
demo% f77  ... -o verA -lzyz   ... Executable verA  needs libxyz.1

demo% ld -G -o libxyz.2 -h libxyz.2 ... Create shared library
demo% rm libxyz.so Remove old link
demo% ln libxyz.2 libxyz.so Make link libxyz.so  to libxyz.2
demo% f77  ... -o verB -lxyz   ... Executable verB  needs libxyz.2



The Compiler  55

2

Example: Search for include files in /usr/applib:

Remarks
• For preprocessor #include,  use .F
• For f77  language INCLUDE, use .f  or .F
• Do not use an INCLUDE statement to include a #include  file.
• Use -I dir again for more paths. Example: f77 -Ipath1 -Ipath2 any.F .

Order
The search order for relative path names is:

1. The directory that contains the source file

2. The directories that are named in the -I dir options

3. The directories in the default list

The default list for –I dir depends on Solaris 1.x/2.x and the directory for f77
installation. This list is usually set to the following list of paths:

–i2 Integers—make the default integer size two bytes.

Make two the default size in bytes for integer and logical constants and
variables. But for INTEGER*n Y, Y uses n bytes, regardless of the –i2 . This
option may increase runtime. If you need short integers, it is generally better to
use INTEGER*2 for specific (large) arrays.

demo% f77 -I/usr/applib growth.F

Table 2-14 Default Search Paths for Include Files

Standard Install Nonstandard Install to / my/ dir/

Solaris 1.x /usr/lang/SC4.0/include/f77

/usr/include

/ my/ dir/SC4.0/include/f77

/usr/include

Solaris 2.x /opt/SUNWspro/SC3.0.1/include/f77

/usr/include

/ my/ dir/SUNWspro/SC3.0.1/include/f77
/usr/include



 56 FORTRAN 77 User’s Guide

2

–i4 Integers—make the default integer size four bytes.

Make four the default size in bytes for integer and logical constants and
variables. In INTEGER Y, Y uses four bytes, but in INTEGER*n Y, Y  uses n
bytes, regardless of -i4 .

-inline= rlst Inline—request inlining of the specified user routines for faster execution.

Request that the optimizer inline the user-written routines named in rlst. The
list is a comma-separated list of functions and subroutines.

Example: Inline the routines sub1, sub6, sub9:

Following are the restrictions; no warnings are issued:

• Optimization must be -O3  or greater (SPARC, Solaris 2.x).
• The source for the routine must be in the file being compiled.
• f77  decides which ones to inline (inlining must look profitable and safe).

Note the interactions:

• If you compile with -O3 , the -inline  option can increase speed by
inlining some routines. The -O3  option inlines none by itself.

• If you compile with -O4 , the -inline  can decrease speed by restricting
inlining to only those routines in the list. With -O4 , f77  normally tries to
inline all appropriate user-written subroutines and functions.

-Kpic Synonym for -pic .

-KPIC Synonym for -PIC .

–Ldir Library—search for libraries in the dir directory first.

Add dir at the start of the list of object-library search directories. While
building the executable file,ld (1) searches dir for archive libraries (.a  files)
and shared libraries (.so  files). A space between -L  and dir is optional. The
directory dir is not built in to the a.out  file. See also –lx. ld  searches dir before

demo% f77 -O3 -inline= sub1, sub6, sub9 *.f



The Compiler  57

2

the default directories. See “Search Order for Library Search Paths” on
page 151. For the relative order between LD_LIBRARY_PATH and -L dir, see
ld (1).

Example: Use -L dir to specify a library search directory:

Example: Use -L dir again to add more directories:

Here are the restrictions:

• No -L/usr/lib : In Solaris 1.x and 2.x, do not use –Ldir to specify
/usr/lib . It is searched by default. Including it here may prevent using the
unbundled libm .

• No -L/usr/ccs/lib : In Solaris 2.x, do not use –Ldir to specify
/usr/ccs/lib . It is searched by default. Including it here may prevent
using the unbundled libm .

–l x Library—link with library lib x.a .

Pass “-l x” to the linker. ld  links with object library lib x. If shared library
lib x.so  is available, ld  uses it, otherwise, ld  uses archive library lib x.a. If it
uses a shared library, the name is built in to a.out . No space is allowed
between -l  and x character strings.

Example: Link with the library libV77 :

Use -l x again to link with more libraries.

Example: Link with the libraries liby  and libz :

demo% f77 -Ldir1 any.f

demo% f77 -Ldir1  -Ldir2  any.f

demo% f77 any.f –lV77

demo% f77 any.f –ly -lz

Solaris 1.x and 2.x

Solaris 2.x



 58 FORTRAN 77 User’s Guide

2

See also “Library Search Paths and Order” on page 149.

-libmil Inline the selected library routines for optimization.

There are inline templates for some of the library routines. This option selects
those inline templates that produce the fastest executables for the floating-
point options and platform currently being used.

-loopinfo iMPact—Show which loops are parallelized (Solaris 2.x, SPARC only).

Show which loops are parallelized and which are not. Use with the
-parallel , -autopar , or -explicitpar  options.

This option requires the iMPact FORTRAN 77 multiprocessor enhancement
package.

Pass f77  standard error into the error  utility to get an annotated source
listing (each loop tagged as parallelized or not); otherwise, loops are identified
only by line number.

Example: -loopinfo , in sh , pass f77  standard error to the error  utility:

For details on error , see Section 7.5, “Compiler Messages in Listing (error).”

-misalign Align—allow for misaligned data (SPARC only).

The -misalign  option allows for misaligned data in memory. Use this option
only if you get a warning that COMMON or EQUIVALENCE statements cause data
to be misaligned. This option generates much slower code for references to
dummy arguments. If you can, recode the indicated section instead of
recompiling with this option.

Example: The following program has misaligned variables.

demo% f77 -autopar -loopinfo any.f 2>&1 | error options

INTEGER*2   I(4)
REAL        R1, R2
EQUIVALENCE (R1, I(1)), (R2, I(2))
END



The Compiler  59

2

The following error message is issued:

If you compile and link in separate steps, and you compile with the
-misalign  option, then be sure to link with the -misalign  option.

–mp=x Specify the style for MP directives (Solaris 2.x, SPARC only).

x is either sun  or cray . The default is sun . Use only one in any given run.

-mp=sun : Accept only the Sun-style MP directives.

These directives start with the C$PAR or !$PAR  prefix.

-mp=cray : Accept only the Cray-style MP directives.

These directives start with the CMIC$ or !MIC$  prefix.

–mt Multithread safe libraries—use for low level threads (Solaris 2.x, SPARC only).

Use multithread-safe libraries. If you do your own low-level thread
management, this option helps prevent conflicts between threads. For
FORTRAN 77, the multithread-safe library is libF77_mt .

Use -mt  if you mix C and FORTRAN 77, and you manage multithread C
coding using the libthread  primitives. Before you use your own multi-
threaded coding, read the Solaris manual, Multithreaded Programming Guide.

The –mt  option does not require the iMPact FORTRAN 77 multiprocessor
enhancement package, but to compile and run it does require Solaris 2.2 or
later. The equivalent of -mt  is included automatically with -autopar ,
-explicitpar , or -parallel .

On a single-processor system, the generated code can run more slowly with the
–mt  option, but usually not by a significant amount.

The restrictions are:

"misalign.f", line 4: Error: bad alignment for "r2" forced by
equivalence



 60 FORTRAN 77 User’s Guide

2

• With -mt , if a function does I/O, do not name that function in an I/O list.
Such I/O is called recursive I/O, and it causes the program to hang
(deadlock). Recursive I/O is unreliable anyway, but is more apt to hang
with -mt .

• In general, do not combine your own multi-threaded coding with
-autopar , -explicitpar , or -parallel . Either do it all yourself or let
the compiler do it. You may get conflicts and unexpected results if you and
the compiler are both trying to manage threads with the same primitives.

–native

Optimize performance for the host system.

The -fast  option includes -native  in its expansion.

For Solaris 1.x

Direct the compiler to decide which floating-point options are available on the
machine the compiler is running on, and generate code for the best one. If you
compile and link in separate steps, and you compile with the -native  option,
then be sure to link with -native .

If you compile and link in separate steps, and you compile with the -native
option, then be sure to link with -native .

For Solaris 2.x

This option is a synonym for -xtarget=native .

-noautopar iMPact—Do not parallelize automatically (Solaris 2.x, SPARC only).

Do not parallelize loops automatically. This option requires the FORTRAN 77
multiprocessor enhancement package.

-nocx Make executable file smaller (SPARC only).

This makes it smaller by about 112K bytes. The smaller files are from not linking
with -lcx . The runtime performance and accuracy of binary-decimal base-
conversion will be somewhat compromised.



The Compiler  61

2

-nodepend Cancel -depend  in command line (SPARC only).

Cancel any -depend  from earlier on the command line. This option does not
require the iMPact FORTRAN 77 multiprocessor package.

-noexplicitpar iMPact—Do not parallelize explicitly (Solaris 2.x, SPARC only).

This option requires the iMPact FORTRAN 77 multiprocessor package.

-nofstore Do not force precision of expression (x86 only).

Do not force expression precision to precision of destination variable (x86 only).
This option is for assignment statements only, and is the default if -fast  is
on.

-nolib Library—Do not link with system libraries.

Do not automatically link with any system or language library; that is do not
pass any -l x options on to ld . The default is to link such libraries into the
executables automatically, without the user specifying them on the command
line.

The -nolib  option makes it easier to link one of these libraries statically. The
system and language libraries are required for final execution. It is your
responsibility to link them in manually. This option provides you with
complete control.

For example, a program linked dynamically with libF77  fails on a machine
that has no libF77 . When you ship your program to your customer, you can
ship libF77  or you can link it into your program statically.

Example: Link libF77  statically and link libc  dynamically:

The order for the -l x options is important. Use the order shown in the
example.

demo% f77 -nolib any.f -Bstatic -lF77 -Bdynamic -lm -lc



 62 FORTRAN 77 User’s Guide

2

–nolibmil No inline templates—reset –fast not to include inline templates.

Use this option after the -fast  option, for example:

–noqueue License—do not queue a license request.

If you use this option, and no license is available, the compiler returns without
queueing your request and without doing your compile. A nonzero status is
returned for testing in make files.

-noreduction iMPact—do no reduction with parallelization (Solaris 2.x, SPARC only).

This option requires the iMPact FORTRAN 77 multiprocessor enhancement
package.

-norunpath Library—put no run path in executable (Solaris 2.x only).

If an executable file uses shared libraries, then the compiler normally builds in
a path that tells the runtime linker where to find those shared libraries. The
path depends on the directory where you installed the compiler. The
-norunpath  option prevents that path from being built in to the executable.

This option is helpful when libraries have been installed in some nonstandard
location, and you do no wish to make the loader search down those paths
when the executable is run at another site. Compare with -R list.

–Nxk Table sizes—reset internal compiler tables.

x must be one of c , d, l , n, q, s , or x .
k is an integer.

Make static tables in the compiler bigger. The compiler issues an error message
if tables overflow, and suggests that you apply one or more of these flags. No
spaces are allowed within this option string. The choices are:

-Nc k

Control statements. Maximum depth of nesting for control statements such
as DO loops. The default is 25. Example: f77 -Nc50 any.f

demo% f77 –fast –nolibmil …



The Compiler  63

2

-Nd k

Data structures. Maximum depth of nesting for data structures and unions.
The default is 20. Example: f77 -Nd30 any.f

-Nl k

Continuation lines. Maximum number of continuation lines for a continued
statement. The default is 99 (1 initial and 99 continuation). Any number
greater than 19 is nonstandard. ♦ Example: f77 -Nl200 any.f

-Nn k

Identifiers. This option has no effect. The number of identifiers is now
unlimited. This option is still recognized so it does not break make files, but
it may be deleted in a future release.

-Nq k

Equivalence. Maximum number of equivalenced variables. The default is
500. Example: f77 -Nq600 any.f

-Ns k

Statement numbers. Maximum number of statement labels. The default is
2000. Example: f77 -Ns3000 any.f

-Nx k

External names. Maximum number of external names (common block
names, subroutine and function names). The default is 1000. Example:
f77 -Nx2000 any.f

–O[ n] Performance—optimize for execution time.

n can be 1, 2, 3, 4, or 5. No space is allowed between -O  and n. If -O[n] is not
specified, the compiler still performs a default level of optimization; that is, it
executes a single iteration of local common subexpression elimination and
live/dead analysis.

–g  does not suppress –On, but –On limits –g  in certain ways; for details see –g,
on page 52. For makefile changes regarding -o  with -g , see –g, on page 52.



 64 FORTRAN 77 User’s Guide

2

–O If you do not specify n, f77  uses whatever n is most likely to yield the fastest
performance for most reasonable applications. For the current release of
FORTRAN 77, this is 3.

–O1 Do only the minimum amount of optimization (peephole). This is postpass
assembly-level optimization. Do not use -O1  unless -O2  and -O3  result in
excessive compilation time, or running out of swap space.

–O2 Do basic local and global optimization. This level usually gives minimum code
size. The details are: induction variable elimination, local and global common
subexpression elimination, algebraic simplification, copy propagation, constant
propagation, loop-invariant optimization, register allocation, basic block
merging, tail recursion elimination, dead code elimination, tail call elimination,
and complex expression expansion.

Do not use –O2 unless –O3 results in excessive compilation time, running out
of swap space, or excessively large code size.

–O3 Besides what –O2 does, this option also optimizes references and definitions for
external variables. Usually –O3 makes larger code.

–O4 Besides what –O3 does, this option also does automatic inlining of routines
contained in the same file. It usually improves execution speed, but sometimes
makes it worse. Usually –O4 makes larger code.

For most programs, –O4 is faster than –O3 is faster than –O2 is faster than -O1 .
But in a few cases, –O2 might be better than the others, or –O3 might be better
than –O4. You can try compiling with each level to find if you have one of
these rare cases.

The –g  option suppresses the –O4 automatic inlining described above.

The-O3  and -O4  options reduce the utility of debugging in that you cannot
print variables from dbx , but you can use the dbx where  command to get a
symbolic traceback, without the penalty of turning off optimization.

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization, and resumes subsequent routines at
the original level specified in the command-line option. (SPARC only)



The Compiler  65

2

-O5 Attempt the highest level of optimization (Solaris 2.x only).

Use optimization algorithms that take more compilation time, or that do not
have as high a certainty of improving execution time.

Optimization at this level is more likely to improve performance if it is done
with profile feedback. See -xprofile= p.

–o nm Output file—name the executable file nm instead of a.out .

There must be a blank between -o  and nm.

-oldldo Output—use old list-directed output.

Omit the blank that starts each record for list-directed output. This is a change
from releases 1.4 and earlier. The default behavior is to provide that blank,
since the FORTRAN 77 Standard requires it. Note also the FORM='PRINT'
option of OPEN. You can compile some source files with -oldldo  and some
without, in the same program.

–onetrip DO loops—use one trip DO loops.

Compile DO loops so that they are performed at least once if reached. DO loops
in this FORTRAN 77 are not performed at all if the upper limit is smaller than
the lower limit, unlike some implementations of FORTRAN 66 DO loops.

–p Profile by procedure for prof .

Prepare object files for profiling, see prof  (1). If you compile and link in
separate steps, and if you compile with the -p  option, then be sure to link with
the -p  option. -p  with prof  is provided mostly for compatibility with older
systems. -pg  with gprof  does more.

–pad[= p] Insert padding for efficient use of cache.

This option inserts padding between arrays or character strings if they are:

• Static local and not initialized, or
• In common blocks

For either one, the arrays or character strings can not be equivalenced.



 66 FORTRAN 77 User’s Guide

2

For -pad [=p], if p is present, it must be one of the following:

local : Put padding between adjacent local variables.
common: Put padding between variables in common blocks.
local,common : Both local and common padding
common,local : Both local and common padding

Each -pad  option string is one token—no internal spaces.

Defaults for -pad :

• Without the -pad [=p] option, f77  does no padding.
• With -pad , but without the =p, f77  does both local and common padding.

The following are equivalent:
• f77 -pad  any.f
• f77 -pad=local,common  any.f
• f77 -pad=common,local  any.f
• f77 -pad=local -pad=common  any.f
• f77 -pad=common -pad=local  any.f

The -pad [=p] option applies to items that satisfy the following criteria:

• The items are arrays or character strings
• The items are static local or in common blocks

For a definition of local variables, see –stackvar.

Restrictions on -pad=common
• Neither the arrays nor the character strings are equivalenced
• If -pad=common  is specified for compiling a file that references a common

block, it must be specified when compiling all files that reference that
common block. The option changes the spacing of variables within the
common block. If one program unit is compiled with the option and another
is not, references to what should be the same location within the common
block might reference different locations.

• If -pad=common  is specified, the declarations of common block variables in
different program units must be the same except for the names of the
variables.The amount of padding inserted between variables in a common
block depends on the declarations of those variables. If the variables differ
in size or rank in different program units, even within the same file, the
locations of the variables might not be the same.



The Compiler  67

2

• If -pad=common  is specified, EQUIVALENCE declarations involving common
block variables cause a fatal compilation error.

-parallel iMPact—Parallelize with: -autopar , -explicitpar , -depend  (SPARC, 2.x).

Parallelize loops both automatically by the compiler and explicitly specified by
the programmer. With explicit parallelization of loops, there is a risk of
producing incorrect results. If optimization is not at -O3  or higher, then it is
raised to -O3 .

The -parallel  option reduces the utility of debugging (-g ) in that you
cannot print variables from dbx , but you can still use the dbx where  command
to get a symbolic traceback.

Avoid -parallel  if you do your own thread management. See –mt.

The -parallel  option requires the iMPact FORTRAN 77 multiprocessor
enhancement package. To get faster code, use this option on a multiprocessor
SPARC system. On a single-processor system, the generated code usually runs
more slowly.

See Appendix C,  “iMPact: Multiple Processors.”

-pentium Generate code for Pentium (x86 only).

Generate code that exploits features available on x86 Pentium compatible
computers. The default is -386 . Code compiled with -pentium  does run on
80386 and 80486 hardware, but it may be slower.

–pg Profile by procedure for gprof .

Produce counting code in the manner of –p , but invoke a runtime recording
mechanism that keeps more extensive statistics and produces a gmon.out  file
at normal termination. Then you can make an execution profile by running
gprof  (1). -pg  and gprof  are complementary to -a  and tcov .

Library options must be after the .f  and .o  files (-pg  libraries are static).

If you compile and link in separate steps, and you compile with -pg , then be
sure to link with -pg .



 68 FORTRAN 77 User’s Guide

2

For Solaris 2.x, when the operating system is installed, gprof  is included if
you do a developer install, rather than an end user install; it is also included if
you install the package SUNWbtool .

–pic Library—produce position-independent code for shared library.

This kind of code is for dynamic shared libraries. Each reference to a global
datum is generated as a dereference of a pointer in the global offset table. Each
function call is generated in program-counter-relative addressing mode
through a procedure linkage table.

With -pic (SPARC only):

• The size of the global offset table is limited to 8K.
• Do not mix -pic  and -PIC .

–PIC Library—similar to -pic , but with 32-bit addresses (SPARC only).

This option is similar to -pic , but it allows the global offset table to span the
range of 32-bit addresses. Use it in those rare cases where there are too many
global data objects for -pic . Do not mix -pic  and -PIC .
Synonym for -p .

–Qoption  pr ls Option—pass option list to the program pr.

Pass the option list ls to the program pr. There must be a blank between
Qoption  and pr and ls. The Q can be uppercase or lowercase. The list is a
comma-delimited list of options, with no blanks within the list. Each option
must be appropriate to that program, and can begin with a minus sign.

The program can be one of the following: as , cg , cpp , fbe , f77pass0 ,
f77pass1 , iropt , ld , or ratfor .

In Solaris 2.x, the assembler used by the compiler is named fbe .
In Solaris 1.x, it is called as .



The Compiler  69

2

Example: Pass the linker option -s  to the linker ld :

Example: Load map, 2.x:

Example: Load map, 1.x:

–R ls Library—store library paths in executable (Solaris 2.x only).

With this option, the linker, ld (1), stores a list of library search paths into the
executable file.

ls is a colon-separated list of directories for library search paths. The blank
between -R  and ls is optional.

Multiple instances of this option are concatenated together, with each list
separated by a colon.

The list is used at runtime by the runtime linker, ld.so . At runtime, dynamic
libraries in the listed paths are scanned to satisfy any unresolved references.

Use this option to let your users run your executables without a special path
option to find your dynamic libraries.

For f77 , -R  and the environment variable LD_RUN_PATH are not identical.
They are identical, however, for the runtime linker, ld.so .

If you build a.out  with:

• -R , then only the paths of -R  are put in a.out . So -R  is raw: it inserts only
the paths you name, and no others.

• LD_RUN_PATH, then the paths of LD_RUN_PATH are put in a.out , plus
paths for FORTRAN 77 libraries. So LD_RUN_PATH is augmented: it inserts
the ones you name, plus various others.

demo% f77 –Qoption ld -s src.f

Solaris 2.x demo% f77 –Qoption ld -m src.f

Solaris 1.x demo% f77 –Qoption ld -M src.f



 70 FORTRAN 77 User’s Guide

2

• Both LD_RUN_PATH and -R , then only the paths of -R  are put in a.out , and
those of LD_RUN_PATH are ignored.

–r8 Set 8 byte default for REAL,INTEGER,  and LOGICAL.

This option sets the default size for REAL, INTEGER,  and LOGICAL to 8, and
for COMPLEX to 16. For INTEGER and LOGICAL, the compiler allocates 8 bytes, but
does 4-byte arithmetic. For SPARC, it sets the default size for DOUBLE
PRECISION to 16, and for DOUBLE COMPLEX to 32.

REAL will be interpreted as DOUBLE PRECISION, COMPLEX as DOUBLE
COMPLEX. For SPARC, DOUBLE PRECISION will be interpreted as quadruple
precision and DOUBLE COMPLEX as quadruple complex.

This option applies to variables, literal constants, and intrinsic functions
declared without an explicit byte size. As an intrinsic function example, SQRT
is treated as DSQRT.

If you specify the size, then the default size is not used. For example, with
REAL*n R, INTEGER*n I , LOGICAL*n L, and COMPLEX*n Z, the sizes of R, I , L,
and Z are not affected by -r8 .

In general, if you compile one subprogram with -r8 , then be sure to compile all
subprograms of that program with -r8 . Similarly, for programs
communicating through files in unformatted I/O, if one program is compiled
with -r8 , then the other program must also be compiled with -r8 .

The impact on runtime performance may be great. With -r8 , an expression
like float = 15.0d0*float  is evaluated in quadruple precision due to the
declaration of the constant 15.

If you select both –r8  and –i2 , the results are unpredictable.

See also -dble .

-reduction iMPact—do reduction loops (Solaris 2.x, SPARC only).

Analyze loops for reduction during automatic parallelization. There is
potential for roundoff error with the reduction.



The Compiler  71

2

The -reduction  option requires the iMPact FORTRAN 77 multiprocessor
enhancement package. To get faster code, this option requires a multiprocessor
system. On a single-processor system, the generated code usually runs more
slowly.

See Appendix C,  “iMPact: Multiple Processors."

Reduction works only during automatic parallelization. If you specify
-reduction  without -autopar , the compiler does no reduction. If you have
a directive that explicitly specifies a loop, then there us no reduction for that
loop.

Example: Automatically parallelize with reduction:

–S Assembly source—generate and leave only assembly source code.

Compile the named programs and leave the assembly-language output on
corresponding files suffixed with .s . No .o  file is created.

–s Symbol table—strip the executable file of its symbol table.

This option makes the executable file smaller and more difficult to reverse
engineer. However, this option prevents debugging.

–sb SourceBrowser—produce table information for the SourceBrowser.

–sbfast Similar to -sb , but faster, and makes no object files.

Produce only table information for SourceBrowser and stop. Do not assemble,
link, or make object files.

–silent Show prompt only, reduce number of compiler messages.

Use this option to reduce the number of messages from the compiler. If there
are no compilation warnings or errors, then show only the prompt. The default
is to show the entry names and the file names.

demo% f77 -autopar -reduction any.f



 72 FORTRAN 77 User’s Guide

2

–stackvar Allocate local variables on the stack for better optimizing with parallelization.

Use the stack to allocate all local variables and arrays in a routine unless
otherwise specified. This option makes them automatic, rather than static, and
provides more freedom to the optimizer for parallelizing a CALL in a loop.

Variables and arrays are local, unless they are:

• Arguments in a SUBROUTINE or FUNCTION statement (already on stack)
• Global items in a COMMON or SAVE, or STATIC statement
• Initialized items in a type statement or a DATA statement, such as:

REAL X/8.0/  or DATA X/8.0/

You can get a segmentation fault using -stackvar  with large arrays. Putting
large arrays onto the stack can overflow the stack, so you may need to increase
the stack size.

There are two stacks:

• The whole program has a main stack.
• Each thread of a multi-threaded program has a thread stack.

The default stack size is about 8 Megabytes for the main stack and 256 KBytes
for each thread stack. The limit  command (with no parameters) shows the
current main stack size. If you get a segmentation fault using -stackvar , you
might try doubling the main stack size at least once.

Example: Show the current main stack size:

Example: Set the main stack size to 64 Megabytes:

The main stack size  →

demo% limit
cputime         unlimited
filesize        unlimited
datasize        523256 kbytes
stacksize       8192 kbytes
coredumpsize    unlimited
descriptors     64
memorysize      unlimited
demo%

demo% limit stacksize 65536



The Compiler  73

2

Example: Set each thread stack size to 8 Megabytes:

See csh (1) for details on the limit  command.

–temp= dir Temporary files—define directory for temporary files.

Set directory for temporary files used by f77  to be dir. No space is allowed
within this option string. Without this option, the files are placed in: /tmp/ .

–time Time for execution—show for each compilation pass.

–U Uppercase identifiers—leave identifiers in the original case.

Do not convert uppercase letters to lowercase, but leave them in the original
case. The default is to convert to lowercase except within character-string
constants.

If you debug FORTRAN 77 programs that use other languages, it is generally
safer to compile with the -U  option to get case-sensitive variable recognition. If
you are not consistent in the case of your variables, the -U  option can cause
problems. That is, if you sometimes type Delta , DELTA or delta , then -U
makes them different symbols.

–u Report undeclared variables.

Make the default type for all variables be undeclared rather than using
FORTRAN 77 implicit typing. This option warns of undeclared variables, and
does not override any IMPLICIT  statements or explicit type statements.

-unroll= n Performance—unroll loops: direct the optimizer on unrolling loops.

n is a positive integer. The choices are:

• If n=1, this option directs the optimizer to unroll no loops (command).
• If n>1, this option suggests to the optimizer that it unroll loops n times.

If any loops are actually unrolled, then the executable file is larger.

demo% setenv STACKSIZE 8192



 74 FORTRAN 77 User’s Guide

2

–V Version ID—similar to -v , but also show version ID.

This option prints the name and version ID of each pass as the compiler
executes.

–v Show name of each compiler pass.

Show the name of each pass as the compiler executes, plus show in detail the
options and environment variables used by the driver.

-vax= v Specify some coice of VMS features to use.

v must be one of the following: align , misalign , or no .

The definitions are:

• -vax=align

Retain the old (release 3.0 and earlier) -xl  behavior; that is, structures are
not padded. If your program has misaligned structures, it will not run.

• -vax=misalign

Same as -vax=align , except that this option, a synonym for -xl , allows
structures to be misaligned.

• -vax=no

Equivalent to not specifying -xl  or -vax=misalign .

For details, see the description for -xl .

-vpara iMPact—show verbose parallelization warnings (Solaris 2.x, SPARC only).

As the compiler detects each explicitly parallelized loop that has dependencies,
it issues a warning message, but the loop is still parallelized.

The -vpara  option requires the iMPact FORTRAN 77 multiprocessor package.

Use -vpara  with the -explicitpar  option and the C$PAR DOALL directive.

Example: -vpara  for verbose parallelization warnings:

demo% f77 -explicitpar -vpara any.f



The Compiler  75

2

-w Warnings—do not show warnings.

This option suppresses most warning messages. However, if one option
overrides all or part of an option earlier on the command line, you do get a
warning.

Example: -w  still allows some warnings to get through:

-xa Synonym for -a .

-xarch= a Limit the instructions f77  can use (SPARC, Solaris 2.x only).

a must be one of: generic , v7 , v8a , v8 , v8plus , v8plusa .

Although this option can be used alone, it is part of the expansion of the
-xtarget  option; its primary use is to override a value supplied by the
-xtarget  option.

This option limits the instructions generated to those of the specified
architecture, and allows the specified set of instructions. It does not guarantee
an instruction is used; however, under optimization, it is usually used.

If this option is used with optimization, the appropriate choice can provide
good performance of the executable on the specified architecture. An
inappropriate choice can result in serious degradation of performance.

v7, v8 , and v8a  are all binary compatible. v8plus  and v8plusa  are binary
compatible with each other and forward, but not backward.

For any particular choice, the generated executable may run much more slowly
on earlier architectures.

demo% f77  -w -fast  -silent -O4  any.f
f77: Warning: -O4 overwrites previously set optimization level
              of -O3
demo%



 76 FORTRAN 77 User’s Guide

2

generic : Get good performance on most SPARC systems.

This is the default. This option uses the best instruction set for good
performance on most SPARC processors without major performance
degradation on any of them. With each new release, this best instruction set
will be adjusted, if appropriate.

v7 : Limit the instruction set to V7 architecture.

This option uses the best instruction set for good performance on the V7
architecture, but without the quad-precision floating-point instructions.

This is equivalent to using the best instruction set for good performance on
the V8 architecture, but without the following instructions:
• The quad-precision floating-point instructions
• The integer mul  and div  instructions
• The fsmuld  instruction

Examples: SPARCstation 1, SPARCstation 2

v8a : Limit the instruction set to the V8a version of the V8 architecture.

By definition, V8a means the V8 architecture, but without:
•    The quad-precision floating-point instructions
•    The fsmuld  instruction

This option uses the best instruction set for good performance on the V8a
architecture.

Example: Any machine based on the MicroSPARC I chip architecture

v8 : Limit the instruction set to V8 architecture.

This option uses the best instruction set for good performance on the V8
architecture, but without quad-precision floating-point instructions.

Example: SPARCstation 10

v8plus : Limit the instruction set to the V8plus version of the V9 architecture.

By definition, V8plus means the V9 architecture, except:
• Without the quad-precision floating-point instructions
• Limited to the 32-bit subset defined by the V8plus specification
• Without the VIS instructions



The Compiler  77

2

This option uses the best instruction set for good performance on the V8plus
chip architecture. In V8plus, a system with the 64-bit registers of V9 runs in
32-bit addressing mode, but the upper 32 bits of the i x and l x registers
must not affect program results.

Example: Any machine based on the UltraSPARC chip architecture

Use of -xarch=v8plus  causes the .o  file to be marked as a V8+ binary.
Such binaries will not run on a V7 or V8 machine.

v8plusa : Limit the instruction set to the V8plusa architecture variation.

By definition, V8plusa, means the V8plus architecture, plus:
• The UltraSPARC-specific instructions
• The VIS instructions

This option uses the best instruction set for good performance on the
UltraSPARC™ architecture, but limited to the 32-bit subset defined by the
V8plus specification.

Example: Any machine based on the UltraSPARC chip architecture

Use of -xarch=v8plusa  also causes the .o  file to be marked as a Sun-
specific V8plus binary. Such binaries will not run on a V7 or V8 machine.

-xautopar Synonym for -autopar (Solaris 2.x only).

-xcache= c Define cache properties for the optimizer (SPARC, Solaris 2.x only).

c must be one of the following:

• generic
• s1/ l1/ a1
• s1/ l1/ a1: s2/ l2/ a2
• s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3

The si/ li/ ai are defined as follows:

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i



 78 FORTRAN 77 User’s Guide

2

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

Although this option can be used alone, it is part of the expansion of the
-xtarget  option; its primary use is to override a value supplied by the
-xtarget  option.

Example: -xcache=16/32/4:1024/32/1  specifies the following:

-xcg89 Synonym for -cg 89 .

-xcg92 Synonym for -cg 92 .

    -xchip= c Specify processor for the optimizer (SPARC, Solaris 2.x only).

c must be one of: generic , old , super , super2 , micro , micro2 , hyper ,
hyper2 , powerup , ultra

This option specifies timing properties by specifying the target processor.

Table 2-15 -xcache  Values

Value Meaning

generic Define the cache properties for good performance on
most SPARCs.

This is the default value which directs the compiler to
use cache properties for good performance on most
SPARC processors, without major performance
degradation on any of them.

s1/ l1/ a1 Define level 1 cache properties.

s1/ l1/ a1: s2/ l2/ a2 Define levels 1 and 2 cache properties.

s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3 Define levels 1, 2, and 3 cache properties

Level 1 cache has:
   16K bytes
   32 bytes line size
   4-way associativity

Level 2 cache has:
   1024K bytes
   32 bytes line size
   Direct mapping associativity



The Compiler  79

2

Although this option can be used alone, it is part of the expansion of the
-xtarget  option; its primary use is to override a value supplied by the
-xtarget  option.

Some effects of -xchip= c are:

• The ordering of instructions, that is, scheduling

• The way the compiler uses branches

• The instructions to use in cases where semantically equivalent
alternatives are available

-xdepend Synonym for -depend (Solaris 2.x only).

-xexplicitpar Synonym for -explicitpar (Solaris 2.x only).

Table 2-16 -xchip  Values

Value Meaning

generic Use timing properties for good performance on most SPARCs.

This is the default value that directs the compiler to use the best timing
properties for good performance on most SPARC processors, without
major performance degradation on any of them.

old Use timing properties of pre-SuperSPARC™ processors.

super Use timing properties of the SuperSPARC chip.

super2 Use timing properties of the SuperSPARC II chip.

micro Use timing properties of the MicroSPARC™ chip.

micro2 Use timing properties of the MicroSPARC II chip.

hyper Use timing properties of the HyperSPARC™ chip.

hyper2 Use timing properties of the HyperSPARC II chip.

powerup Use timing properties of the Weitek® PowerUp™ chip.

ultra Use timing properties of the UltraSPARC chip.



 80 FORTRAN 77 User’s Guide

2

-xF Function reorder—allow function-level reordering (Solaris 2.x only).

Allow the reordering of functions in the core image using the compiler, the
Analyzer and the linker. If you compile with the -xF  option, then run the
Analyzer, you get a map file that shows an optimized order for the functions.
The subsequent link to build the executable file can be directed to use that map
by using the linker -Mmapfile  option. It places each function from the
executable file into a separate section. Within the mapfile, if you include the
flag O (that’s an oh, for order, not a zero) in the string of segment flags, then the
static linker ld  attempts to place sections in the order they appear in the
mapfile.

Example: In the mapfile, there can be a line such as:

See the analyzer (1) and debugger (1) man pages.

-xhelp= h Show help information for README file or options (flags).

The h is either readme  or flags .

readme : Show the online README file.
flags :   Show the compiler flags (options).

-xhelp=flags  is a synonym for -help .

-xildoff Turn off the Incremental Linker. (SPARC, Solaris 2.x only).

This forces the use of the standard linker, ld .

This option is the default if you do not use the -g  option. It is also the default
if you use -G  or name any source file on the command line.

Override this default by using the -xildon  option.

-xildon Turn on the Incremental Linker (SPARC, Solaris 2.x only).

Turn on the Incremental Linker and force the use of ild  in incremental mode.

text = LOAD ? RXO



The Compiler  81

2

This option is the default if you use -g  and do not use -G , and do not name any
source file on the command line.

Override this default by using the -xildoff  option.

-xinline= rlst Synonym for -inline= rlst.

-xl [ d] Extend the language with more VMS FORTRAN features.

-xl : Extend the language with more VMS features. This is a macro that is
translated to -vax=misalign , and provides the language features that are
listed later in this description.

Although you get most VMS features automatically, without any special
options, you must use the -xl  option for a few VMS features.

In general, you need the -xl  option if a source statement can be interpreted as
either a VMS feature or an f77  feature, and you want the VMS feature. In this
case, the -xl  option forces the compiler to interpret it the VMS way.

The following VMS language features require the -xl[d]  option:

• Unformatted record size in words rather than bytes (-xl )
• VMS style logical file names (-xl )
• Quote (") character introducing octal constants (-xl )
• Backslash (\) as ordinary character within character constants (-xl )
• Nonstandard form of the PARAMETER statement (-xl )
• Alignment of structures as in VMS. (-xl )
• Debugging lines as comment lines or FORTRAN 77 statements (-xld )

Use the -xl  to get VMS alignment if your program has some detailed
knowledge of how VMS structures are implemented.

If you use both -oldstruct  and -xl , then you get -oldstruct . If you need
to share structures with C, use the default; do not use -xl  and do not use
-oldstruct .

You may also be interested in -lV77  and the VMS library. See “Libraries
Provided with the Compiler” on page 168.

Read the chapter on VMS language extensions in the FORTRAN 77 4.0 Reference
Manual for details of the VMS features that you get automatically.



 82 FORTRAN 77 User’s Guide

2

-xld VMS—Debug comments: extended language, VMS, plus debug comments.

In addition to the features you get with -xl , the -xld  option causes
debugging comments (D or d in column one) to be compiled. Without the -xld
option, they remain comments only. No space is allowed between -xl  and d.

-xlibmil Synonym for -libmil .

-xlibmopt  Use library of optimized math routines (SPARC only).

Use selected math routines optimized for speed. This option usually generates
faster code. It may produce slightly different results; if so, they usually differ in
the last bit. The order on the command line for this library option is not
significant.

-xlicinfo License information—show license server user IDs.

Use this option to return license information about the licensing system—in
particular, the name of the license server and the user ID for each of the users
who have licenses checked out.

Generally, with this option, no compilation takes place, and a license is not
checked out. Also, this option is normally used with no other options.
However, if a conflicting option is used, then the last one on the command line
prevails, and there is a warning.

Example: Report license information, do not compile; the order counts:

Example: Do not report license information, do compile; the order counts:

demo% f77  -c -xlicinfo any.f



The Compiler  83

2

-Xlist Do global program checking.

This option helps find a variety of bugs by checking across routines for
consistency in arguments, common blocks, parameters, and so forth. In
general, -Xlist  also makes a line-numbered listing of the source and a cross
reference table of the identifiers. The errors that are found do not prevent the
program from being compiled and linked.

Example: Check across routines for consistency:

The above example shows the following in the output file fil.lst :

• A line-numbered source listing (default)
• Error messages (embedded in the listing) for inconsistencies across routines
• A cross reference table of the identifiers (default)

See “Global Program Checking (-Xlist)” on page 173,” for details.

-xloopinfo Synonym for -loopinfo (Solaris 2.x only).

-xnolib Synonym for -nolib .

-xnolibmil Synonym for -nolibmil .

-xnolibmopt Do not use fast math library (SPARC only).

Reset -fast  so that it does not use the library of selected math routines
optimized for performance. Use this after the -fast  option:
f77 -fast -xnolibmopt …

-xO[ n] Synonym for -O[n].

-xparallel Synonym for -parallel (Solaris 2.x only).

-xpg Synonym for -pg .

 demo% f77 -Xlist  fil.f



 84 FORTRAN 77 User’s Guide

2

-xprofile= p Collect or use data for profile to optimize (SPARC, Solaris 2.x only).

p must be one of collect , use [: nm], or tcov .

collect

Collect and save execution frequency data for later use by optimizer via
-xprofile=use  to improve optimization at a later compilation of the
program.

f77  compiles code to measure execution frequency at a low level. During
execution, execution frequency data is written to the file
binary_name.prof/feedback . If you run the program several times, the
execution frequency data accumulates in the feedback  file; that is, output
from prior runs is not lost.

use [: nm]

Use execution frequency data to optimize strategically.

The nm is the name of the executable that is being analyzed. This name is
optional. If nm is not specified, a.out  is assumed to be the name of the
executable.

The program is optimized by using the execution frequency data previously
generated and saved in the feedback  files written by a previous execution
of the program compiled with -xprofile=collect .

The source files and the compiler options (excepting only this option), must
be exactly the same as for the compilation used to create the compiled
program that was executed to create the feedback  file.

tcov

Collect data for programs with source code in header files.

This option is also good for programs which use C++ templates. Header
files or C++ templates are very unusual for Fortran programs, so most
Fortran users can safely ignore the tcov  value for -xprofile .

Code instrumentation is similar to that of -a , but .d  files are no longer
generated. Instead, a single file is generated, whose name is based on the
name of the final executable. For example, if /xy/stuff  is the executable
file, then /xy/stuff.profile/prog.tcovd  is the data file.



The Compiler  85

2

When running tcov , you must pass it the -x  option to make it use the new
style of data. If not, tcov  uses the old .d  files, if any, by default for data,
and produces unexpected output.

Unlike -a , the TCOVDIR environment variable has no effect at compile-time.
However, its value is used at program runtime.

See -a  for information on the old style of profiling; see also the tcov (1) man
page, and the Profiling Tools manual for more details.

-xreduction Synonym for -reduction (Solaris 2.x only).

-xregs= r Specify register usage (SPARC, Solaris 2.x only).

r is a comma-separated list that consists of one or more of the following:

 [no%]appl , [no%]float .

Where the % is shown, it is a required character.

Example: -xregs=appl,no%float

appl : Allow using the registers g2 , g3 , and g4 .

In the SPARC ABI, these registers are described as application registers.
Using these registers can increase performance because fewer load and store
instructions are needed. However, such use can conflict with some old
library programs written in assembly code.

no%appl : Do not use the appl  registers.

float : Allow using the floating-point registers as specified in the SPARC ABI.

You can use these registers even if the program contains no floating-point
code.

no%float : Do not use the floating-point registers.

With this option, a source program cannot contain any floating-point code.

The default is: -xregs=appl,float .



 86 FORTRAN 77 User’s Guide

2

-xs Allow debugging by dbx  without object (.o ) files (Solaris 2.x only).

With -xs , if you move executables to another directory, then you can use dbx
and ignore the object (.o ) files. Use this option in case you cannot keep the .o
files around.

• f77  passes -s  to the assembler and then the linker places all symbol tables
for dbx  in the executable file.

• This way of handling symbol tables is the older way. It is sometimes called
no auto-read.

• The linker links more slowly, and dbx  initializes more slowly.

Without -xs , if you move the executables, you must move both the source files
and the object (.o ) files, or set the path with either the dbx pathmap  or use
command.

• This way of handling symbol tables is the newer and default way of loading
symbol tables. It is sometimes called auto-read.

• The symbol tables are distributed in the .o  files so that dbx  loads the
symbol table information only if and when it is needed. Hence, the linker
links faster, and dbx  initializes faster.

-xsafe=mem Assume no memory-based traps (SPARC, Solaris 2.x only).

This allows f77  to assume no memory-based traps occur. It grants permission to
use the speculative load instruction on V9 machines.

-xsb Synonym for -sb .

-xsbfast Synonym for -sbfast .

-xspace Do not increase code size (SPARC, Solaris 2.x only).

Do no optimizations that increase the code size.

Example: Do not unroll loops.



The Compiler  87

2

-xtarget= t Specify system for optimization (SPARC, Solaris 2.x only).

Specify the target system for the instruction set and optimization.

t must be one of: native , generic , system-name.

The -xtarget  option permits a quick and easy specification of the -xarch ,
-xchip , and -xcache  combinations that occur on real systems. The only
meaning of -xtarget  is in its expansion.

The performance of some programs may benefit by providing the compiler
with an accurate description of the target computer hardware. When program
performance is critical, the proper specification of the target hardware could be
very important. This is especially true when running on the newer SPARC
processors. However, for most programs and older SPARC processors, the
performance gain is negligible and a generic  specification is sufficient.

native : Optimize performance for the host system.

The compiler generates code optimized for the host system. It determines
the available architecture, chip, and cache properties of the machine on
which the compiler is running.

generic : Get the best performance for generic architecture, chip, and cache.

The compiler expands -xtarget=generic  to:

-xarch=generic -xchip=generic -xcache=generic

This is the default value.

system-name: Get the best performance for the specified system.

You select a system name from Table 2-17 that lists the mnemonic encodings
of the actual system names and numbers.

This option is a macro. Each specific value for -xtarget  expands into a
specific set of values for the -xarch , -xchip , and -xcache  options, as shown
in Table 2-17. fpversion (1) can be run to determine the target definitions on
any system.

For example:

-xtarget=sun4/15  means -xarch=v8a -xchip=micro -xcache=2/16/1



 88 FORTRAN 77 User’s Guide

2

Table 2-17 -xtarget  Expansions

-xtarget -xarch -xchip -xcache

sun4/15 v8a micro 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/30 v8a micro 2/16/1

sun4/40 v7 old 64/16/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/65 v7 old 64/16/1

sun4/75 v7 old 64/32/1

sun4/110 v7 old 2/16/1

sun4/150 v7 old 2/16/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/630 v7 old 64/32/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1



The Compiler  89

2

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/64/1

ssslc v7 old 64/16/1

ss1 v7 old 64/16/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss2p v7 powerup 664/32/1

ss4 v8a micros2 8/64/1

ss5 v8a micro2 8/64/1

ssvyger v8a micro2 8/64/1

ss10 v8 super 16/32/4

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/20 v8 super 16/32/4

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/402 v8 super 16/32/4

ss10/412 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

Table 2-17 -xtarget  Expansions  (Continued)

-xtarget -xarch -xchip -xcache



 90 FORTRAN 77 User’s Guide

2

ss10/514 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss20/51 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/502 v8 super 16/32/4

ss10/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

ss1000 v8 super 16/32/4:1024/32/1

Table 2-17 -xtarget  Expansions  (Continued)

-xtarget -xarch -xchip -xcache



The Compiler  91

2

-xtime Synonym for -time .

-xunroll= n Synonym for -unroll= n.

-xvpara Synonym for -vpara (Solaris 2.x only).

-Zlp iMPact—prepare for profiling by looptool  (Solaris 2.x, SPARC only).

Prepare object files for the loop profiler, looptool . The looptool (1) utility
can then be run to generate loop statistics about the program.

The -Zlp  option requires the iMPact FORTRAN 77 multiprocessor package.

If you compile and link in separate steps, and you compile with -Zlp , then be
sure to link with -Zlp .

If you compile one subprogram with -Zlp , you need not compile all the
subprograms of that program with -Zlp . However, you receive the loop
information only for the files compiled with -Zlp , and no indication that the
program includes other files.

sc2000 v8 super 16/32/4:1024/64/1

cs6400 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ultra v8 ultra 16/32/1:512/64/1

ultra1/140 v8 ultra 16/32/1:512/64/1

ultra1/170 v8 ultra 16/32/1:512/64/1

ultra1/1170 v8 ultra 16/32/1:512/64/1

ultra1/2170 v8 ultra 16/32/1:512/64/1

ultra1/2200 v8 ultra 16/32/1:1024/64/1

Table 2-17 -xtarget  Expansions  (Continued)

-xtarget -xarch -xchip -xcache



 92 FORTRAN 77 User’s Guide

2

Refer to the Thread Analyzer User’s Guide for more information.

-ztext  Library—make no library with relocations (Solaris 2.x only).

Do not make the library if relocations remain. The general purpose of -ztext
is to ask if the generated library is pure text; instructions are all position-
independent code. Therefore, it is generally used with both -G  and -pic .

With -ztext , if ld  finds an incomplete relocation in the text segment, then it
does not build the library. If it finds one in the data segment, then it generally
builds the library anyway; the data segment is writable.

Without -ztext , ld  builds the library, relocations or not.

A typical use is to make a library from both source files and object files, where
you do not know if the object files were made with -pic .

Example: Make library from both source and object files:

An alternate use is to ask if the code is position-independent already: compile
without -pic , but ask if it is pure text.

Example: Ask if it is pure text already—even without -pic :

If you compile with -ztext  and ld  does not build the library, then you can
recompile without -ztext , and ld  will build the library. The failure to build
with -ztext  means that one or more components of the library cannot be
shared; however, maybe some of the other components can be shared. This
raises questions of performance that are best left to you, the programmer.

demo% f77 -G -pic -ztext -o MyLib -hMyLib a.f b.f x.o y.o

demo% f77 -G -ztext -o MyLib -hMyLib a.f b.f x.o y.o



The Compiler  93

2

-Ztha iMPact— prepare for Thread Analyzer (Solaris 2.x, SPARC only).

Prepare object files for Thread Analyzer. This option inserts calls to a profiling
library at all procedure entries and exits. Code compiled with -Ztha  links with
the library libtha.so . The -Ztha  option requires the iMPact FORTRAN 77
MP package.

If you compile and link in separate steps, and you compile with -Ztha , then
link with -Ztha .

If you compile a subprogram with -Ztha , you need not compile all
subprograms of that program with -Ztha . However, you get thread statistics
only for the files compiled with -Ztha , and no indication that the program
includes other files.

Refer to tha  (1) or the Thread Analyzer User’s Guide for more information.

2.9  Directives
A directive passes information to a compiler in a special form of comment. ♦

 Compiler directives are also called pragmas. There are two kinds of directives:

• General directives
• Parallel directives

General Directives

The form of a general directive is one of the following:

• C$PRAGMAid
• C$PRAGMAid ( a [ , a ] … ) [ , id ( a [ , a ] … ) ] ,…
• C$PRAGMA SUNid

The variable id identifies the specific directive; a is an argument.

Syntax

A general directive has the following syntax:

• In column one, any of the comment-indicator characters c , C, ! , or *
• The next 7 characters are $PRAGMA, no blanks, any uppercase or lowercase
• In any column, the !  comment-indicator character



 94 FORTRAN 77 User’s Guide

2

Rules and Restrictions

After the first eight characters, blanks are ignored, and uppercase and
lowercase are equivalent, as in FORTRAN 77 text.

Because it is a comment, a directive cannot be continued, but you can have
many C$PRAGMA lines, one after the other, as needed.

If a comment satisfies the above syntax, it is expected to contain one or more
directives recognized by the compiler; if it does not, a warning is issued.

The C Directive

The C()  directive specifies that its arguments are external functions written in
the C language. It is equivalent to an EXTERNAL declaration with the addition
that the FORTRAN 77 compiler does not append an underscore to such names,
as it ordinarily does with external names. See Chapter 12, “C–FORTRAN 77
Interface,” for more details.

The C()  directive for a particular function must appear before the first
reference to that function in each subprogram that contains such a reference.

Example: To compile ABC and XYZ for C:

The UNROLL Directive

The UNROLL directive requires that you specify SUN after C$PRAGMA.

The C$PRAGMA SUN UNROLL=n directive instructs the optimizer to unroll
loops n times.

n is a positive integer. The choices are:

• If n=1, this directive directs the optimizer not to unroll any loops.
• If n>1, this directive suggests to the optimizer that it unroll loops n times.

If any loops are actually unrolled, then the executable file becomes larger.

EXTERNAL ABC, XYZ  !$PRAGMA C(ABC, XYZ)



The Compiler  95

2

Example: To unroll loops two times:

Parallel Directives

A parallel directive directs the compiler to do some parallelizing. The syntax of
parallel directives is different from the syntax of general directives.

Syntax

A parallel directive has the following syntax:

• The first character must be in column one.
• The first character can be any one of c , C, * , or ! .
• The next 4 characters are $PAR, no blanks, any uppercase and lowercase.

A parallel directive differs slightly from the more general directive in the
following ways:

• A parallel directive must start in column one.
• The initial characters are C$PAR, *$PAR, c$par , *$par ,…

Usage

Currently, there are three parallel directives for explicit parallelization:

DOALL, DOSERIAL, and DOSERIAL*

See Appendix C,  “iMPact: Multiple Processors.”

2.10 Native Language Support
This version of FORTRAN 77 supports the development of applications using
languages other than English, including most European languages. As a result,
you can switch the development of applications from one native language to
another.

C$PRAGMA SUN UNROLL=2



 96 FORTRAN 77 User’s Guide

2

This FORTRAN 77 compiler implements internationalization as follows:

• It recognizes 8-bit characters from European keyboards supported by Sun.

• It is 8-bit clean and allows the printing of your own messages in the native
language.

• It allows native language characters in comments, strings, and data.

• It allows you to localize the compile-time error messages files.

Locale

You can enable changing your application from one native language to another
by setting the locale. Doing so changes some aspects of displays, such as date
and time formats.

For information on this and other native language support features, read
Chapter 6, “Native Language Application Support,” of the System Services
Overview for Solaris software.

Even though some aspects can change if you set the locale, certain aspects
cannot change. An internationalized compiler language does not allow input
and output in the various international formats. If it does, it does not comply
with the language standard appropriate for its language. For example, some
languages have standards that specify a period (.) as the decimal unit in the
floating-point representation.

Example: No I/O in international formats:

Here is the output:

native.f PROGRAM sample
REAL r
r = 1.2
WRITE( 6, 1 ) r

 1 FORMAT( 1X F10.5 )
END

    1.20000



The Compiler  97

2

In the example above, if you reset your system locale to, say, France, and rerun
the program, you still receive the same output. The period is not replaced with
a comma, the French decimal unit.

Compile-Time Error Messages

The compile-time error messages are on files called source catalogs so you can
edit them. You may decide to translate them to a local language such as French
or Italian. Usually, a third party does the translating. Then you can make the
results available to all local users of f77 . Each user of f77  can choose to use
these files or not.

Localizing and Installing the Files

Usually a system administrator does the installation. It is generally done only
once per language for the whole system, rather than once for each user of f77 .
The results are available to all users of f77  on the system.

1. Find the source catalogs.
The file names are:

• SUNWspro_f77pass1_srccat  (about 300 error messages)
• SUNWspro_compile_srccat  (about 10 error messages)

2. Edit the source catalogs.

a. Make backup copies of the files.

b. In whatever editor you are comfortable with, edit the files.
The editor can be vi , emacs, textedit , and so forth.

Preserve any existing format directives, such as %f, %d, %s, and so forth.

c. Save the files.

3. Generate the binary catalogs from the source catalogs.
 The compiler uses only binary catalogs. Run the gencat  program twice.

a. Read the SUNWspro_f77pass1_srccat  source file and generate the
SUNWspro_f77pass1_cat  binary file.

demo% gencat  SUNWspro_f77pass1_cat  SUNWspro_f77pass1_srccat



 98 FORTRAN 77 User’s Guide

2

b. Read the SUNWspro_compile_srccat  source file and generate the
SUNWspro_compile_cat  binary file.

4. Make the binaries available to the general user.
Either put the binary catalogs into the standard location or put the path for
them into the environment variable NLSPATH.

a. Define the standard location and name.
Put the files into the directory indicated:

/opt/SUNWspro/lib/locale/ lang/LC_MESSAGES/

/usr/share/lib/locale/ lang/LC_MESSAGES/

where lang is the directory for the particular (natural) language. For
example, the value of lang for Italian is it.

b. Set up the environment variable.
Put the path for the new files into the NLSPATH environment variable.
For example, if your files are in /usr/local/MyMessDir/ , then use
the following commands.

In a sh  shell:

In a csh  shell:

The NLSPATH variable is standard for the X/Open environment. For
more information, read the X/Open documents.

demo% gencat  SUNWspro_compile_cat  SUNWspro_compile_srccat

demo$ NLSPATH=/usr/local/MyMessDir
demo$ export NLSPATH

demo% setenv NLSPATH  /usr/local/MyMessDir

Solaris 2.x

Solaris 1.x



The Compiler  99

2

Using the File After Installation

You use the file by setting the environment variable LC_MESSAGES. This setup
is generally done once for each developer.

Example: Set the environment variable LC_MESSAGES:

In a sh  shell:

In a csh  shell:

2.11 Miscellaneous Tips
Here are some suggestions on how to use the compiler.

Floating-Point Hardware Type

Some compiler options are specific to particular hardware options. The utility
fpversion  tells which floating-point hardware is installed. The utility
fpversion (1) takes 30 to 60 wall clock seconds before it returns, since it
dynamically calculates hardware clock rates of the CPU and FPU.

See fpversion (1) and the Numerical Computation Guide for details.

Many Options on Short Commands

You may use long command lines with many options. To simplify the task,
make a special alias or use environment variables.

demo% LC_MESSAGES it
demo% export it

demo% setenv  LC_MESSAGES it

This example assumes
standard install locations, and
that the messages are
localized in Italian.



 100 FORTRAN 77 User’s Guide

2

Alias Method

Example: Define f77f :

Example: Use f77f :

f77f  is now the same as: f77 -silent -fast -O4 any.f .

Environment Variable Method

You can shorten command lines by using environment variables. The FFLAGS
or OPTIONS variables are special variables for FORTRAN.

• If you set FFLAGS or OPTIONS, they can be used in the command line.

• If you are compiling with make files, FFLAGS is used automatically if the
make file uses only the implicit compilation rules.

Example: Set FFLAGS:

• Example: Use FFLAGS explicitly:

f77 $FFLAGS  is now the same as: f77 -silent -fast -O4 any.f .

• Example: Let make use FFLAGS implicitly:

If both:
• The compile in a makefile is implicit, that is, no explicit f77  compile line
• The FFLAGS variable is set as above

demo% alias f77f "f77 -silent -fast -O4"

demo% f77f any.f

  demo% setenv FFLAGS '-silent -fast -O4'

  demo% f77 $FFLAGS any.f



The Compiler  101

2

Then invoking the make file results in a compile command equivalent to:
f77 -silent -fast -O4 any.f .

Align Block

In Solaris 2.x, the –align _ block_ option is available only for compatibility
with old makefiles. It is recognized, so it does not break such files, but it does
not perform any function. However, you can still page-align a common block.

This rule applies to uninitialized data only. If any variable of the common block
is initialized in a DATA statement, then the block is not aligned. This aligns the
common block on a page boundary. Its size is increased to a whole number of
pages; its first byte is placed at the beginning of a page.

Example: Page-align the common block whose FORTRAN 77 name is block:

This block has a size of 90,272 bytes. You must create a separate assembler
source file (.s  file) consisting of the following .common  statement:

In this example:

• block  is the f77  name of the block with an appended underscore (_).

• 90272  is the block size in bytes.

• 4096  is the page size in bytes. Some systems have different page sizes.

If you do not use the -U  option, use lowercase for the common block name. If
you do use -U , use the case of the common block name in your source code.
The parameters are block name, block size, and page size.

COMMON /BLOCK/ A, B
REAL*4 A(11284), B(11284)
...

demo% cat comblk.s
.common block_,90272,4096
demo%



 102 FORTRAN 77 User’s Guide

2

You must compile and link the .s  file with the .f  files:

The stricter alignment from this file should override the less strict alignment
for the common block from the other .o  files.

Optimizer Out of Memory

Optimizers use a lot of memory. For SPARC systems, if the optimizer runs out
of memory, it tries to recover by retrying the current procedure at a lower level
of optimization and resumes subsequent routines at the original level specified
in the -On option on the command line.

It is recommended that you have at least 24 Megabytes of memory. If you do
full optimization, at least 32 Megabytes are recommended. How much you
need depends on the size of each procedure, the level of optimization, the
limits set for virtual memory, the size of the disk swap file, and various other
parameters.

If the optimizer runs out of swap space, try any of the following measures,
which are listed in increasing order of difficulty:

• Change from –O3 to –O2.
• Use fsplit  to divide multiple-routine files into files of one routine per file.
• Allow space for a bigger swap file. See mkfile (8).

Example (2.x): Become superuser, make 90-Megabyte file, tell OS to use it:

Example (1.x): Become superuser, make the file, and instruct OS to use it:

demo% f77 any.f comblk.s

 demo# mkfile -v 90m /home/swapfile
 /home/swapfile 94317840 bytes
 demo# /usr/sbin/swap -a  /home/swapfile

 demo# mkfile -v 20m /home/swapfile
 /home/swapfile 20971520 bytes
 demo# swapon  /home/swapfile



The Compiler  103

2

The above swap command must be reissued every time you reboot, or
added to the appropriate /etc/rc  file. The Solaris 2.x command,
swap -s , displays available swap space. See swap(1M).

Control of Virtual Memory

If you optimize at -O3  or -O4  with very large routines (thousands of lines of
code in a single procedure), the optimizer may require an unreasonable
amount of memory. In such cases, performance of the machine may be
degraded. You can control this by limiting the amount of virtual memory
available to a single process.

Virtual Memory Limits

To limit virtual memory:

• In a sh  shell, use the ulimit  command. See sh (1).

Example: Limit virtual memory to 16 Megabytes:

• In a csh  shell, use the limit  command. See csh (1).

Example: Limit virtual memory to 16 Megabytes:

Each of these command lines causes the optimizer to try to recover at 16
Megabytes of data space.

This limit cannot be greater than the machine’s total available swap space and,
in practice, must be small enough to permit normal use of the machine while a
large compilation is in progress.

Be sure that no compilation consumes more than half the space.

 demo$ ulimit -d 16000

 demo% limit datasize 16M



 104 FORTRAN 77 User’s Guide

2

Example: With 32 Megabytes of swap space, use the following commands:

• In a sh  shell:

• In a csh  shell:

The best setting of data size depends on the degree of optimization requested,
and the amount of real memory and virtual memory available.

Swap Space Limits

You can determine the actual swap space from either sh  or csh .

Example: Use the swap command in 2.x:

Example: Use the pstat  command in 1.x:

Memory

You can also determine the actual real memory from either sh  or csh .

• Example: Use the following command in 2.x:

demo$ ulimit -d 1600

demo% limit datasize 16M

Solaris 2.x  demo% swap -s

Solaris 1.x  demo% pstat -s

Solaris 2.x  demo% /usr/sbin/dmesg | grep mem



The Compiler  105

2

• Use either of the following commands in 1.x:

or:

BCP Mode: How to Make 1.x Applications Under 2.x

This section shows some details of how to, in a Solaris 2.x operating
environment, compile and link applications that run in a Solaris 1.x operating
environment.

Note – Even though it is possible, it is not recommended to produce 1.x
executables on a 2.x development platform. Most developers consider it too
complicated.

Read the SunSoft publication, Solaris 2.3 Binary Compatibility Manual, first.

The usual way is as follows:

• The 1.x compilers in /usr/lang / are used on 1.x platforms to produce 1.x
executables.

• The 2.x compilers in /opt/SUNWspro/bin  are used on 2.x platforms to
produce 2.x executables.

To use a 2.x operating environment to make executables that run under 1.x, use
the following steps:

• Be sure the appropriate BCP packages are installed:
• SUNWbcp: Binary Compatibility
• SUNWscbcp: SPARCompiler Binary Compatibility

Use pkginfo  to verify the installation. The binary compatibility libraries are
installed in /usr/4lib .

Solaris 1.x  demo% /etc/dmesg | grep mem

Solaris 1.x  demo% grep mem /var/adm/messages*



 106 FORTRAN 77 User’s Guide

2

• Be sure to use the 1.x compiler, not the native 2.x compiler.

You may need to install the 1.x compiler in a nonstandard location to make
it accessible on the 2.x platform.

• If possible, perform the final link of object files on a 1.x platform.

Otherwise, to link your 1.x executable successfully on the 2.x platform, you
need access to a 1.x version of ld . do the following:

a. Copy a 1.x version of ld  to 1.x_ld_path/ld .

b. Tell f77  where to find the 1.x linker by supplying its path via -Qpath .

• Make versions of the 1.x libraries available on 2.x, as follows:

On 1.x, copy files from /lib  to com_dir:

On 2.x, break the link /lib -> /usr/lib :

On 2.x, copy the same files from com_dir to /lib :

demo% cp -p /lib/libc.a com_dir
demo% cp -p /lib/libc.so.1.8 com_dir
demo% cp -p /lib/libc.sa.1.8 com_dir
Plus any other system 1.x libraries you need
demo%

demo% su root
Password: your_root_password
#mv /lib /lib-               Rename the link /lib  to /lib-
#mkdir /lib               Make a new directory /lib
#demo%

#mv com_dir/libc.a /lib Move the same files from com_dir to /lib
#mv com_dir/libc.so.1.8 /lib
#mv com_dir/libc.sa.1.8 /lib
Plus any other system 1.x libraries you need
#exit
demo%



The Compiler  107

2

Or, you can move the needed libraries into a directory of your choosing and
enable the linker to find these libraries by supplying the path via the -L
option or the LD_LIBRARY_PATH environment variable.

Make sure 1.x libraries that are non-system libraries are available, say, in the
1.x_lib_path.

• Compile the program:

Where:
• f77  is in 1.x_f77_path/
• ld  is in 1.x_ld_path
• Libraries are in 1.x_lib_path

Be aware of these pitfalls:

• If libc  is linked statically then all libraries must be linked statically.

• /usr/4lib  is not a suitable choice for 1.x_lib_path or for system libraries
you copy, because the presence of libc.so.101.8  and libc.so.102.8
frustrates linking.

• The message, bad magic number , probably means that you attempted to
link with a 2.x library instead of a 1.x library. Check your command line for
inappropriate -L  options; also check LD_LIBRARY_PATH. Remember that
the 1.x linker searches the following paths for libraries:

• Normally, LD_LIBRARY_PATH points to 2.x libraries on a 2.x platform; it
may need to be reset, however. In particular, do not put /usr/lib  in
LD_LIBRARY_PATH.

demo% 1.x_f77_path/f77 -Qpath 1.x_ld_path -L 1.x_lib_path file.f

Environment variable LD_LIBRARY_PATH

Directories specified at link-time -L dir

Default directories /lib:/usr/lib:/usr/local/lib



 108 FORTRAN 77 User’s Guide

2

Here is a summary:

• The resultant a.out  should run on 1.x systems. It can run in BCP mode on
2.x systems, including the development platform. See the Solaris 2.3 Binary
Compatibility Manual for guidelines.

• You may want to replace your 1.x shared libraries in 1.x_lib_path with 2.x
libraries, since a.out  tries to link with them.

• Use ldd  to find which shared libraries a.out  links with.

• On a 1.x system, a.out  looks for shared libraries in the directories that were
found on your development platform; differences in directory structure may
cause problems.



 109

File System and FORTRAN 77 I/O 3

This chapter is a basic introduction to the file system and how it relates to the
FORTRAN 77 I/O system. If you understand these concepts, skip this chapter.

This chapter is organized into the following sections.

3.1 Summary
The basic file system consists of a hierarchical file structure, established rules
for file names and path names, and various commands for moving around in
the file system, showing your current location in the file system, and making,
deleting, or moving files or directories.

The system file structure of the UNIX operating system is analogous to an
upside-down tree. The top of the file system is the root directory. Directories,
subdirectories, and files all branch down from the root. Directories and
subdirectories are considered nodes on the directory tree, and can have

Summary page 109

Directories page 111

File Names page 111

Path Names page 111

Redirection page 114

Piping page 115



 110 FORTRAN 77 User’s Guide

3

subdirectories or ordinary files branching down from them. The only directory
that is not a subdirectory is the root directory, so except for this instance, you
do not usually make a distinction between directories and subdirectories.

A sequence of branching directory names and a file name in the file system tree
describes a path. Files are at the ends of paths, and cannot have anything branching
from them. When moving around in the file system, down means away from the
root; up means toward the root. Figure 3-1 shows a diagram of a file system tree
structure.

Figure 3-1 File System Hierarchy

root
directory

file subdirectory subdirectory

subdirectoryfile file

file file



File System and FORTRAN 77 I/O  111

3

3.2 Directories
All files branch from directories, except the root directory. Directories are just
files with special properties. While you are logged on, you are in a directory.

When you first log on, you are usually in your home directory. At any time,
wherever you are, the directory you are in is called your current working
directory. It is often useful to list your current working directory. The pwd
command prints the current working directory name; the getcwd  routine
returns the current working directory name.

You can change your current working directory simply by moving to another
directory. The cd  shell command and the chdir  routine change the current
working directory to a different directory.

3.3 File Names
All files have names, and you can use almost any character in a file name. The
name can be up to 1,024 characters long, but individual components can be
only 512 characters long.

To prevent the shell from misinterpreting certain special punctuation
characters, restrict your use of punctuation in file names to the dot (. ),
underscore (_), comma (, ), plus (+), and minus (–). The slash (/ ) character has
a specific meaning in a file name, and is only used to separate components of
the path name, as described in the following section. Also, avoid using blanks
in file names. Directories are just files with special properties and follow the
same naming rules as files. The only exception is the root directory, named
slash (/ ).

3.4 Path Names
To describe a file anywhere in the file system, you can list the sequence of
names for the directory, subdirectory, and so forth; and the file, separated by
slash characters, down to the file you want to describe.

If you show all the directories, starting at the root, that is called an absolute path
name. If you show only the directories below the current directory, that is
called a relative path name.



 112 FORTRAN 77 User’s Guide

3

Relative Path Names

From anywhere in the directory structure, you can describe a relative path name
of a file. Relative path names start with the directory you are in—the current
directory—instead of the root.

For example, if you are in the directory /usr/you , and you use the relative
path name, mail/record , that is equivalent to using the absolute path name,
/usr/you/mail/record .

See this illustration:

Figure 3-2 Relative Path Name

Absolute Path Names

A list of directories and a file name, separated by slash characters, from the
root to the file you want to describe, is called an absolute path name. It is also
called the complete file specification or the complete path name.

A complete file specification has the general form:

/ directory/ directory/…/ directory/ file

There can be any number of directory names between the root (/) and the file
at the end of the path, as long as the total number of characters in a given path
name is less than or equal to 1,024.

/usr/you

mail

record



File System and FORTRAN 77 I/O  113

3

An absolute path name is illustrated in the following diagram:

Figure 3-3 Absolute Path Name

/

usr

you

mail

record

/usr/you/mail/record



 114 FORTRAN 77 User’s Guide

3

3.5 Redirection
Redirection is a way of changing the files that a program uses without passing
a file name to the program. Both input to and output from a program can be
redirected.

The usual symbol for redirecting standard input is the < sign; for standard
output, it is the > sign. File redirection is a function performed by the
command interpreter or shell when a program is invoked by it.

Input

The shell command line for myprog  to read from mydata  is:

The above command causes the file mydata , which must already exist, to be
connected to the standard input of the program myprog  when it is run. This
means that if myprog  is a FORTRAN 77 program and reads from unit 5, it
reads from the mydata  file.

Output/Truncate

The shell command line for myprog  to write to myoutput  is:

The above command causes the file myoutput , which is created if it does not
exist, or rewound and truncated if it does, to be connected to the standard
output of the program myprog  when it is run. So if the FORTRAN 77 program
myprog  writes to unit 6, it writes to the file myoutput .

Output/Append

The shell command line for myprog  to append to mydata  is:

demo% myprog < mydata

demo% myprog > myoutput

demo% myprog >> myoutput



File System and FORTRAN 77 I/O  115

3

The above command causes the file myoutput , which must exist, to be
connected for appending. So if the FORTRAN 77 program myprog  writes to
unit 6, it writes to the file myoutput , but after wherever the file ended before.

You can redirect standard input and output on the same command line.

3.6 Piping
You can connect the standard output of one program directly to the standard
input of another without using an intervening temporary file. The mechanism
to accomplish this is called a pipe. Some consider piping to be a special kind of
redirecting.

Example: A shell command line using a pipe:

This command causes the standard output (unit 6) of firstprog  to be piped
to the standard input (unit 5) of secondprog . Piping and file redirection can
be combined in the same command line.

Example: myprog  reads mydata  and pipes the output to wc; wc writes to
datacnt .

The program myprog  takes its standard input from the file mydata , then pipes
its standard output into the standard input of the wc command. The standard
output of wc is then redirected into the file datacnt .

You can redirect standard error so it does not appear on your workstation
display. In general, this is not a good idea, since you usually want to see error
messages from the program immediately, rather than sending them to a file.

The shell syntax to redirect standard error varies, depending on whether you
are using sh  or csh .

demo% firstprog | secondprog

demo% myprog < mydata | wc > datacnt



 116 FORTRAN 77 User’s Guide

3

Example: Redirecting and piping standard error and standard output in csh :

Example: Redirecting and piping standard error and standard output in sh :

In each shell, the above command runs the program, myprog1 , and redirects
and pipes standard output and error to the program, myprog2 .

demo% myprog1 |& myprog2

demo$ myprog1 2>&1 | myprog2



 117

Disk and Tape Files 4

This chapter is organized into the following sections.

4.1 File Access from FORTRAN 77 Programs
Data are transferred to or from devices or files by specifying a logical unit
number in an I/O statement. Logical unit numbers can be nonnegative integers
or the character * . *  stands for the standard input if it appears in a READ
statement, or the standard output if it appears in a WRITE or PRINT statement.

Standard input and standard output are explained in the section,
“Preconnected Units” on page 121.

Accessing Named Files

Before a program can access a file with a READ, WRITE, or PRINT statement,
the file must be created, and a connection established for communication
between the program and the file. The file can already exist, or can be created
at the time the program executes. The FORTRAN 77 OPEN statement
establishes a connection between the program and the file to be accessed.

For a description of OPEN, read the chapter on statements in the FORTRAN 77
4.0 Reference Manual.

File Access from FORTRAN 77 Programs page 117

Tape I/O page 128



 118 FORTRAN 77 User’s Guide

4

File names can be simple expressions, such as:

• Quoted character constants:

• Character variables:

File names can be more complicated expressions, such as character expressions:

A program can obtain file names in one of the following ways:

• By reading from a file or terminal keyboard, such as:

• From the command line, such as:

• From the environment, such as:

FILE='myfile.out'

FILE=FILNAM

FILE=PREFIX(:LNBLNK(PREFIX)) // '/' //
&  NAME(:LNBLNK (NAME)),…

READ( 4, 401) FILNAM

CALL GETARG( ARGNUMBER, FILNAM )

CALL GETENV( STRING, FILNAM )



Disk and Tape Files  119

4

This example shows one way to construct a file name in the C shell:

Compile and run GetFilNam.f  as follows:

GetFilNam.f

This program uses the
library routines getenv ,
lnblnk , and getcwd,
which perform the functions
of getting the environment,
getting the last nonblank,
and getting the current
working directory,
respectively.

CHARACTER F*8, FN*40, FULLNAME*40
READ *, F
FN = FULLNAME( F )
PRINT *, FN
END

CHARACTER*40 FUNCTION FULLNAME( NAME )
CHARACTER NAME*(*), PREFIX*40

C     This assumes C shell.
C     Leave absolute path names unchanged.
C     If name starts with '~/', replace tilde with home
C     directory; otherwise prefix relative path name with
C     path to current directory.

IF ( NAME(1:1) .EQ. '/' ) THEN
FULLNAME = NAME

ELSE IF ( NAME(1:2) .EQ. '~/' ) THEN
CALL GETENV( 'HOME', PREFIX )
FULLNAME = PREFIX(:LNBLNK(PREFIX)) //

&  NAME(2:LNBLNK(NAME))
ELSE

CALL GETCWD( PREFIX )
FULLNAME = PREFIX(:LNBLNK(PREFIX)) //

&  '/' // NAME(:LNBLNK(NAME))
ENDIF
RETURN
END

demo% f77 -silent GetFilNam.f
demo% a.out
"/hokey"
/hokey
demo%



 120 FORTRAN 77 User’s Guide

4

Accessing Unnamed Files

When a program opens a FORTRAN 77 file without a name, the runtime
system supplies a file name. There are several ways this is done.

Opened as Scratch

If you specify STATUS='SCRATCH' in the OPEN statement, then the system
opens a file with a name of the form: tmp.F AAAxnnnnn, where nnnnn is
replaced by the current process ID, AAA is a string of three characters, and x is
a letter; the AAA and x make the file name unique. This file is deleted upon
termination of the program or execution of a CLOSE statement, unless
STATUS='KEEP'  is specified in the CLOSE statement.

Already Open

If a FORTRAN 77 program has a file already open, an OPEN statement that
specifies only the file’s logical unit number and the parameters to change can
be used to change some of the file’s parameters; specifically, BLANK and FORM.
The system determines that it must not really OPEN a new file, but just change
the parameter values. Thus, this case looks like one where the runtime system
would make up a name, but it does not.

Other

In all other cases, the runtime system OPENs a file with a name of the form
fort. n, where n is the logical unit number given in the OPEN statement.

Passing File Names to Programs

The file system does not have any notion of temporary file name binding or file
equating, as some other systems do. File name binding is the facility that is
often used to associate a FORTRAN 77 logical unit number with a physical file
without changing the program. This mechanism evolved to communicate file
names more easily to the running program, because in FORTRAN 66, you
cannot open files by name.

With this operating system, there are several satisfactory ways to communicate
file names to a FORTRAN 77 program.



Disk and Tape Files  121

4

• Command-line arguments and environment-variable values. For example,
read the file ioinit.f  in libF77 . See the section, “Logical Unit
Preattachment.” The program can then use those logical names to open the
files.

• Redirection and piping. Chapter 3, “File System and FORTRAN 77 I/O,”
describes redirection and piping, two other ways to change the program input
and output files without changing the program.

Preconnected Units

When a FORTRAN 77 program begins execution under this operating system,
there are usually three units already open. These are preconnected units. Their
names are standard input, standard output, and standard error. In FORTRAN 77:

• Standard input is logical unit 5
• Standard output is logical unit 6
• Standard error is logical unit 0

All three are connected, unless file redirection or piping is done.

Other Units

All other units are preconnected to files named fort. n, where n is the
corresponding unit number, and can be 0, 1, 2, …, with 0, 5, and 6 having the
usual special meanings.

These files need not exist. They are created only if the units are actually used,
and if the first action to the unit is a WRITE or PRINT; that is, only if an OPEN
statement does not override the preconnected name before any WRITE or
PRINT is issued for that unit.

Example: Preconnected files: the program OtherUnit.f :

WRITE( 25, '(I4)' ) 2
END



 122 FORTRAN 77 User’s Guide

4

The above program preconnects the file fort.25  and writes a single
formatted record onto that file.

Logical Unit Preattachment

The IOINIT  routine can also be used to attach logical units to specific files at
runtime. It looks in the environment for names of a user-specified form, and
then opens the corresponding logical unit for sequential formatted I/O. Names
must be of the general form PREFIXnn, where the particular PREFIX is
specified in the call to IOINIT , and nn is the logical unit to be opened. Unit
numbers less than 10 must include the leading 0. See IOINIT (3F).

Example: Attach external files test.inp  and test.out  to units 1 and 2:

First, set the environment variables.

In sh :

In csh :

demo% f77 -silent OtherUnit.f
demo% a.out
demo% cat fort.25
   2
demo%

demo$ TST01=ini1.inp
demo$ TST02=ini1.out
demo$ export TST01 TST02

demo% setenv TST01 ini1.inp
demo% setenv TST02 ini1.out



Disk and Tape Files  123

4

The program ini1.f  reads 1 and writes 2.

With environment variables and ioinit , ini1.f  reads ini1.inp  and writes
to ini1.out .

IOINIT  is adequate for most programs as written. However, it is written in
FORTRAN 77 specifically to serve as an example for similar user-supplied
routines. Retrieve a copy as follows:

Logical File Names

If you are porting from VMS FORTRAN, the VMS style logical file names in the
INCLUDE statement are mapped to UNIX path names. The environment
variable LOGICALNAMEMAPPING defines the mapping between the logical
names and the UNIX path name. If the environment variable
LOGICALNAMEMAPPING exists, and if the -xl[d]  compiler option is set, then
the compiler interprets VMS logical file names on the INCLUDE statement.

demo% cat ini1.f
CHARACTER PRFX*8
LOGICAL CCTL, BZRO, APND, VRBOSE
DATA CCTL, BZRO, APND, PRFX, VRBOSE

&  /.TRUE.,.FALSE.,.FALSE., 'ST',.FALSE. /
CALL IOINIT( CCTL, BZRO, APND, PRFX, VRBOSE )
READ(1, *) I, B, N
WRITE(2, *) I, B, N
END

demo%

demo% cat ini1.inp
 12 3.14159012 6
demo% f77 -silent ini1.f
demo% a.out
demo% cat ini1.out
  12    3.14159  6
demo%

demo% cp /opt/SUNWspro/SC4.0/src/ioinit.f  . (Solaris 2.x)



 124 FORTRAN 77 User’s Guide

4

The compiler sets the environment variable to a string with the following
syntax:

Each lname is a logical name and each path is the path name of a directory
(without a trailing /). All blanks are ignored when parsing this string. It strips
any trailing /[no]list  from the file name in the INCLUDE statement. Logical
names in a file name are delimited by the first : in the VMS file name. The
compiler converts file names of the form:

to:

For logical names, uppercase and lowercase are significant. If a logical name is
encountered on the INCLUDE statement, which is not specified in the
LOGICALNAMEMAPPING, the file name is used, unchanged.

Direct I/O

Random access to files is also called direct access. A direct-access file contains
a number of records that are written to or read from by referring to the record
number. This record number is specified when the record is written. In a direct-
access file, records must be all the same length and all the same type.

A logical record in a direct access, external file is a string of bytes of a length
specified when the file is opened. READ and WRITE statements must not specify
logical records longer than the definition of the original record size. Shorter
logical records are allowed. Unformatted, direct writes leave the unfilled part
of the record undefined. Formatted, direct writes cause the unfilled record to
be padded with blanks.

" lname1=path1; lname2=path2; … "

lname1: file

path1/ file



Disk and Tape Files  125

4

When using direct unformatted I/O, be careful with the number of values your
program expects to read. Each READ operation acts on exactly one record; the
number of values that the input list requires must be less than or equal to the
number of values in that record.

Direct access READ and WRITE statements have an extra argument, REC=n,
which gives the record number to be read or written.

Example: Direct-access, unformatted:

This program opens a file for direct-access, unformatted I/O, with a record
length of 20 characters, then reads the thirteenth record as is.

Example: Direct-access, formatted:

This program opens a file for direct-access, formatted I/O, with a record length
of 20 characters, then reads the thirteenth record and converts it according to
the format:(I10,F10.3) .

You can improve direct access I/O performance by opening a file with a large
buffer size. Do this with one of the options for the OPEN statement, the
FILEOPT=fopt option. ♦

fopt itself can be BUFFER=n. The form of the option is:

The option sets the size in bytes of the I/O buffer to use. For WRITEs, larger
buffers yield faster I/O. For good performance, make the buffer a multiple of
the largest record size. This size can be larger than actual physical memory;
however, probably the very best performance is obtained by making the record
size equal to the entire file size.

OPEN( 2, FILE='data.db', ACCESS='DIRECT', RECL=20,
& FORM='UNFORMATTED', ERR=90 )

READ( 2, REC=13, ERR=30 ) X, Y

OPEN( 2, FILE='inven.db', ACCESS=’DIRECT’, RECL=20,
& FORM='FORMATTED', ERR=90 )

READ( 2, FMT="(I10,F10.3)", REC=13, ERR=30 ) A, B

OPEN( …, FILEOPT="BUFFER= n", … )



 126 FORTRAN 77 User’s Guide

4

These larger buffer sizes may cause some extra paging. Read the section on the
OPEN statement in the FORTRAN 77 4.0 Reference Manual.

Internal Files

An internal file is an object of type character such as a variable, substring,
array, element of an array, or field of a structured record. If you are reading
from the internal file, it can be a constant character string. This is called I/O,
although I/O is not a precise term to use here, because you use READ and
WRITE statements to deal with internal files.

• To use an internal file, give the name of the character object in place of the
unit number.

• For a constant, variable, or substring, there is only a single record in the file.

• For an array, each array element is a record.

• f77  extends direct I/O to internal files. The ANSI standard includes only
sequential formatted I/O on internal files. This is like direct I/O on external
files, except that the number of records in the file cannot be changed. In this
case, a record is a single element of an array of character strings.

• Each sequential READ or WRITE starts at the beginning of an internal file.

Example: Sequential formatted read from an internal file (one record only):

demo% cat intern1.f
CHARACTER X*80
READ( *, '(A)' ) X
READ( X, '(I3,I4)' ) N1, N2 ! This codeline reads the internal file X
WRITE( *, * )  N1, N2
END

demo% f77 -silent intern1.f
demo% a.out
 12 99
  12  99
demo%



Disk and Tape Files  127

4

Example: Sequential formatted read from an internal file (three records):

Example: Direct-access read from an internal file (one record):

demo% cat intern3.f
CHARACTER  LINE(4)*16

*                  12341234
DATA  LINE(1) / ' 81  81 ' /
DATA  LINE(2) / ' 82  82 ' /
DATA  LINE(3) / ' 83  83 ' /
DATA  LINE(4) / ' 84  84 ' /
READ( LINE,'(2I4)') I,J,K,L,M,N ! This code reads an internal file.
PRINT *, I, J, K, L, M, N
END

demo% f77  -silent intern3.f
demo% a.out
   81  81  82  82  83  83
demo%

demo% cat intern2.f
CHARACTER LINE(4)*16

*                  12341234
DATA  LINE(1) / ' 81  81 ' /
DATA  LINE(2) / ' 82  82 ' /
DATA  LINE(3) / ' 83  83 ' /
DATA  LINE(4) / ' 84  84 ' /
READ ( LINE, FMT=20, REC=3 ) M, N  ! This code reads an internal file.

20 FORMAT( I4, I4 )
PRINT *, M, N
END

demo% f77  -silent intern2.f
demo% a.out
   83  83
demo%



 128 FORTRAN 77 User’s Guide

4

4.2  Tape I/O
Using tape files on UNIX systems is awkward because, historically, UNIX
development was oriented toward small data sets residing on fast disks.
Magnetic tape was used by early UNIX systems for archival storage and
moving data between different machines. Unfortunately, many FORTRAN 77
programs are intended to use large data sets from magnetic tape.

For tape, it is more reliable to use the TOPEN()  routines than the FORTRAN 77
I/O statements.

Using TOPEN for Tape I/O

A nonstandard tape I/O package (see TOPEN (3F)) offers a partial solution to
the problem. You can transfer blocks between the tape drive and buffers
declared as FORTRAN 77 character variables. You can then use internal I/O to
fill and empty these buffers. This facility does not integrate with the rest of
FORTRAN 77 I/O. It even has its own set of tape logical units.

For tapes, it is more reliable to use the TOPEN()  routines than the
FORTRAN 77 I/O statements.

FORTRAN 77 Formatted I/O for Tape

The FORTRAN 77 I/O statements provide facilities for transparent access to
formatted, sequential files on magnetic tape. The tape block size can be
optionally controlled by the OPEN statement FILEOPT parameter. There is no
bound on formatted record size, and records may span tape blocks.

FORTRAN 77 Unformatted I/O for Tape

Using the FORTRAN 77 I/O statements to connect a magnetic tape for
unformatted access is less satisfactory. Note the implementation of unformatted
records as a sequence of characters preceded and followed by character counts.
The size of a record (+ 8 characters of overhead) cannot be bigger than the
buffer size.



Disk and Tape Files  129

4

As long as this restriction is complied with, the I/O system does not write
records that span physical tape blocks, but writes short blocks when necessary.
This representation of unformatted records is preserved (even though it is
inappropriate for tapes), so files can be freely copied between disk and tapes.

Since the block-spanning restriction does not apply to tape reads, files can be
copied from tape to disk without any special considerations.

Tape File Representation

A FORTRAN 77 data file is represented on tape by a sequence of data records
followed by an endfile  record. The data is grouped into blocks, the
maximum size determined when the file is opened. The records are
represented the same as records in disk files: formatted records are followed by
newlines; unformatted records are preceded and followed by character counts.
In general, there is no relation between FORTRAN 77 records and tape blocks;
that is, records can span blocks, which can contain parts of several records.

The only exception is that FORTRAN 77 does not write an unformatted record
that spans blocks; thus, the size of the largest unformatted record is eight
characters less than the block size.

The dd  Conversion Utility

An endfile record in FORTRAN 77 maps directly into a tape mark. In this
respect, FORTRAN 77 files are the same as tape system files. But since the
representation of FORTRAN 77 files on tape is the same as that used in the rest
of UNIX, naive FORTRAN 77 programs cannot read 80-column card images
from tape. If you have an existing FORTRAN 77 program and an existing data
tape to read with it, translate the tape using the dd(1) utility, which adds
newlines and strips trailing blanks.

Example: Convert a tape on mt0  and pipe that to the executable ftnprg :

demo% dd if=/dev/rmt0 ibs=20b cbs=80 conv=unblock | ftnprg



 130 FORTRAN 77 User’s Guide

4

The getc  Library Routine

If you write or modify a program, but do not want to use dd , you can use the
getc (3F) library routine to read characters from the tape. You can then
combine the characters into a character variable and use internal I/O to
transfer formatted data. See also TOPEN(3F).

End-of-File

The end-of-file condition is reached when an endfile record is encountered
during execution of a READ statement. The standard states that the file is
positioned after the endfile record. In real life, this means that the tape read
head is poised at the beginning of the next file on the tape. Thus, it would seem
that you can read the next file on the tape; however, this is not true, and is not
covered by the standard.

The standard also says that a BACKSPACE or REWIND statement can be used to
reposition the file. Consequently, after reaching end-of-file, you can backspace
over the endfile record and further manipulate the file, such as writing more
records at the end, rewind the file, and reread or rewrite it.

Access on Multiple-File Tapes

Each tape drive can be opened by many names. The name used determines
certain characteristics of the connection, which are the recording density and
whether the tape is automatically rewound when opened and closed.

To access a file on a multiple-file tape, use the mt(1) utility to position the tape
to the correct file, then open the file as a no-rewind magnetic tape, such as
/dev/nrmt0 . Using the tape with this name also prevents it from being
repositioned when it is closed. If your program reads the file until end-of-file,
then reopens it, it can access the next file on the tape. Any programs that
follow can access the tape where you left it, preferably at the beginning of a
file, or past the endfile record.

If your program terminates prematurely, it can leave the tape positioned
anywhere.



 131

Program Development 5

This chapter is organized into the following sections:

5.1 Simple Program Builds
For a program that depends on only a single source file and some system
libraries, you compile all of the source files every time you change the
program. Even in this simple case, however, executing the f77  command can
involve a lot of typing, and with options or libraries, a lot to remember. A
script or alias can help.

Scripts or Aliases

You can write a shell script to save typing. For example, to compile a program
in the file example.f , and which uses the SunCore® graphics library, you can
save a one-line shell script onto a file called fex , that looks like this:

Simple Program Builds page 131

Program Builds with the make Program page 132

Change Tracking and Control with SCCS page 138

f77 example.f –lcore77 –lcore –o example



 132 FORTRAN 77 User’s Guide

5

You may need to put execution permissions on fex :

You can also create an alias for the same command:

Either way, to recompile example.f , you type only fex :

Limitations

With multiple source files, forgetting one compile makes the objects
inconsistent with the source. It is a time drain to recompile all the files after
every editing session, since not every source file needs recompiling. Also,
omitting an option or a library produces erroneous executables at times.

5.2 Program Builds with the make Program
The make program recompiles only what needs recompiling, and it uses only
the options and libraries you want. This section shows you how to use normal,
basic make, and provides a simple example. For a summary, see make(1).

The makefile

The way you tell make what files depend on other files, and what processes to
apply to which files, is to put this information into a file, called the makefile ,
in the directory where you are developing the program.

demo% chmod +x fex

demo% alias fex "f77 example.f –lcore77 –lcore –o example"

demo% fex



Program Development  133

5

For example, suppose you have a program of four source files and a
makefile :

Assume both pattern.f  and computepts.f  do an include  of
commonblock , and you wish to compile each .f  file and link the three
relocatable files, along with a series of libraries, into a program called
pattern .

The makefile  looks like this:

The first line of this makefile  says: make pattern . pattern  depends on
pattern.o, computepts.o , and startupcore.o .

The second line is the command for making pattern .

The third line is a continuation of the second.

There are four such entries in this makefile . The structure of these entries is:

demo% ls
makefile
commonblock
computepts.f
pattern.f
startupcore.f
demo%

demo% cat makefile
pattern: pattern.o computepts.o startupcore.o

f77 pattern.o computepts.o startupcore.o –lcore77 \
–lcore –lsunwindow –lpixrect –o pattern

pattern.o: pattern.f commonblock
f77 –c –u pattern.f

computepts.o: computepts.f commonblock
f77 –c –u computepts.f

startupcore.o: startupcore.f
f77 –c –u startupcore.f

demo%



 134 FORTRAN 77 User’s Guide

5

• Dependencies—Each entry starts with a line that names the file to make,
and names all the files it depends on.

• Commands—Each entry has one or more subsequent lines that contain
Bourne shell commands, which specify how to build the target file for this
entry. These subsequent lines must each be indented by a tab.

make

The make command can be invoked with no arguments, simply:

The make utility looks for a file named makefile  or Makefile  in the current
directory, and takes its instructions from there.

The make utility general actions are:

• From the makefile , it gets all the target files it must make, and what files
they depend on. It also determines the commands used to make the target
files.

• It gets the date and time each file was last changed.

• If any target file is not up-to-date with the files it depends on, then make
rebuilds that target, using the commands from the makefile  for that target.

The C Preprocessor

You can use the C preprocessor for such tasks as passing strings to f77 .

For example, if you want your program to print the time it was compiled when
it is given a command-line argument of –v, then you must add code that looks
like this:

This example is just an extension of the make example with pattern.f .

demo% make

IF (ARGSTRING .EQ. "-v") THEN
PRINT *, CTIME
CALL EXIT(0)

END IF



Program Development  135

5

Use the C preprocessor to define CTIME as a quoted string that can be printed.
The next two examples show how to do this.

The C preprocessor is applied if the file names have the suffix .F , so we change
the file name:

The –D option defines a name to have a specified value for the C preprocessor,
as if by a #define  line. Consequently, we change the compilation line for
pattern.F  in the makefile  as follows (in sh  only):

The command line up to the -c  option obtains the output of the date
command, puts quotes around it, places that into CTIME, and passes it on to
the C preprocessor. If you do not want the details, skip the next paragraph.

The innermost single quotes are backquotes or grave accents. They indicate
that the output of the command contained in them (in this case, the date
command) is to be substituted in place of the backquoted words. The next level
of quote marks is what makes this define a FORTRAN 77 quoted string, so it
can be used in the print  statement. These marks must be escaped (or quoted)
by preceding backslashes because they are nested inside another pair of quote
marks. The outermost marks indicate to the interpreting shell that the enclosed
characters are to be interpreted as a single argument to the f77  command.
They are necessary because the output of the date  command contains blanks,
so that, without the outermost quoting, it would be interpreted as several
arguments, which would not be acceptable to f77 .

The preprocessor now converts CTIME to "jan15…" , so that:

becomes:

demo% mv pattern.f pattern.F

demo% f77 "–DCTIME=\"‘date‘\"" –c –u pattern.F

PRINT *, CTIME

PRINT *, "jan15…"



 136 FORTRAN 77 User’s Guide

5

The purpose here is to show how such strings are passed to the C preprocessor.
The particular string passed is not useful, but the method is the same.

Macros with make

The make program does simple parameterless macro substitutions. In the make
example above, the list of relocatable files that go into the target program
pattern  appears twice: once in the dependencies, and once in the f77
command that follows. Doing so makes changing the makefile  error-prone,
since the same changes must be made in two places in the file.

Sample Macro Definition

You can add a macro definition to the beginning of your makefile , such as:

Sample Use of Macro Definition

Change the description of the program, pattern  as follows:

Note the special syntax in the above example: use of a macro is indicated by a
dollar sign, immediately followed by the name of the macro in parentheses.
For macros with single-letter names, you can omit the parentheses.

Overriding of Macro Values

The initial values of make macros can be overridden with command-line
options to make. Add the following line to the top of the makefile :

OBJ = pattern.o computepts.o startupcore.o

pattern: $(OBJ)
f77 $(OBJ) –lcore77 –lcore –lsunwindow \
–lpixrect –o pattern

FFLAGS=–u



Program Development  137

5

Change each command for making FORTRAN 77 source files into relocatable
files by deleting that flag,. The compile-line of computepts.f  looks like this:

The final link looks like this:

If you issue the bare make command, everything compiles as before. However,
the following command does more:

Here, the -O  flag and the -u  flag are passed to f77 .

Suffix Rules in make

If you do not specify how to make a relocatable file, make uses one of its
default rules. In this case, it uses the f77  compiler, and passes as arguments
any flags specified by the FFLAGS macro, the -c  flag, and the name of the
source file to be compiled.

You can take advantage of this rule twice in the example, but must still
explicitly state the dependencies and the nonstandard command for compiling
the pattern.f  file. The makefile  is as follows:

f77 $(FFLAGS) –c computepts.f

f77 $(FFLAGS) $(OBJ) –lcore77 –lcore –lsunwindow \
   lpixrect –o pattern

demo% make "FFLAGS=–u –O"

OBJ = pattern.o computepts.o startupcore.o
FFLAGS=–u
pattern: $(OBJ)

f77 $(OBJ) –lcore77 –lcore –lsunwindow \
–lpixrect –o pattern

pattern.o: pattern.f commonblock
f77 $(FFLAGS) "–DCTIME=\"‘date‘\"" –c pattern.f

computepts.o: computepts.f commonblock
startupcore.o: startupcore.f



 138 FORTRAN 77 User’s Guide

5

5.3 Change Tracking and Control with SCCS
SCCS stands for Source Code Control System. It provides a way to:

• Keep track of the evolution of a source file—its change history
• Prevent the same source file from being changed at the same time
• Keep track of the version number by providing version stamps

The basic three operations of SCCS are:

• Putting files under SCCS control
• Checking out a file for editing
• Checking in a file

This section shows you how to use SCCS to perform these tasks, using the
previous program as an example. Only normal, basic SCCS is described, and
only three SCCS commands are introduced: create , edit , and delget .

Putting Files under SCCS

Putting files under SCCS control involves:

• Making the SCCS directory
• Inserting SCCS ID keywords into the files, an optional task
• Creating the SCCS files

Making the SCCS Directory

To begin, you must create the SCCS subdirectory in the directory in which your
program is being developed. Use this command:

SCCS must be in uppercase.

demo% mkdir SCCS



Program Development  139

5

Inserting SCCS ID Keywords

Some developers put one or more SCCS ID keywords into each file, but that is
optional. These keywords are later identified with a version number each time
the files are checked in with an SCCS get  or delget  command. There are
three likely places to put these strings:

• Comment lines
• Parameter statements
• Initialized data

The advantage is that the version information appears in the compiled object
program, and can be printed using the what  command. Included header files
that contain only parameter and data definition statements do not generate any
initialized data, so the keywords for those files usually are put in comments or
in parameter statements. Finally, in the case of some files, like ASCII data files
or makefile s, the source is all there is, so the SCCS information can go in
comments, if anywhere.

Identify the makefile with a make comment containing the keywords:

The source files, startupcore.f , computepts.f , and pattern.f  can be
identified by initialized data of the form:

You can also replace the word CTIME by a parameter that is automatically
updated whenever the file is accessed with get .

# %Z%%M% %I% %E%

CHARACTER*50 SCCSID
DATA SCCSID/"%Z%%M% %I% %E%\n"/

CHARACTER*(*) CTIME
PARAMETER ( CTIME="%E%")



 140 FORTRAN 77 User’s Guide

5

Remove the -DCTIME option from the makefile . Finally, the included file
commonblock  is annotated with a FORTRAN 77 comment:

Creating SCCS Files

Now you can put these files under control of SCCS with the SCCS create
command:

The makefile reads:

The commonblock  file reads:

C %Z%%M% %I% %E%

demo% sccs create makefile commonblock startupcore.f \
  computepts.f pattern.f
demo%

# @(#)makefile1.184/03/01
OBJ = pattern.o computepts.o startupcore.o
FFLAGS=-u
pattern: $(OBJ)

f77 $(OBJ) –lcore77 –lcore –lsunwindow \
–lpixrect –o pattern

pattern.o: pattern.f commonblock
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

C @(#)commonblock1.184/03/01
INTEGER NMAX, NPOINTS
REAL X, Y
PARAMETER ( NMAX = 200 )
COMMON NPOINTS
COMMON X(NMAX), Y(NMAX)



Program Development  141

5

The computepts.f  file reads:

SUBROUTINE COMPUTEPTS
DOUBLE PRECISION T, DT, PI
PARAMETER ( PI=3.1415927 )
INCLUDE ’commonblock’
INTEGER I
CHARACTER*50 SCCSID
DATA SCCSID/"@(#)computepts.f1.184/03/05\n"/

c Compute x/y coordinates of NPOINTS points
c on a unit circle as index I moves from 1 to
c NPOINTS, parameter T sweeps from 0 to
c PI(2 + NPOINTS/2) in increments of
c (PI/2)*(1 + 4/NPOINTS)

T = 0.0
DT = (PI/2.0)*(1.0 + 4.0/DBLE(NPOINTS))
DO 10 I = 1, NPOINTS+1
X(I) = COS(T)
Y(I) = SIN(T)
T = T+DT

10 CONTINUE
RETURN
END



 142 FORTRAN 77 User’s Guide

5

The startupcore.f  file reads:

SUBROUTINE STARTUPCORE
INCLUDE '/usr/include/f77/usercore77.h'

C  Make initializing calls to core library
COMMON /VWSURF/ VSURF
INTEGER VSURF(VWSURFSIZE), SELECTVWSURF
INTEGER PIXWINDD, INITIALIZECORE, INITIALIZEVWSURF

C  (Use CGPIXWINDD instead of PIXWINDD for color)
EXTERNAL PIXWINDD
CHARACTER*4 ENVRETURN
CHARACTER*50 SCCSID
INTEGER LOC
DATA SCCSID/"@(#)startupcore.f 1.1 84/03/05\n"/
DATA VSURF /VWSURFSIZE*0/

VSURF(DDINDEX) = LOC(PIXWINDD)
IF (INITIALIZECORE(BASIC, NOINPUT, TWOD) .NE. 0)

& CALL EXIT
CALL GETENV( "window_me", ENVRETURN )
IF (ENVRETURN .EQ. " ") THEN
WRITE(0,*) "Must run in a window"
CALL EXIT(2)
ENDIF
IF (INITIALIZEVWSURF( VSURF, FALSE) .NE. 0)

& CALL EXIT(2)
IF (SELECTVWSURF(VSURF) .NE. 0) CALL EXIT(3)
CALL SETWINDOW( -1.5, 1.5, -2.0, 2.0 )
CALL CREATETEMPSEG()
RETURN
END

SUBROUTINE CLOSECORE
INCLUDE '/usr/include/f77/usercore77.h'

C Make terminating calls to core library
COMMON /VWSURF/ VSURF
INTEGER VSURF(VWSURFSIZE)

CALL CLOSETEMPSEG()
CALL DESELECTVWSURF( VSURF )
CALL TERMINATECORE()
RETURN
END



Program Development  143

5

The pattern.f  file reads:

This is just an example of how SCCS operates, rather than how it is really used.
You do not need the preprocessor any longer to drop in the compilation date.
The -v  argument is without purpose, since you can use the what  command,
which gives you much more detail.

PROGRAM STAR
C Draw a star of n points, arg n

INCLUDE 'COMMONBLOCK'
CHARACTER*10 ARG
INTEGER I, IARGC, LNBLNK
CHARACTER*(*) CTIME
PARAMETER ( CTIME="84/03/05" )
CHARACTER*50 SCCSID
DATA SCCSID/"@(#)pattern.f1.184/03/05\n"/

IF (IARGC() .LT. 1 ) THEN
CALL GETARG( 0, ARG)
I = LNBLNK(ARG)
WRITE (0,*) "Usage: ",arg(:i)," -v or ",arg(:i)," nnn"
CALL EXIT (0)

END IF
CALL GETARG( 1, ARG )
IF (ARG .EQ. "-v") THEN

PRINT *, CTIME
CALL EXIT(0)

END IF
READ( ARG, '(I3)') NPOINTS
NPOINTS = NPOINTS*4
IF (NPOINTS .LE. 0 .OR. NPOINTS .GT. NMAX-1) THEN

WRITE(0,*) NPOINTS/4, "Out of range [1..",(NMAX-1)/4,"]"
CALL EXIT(12)

END IF
CALL COMPUTEPTS
CALL STARTUPCORE
CALL MOVEABS2( X(1),Y(1) )
CALL POLYLINEABS2( X(2), Y(2), NPOINTS)
PAUSE
CALL CLOSECORE
END



 144 FORTRAN 77 User’s Guide

5

Checking Files Out and In

Once your source code is under SCCS control, you use SCCS for two main
tasks: to check out a file so that you can edit it, and to check in a file you have
finished editing.

Check out a file is with the sccs edit  command. For example:

SCCS then makes a writable copy of computepts.f  in the current directory,
and records your login name. Other users cannot check the file out while you
have it checked out, but they can find out who has checked it out.

Check in the file with the sccs delget  command when you have completed
your editing. For example:

This command causes the SCCS system to do the following:

1. Make sure that you are the user who checked out the file by comparing
login names.

2. Prompt for a comment from you on the changes.

3. Make a record of what was changed in this editing session.

4. Delete the writable copy of computepts.f  from the current directory.

5. Replace it by a read-only copy with the SCCS keywords expanded.

The sccs delget  command is a composite of two simpler SCCS commands,
delta  and get . The delta  command performs the first three tasks in the list
above; the get  command performs the last two tasks.

demo% sccs edit computepts.f

demo% sccs delget computepts.f



 145

Libraries 6

This chapter is organized into the following sections:

6.1 Libraries in General
A software library is usually a set of subprograms. Each member of the set is
called a library element or module. A relocatable library is one whose elements
are relocatable (.o ) files. These object modules are inserted into the executable
file by the linker during the compile/link sequence. See ld (1).

There are two basic kinds of software libraries—static and dynamic:

• Static library—A library where modules are bound into the executable file
before execution. Some examples on the system are:
• FORTRAN 77 library: libF77.a
• VMS FORTRAN 77 library: libV77.a
• Math library: libm.a
• C library: libc.a

Libraries in General page 145

Library Search Paths and Order page 149

Static Libraries page 153

Dynamic Libraries page 158

Libraries Provided with the Compiler page 168

Shippable Libraries page 171



 146 FORTRAN 77 User’s Guide

6

• Dynamic library—A library where modules can be bound in after execution
begins. Some examples on the system are:
• FORTRAN 77 library: libF77.so
• VMS FORTRAN 77 library: libV77.so
• C library: libc.so

Advantages of Libraries

Relocatable libraries provide an easy way for commonly used subroutines to be
used by several programs. You need only name the library when linking the
program, and those library modules that resolve references in the program are
linked—copied into the executable file.

There are two advantages:

• Only the needed modules are loaded.

• You need not change the link command line as subroutine calls are added
and removed during program development.

Debug Aids

You can ask the linker various questions about libraries—how they are being
used, what paths are being searched for libraries, and so forth.

Load Map

To display a load map, pass the load map option to the linker by -Qoption .
This option displays which libraries are linked and which routines are obtained
from which libraries during the creation of the executable module.

Example: -m for load map:

Example: -M for load map:

Solaris 2.x demo% f77 -Qoption ld -m any.f77

Solaris 1.x demo% f77 -Qoption ld -M any.f77



Libraries  147

6

Other Queries

For Solaris 2.3 and later, there are linker debugging aids which help diagnose
some linking problems. One way to get the list is -Qoption ld -Dhelp .

Example: List some linker debugging aid options:

Consistent Compile and Link

Do not build libraries with inconsistent options. Some options require
consistent compiling and linking. Inconsistent compilation and linkage is not
supported. See “Consistent Compile and Link,” on page 26, for the options and
steps involved.

Fast Directory Cache for the Link-editor

For Solaris 1.x only, the ldconfig  utility configures a performance-enhancing
cache for the ld.so  runtime link-editor. It is run automatically from the
/etc/rc.local  file. For best performance, you should run it manually after
you install a new shared object, such as a shared library, and every time the
system is rebooted thereafter.

If you do not want to run ldconfig  manually at each reboot of the system,
add the name of the shared libraries directory to the ldconfig  line near the
end of the rc.local  file. Do this on the machine where your compiler is
installed, and on any client machines. Then run it manually once on each
client.

Solaris 2.3

See the Linker and
Libraries Manual in the
Solaris documentation for
details.

demo% f77 -Qoption ld -Dhelp any.f
…

debug: files display input file processing (files and libraries)
debug: help  display this help message
debug: libs  display library search paths; detail flag shows
actual
debug:    library lookup (-l) processing

…
demo%

Solaris 1.x



 148 FORTRAN 77 User’s Guide

6

Set the ldconfig  path differently for standard and nonstandard installations:

• If you installed in the standard location, put that location in rc.local .
• If you installed into the nonstandard / your/ dir/  location, use that path.

Example: Standard install—configure performance-enhancing cache:

In the above example, add the /usr/lang/SC4.0/  directory to the ldconfig
line near the end of the rc.local  file. The 4.0  in SC4.0  varies with the
release number, of course.

Example: Nonstandard install—configure performance-enhancing cache:

demo% su root
Password: root-password
demo# vi /etc/rc.local
        ...
# Build the link-editor fast directory cache.
#
if [ -f /usr/etc/ldconfig ]; then
    ldconfig  /usr/lang/SC4.0; (echo "cache") > /dev/console
fi
:wq
demo#

...
ldconfig  / your/ dir/SC4.0
...



Libraries  149

6

6.2 Library Search Paths and Order
The linker searches for libraries in several locations in certain prescribed
orders. Some of these locations are standard locations; some depend on the
options -l x  and -L dir, and some on the environment variables LD_RUN_PATH
or LD_LIBRARY_PATH. You can make some changes to the order and locations.

Order of Paths Critical for Compile (Solaris 1.x)

In Solaris 1.x, if you specify library search paths, the order of the paths can be
critical. The compilation can fail if you cause an incompatible version of the
math library, libm , to be used.

Symptom

If an entry is missing, the error message looks like the following:

ld: Undefined symbol
  _ _ _start_libm
  < other entries>

Solution

To fix the problem, use the correct order and get a compatible version of libm :

• If /usr/lib  is in LD_LIBRARY_PATH, and if the installation was to
/usr/lang/  (standard installation), put /usr/lang/lib  in
LD_LIBRARY_PATHbefore /usr/lib

• If /usr/lib  is in LD_LIBRARY_PATH, and if the installation was to
/ my/ dir/  (nonstandard installation), put / my/ dir/lib  in LD_LIBRARY_PATH
before /usr/lib

Otherwise, an incompatible version of the math library, libm , is used.

Using LD_LIBRARY_PATH is not generally recommended.

Note – In Solaris 1.x, do not use -L dir to specify /usr/lib , because then you
get an incompatible version of the math library, libm . You never need to use
-L dir to specify /usr/lib , because you always get /usr/lib  by default.



 150 FORTRAN 77 User’s Guide

6

Error: Library not Found

In some circumstances, the dynamic linker cannot find some libraries.

Symptom

The runtime error message looks like this:

ld.so: library not found

This error happens while running of a.out , not during compilation or linking.

Some Causes

You may have created an executable using dynamic libraries, and moved the
libraries. For example, you built a.out  with your own dynamic libraries in
/ my/ libs/ , then moved the libraries.

You may also have replaced all the paths in LD_LIBRARY_PATH with one
directory. For example, you defined the LD_LIBRARY_PATH environment
variable to link in the XView libraries only.

Prevention

Set LD_LIBRARY_PATH to include the path where the missing library resides,
instead of setting it to be only the one path.

Example: Put / my/ libs/  into LD_LIBRARY_PATH in front of what is there:

In sh :

 In csh :

demo$ LD_LIBRARY_PATH=/ my/ libs/:$LD_LIBRARY_PATH
demo$ export LD_LIBRARY_PATH

demo%setenv LD_LIBRARY_PATH / my/ libs/:$LD_LIBRARY_PATH



Libraries  151

6

Order on the Command Line for –l x Options
For any particular unresolved reference, libraries are searched only once, and
only for symbols that are undefined at that point in the search. If you list more
than one library on the command line, then the libraries are searched in the
order they are found on the command line. Place -l x  options as follows:

• Place the –l x option after any .f , .for , .F , or .o  files.
• If you call functions in libx , and they reference functions in liby , then

place -l x before -l y.

Search Order for Library Search Paths

Linker library search paths depend on the following:

• Solaris 1.x or 2.x
• Installation: standard location or nonstandard location, /my/dir/
• Building or running of the executable file

The base directory, here called BaseDir, is defined as follows:

While Building the Executable File

While building the executable file, the static linker searches for any libraries in
the following paths (among others), in the specified order.

Standard Install Nonstandard Install to / my/ dir/

Solaris 1.x /usr/lang/ / my/ dir/

Solaris 2.x /opt/SUNWspro/ / my/ dir/SUNWspro/

Solaris 1.x / BaseDir/lib/ Sun shared libraries here

/ BaseDir/SC4.0/lib/ Sun libraries, shared or static, here

/usr/lang/lib/ Standard location for Sun software

/usr/lib/ Standard location for UNIX software



 152 FORTRAN 77 User’s Guide

6

For both Solaris 1.x and 2.x, the above directories are the ones searched
without any specification from you; they are the default directories.

While building the executable file in both Solaris 1.x and 2.x:

• The static linker searches paths specified by LD_LIBRARY_PATH. For the
search order relative to the above paths, see ld (1).

• The static linker searches paths specified by -L dir. For the search order
relative to LD_LIBRARY_PATH, see ld (1).

In general, it is best to avoid using LD_LIBRARY_PATH if at all possible.

While Running the Executable File

While running the executable file, the dynamic linker searches for shared
libraries in these paths (among others), in the specified order

For both Solaris 1.x and 2.x, the above directories are the default directories,
and are the ones searched without having to be specified.

Solaris 2.x / BaseDir/lib/ Sun shared libraries here

/ BaseDir/SC4.0/lib/ Sun libraries, shared or static, here

/opt/SUNWspro/lib/ Standard location for Sun software

/usr/ccs/lib/ Standard location for SVr4 software

/usr/lib Standard location for UNIX software

Solaris 1.x / BaseDir/lib/ Sun shared libraries here

/ BaseDir/SC4.0/lib/ Sun libraries, shared or static, here

/usr/lang/lib/ Standard location for Sun software

/usr/lib/ Standard location for UNIX software

Solaris 2.x / BaseDir/lib/ Built in by driver, unless -norunpath

/opt/SUNWspro/lib Built in by driver, unless -norunpath

Other paths built in by -R
or LD_RUN_PATH when the
executable was generated

Uses paths stored in the executable.
Ignores the current (runtime) values of
-R  and LD_RUN_PATH.

/usr/lib/ Standard location for UNIX software



Libraries  153

6

Remarks—LD_LIBRARY_PATH, LD_RUN_PATH, and -R

While running the executable file in either Solaris 1.x and 2.x:

• The dynamic linker searches paths specified by LD_LIBRARY_PATH. For the
search order relative to the above paths, see ld (1).

• LD_LIBRARY_PATH can change after the executable has been created. No
matter what the value of LD_LIBRARY_PATH was while the executable file
was being built, the value at runtime is used while the executable is
running. To see which directories were built in when the executable was
created, use the dump command.

Example: In Solaris 2.x, list the directories embedded in a.out :

While running the executable file in Solaris 2.x:

• The dynamic linker searches the paths that had been specified by
LD_RUN_PATH or -R  while the executable file was being generated.

• The current values of LD_RUN_PATH and -R  are ignored. For f77 , -R  and
LD_RUN_PATH are not identical; see –R ls, page 69, for the differences.

6.3 Static Libraries
Static libraries are built from object files (.o files) using the program, ar .

While the linker searches a static library, it extracts elements whose entry
points are referenced in other parts of the program it is linking, such as
subprogram or entry names or names of COMMON blocks initialized in
BLOCKDATA subprograms. The nature of the elements and the nature of the
search leads to some features that have both advantages and disadvantages.

 demo% dump -Lv a.out | grep RPATH (No comparable utility for 1.x)



 154 FORTRAN 77 User’s Guide

6

Features of Libraries

There are three main features (advantages/disadvantages) of static libraries as
compared to dynamic libraries:

• Static libraries are more self reliant and less adaptable.

If you bind an a.out  statically, then you can ship it without providing the
libraries that were used to bind it. However, if there was a bug in a library
that you bound into the a.out , then the statically bound a.out  must be
rebound and reshipped to take advantage of a fixed library. Whereas for
dynamic libraries, the library provider can provide the fixed library to your
customer, and not involve you.

• When the linker extracts a static library element, it takes the whole thing.

Since an element corresponds to the result of a compilation, routines that are
compiled together are always linked together. One result of this whole-thing
approach is that if you compile a file that has many functions, then an
a.out  that uses only one of those functions gets all of them copied into and
bound into the a.out .

This is a difference between this operating system and some other systems,
and may affect the way you divide up your libraries.

• In linking static libraries, the order really matters.

The linker processes its input files in the order that they appear on the
command line—left to right. When the linker decides whether or not a
library element is to be linked, its decision is based only on the relocatable
modules it has already processed.

You can use lorder  and tsort  to order static libraries.

Example: If the FORTRAN 77 program is in two files, main.f  and graf.f ,
and only the latter accesses the SunCore graphics library, it is an error to
reference that library before graf.f  or graf.o :

demo% f77 main.f –lcore77 –lcore graf.f –o myprog (Incorrect)
demo% f77 main.f graf.f –lcore77 –lcore –o myprog  (Correct)



Libraries  155

6

Sample Creation of a Static Library

Example: Create a static library from four subroutines in one file:

Example: This main program uses one of the subroutines in the library:

Routines for library demo% cat one.f
subroutine twice ( a, r )
real a, r
r = a * 2.0
return
end
subroutine half ( a, r )
real a, r
r = a / 2.0
return
end
subroutine thrice ( a, r )
real a, r
r = a * 3.0
return
end
subroutine third ( a, r )
real a, r
r = a / 3.0
return
end

demo%

Main demo% cat teslib.f
read(*,*) x
call twice( x, z )
write(*,*) z
end

demo%



 156 FORTRAN 77 User’s Guide

6

Split the file, using fsplit , so there is one subroutine per file:

Compile each with the -c  option so it will compile only, and leave the .o  files:

Create a static library, using ar :

The above command line directs ar  to create static library faclib.a  from the
four object files.

As an alternative, specify any order using lorder  and tsort :

demo% fsplit one.f
twice.f
half.f
thrice.f
third.f
demo%

demo% f77 -c half.f
half.f:
half:
demo% f77 -c third.f
third.f:
third:
demo% f77 -c thrice.f
thrice.f:
thrice
demo% f77 -c twice.f
twice.f:
twice:
demo%

demo% ar cr faclib.a half.o third.o thrice.o twice.o

demo% ar cr faclib.a 'lorder half.o third.o thrice.o \
             twice.o | tsort'



Libraries  157

6

In Solaris 1.x, use ranlib  to randomize the static library:

To use this new library, put the file name in the compile command. No special
flag is needed—the linker recognizes a library when it encounters one.

Example: Use the new library while compiling the main program:

Example: Use nm to list the names of all the objects in the executable file:

Solaris 1.x demo% ranlib faclib.a ( Do not do this in Solaris 2.x)

demo%f77 teslib.f faclib.a {Put the file name in the compile command. }
teslib.f:
MAIN:
demo%

This output format is for Solaris
2.x. It may vary for other
releases.

twice  appears→
half , third , thrice  do not
appear.

grep  confirms that twice
appears and half , third ,
thrice  do not appear. →

demo% nm a.out
[Index]   Value      Size    Type  Bind  Other Shndx   Name
[1] |         0|       0|FILE  |LOCL |0    |ABS    |a.out
… ← many lines not shown
[28] |    189024|       0|NOTY |LOCL |0    |13     |v.17
… ← many lines not shown
[190]|    193950|       1|OBJT |GLOB |0    |17     |__cblank
[191]|     77668|     164|FUNC |GLOB |0    |8      |MAIN_
… ← many lines not shown
[260]|     77832|      72|FUNC |GLOB |0    |8      |twice_
[261]|    194088|       4|OBJT |GLOB |0    |17
|_fp_current_exceptions
[262]|    188904|       0|FUNC |GLOB |0    |UNDEF  |close
[263]|    106400|      40|FUNC |GLOB |0    |8      |__rungetc
[264]|    113432|     784|FUNC |GLOB |0    |8      |__prnt_ext
[266]|    119624|     928|FUNC |WEAK |0    |8      |ieee_handler
… ← many lines not shown
demo% nm a.out | grep twice
[260]|     77832|      72|FUNC |GLOB |0    |8      |twice_
demo% nm a.out | grep half
demo% nm a.out | grep third
demo% nm a.out | grep thrice
demo%



 158 FORTRAN 77 User’s Guide

6

Example: Test the executable file—run a.out :

Sample Replacement in a Static Library

If you recompile an element of a static library, usually because you changed the
source, replace it in its library by running ar  again.

Example: Recompile, replace. Give ar  the r  option; use cr  only for creating:

6.4 Dynamic Libraries
The defining aspect of a dynamic library is that modules can be bound into the
executable file after execution begins.

Perhaps the most useful feature of a dynamic library is that a module can be
used by various executing programs without duplicating that module in each
and every one of them. For this reason, a dynamic library is also called a shared
library, or sometimes a dynamic shared library.

Features

A dynamic library has the following features:

• A dynamic library is a set of object modules, each in executable file format
(the a.out  format), but the set has no main entry.

• The object modules are not bound into the executable file by the linker
during the compile-link sequence; such binding is deferred until runtime.

demo% a.out
6
    12.0000
demo%

demo% f77 -c half.f
demo% ar r faclib.a half.o
demo%



Libraries  159

6

• A shared library module is bound once into the first running program that
references it. If any subsequent running program references it, that reference
is mapped to this first copy.

• If you change a module of a shared library, then whenever any application
that uses it starts to execute, it uses the changed version. Maintaining
programs is easier this way. However, a disadvantage is that you may have
different results from an unchanged executable, or from what appears as an
unchanged executable.

Performance Issues

There is the usual trade-off between space and time:

• Less space—In general, in deferring the binding of the library module:
• A dynamic library uses less disk space.
• A dynamic library uses less processor memory when several processes

using the library are active simultaneously.

• More time—It takes a little more CPU time to do the following:
• Load the library during runtime.
• Do the link editing operations.
• Execute the library position-independent code.

• Possible time savings—If the library module your program needs is already
loaded and mapped because another running program referenced it, then
the extra CPU time used can be offset by the savings in I/O access time. If
the extra CPU time is less than or equal to the saved I/O time, then the
performance that is the same or better.

You can “get more bang for the buck” in an environment where multiple
processes using the library are active simultaneously, that is, when the
library is actually being shared. The extra bang comes from a reduction in
working set size.



 160 FORTRAN 77 User’s Guide

6

• Overall speedup? Programs vary. Because of these various performance
issues, some programs are faster with shared libraries; some with nonshared
libraries. You can bind each way to see if one way is significantly better for
your program.

Position-Independent Code and -pic

Position-independent code (PIC) is code that can be bound to any address in a
program without requiring relocation by the link editor. Since the code does
not need the customizations created by such relocation, it is inherently sharable
between multiple processors. Thus, if you are building code to be part of a
shared library, you must make it position-independent code.

The -pic  compiler option produces position-independent code. Each reference
to a global datum is generated as a dereference of a pointer in the global offset
table. Each function call is generated in pc-relative addressing mode through a
procedure linkage table. The size of the global offset table is limited to 8K on
SPARC processors. The -PIC  compiler option is similar to -pic , but allows the
global offset table to span the range of 32-bit addresses.

Binding Options

You can specify the binding option when you compile, that is, dynamic or
static libraries. These options are actually linker options, but they are
recognized by the compiler and passed on to the linker.

See “–Bx,” on page 41 and “–dx” on page 45.

If you provide a library to your customers, then providing both a dynamic and
a static version allows them the flexibility of binding, whichever way is best for
their application. For example, if the customer is doing some benchmarks, the
–dn  option reduces one element of variability.

A Simple Dynamic Library

If you compile the source files with -pic  or -PIC , then you can build a
dynamic library from the relocatable object (.o ) files with the ld  command.



Libraries  161

6

Sample Create of a Dynamic Library (2.x)

We can create a dynamic library, starting with the same files used for the static
library example: half.f , third.f , thrice.f , and twice.f .

Example: Compile with -pic :

Example: Link and specify the .so  file, and the -h  to get a version number:

-G  tells the linker to build a dynamic library.

-ztext  warns you if it finds anything other than position-independent code,
such as relocatable text. It does not warn you if it finds writable data.

Example: Bind—make the executable file a.out :

Example: Run:

Inspect a.out  for the use of shared libraries. The file  command shows that
a.out  is a dynamically linked executable—programs that use shared libraries
are completely link-edited during execution.

demo% f77 -pic -c -silent *.f

demo% ld -o libfac.so.1 -dy -G -h libfac.so.1 -z text *.o

demo% f77 teslib.f libfac.so.1
teslib.f:
 MAIN:
demo%

demo% a.out
6

12.0000
demo%

Solaris 2.x



 162 FORTRAN 77 User’s Guide

6

Example: Use the file  command to see if a.out  is dynamically linked:

The ldd  command shows that a.out  uses some shared libraries, including
libfac.so.1  and libc , which are included by default by f77 . It also shows
exactly which files on the system are used for these libraries.

Example: Use the ldd  command to see if a.out  uses shared libraries:

Your paths may vary.

Sample Create of a Dynamic Library (1.x)

Start with the same files used for the static library example: half.f , third.f ,
thrice.f , twice.f . This library is very simple as it consists of procedures
only—no global data is exported; it is made available for direct reference by
programs using the library.

Example: Compile with -pic :

The output varies slightly for
Solaris 1.x, 2.x, x86.

demo% file a.out
a.out: ELF 32-bit MSB executable SPARC Version 1
dynamically linked, not stripped
demo%

demo% ldd a.out
        libfac.so.1 =>   ./libfac.so.1
        libF77.so.2 =>   /opt/SUNWspro/lib/libF77.so.2
        libc.so.1 =>     /usr/lib/libc.so.1
        libucb.so.1 =>   /usr/ucblib/libucb.so.1
        libresolv.so.1 =>        /usr/lib/libresolv.so.1
        libsocket.so.1 =>        /usr/lib/libsocket.so.1
        libnsl.so.1 =>   /usr/lib/libnsl.so.1
        libelf.so.1 =>   /usr/lib/libelf.so.1
        libdl.so.1 =>    /usr/lib/libdl.so.1
        libaio.so.1 =>   /usr/lib/libaio.so.1
        libintl.so.1 =>  /usr/lib/libintl.so.1
        libw.so.1 =>     /usr/lib/libw.so.1
demo%

demo% f77 -silent -pic -c half.f third.f thrice.f twice.f

Solaris 1.x



Libraries  163

6

Example: Link, and specify the .so  file and version number:

-assert pure-text  warns you if it finds anything other than position-
independent code, such as relocatable text, but not if it finds writable data.

Example: Bind—make the executable file a.out :

Example: Run:

Inspect a.out  for the use of shared libraries. The file  command shows if
a.out  is a dynamically linked executable—programs that use shared libraries
are completely link-edited while they are executed, that is, dynamically.

Example: Use the file  command to see if a.out  is dynamically linked:

The ldd  command shows that a.out  uses some shared libraries, including
libfac.so.1  and libc  (included by default by f77 ). It also shows exactly
which files on the system will be used for these libraries.

demo% ld -o libfac.so.1.1 -Bdynamic -assert pure-text *.o

demo% f77 teslib.f libfac.so.1.1
teslib.f:
 MAIN:
demo%

demo% a.out
6

12.0000
demo%

The output varies slightly for
Solaris 1.x, 2.x, x86.

demo% file a.out
a.out SPARC demand paged dynamically linked
      executable not stripped
demo%



 164 FORTRAN 77 User’s Guide

6

Example: Use the ldd  command to see if a.out  uses shared libraries:

Your paths may vary.

Dynamic Library for Exporting Initialized Data

Exported data means data in a shared library that is available for direct
reference by programs using the library. For FORTRAN, exported initialized
data is in the COMMON statements and the BLOCK DATA routines.

In Solaris 1.x, if the data are assigned initial values in the library, then this set
of data must be identified for the link editor by placing the data (and only the
data) in a special random archive library with the .sa  suffix. No such step is
needed in Solaris 2.x.

To create a dynamic library that allows using initialized data, do the following:

1. Segregate the initializing declarations into BLOCK DATA routines.

2. Put them in separate source files.

3. Create a static archive library (a .sa  file) composed of only those routines.
You must include these modules in the .so  file.

4. Use ranlib  to incorporate a symbol table into this .sa  archive library.

Note –  The above steps are for Solaris 1.x only. In Solaris 2.x, it is all
automatic.

demo% ldd a.out
        libfac.so.1.1
        -lF77.2 => /set/lang/4.0/lang/buildbin/4.x/libF77.so.2.0
        -lc.1 => /usr/lib/libc.so.1.6
demo%

Solaris 1.x



Libraries  165

6

Sample Create of a Dynamic Library—Export Initialized Data

Example: Create dynamic library—allow exporting of initialized data:

demo% cat Blkgrp.f
* Blkgrp.f -- Block Data for Shared Library

blockdata blkgrp
common / grp / a, b, c
data a, b, c / 3*9.9 /
end

demo% cat PrintGrp.f
* PrintGrp.f -- Subroutine for Shared Library

subroutine printgrp
common / grp / a, b, c
write( *, ’(3f4.1)’ ) a, b, c
return
end

demo% cat ReadGrp.f
* ReadGrp.f -- Subroutine for Shared Library

subroutine readgrp
common / grp / a, b, c
read( *, * ) a, b, c
return
end

demo% cat TesSharMain.f
* TesSharMain.f -- Test Shared Library

common / grp / a, b, c
a = 1.0
b = 2.0
call printgrp
end

demo%

Solaris 1.x



 166 FORTRAN 77 User’s Guide

6

Example: Source that does export initialized data:

Example: Use -pic  on: blkgrp.f , printgrp.f , readgrp.f , and
zapgrp.f :

Example: Create the .sa  file, then run ranlib  on it:

Create a shared library .so  file with the same version number as the .sa  file.
For the dynamic loader, the .sa  and .so  files must match exactly in name and
version number.

Example: Create a shared library:

demo% cat ZapGrp.f
* ZapGrp.f -- Subroutine for Shared Library

subroutine zapgrp
common / grp / a, b, c
a = 0.0
b = 0.0
c = 0.0
return
end

demo%

demo% f77 -c -pic -silent *.f
demo%

demo% ar cr libblkgrp.sa.1.1 Blkgrp.o
demo% ranlib libblkgrp.sa.1.1
demo%

demo% ld -o libblkgrp.so.1.1 -assert pure-text \
PrintGrp.o ReadGrp.o ZapGrp.o Blkgrp.o

demo%



Libraries  167

6

Example: Bind:

Example: Run:

Inspect the a.out  file for the use of shared libraries. The file  command
shows that a.out  is a dynamically linked executable—programs that use
shared libraries are completely link-edited while they are executed, that is,
dynamically.

Example: Use the file  command to see if a.out  is dynamically linked:

The ldd  command shows that a.out  uses two shared libraries,
libfac.so.1.1  and libc , which are included by default by f77 . It also
shows exactly which files on the system are used for these libraries.

Example: Use the ldd  command to see if a.out  uses shared libraries:

demo% f77 TesSharMain.o libblkgrp.so.1.1
demo%

demo% a.out
 1.0 2.0 9.9
demo%

The output varies slightly for
Solaris 1.x, 2.x, x86.

demo% file a.out
a.out: SPARC demand paged dynamically linked

executable not stripped
demo%

demo% ldd a.out
libblkgrp.so.1.1
-lF77.2 => /set/lang/2.0/lang/buildbin/4.x/libF77.so.2.0
-lc.0 => /usr/lib/libc.so.0.10

demo%



 168 FORTRAN 77 User’s Guide

6

6.5 Libraries Provided with the Compiler
Several libraries are installed with the compiler, including the following:

VMS Library

The libV77  library is the VMS library, which contains two special VMS
routines: idate  and time .

To use either of these routines, include the -lV77  option.

For idate  and time , there is a conflict between the VMS version and the
version that traditionally is available on UNIX operating systems. If you use
the -lV77  option, you get the VMS compatible versions of the idate  and
time  routines.

See the FORTRAN 77 4.0 Reference Manual for details on these routines.

Table 6-1 Major Libraries Provided with the Compiler

Library File Options Needed

f77  functions, nonmath libF77 None

f77  functions, nonmath, multithread safe libF77_mt -parallel , and so on

f77  math library libM77 None

VMS library libV77 -lV77

Library used if linking Pascal, FORTRAN,
and  C objects

libpfc None

Library of Sun math functions libsunmath None

POSIX bindings libFposix -lFposix

POSIX bindings for extra runtime checking libFposix_c -lFposix_c

XView bindings and Xlib bindings
for the X11 interface

libFxview -lFxview
-lxview
-lX11



Libraries  169

6

POSIX Library

There are two versions of POSIX bindings provided with the compiler:

• libFposix , which is just the bindings

• libFposix_c , which does some runtime checking to make sure you are
passing correct handles.

If you pass bad handles:

• libFposix_c  returns an error code (ENOHANDLE).
• libFposix  core dumps with a segmentation fault.

Of course, the checking is time-consuming, and libFposix_c  is several times
slower.

Both POSIX libraries come in static and dynamic forms.

Which POSIX

The POSIX bindings provided are for IEEE Standard 1003.9-1992.

IEEE 1003.9 is a binding of 1003.1-1990 to FORTRAN (X3.8-1978).

POSIX.1 documents:

• ISO/IEC 9945-1:1990
• IEEE Standard 1003.1-1990
• IEEE Order number SH13680
• IEEE CS Catalog number 1019

To find out precisely what POSIX is, you need both the 1003.9 and the POSIX.1
documents.

For further information, copies of the IEEE and ISO POSIX.1 Standard (ISO
9945-1:1990, also known as IEEE Standard 1003.1-1990) can be obtained from
the following organizations:

• Continental U.S.:
Computer Society: +1 (714) 821 8380 (Ask for Customer Service)
or IEEE Publication Sales +1 (800) 678-IEEE



 170 FORTRAN 77 User’s Guide

6

• Canada:
IEEE Canada: +1 (908) 981-1393
7071 Yonge St.
Thornhill, Ontario L3T 2A6
Canada

• Outside Continental U.S.:
IEEE Service Center: +1 (800) 678-IEEE
445 Hoes Lane
P. O. Box 1331
Piscataway, NJ  08855-1331

or:

IEEE Computer Society: +1 (714) 821 8380; Fax: +1 (714) 821 4010
10662 Los Vaqueros Circle
P. O. Box 3014
Los Alamitos, CA  90720-3014

• Europe:
IEEE Computer Society: +32 2 770 2198; Fax +32 2 770 8505
Jacques Kevers
13 Ave de l’Aquilon
B-1200
Brussels
Belgium

• Asia:
IEEE Computer Society: +81 33 408 3118; Fax +81 33 408 3553
Ms. Kyoko Mikami
Ooshima Building
2-19-1 Minami Aoyma
Minato-Ku
Tokyo 107
Japan



Libraries  171

6

6.6 Shippable Libraries
If your executable uses a Sun dynamic library that is listed in the following file,
your license includes the right to redistribute the library to your customer.

Do not redistribute or otherwise disclose the header files, source code, object
modules, or static libraries of object modules in any form.

Refer to the section, “License to Use,” in the document, “End User Object Code
License,” at the back of the plastic case that contains the CD-ROM.

Standard install /opt/SUNWspro/READMEs/runtime.libraries

Install to / my/ dir/ / my/ dir/SUNWspro/READMEs/runtime.libraries



 172 FORTRAN 77 User’s Guide

6



 173

Debugging 7

This chapter is organized into the following sections:

7.1 Global Program Checking (-Xlist )
Checking across routines helps find various kinds of bugs.

With -Xlist , f77  reports errors of alignment, agreement in number and type
for arguments, common blocks, parameters, plus many other kinds of errors.

f77  also makes a listing and a cross reference table; combinations and
variations of these are available using suboptions. An example follows.

Global Program Checking (-Xlist) page 173

Special Compiler Options (-C, -u, -U, -V, -xld) page 189

The Debugger page 191

Debugging of Parallelized Code page 208

Compiler Messages in Listing (error) page 208



 174 FORTRAN 77 User’s Guide

7

Example: Use -XlistE  to show errors only:

-XlistE demo% f77 -XlistE -silent Repeat.f
demo% cat Repeat.lst
FILE  "Repeat.f"
program  repeat
     4             CALL nwfrk ( pn1 )
                                  ^
**** ERR  #418:  argument "pn1" is real, but dummy argument is
                 integer*4
                 See: "Repeat.f" line #14
     4             CALL nwfrk ( pn1 )
                                  ^
**** ERR  #317:  variable "pn1" referenced as integer*4 across
                 repeat/nwfrk//prnok in line #21 but set as real
                 by repeat in line #2
subroutine  subr1
    10              CALL subr1 ( x * 0.5 )
                             ^
**** WAR  #348:  recursive call for "subr1". See dynamic calls:
                 "Repeat.f" line #3
subroutine  nwfrk
    17             PRINT *, prnok ( ix ), fork ( )
                                     ^
**** ERR  #418:  argument "ix" is integer*4, but dummy argument
                 is real
                 See: "Repeat.f" line #20
subroutine  unreach_sub
    24           SUBROUTINE unreach_sub()
                                      ^
**** WAR  #338:  subroutine "unreach_sub" isn't called from program

Date:     Wed Feb 23 10:40:32 1995
Files:         2 (Sources: 1; libraries: 1)
Lines:        26 (Sources: 26; Library subprograms:2)
Routines:      5 (MAIN: 1; Subroutines: 3; Functions: 1)
Messages:      5 (Errors: 3; Warnings: 2)
demo%



Debugging  175

7

Errors in General

Global program checking performs the following tasks:

• Enforce type checking rules of FORTRAN 77 more stringently than usual,
especially between separately compiled routines.

• Enforce some portability restrictions needed to move programs between
different machines or operating systems

• Detect legal constructions that are nevertheless wasteful or error-prone

• Reveal other bugs and obscurities

Details

In particular, global cross checking reports problems, such as:

• Interface problems
• Checking number and type of dummy and actual arguments
• Checking type of function values
• Checking possible conflicts of incorrect usage of data types in common

blocks of different subprograms

• Usage problems
• Function used as a subroutine or subroutine used as a function
• Declared but unused functions, subroutines, variables, and labels
• Referenced but not declared functions, subroutines, variables, and labels
• Usage of unset variables
• Unreachable statements
• Implicit type variables
• Inconsistency of the named common block lengths, names, and layouts

• Syntax problems: syntax errors found in a FORTRAN 77 program

• Portability problems: code that does not conform to ANSI FORTRAN 77, if
the appropriate option is used



 176 FORTRAN 77 User’s Guide

7

How to Use Global Program Checking

To cross-check the named source files, use -Xlist  on the command line.

Example: Compile three files for global program checking:

In the above example, f77 :

• Saves the output in the file any1.lst
• Compiles and links the program if there are no errors

Terminal Output

To display directly to the terminal, rename the output file to /dev/tty .

Example: Display to terminal:

See -Xlisto name, on page 185.

Default Output Features

The -Xlist  option provides a combination of features available for output.
With no other -Xlist  options, you get the following by default:

• The listing file name is taken from the first input source file that appears,
with a .lst  extension added.

• A line-numbered source listing
• Error messages (embedded in listing) for inconsistencies across routines
• Cross-reference table of the identifiers
• Pagination at 66 lines per page and 79 columns per line
• No call graph
• No expansion of include  files

demo% f77 -Xlist  any1.f  any2.f  any3.f

demo% f77 -Xlisto /dev/tty  any1.f



Debugging  177

7

File Types

The checking process recognizes all the files in the f77  command line, which
contain names that end in .f , .for , .F , .o , or .s . The .o  and .s  files supply
the process with information that relates to global names only, such as
subroutine and function names.

Analysis Files (.fln  Files)

f77  stores results of local cross checking analysis for source files into files with
a .fln  suffix. It usually uses the source directory. The files may be clutter,
however. One workaround is to delete the files from time to time:

Alternatively, put the files into, say, /tmp . See -Xlistfln dir, page 184.

demo% rm *.fln

demo% f77 -Xlistfln/tmp *.f



 178 FORTRAN 77 User’s Guide

7

Example: Using -Xlist —a program with inconsistencies between routines:

See the output on the following pages.

Repeat.f

Compile with -Xlist . →
List the -Xlist  output file. →

demo% cat Repeat.f
 PROGRAM repeat
   pn1 = REAL( LOC ( rp1 ) )
   CALL subr1 ( pn1 )
   CALL nwfrk ( pn1 )
   PRINT *, pn1
 END ! PROGRAM repeat

 SUBROUTINE subr1 ( x )
   IF ( x .GT. 1.0 ) THEN
    CALL subr1 ( x * 0.5 )
   END IF
 END

 SUBROUTINE nwfrk( ix )
   EXTERNAL fork
   INTEGER prnok, fork
   PRINT *, prnok ( ix ), fork ( )
 END

 INTEGER FUNCTION prnok ( x )
   prnok = INT ( x ) + LOC(x)
 END

 SUBROUTINE unreach_sub()
   CALL sleep(1)
 END

demo% f77 -Xlist -silent Repeat.f
demo% cat Repeat.lst



Debugging  179

7

Example: Output file for -Xlist :

Repeat.lst

Error messages are
embedded in the source
listing.

FILE  "Repeat.f"
     1           PROGRAM repeat
     2             pn1 = REAL( LOC ( rp1 ) )
     3             CALL subr1 ( pn1 )
     4             CALL nwfrk ( pn1 )
                                  ^
**** ERR  #418:  argument "pn1" is real, but dummy argument is integer*4
                 See: "Repeat.f" line #14
     4             CALL nwfrk ( pn1 )
                                  ^
**** ERR  #317:  variable "pn1" referenced as integer*4 across
                 repeat/nwfrk//prnok in line #21 but set as real by repeat in
                 line #2
     5             PRINT *, pn1
     6           END ! PROGRAM repeat
     7
     8           SUBROUTINE subr1 ( x )
     9             IF ( x .GT. 1.0 ) THEN
    10              CALL subr1 ( x * 0.5 )
                             ^
**** WAR  #348:  recursive call for "subr1". See dynamic calls:
                 "Repeat.f" line #3
    11             END IF
    12           END
    13
    14           SUBROUTINE nwfrk( ix )
    15             EXTERNAL fork
    16             INTEGER prnok, fork
    17             PRINT *, prnok ( ix ), fork ( )
                                     ^
**** ERR  #418:  argument "ix" is integer*4, but dummy argument is real
                 See: "Repeat.f" line #20
    18           END
    19
    20           INTEGER FUNCTION prnok ( x )
    21             prnok = INT ( x ) + LOC(x)
    22           END
    23
    24           SUBROUTINE unreach_sub()
                                      ^
**** WAR  #338:  subroutine "unreach_sub" isn't called from program
    25             CALL sleep(1)
    26           END



 180 FORTRAN 77 User’s Guide

7

Output File: f77 -Xlist Repeat.f  (Continued)

Repeat.lst
(Continued)

Cross reference table

Sample Interpretation:

The routine nwfrk →
       called in repeat , line 4
       defined, line 14

         C R O S S   R E F E R E N C E   T A B L E
  Source file:   Repeat.f
Legend:
D        Definition/Declaration
U        Simple use
M        Modified occurrence
A        Actual argument
C        Subroutine/Function call
I        Initialization: DATA or extended declaration
E        Occurrence in EQUIVALENCE
N        Occurrence in NAMELIST

         P R O G R A M   F O R M
 Program
 -------
repeat          <repeat>        D      1:D

 Functions and Subroutines
 -------------------------
fork     int*4  <nwfrk>        DC     15:D     16:D     17:C

int      intrinsic
                <prnok>         C     21:C

loc      intrinsic
                <repeat>        C      2:C
                <prnok>         C     21:C

nwfrk           <repeat>        C      4:C
                <nwfrk>         D     14:D

prnok    int*4  <nwfrk>        DC     16:D     17:C
                <prnok>        DM     20:D     21:M

real     intrinsic
                <repeat>        C      2:C

sleep           <unreach_sub>            C     25:C

subr1           <repeat>        C      3:C
                <subr1>        DC      8:D     10:C
unreach_sub     <unreach_sub>            D     24:D



Debugging  181

7

Output File: f77 -Xlist Repeat.f  (Continued)

In the cross-reference table in the above example:

• ix  is a 4-byte integer:
• Used as an argument in the routine, nwfrk
• At line 14, used as a declaration of argument
• At line 17, used as an actual argument

• pn1  is a 4-byte real in the routine, repeat:

• At line 2, modified
• At line 3, argument
• At line 4, argument
• At line 5, used

• rp1  is a 4-byte real in the routine, repeat . At line 2, it is an argument.

• x  is a 4-byte real in the routines, subr1  and prnok :
• In subr1 , at line 8, defined; at lines 9 and 10 used
• In prnok , at line 20, defined; at line 21, used as an argument

Repeat.lst
(Continued)

More of the cross
reference table

 Variables and Arrays
 --------------------

ix       int*4  dummy
                <nwfrk>        DA     14:D     17:A

pn1      real*4 <repeat>      UMA      2:M      3:A      4:A      5:U

rp1      real*4 <repeat>        A      2:A

x        real*4 dummy
                <subr1>        DU      8:D      9:U     10:U
                <prnok>       DUA     20:D     21:A     21:U

----------------------------------------------------------------------

Date:     Tue Feb 22 13:15:39 1995
Files:         2 (Sources: 1; libraries: 1)
Lines:        26 (Sources: 26; Library subprograms:2)
Routines:      5 (MAIN: 1; Subroutines: 3; Functions: 1)
Messages:      5 (Errors: 3; Warnings: 2)
demo%



 182 FORTRAN 77 User’s Guide

7

Suboptions for Global Checking Across Routines

The standard global cross checking option is -Xlist  with no suboption.

This section shows the listing, errors and cross reference table. For variations
from this standard report, add one or more suboptions to the command line.

Suboption Syntax

Add suboptions according to the following rules:

• Append the suboption to -Xlist .
• Put no space between the -Xlist  and the suboption.
• Put only one suboption per -Xlist .

Combination Special and A La Carte Suboptions

Combine suboptions according to the following rules:

• The combination special is: -Xlist  (listing, errors, cross reference table)
• The a la carte options are: -Xlistc , -XlistE , -XlistL , and -XlistX .
• All other options are detail options—not a la carte or combination special.

Note – Once you start ordering a la carte, the three parts of the combination
special are cancelled, and you get only what you specify.

Example: Each of these two command lines perform the same task:

demo% f77  -Xlistc  -Xlist  any.f

 demo% f77  -Xlistc  any.f



Debugging  183

7

The following table shows the combination special or a la carte suboptions,
with no other suboptions:

Here is a summary of -Xlist  suboptions:

Type/Amount of Output Option Comment Details

Errors, listing, cross reference table -Xlist No suboptions page 176

Errors -Xlist E By itself, does not show listing or cross reference table page 184

Errors and listing -Xlist L By itself, does not show cross reference table page 185

Errors and cross reference table -Xlist X By itself, does not show listing page 186

Errors and call graph -Xlist c By itself, does not show listing or cross reference table page 184

Option Action Details

-Xlist   (no suboption) Show errors, listing, and cross reference table. page 182

-Xlist c Show call graphs and errors. page 184

-Xlist E Show errors. page 184

-Xlist err [ nnn] Suppress error nnn in the verification report. page 184

-Xlist f Produce fast output. page 184

-Xlist fln dir Put the .fln  files in dir. page 184

-Xlist h Halt the compilation if errors occur in cross-checking. page 185

-Xlist I List and cross-check include  files. page 184

-Xlist L Show the listing and errors. page 185

-Xlist l n Set page breaks. page 185

-Xlist o name Rename the -Xlist  output report file. page 185

-Xlist s Suppress unreferenced identifiers from the cross reference table. page 185

-Xlist vn Show different amounts of semantic information. page 186

-Xlist w[ nnn] Set the width of output lines. page 186

-Xlist war [ nnn] Suppress warning nnn in the report. page 186

-Xlist X Show the cross-reference table and errors. page 186



 184 FORTRAN 77 User’s Guide

7

Details of -Xlist  Suboptions

-Xlist c Show call graphs (and cross-routine errors). This suboption by itself does not
show a listing or cross-reference. It produces the call graph in a planned tree
form, using printable characters. If some subroutines are not called from MAIN,
more than one graph is shown. Each BLOCKDATA is printed separately with no
connection to MAIN.

The default is not to show the call graph.

-Xlist E Show cross-routine errors. This suboption by itself does not show a listing or a
cross reference.

-Xlist err [ nnn] Suppress error nnn in the verification report. This option is useful if you want a
listing or cross-reference without the error messages. It is also useful if you do
not consider certain practices to be real errors.

To suppress more than one error, use this option repeatedly. For example:
-Xlisterr338  suppresses error message 338. If nnn is not specified, all error
messages are suppressed.

-Xlist f For faster output, produce source file listings and cross-checking and verify
sources, but do not generate object files.

The default is: generate object files.

- Xlist fln dir Put the .fln  files into the dir directory, which must already exist.

The default is the source directory.

-Xlist I Include files. List and cross-check the include files.

If -XlistI  is the only -Xlist  option or suboption used, then you get the
standard -Xlist  output of a line numbered listing, error messages, and a
cross-reference table, but include  files are shown or scanned, as appropriate.

• Listing—If the listing is not suppressed, then the include  files are listed in
place. Files are listed as often as they are included. The files are:
• Source files
• #include  files
• INCLUDE files



Debugging  185

7

• Cross-Reference Table—If the cross-reference table is not suppressed, the
following files are all scanned while the cross-reference table is generated:
• Source files
• #include  files
• INCLUDE files

The default is no include  files.

-Xlist h Halt the compilation if errors are detected while cross-checking the program. In
this case, the report is redirected to stdout  instead of the *.lst  file.

-Xlist L Show listing and cross-routine errors. This suboption by itself does not show a
cross reference. The default is to show the listing and cross-reference.

-Xlist l n Set the page length for pagination to n lines. The suboption is the letter ell for
length, not the digit one. For example, -Xlistl45  sets the page length to 45
lines. The default is 66.

The -Xlistl0  option shows listings and cross-reference with no page breaks
for easier on-screen viewing. The suboption is a zero, not a letter oh.

-Xlist o name Rename the -Xlist output report file. The space between o and name is
required. Output is then to the name.lst  file.

To display directly to the terminal, use the command: -Xlisto /dev/tty

-Xlist s Suppress unreferenced identifiers from the cross-reference table.

If the identifiers are defined in the include  files but not referenced in the
source files, then they are not shown in the cross-reference table.

This suboption has no effect if the suboption -XlistI  is used.

The default is not to show the occurrences in #include  or INCLUDE files.



 186 FORTRAN 77 User’s Guide

7

-Xlist vn  Set level of checking strictness. n is 1,2 , 3, or 4. The default is 2 (-Xlistv2 ).

• -Xlistv1

Show the cross-checked information of all names in summary form only,
with no line numbers. This is the lowest level of checking strictness—syntax
errors only.

• -Xlistv2

Show cross-checked information with summaries and line numbers. This is
the normal level of checking strictness, and includes argument inconsistency
errors and variable usage errors.

• -Xlistv3

Show cross-checking with summaries and line numbers. Additionally to
-Xlistv2 , show common block maps. This is a high level of checking
strictness, and includes errors caused by incorrect usage of data types in
common blocks in different subprograms.

• -Xlistv4

Show cross-checking with summaries and line numbers. Additionally to
-Xlistv2 , show common block maps and equivalence block maps. This is
the top level of checking strictness with maximum error detection.

-Xlist w[ nnn] Set width of output line  to n columns. For example, -Xlistw132  sets the page
width to 132 columns. The default is 79.

-Xlist war [ nnn] Suppress warning nnn in the report. If nnn is not specified, then all warning
messages are suppressed from printing. To suppress more than one, but not all
warnings, use this option repeatedly. For example, -Xlistwar338  suppresses
the warning message, number 338.

-Xlist X Show cross-reference table and cross-routine errors. This suboption by itself does
not show a listing.

The cross-reference table shows the following information about each identifier:

• Is it an argument?
• Does it appear in a COMMON or EQUIVALENCE declaration?
• Is it set or used?



Debugging  187

7

Example: Use -Xlistwar nnn to suppress two specific warnings:

Some warnings that are popular to suppress are: 314, 315, 320, 357.

demo% f77 -Xlistwar338  -Xlistwar348 -XlistE -silent Repeat.f
demo% cat Repeat.lst
FILE  "Repeat.f"
program  repeat
     4             CALL nwfrk ( pn1 )
                                  ^
**** ERR  #418:  argument "pn1" is real, but dummy argument is
                 integer*4
                 See: "Repeat.f" line #14
     4             CALL nwfrk ( pn1 )
                                  ^
**** ERR  #317:  variable "pn1" referenced as integer*4 across
                 repeat/nwfrk//prnok in line #21 but set as real
                 by repeat in line #2
subroutine  nwfrk
    17             PRINT *, prnok ( ix ), fork ( )
                                     ^
**** ERR  #418:  argument "ix" is integer*4, but dummy argument
                 is real
                 See: "Repeat.f" line #20

Date:     Wed Feb 23 10:40:32 1995
Files:         2 (Sources: 1; libraries: 1)
Lines:        26 (Sources: 26; Library subprograms:2)
Routines:      5 (MAIN: 1; Subroutines: 3; Functions: 1)
Messages:      5 (Errors: 3; Warnings: 2)
demo%



 188 FORTRAN 77 User’s Guide

7

Example: Explain a message and find a type mismatch:

ShoGetc.f

Type Z on keyboard →

The problem:
     Why this message? →

The debugging:
       Use -Xlist .
       List the output.

Here is the error.         →
Our default typing of getc  is not
consistent with the FORTRAN
77 library.

f77  was given special
information about the
FORTRAN 77 library—that is
how f77  knows that getc  is
integer.

The solution:                   →
   Make c  an integer.

No more message.

demo% cat ShoGetc.f
CHARACTER*1 c
i = getc(c)
END

demo% f77 -silent ShoGetc.f
demo% a.out Program waits for input from keyboard
Z
 Note: the following IEEE floating-point arithmetic exceptions
 occurred and were never cleared; see ieee_flags(3M):
 Inexact;  Invalid Operand;
 Sun’s implementation of IEEE arithmetic is discussed in
 the Numerical Computation Guide.
demo% f77 -XlistE -silent ShoGetc.f
demo% cat ShoGetc.lst
FILE  "ShoGetc.f"
program  MAIN
     2          i = getc(c)
                ^
**** WAR  #320:  variable "i" set but never referenced
     2          i = getc(c)
                       ^
**** ERR  #412:  function "getc" used as real but declared as
                 integer*4
     2          i = getc(c)
                         ^
**** WAR  #320:  variable "c" set but never referenced

Date:     Fri Mar  4 12:13:11 1995
Files:         2 (Sources: 1; libraries: 1)
Lines:         3 (Sources: 3; Library subprograms:1)
Routines:      1 (MAIN: 1)
Messages:      3 (Errors: 1; Warnings: 2)
demo% cat ShoGetc.f

INTEGER c
i = getc(c)
END

demo% f77 -silent ShoGetc.f
demo% a.out
Z
demo%



Debugging  189

7

7.2 Special Compiler Options (-C , -u , -U , -V, -xld )
The compiler options -C , -u , -U -V , and -xld  are useful for debugging. They
check subscripts, spot undeclared variables, show stages of the compile-link
sequence, versions of software, and compile D debug statements.

For Solaris 2.3 and later, there are new linker debugging aids. See ld (1), or
type: -Qoption ld -Dhelp .

Subscript Bounds (-C )

To check for out-of-bounds array subscripts, use -C .

If you compile with -C , then f77  checks at runtime for out-of-bounds on each
array subscript. This action helps catch some causes of the segmentation fault.

Example: Index out of range:

Undeclared Variable Types (-u )

To check for any undeclared variables, use -u .

The -u  option causes all variables to be initially identified as undeclared, so
that an error is flagged for variables that are not explicitly declared. The -u
flag is useful for discovering mistyped variables. If -u  is set, all variables are
treated as undeclared until explicitly declared. Use of an undeclared variable is
accompanied by an error message.

demo% cat indrange.f
REAL a(10,10)
k = 11
a(k,2) = 1.0
END

demo% f77 -C -silent indrange.f
demo% a.out
 Subscript out of range on file indrange.f, line 3, procedure
MAIN.
 Subscript number 1 has value 11 in array a.
 Abort (core dumped)
demo%



 190 FORTRAN 77 User’s Guide

7

Case-Sensitive Variable Recognition (-U )

To distinguish between uppercase and lowercase, use -U .

If you debug FORTRAN 77 programs that use other languages, you may need
to compile with the -U  option to preserve the case.

With the -U  option, f77  does not convert uppercase letters to lowercase, but
leaves them in the original case. The default is to convert to lowercase, except
within character-string constants.

You need this option if the routine in the other language names a function or a
common block with one or more uppercase letters. However, since -U  also
makes variable recognition case-sensitive, you must have perfect consistency
as  you use uppercase or lowercase for variable names and global identifiers.

Note – If you are not perfectly consistent with the case of your variables, the
-U  option will probably cause serious problems. That is, if you sometimes type
Delta , and other times, DELTA or delta , then with -U , f77  treats these
various deltas as totally different variables. This is probably not what you
intend, and can waste debugging time.

Version Checking (-V )

The -V  option causes the name and version ID of each phase of the compiler to
be displayed. This option can be useful in tracking the origin of ambiguous
error messages and in reporting compiler failures, and to verify the level of
installed compiler patches.

D Comment Line Debug Print Statements (-xld )

To compile with comment line debug print statements, use -xld .

The -xld  flag causes f77  to compile statements (usually print statements) that
have a D or a d in column one. Without -xld , they are comments. See
Section 2.9, “Directives,” for details on -xl [d].



Debugging  191

7

Note – The -xld  option enables VMS FORTRAN compatibility mode, which
may not be what you want, however. It is safe to use only if you normally
compile with -xl , since it changes FORTRAN 77 semantics.

Example: Compile with and without -xld :

7.3 The Debugger
This section introduces some dbx  features likely to be used with f77 . Use it as
a quick start for f77  debugging. This section is organized as follows:

Note – Before you use the debugger, you must install the appropriate Tools
package—read Installing SunSoft Developer Products (SPARC/Solaris) for details.

REAL A(5) / 5.0, 6.0, 7.0, 8.0, 9.0 /
DO I = 1, 5

X = A(I)**2
D PRINT *, I, X {With -xld, this prints I and X. Without, it prints nothing.}

END DO
PRINT *, 'done'
END

Sample Program for Debugging page 192

Sample dbx Session (example) page 193

Segmentation Fault—Finding the Line Number (example) page 196

Exceptions—Finding the Line Number (example) page 198

Bus Error—Finding the Line Number (example) page 199

Trace of Calls (example) page 200

Arrays (example) page 201

Array Slices (example) page 202

Intrinsic Functions (example) page 203

Complex Expressions (example) page 204

Logical Operators (example) page 205

Miscellaneous Tips page 206

Main Features of the Debugger page 207



 192 FORTRAN 77 User’s Guide

7

Sample Program for Debugging

Here is a program that includes the files, a1.f , a2.f , and a3.f , that contain
bugs, and is used in several examples of debugging.

Example: Main for debugging:

Example: Subroutine for debugging:

Example: Function for debugging:

a1.f PARAMETER ( n=2 )
REAL twobytwo(2,2) / 4 *-1 /
CALL mkidentity( twobytwo, n )
PRINT *, determinant( twobytwo )
END

a2.f SUBROUTINE mkidentity ( array, m )
REAL array(m,m)
DO 90 i = 1, m

DO 20 j = 1, m
    IF ( i .EQ. j ) THEN

array(i,j) = 1.
    ELSE

array(i,j) = 0.
    END IF

20 CONTINUE
90 CONTINUE

RETURN
END

a3.f REAL FUNCTION determinant ( a )
REAL a(2,2)
determinant = a(1,1) * a(2,2) - a(1,2) / a(2,1)
RETURN
END



Debugging  193

7

Sample dbx Session

The following examples use the sample program.

• Compile and link with the -g  flag. You can do this in one or two steps.

Example: Compile and link in one step, with -g :

Example: Compile and link in separate steps:

• To start dbx , type dbx  and the name of your executable file.
The prompt becomes: (dbx) .

Example: Start dbx  on the executable named silly :

• To quit dbx , enter the quit  command.

Example: Quit dbx :

 demo% f77 -o silly -g a1.f a2.f a3.f

 demo% f77 -c -g a1.f a2.f a3.f
 demo% f77 -g -o silly a1.o a2.o a3.o (Use -g   in Solaris 1.x, but not in 2.x)

 demo% dbx silly
 Reading symbolic information…
 (dbx)

 (dbx) quit                                       (Skip this for now so you can do the next steps.)
 demo%



 194 FORTRAN 77 User’s Guide

7

• To set a breakpoint, wait for the dbx  prompt, then type: stop in subnam,
where subnam names a subroutine, function, or block data subprogram.

Example: A way to stop at the first executable statement in a main program:

Although MAIN must be in uppercase, in general, subnam can be uppercase
or lowercase. See “Case-Sensitive Variable Recognition (-U)” on page 190.

• To run the program from dbx , enter the run  command, which runs the
program in the executable files that were named when you started dbx .

Example: Run the program from within dbx :

When the breakpoint is reached, dbx  displays a message showing where it
stopped, in this case, at line 3 of the a1.f  file.

• To print a value, enter the print  command.

Example: Print value of n:

 (dbx) stop in MAIN  { MAIN must be in uppercase. }
 (2) stop in MAIN
 (dbx)

 (dbx) run
 Running: silly
 stopped in MAIN at line 3 in file "a1.f"

3 call mkidentity( twobytwo, n )
 (dbx)

 (dbx) print n
 n = 2
 (dbx)



Debugging  195

7

Example: Print the matrix twobytwo ; the format may vary with the release:

Example: Print the matrix array :

The print fails because array  is not defined here—only in mkidentity .
The error message details may vary with the release, and, of course, with
any translation.

• To advance execution to the next line, enter the next  command.

Example: Advance execution to the next line:

The next  command executes the current source line, then stops at the next
line. It counts subprogram calls as single statements.

 (dbx) print twobytwo
 twobytwo =
    (1,1)       -1.0
    (2,1)       -1.0
    (1,2)       -1.0
    (2,2)       -1.0
 (dbx)

(dbx) print array
dbx: "array" is not defined in the current scope
(dbx)

(dbx) next
stopped in MAIN at line 4 in file "a1.f"
    4 print *, determinant( twobytwo )
(dbx) print twobytwo
twobytwo =
    (1,1)       1.0
    (2,1)       0.0
    (1,2)       0.0
    (2,2)       1.0
(dbx) quit
demo%



 196 FORTRAN 77 User’s Guide

7

Compare next  with step . The step  command executes the next source
line, or the next step into a subprogram, and so forth. In general, if the next
executable source statement is a subroutine or function call, then:
• step  sets a breakpoint at the first source statement of the subprogram.
• next  sets the breakpoint at the first source statement after the call, but

still in the calling program.

Segmentation Fault—Finding the Line Number

If a program gets a segmentation fault (SIGSEGV), it references a memory
address outside of the memory available to it.

Some Causes of SIGSEGV

The most frequent causes for a segmentation fault are:

• An array index is outside the declared range.
• The name of an array index is misspelled.
• The calling routine has a REAL argument, which the called routine has as

INTEGER.
• An array index is miscalculated.
• The calling routine calls has fewer arguments than required.
• A pointer is used before it is defined

Some Ways to Locate the Source Line

There are several ways to locate the offending source line. Any of the following
ways can be helpful:

• Recompile with the -Xlist  option to get global program checking.
• Recompile with -C,  subscript checking option. See “Subscript Bounds (-C).”
• Use dbx  to find the source code line where a segmentation fault occurred.



Debugging  197

7

Example: Use a program to generate a segmentation fault:

Example: Use -C  to locate a segmentation fault:

Example: Use dbx  to find the line number of a segmentation fault:

demo 4% cat WhereSEGV.f
INTEGER a(5)
j = 2000000
DO 9 i = 1,5

a(j) = (i * 10)
9 CONTINUE

PRINT *, a
END

demo 5%

demo 5% f77 -C -silent WhereSEGV.f
demo 6% a.out
Subscript out of range on file WhereSEGV.f, line 4, procedure
MAIN.
Attempt to access the 2000000-th element of variable a.
Abort (core dumped)
demo 7%

demo 5% f77 -g -silent WhereSEGV.f
demo 6% a.ou t
*** TERMINATING a.out
*** Received signal 11 (SIGSEGV)
Segmentation fault (core dumped)
demo 7% dbx a.out
Reading symbolic information for a.out
program terminated by signal SEGV (segmentation violation)
(dbx) run
Running: a.out
signal SEGV (no mapping at the fault address)
    in MAIN at line 4 in file "WhereSEGV.f"
    4                   a(j) = (i * 10)
(dbx)



 198 FORTRAN 77 User’s Guide

7

Exceptions—Finding the Line Number

If a program gets an exception, there are many possible causes. One approach
to locate the problem is to find the line number in the source program where
the exception occurred, then look for clues there.

You can find the source code line number where a floating-point exception
occurred by using the ieee_handler  routine with either dbx  or debugger .

Example: Find where an exception occurred:

WhereExcept.f EXTERNAL myhandler                             ! Main
INTEGER ieeer, ieee_handler, myhandler
REAL r/14.2/, s/0.0/
ieeer = ieee_handler('set', 'all', myhandler)
PRINT *, r/s
END
INTEGER FUNCTION myhandler(sig, code, context) ! Handler

* { This handler is OK in SunOS 4.X/5.0 since it just aborts.}
INTEGER sig, code, context(5)
CALL abort()
END

demo% f77 -g -silent WhereExcept.f
demo% dbx a.out
Reading symbolic information for a.out

(dbx) catch FPE The catch FPE dbx command
(dbx) run
Running: a.out
signal FPE (floating point divide by zero)
     in MAIN at line 5 in file "WhereExcept.f"
    5 PRINT *, r/s
(dbx)



Debugging  199

7

Bus Error—Finding the Line Number

If a program gets a bus error (SIGBUS), it usually has some problems with
misaligned data. The address may well be valid, whereas with SIGSEGV, the
address is invalid. Some possible causes of SIGBUS are:

• Misaligned data
• Using a pointer that is not defined or incorrectly defined

Example: Use a program to generate a bus error (SIGBUS):

Example: Recompile with the -Xlist  to locate a bus error (SIGBUS):

demo% cat WhereSIGBUS.f
character*1 c(5)
call sub(c(2))  ! Assumes argument is aligned as a character,  bytes 2-5
end
subroutine sub(i) !  Assumes argument is aligned as an integer
print *,i
end

demo% f77 -C -silent WhereSIGBUS.f
demo% a.out
*** TERMINATING a.out
*** Received signal 10 (SIGBUS)
Bus Error (core dumped)

demo 5% f77 -Xlist -silent WhereSIGBUS.f
demo 6% cat WhereSIGBUS.lst
WhereSIGBUS.f              Fri Jun 10 16:02:17 1994                      page 1
FILE  "WhereSIGBUS.f"
     1          character*1 c(5)
     2          call sub(c(2))
                           ^
**** ERR  #418:  argument "c" is character, but dummy argument is integer*4
                 See: "WhereSIGBUS.f" line #4
     2          call sub(c(2))
                           ^
**** ERR  #316:  array "c" may be referenced before set by sub in line #5
     3          end
     4          subroutine sub(i)
     5          print *,i

<many lines omited>



 200 FORTRAN 77 User’s Guide

7

Trace of Calls

Sometimes a program stops with a core dump, and you need to know the
sequence of calls that brought it there. This sequence is called a stack trace.

Example: Show the sequence of calls, starting at where the execution stopped:

The where  command shows where in the program flow execution
stopped—how execution reached this point—that is, a stack trace of the called
routines. Since you no longer get an automatic traceback, we have following ode.

Ode To Traceback

 O blinding core! File of death!
 Alone like Abel's brother, Seth.
 The demise of process I cannot face
 Without the aid of stackish trace.
 To see what by you must needs be done,
 Please see Example Twenty-One.1

 Mateo Burtch, 1992

____________________________________

1. Since trace  be dead, or just not there, try dbx ’s better where .
   Seek not example twenty one, as it was cited just for fun.

ShowTrace.f is a program
contrived to get a core dump a few
levels deep in the call
sequence—to show a stack trace.

Note the reverse order:

    MAIN  called calc
    calc  called calcb .

Execution stopped, line 23 →
calcB  called from calc , line 9 →
calc  called from MAIN, line 3 →

demo% f77 -silent -g ShowTrace.f
demo% a.out
*** TERMINATING a.out
*** Received signal 11 (SIGSEGV)
Segmentation Fault (core dumped)
quil 174% dbx a.out
...
(dbx) run
Running: a.out
(process id 1089)
signal SEGV (no mapping at the fault address) in calcb at line 23
in file "ShowTrace.f"
   23                   v(j) = (i * 10)
(dbx) where
=>[1] calcb(v =  ARRAY , m = 2), line 23 in "ShowTrace.f"
  [2] calc(a =  ARRAY , m = 2, d = 0), line 9 in "ShowTrace.f"
  [3] MAIN(), line 3 in "ShowTrace.f"



Debugging  201

7

Arrays

Example: dbx  recognizes arrays and can print them:

Arraysdbx.f demo% dbx a.out
Reading symbolic information…
(dbx) list 1,25
    1           DIMENSION IARR(4,4)
    2           DO 90 I = 1,4
    3                   DO 20 J = 1,4
    4                           IARR(I,J) = (I*10) + J
    5   20              CONTINUE
    6   90      CONTINUE
    7           END
(dbx) stop at 7
(1) stop at "Arraysdbx.f":7
(dbx) run
Running: a.out
stopped in MAIN at line 7 in file "Arraysdbx.f"
    7           END
(dbx) print IARR
iarr =

(1,1) 11
(2,1) 21
(3,1) 31
(4,1) 41
(1,2) 12
(2,2) 22
(3,2) 32
(4,2) 42
(1,3) 13
(2,3) 23
(3,3) 33
(4,3) 43
(1,4) 14
(2,4) 24
(3,4) 34
(4,4) 44

(dbx) print IARR(2,3)
iarr(2, 3) = 23 ← Order of user-specified subscripts ok

(dbx) quit
demo%



 202 FORTRAN 77 User’s Guide

7

Array Slices

 Example: dbx  prints array slices if you specify which rows and columns:

Example: Print row 3:

ShoSli.f

This is one way of printing
portions of large arrays.

demo% f77 -g -silent ShoSli.f
demo% dbx a.out
Reading symbolic information for a.out
(dbx) list 1,12

1 INTEGER*4  a(3,4), col, row
2 DO row = 1,3
3 DO col = 1,4
4   a(row,col) = (row*10) + col
5 END DO
6 END DO
7 DO row = 1, 3
8  WRITE(*,'(4I3)') (a(row,col),col=1,4)
9 END DO
10 END

(dbx) stop at 7
(1) stop at "ShoSli.f":7
(dbx) run
Running: a.out
stopped in MAIN at line 7 in file "ShoSli.f"

7  DO row = 1, 3
(dbx)

(dbx) print a(3:3,1:4)
'ShoSli'MAIN'a(3:3, 1:4) =
        (3,1)   31
        (3,2)   32
        (3,3)   33
        (3,4)   34
(dbx)



Debugging  203

7

Example: Print column 4:

Intrinsic Functions

dbx  recognizes FORTRAN 77 intrinsic functions.

Example: Show an intrinsic function in dbx :

(dbx) print a(1:3,4:4)
'ShoSli'MAIN'a(3:3, 1:4) =
        (1,4)   14
        (2,4)   24
        (3,4)   34
(dbx)

demo% cat ShowIntrinsic.f
    INTEGER i
    i = 2
    END
demo% f77 -g -silent ShowIntrinsic.f
demo% dbx a.out
(dbx) stop in MAIN
(dbx) run
Running: a.out
(process id 10903)
stopped in MAIN at line 2 in file "ShowIntrinsic.f"
    2       i = 2
(dbx) whatis abs
Generic intrinsic function: "abs"
(dbx) print abs(i)
abs(i) = 0
(dbx) quit
demo%



 204 FORTRAN 77 User’s Guide

7

Complex Expressions

dbx  also recognizes FORTRAN 77 complex expressions.

Example: Show a complex expression in dbx :

demo% cat ShowComplex.f
    COMPLEX z
    z = ( 2.0, 3.0 )
    END
demo% f77 -g -silent ShowComplex.f
demo% dbx a.out
(dbx) stop in MAIN
(dbx) run
Running: a.out
(process id 10953)
stopped in MAIN at line 2 in file "ShowComplex.f"
    2       z = ( 2.0, 3.0 )
(dbx) whatis z
complex*8  z
(dbx) print z
z = (0.0,0.0)
(dbx) next
stopped in MAIN at line 3 in file "ShowComplex.f"
    3       END
(dbx) print z
z = (2.0,3.0)
(dbx) print z+(1.0,1.0)
z+(1,1) = (3.0,4.0)
(dbx) quit
demo%



Debugging  205

7

Logical Operators

dbx  can locate FORTRAN 77 logical operators and print them.

Example: Show logical operators in dbx :

demo% cat ShowLogical.f
        LOGICAL a, b, y, z
        a = .true.
        b = .false.
        y = .true.
        z = .false.
        END
demo% f77 -g -silent ShowLogical.f
demo% dbx a.out
(dbx) list 1,9
    1           LOGICAL a, b, y, z
    2           a = .true.
    3           b = .false.
    4           y = .true.
    5           z = .false.
    6           END
(dbx) stop at 5
(2) stop at "ShowLogical.f":5
(dbx) run
Running: a.out
(process id 15394)
stopped in MAIN at line 5 in file "ShowLogical.f"
    5           z = .false.
(dbx) whatis y
logical*4  y
(dbx) print a .or. y
a.OR.y = true
(dbx) assign z = a .or. y
(dbx) print z
z = true
(dbx) quit
demo%



 206 FORTRAN 77 User’s Guide

7

Miscellaneous Tips

The following tips and background concepts can help. For more details, see the
dbx  documentation.

Current Procedure and File

During a debug session, dbx  defines a procedure and a source file as current.
Requests to set breakpoints and to print or set variables are interpreted relative
to the current function and file. Thus, stop at 5  sets one of three different
breakpoints, depending on whether the current file is a1.f, a2.f , or a3.f .

Uppercase Letters

In general, if your program has uppercase letters in any identifiers, then the
debugger recognizes them. You need not give it any specific case-sensitive or
case-insensitive commands, as in some earlier versions.

f77  and dbx  must be in the same case-sensitive or case-insensitive mode:

• To compile and debug in case-insensitive mode, do so without the -U
option. The debugger default then is: dbxenv case insensitive .

If the source has a variable named LAST, then in dbx, both the print LAST
or print last  commands work. Both f77  and dbx  consider LAST and
last  to be the same, as requested.

• To compile and debug in case-sensitive mode, use -U . The debugger default
is then dbxenv case sensitive .

If the source has a variable named LAST, but one named last , then in dbx,
print LAST  works, but print last  does not work. Both f77  and dbx
distinguish between LAST and last , as requested.

Note – File or directory names are always case-sensitive in both debugger  and
dbx . This rule is true even if you have set the dbxenv case insensitive
environment attribute.



Debugging  207

7

Optimized Programs

To debug optimized programs:

• Compile the main program with -g  but with no -On.
• Compile every other routine of the program with the appropriate -On.
• Start the execution under dbx .
• Use fix -g any.f  on the routine you want to debug, but no -On.
• Use continue  with that routine compiled.

Runtime Checking

The dbx runtime checking feature can be very helpful for standard C programs
that use pointers, but not for standard FORTRAN 77 programs.

The more common FORTRAN 77 problem of an array index accessing outside
of the array can be detected with -C ; see “Subscript Bounds (-C)” on page 189.

Main Features of the Debugger

Be sure to read the Debugger manual for the following information:

• The full range of features in the debugger
• The window-based and mouse-based interface
• An appendix with more FORTRAN 77 examples

Overview of dbx  Features Useful for FORTRAN 77

The dbx  program provides event management, process control, and data
inspection. You can watch what is happening during program execution, and
perform the following tasks:

• Fix one routine, then continue executing without recompiling the others
• Set watchpoints to stop or trace if a specified item changes
• Collect data for performance tuning
• Graphically monitor variables, structures, and arrays
• Set breakpoints (set places to halt in the program) at lines or in functions
• Show values—once halted, show or modify variables, arrays, structures, …
• Step through a program, one source or assembly line at a time
• Trace program flow—show sequence of calls taken
• Invoke procedures in the program being debugged

Solaris 2.x



 208 FORTRAN 77 User’s Guide

7

• Step over or into function calls; step up and out of a function call
• Run, stop, and continue execution at the next line or at some other line
• Produce dbx -safe I/O in the command window
• Save and then replay all or part of a debugging run
• Stack—examine the call stack, or move up and down the call stack
• Program scripts in the embedded Korn shell
• Follow programs as they fork (2) and exec (2)

7.4 Debugging of Parallelized Code
The parallelization options limit the debugging capabilities of dbx .

If you compile a routine with -g  and a parallelizing option, debugging with
dbx  is possible, and although you will not be able to print the value of
variables, symbolic traceback is available with the dbx where  command..

For solutions, see Section C.6, “Debugging Tips and Hints for Parallelized
Code,” on page 399.

7.5 Compiler Messages in Listing (error )
error  is a utility program that inserts compiler diagnostics above the relevant
line in the source file, as follows:

• The diagnostics include the standard compiler error and warning messages,
but not the -Xlist  error and warning messages.

• The diagnostics listing changes your source files.

• This function does not work if the source files are in a read-only directory.

error (1) is included in the operating system if it was installed with a
developer install, rather than an end-user install; it is also included if you
install the package, SUNWbtool . There is also a man page for error .

Method

The error  utility associates compiler error diagnostics with the offending
source lines. It recognizes and categorizes diagnostics from a variety of source-
language processors, and inserts them as comments in the appropriate source
file before the lines that caused the corresponding errors.

Solaris 2.x



Debugging  209

7

You can then read the source code along with its compiler diagnostics.

error  Utility

Use error  as follows (pass stdout  and stderr  from f77  to error ).

In sh :

In csh :

Options

The general form for using error  with options is:

• -n

Do not change any files. This option sends all diagnostics to the standard
output.

• -q

Query before changing each file. If there is no -q  option, then the compiler
changes all the files it encounters during the compilation, except those files
for discarded error messages.

• -v

After all files have been changed, invoke vi  to edit them, starting with the
first one; then position the cursor at the first diagnostic. If vi  cannot be
located in the standard places, try emacs, ex , or ed .

demo$ f77 any.f 2>&1 | error options

demo% f77 any.f |& error options

error  [ -n  ] [ -q  ] [ -v  ] [ -s  ] [ -T  ] [ -t suffixlist ] [ -S  ] [
filename ]



 210 FORTRAN 77 User’s Guide

7

• -s

Print out statistics regarding error categorization.

• -T

Produce a terse form of messages. This option is intended for standard
output.

• -t suffixlist

Change only files whose suffixes appear in suffixlist. suffixlist is a dot-
separated list, and an asterisk (*)  is acceptable as a wildcard.

Example: Change only files with the suffixes, .h , .f* , or .t :

• -S

Display the errors in the standard output as they are produced.

• filename

Read error messages from filename rather than from the standard input.

Description

The error  utility examines each line of its input and does the following:

• Determines the language processor that produced the message, the file
name, and line number of the offending line.

• Inserts the message in the form of a special comment into the source file
immediately preceding the erroneous line. It changes source files.

If the source line of a diagnostic cannot be determined, the diagnostic is sent to
the standard output. The files remain unchanged.

Scanning with an Editor

The error  utility inserts diagnostics in appropriate files after all input is read.
The -s  option allows previewing diagnostics before files are changed.

 demo% error -t '.h.f*.t'



Debugging  211

7

All diagnostics are inserted as one-line comments, starting with the marker
###  and ending with %%%. These markers make it easy for a text processor to:

• Locate such messages in a file
• Remove such messages from a file

The line number of the offending line, along with the language processor that
issued the message, appears in the comment line as well.

Redirecting and Piping

You can pass both standard output and standard error from f77  to the error
utility.

For example, in sh :

In csh :

In each shell, the command compiles and redirects or pipes the standard
output and standard error to the error  program. Then error , in turn,
processes these diagnostics, and queries you before changing myprog.f  and
all other source files that are invoked from myprog.f .

demo$ f77 myprog.f 2>&1 | error -q

demo% f77 myprog.f |& error -q



 212 FORTRAN 77 User’s Guide

7

Sample Use of error

Example: Sample program that shows how to use the error  utility:

forerror.f (before compile)

This FORTRAN 77 source
program contains various
syntax errors.

Compile the program for
error  in csh :

demo% cat forerror.f
C Sample program
C

program test
automatic x
logical flag
character*256 fname
common /ioiflg/ ictl
flag =.true.
go to 10
if (flag) then

10 ictl = 1
else

ictl = 0
endif
do 200 i = 0, MAXNUM
call getenv(fname
go to 200
write (0, 2000) fname(:5)

200 continue
endif

2000 format (’ This is a test ", b)
end

demo% f77 -ansi forerror.f |& error



Debugging  213

7

Example: Source file changed by the error  utility:

forerror.f (after compile)

The source file has been changed.

demo% cat forerror.f
C###0 [Sunf77] ANSI extension: source line(s) in nonStandard
format%%%
C Sample program
C
C###3 [Sunf77] ANSI extension: input contains lower case
letters%%%

program test
C###4 [Sunf77] Warning: local variable "x" never used%%%
C###4 [Sunf77] ANSI extension: AUTOMATIC statement%%%

automatic x
logical flag
character*256 fname
common /ioiflg/ ictl
flag =.true.
go to 10

C###10 [Sunf77] Warning: statement cannot be reached%%%
if (flag) then

C###11 [Sunf77] Warning: there is a branch to label 10 from outside
block%%%
10 ictl = 1

else
ictl = 0

endif
do 200 i = 0, MAXNUM

C###16 [Sunf77] Error: unclassifiable statement%%%
C###16 [Sunf77] Error: unbalanced parentheses, statement
skipped%%%

call getenv(fname
go to 200

C###18 [Sunf77] Warning: statement cannot be reached%%%
write (0, 2000) fname(:5)

200 continue
C###20 [Sunf77] Error: endif out of place%%%

endif
C###21 [Sunf77] Error: unclassifiable statement%%%
C###21 [Sunf77] Error: unbalanced quotes; closing quote
supplied%%%
C###21 [Sunf77] Error: unbalanced parentheses, statement
skipped%%%
2000 format (' This is a test ", b)

end



 214 FORTRAN 77 User’s Guide

7



 215

Floating Point 8

This chapter is organized into the following sections.

This chapter introduces floating-point problems and IEEE floating-point tools
for solving those problems.

If you are not familiar with floating-point arithmetic, see:

• The Numerical Computation Guide. which contains detailed explanations and
examples

• The document, “What Every Computer Scientist Should Know About Floating-
point Arithmetic,” by David Goldberg. It can be found in the AnswerBook
system or in the READMEs directory.

IEEE Solutions page 216

The General Problems page 216

IEEE Exceptions page 218

IEEE Routines page 219

Debugging IEEE Exceptions page 236

Guidelines page 238

Miscellaneous Examples page 238



 216 FORTRAN 77 User’s Guide

8

8.1 The General Problems
How can IEEE arithmetic help solve real problems? IEEE 754 standard floating-
point arithmetic offers greater control over computation than is possible in any
other type of floating point. In scientific research, there are many ways for
errors to occur:

• The model may be wrong.

• The algorithm may be numerically unstable—solving equations by inverting
ATA, for example.

• The data may be ill-conditioned.

• The computer may be producing unexpected results.

It is nearly impossible to separate these error sources. Using library packages
which have been approved by the numerical analysis community reduces the
chance of there being a code error. Using good algorithms is another must.
Using good computer arithmetic is the next obvious step.

The IEEE Standard represents the work of many of the best arithmetic
specialists in the world today. It was influenced by the mistakes of the past. It
is, by construction, better than the arithmetic employed in the S/360 family, the
VAX family, the CDC, CRAY, and UNIVAC families, to name but a few. This is
not because these vendors are not clever, but because the IEEE pundits came
later and were able to evaluate the choices of the past and their consequences.
Does IEEE arithmetic solve all problems? No. But in general, the IEEE Standard
makes it easier to write better numerical computation programs.

8.2 IEEE Solutions
IEEE arithmetic is a relatively new way of dealing with arithmetic operations
where the result yields such problems as invalid, division by zero, overflow,
underflow, or inexact. The big differences are in rounding, handling numbers
near zero, and handling numbers near the machine maximum.

For rounding, IEEE arithmetic defaults to doing the intuitive thing, and closely
corresponds with old arithmetic.

IEEE offers choices, which the expert can use to good effect, while old
arithmetic did it just one way.



Floating Point  217

8

What happens if we:

• Multiply two very large numbers with the same sign?
• Have large numbers of different signs?
• Divide nonzero by zero?
• Divide zero by zero?

In old arithmetic, all these cases are the same. The program aborts on the spot;
in some very old machines, the computation proceeds, but with garbage. IEEE
provides choices.

The default solution is to produce the following:

In the above example +Inf , -Inf , and NaN are introduced intuitively. More
details later.

Also, an exception of one of the following kinds is raised:

• Invalid—Examples that yield invalid are 0.0/0.0, sqrt(-1.0), log(-37.8), …

• Division by zero—Examples that yield division by zero are 9.9/0.0, …

• Overflow—Example with overflow: MAXDOUBLE+0.0000000000001e308

• Underflow—Example that yields underflow: MINDOUBLE * MINDOUBLE

• Inexact—Examples that yield inexact are 2.0 / 3.0, log(1.1), read in 0.1, …
No exact representation in binary for the precision is involved.

There are various reasons why all this works is important:

• If you do not understand what you are using, you may not like the results.

• Poor arithmetic can produce poor results, which cannot be easily
distinguished from other causes of poor results.

• Switching everything to double precision is no panacea.

big*big = +Inf
big*(-)big = -Inf
num/0.0 = +Inf Where num > 0.0
num/0.0 = -Inf Where num < 0.0
0.0/0.0 = NaN Not a Number



 218 FORTRAN 77 User’s Guide

8

8.3 IEEE Exceptions
IEEE exception handling is the default on a SPARC processor. However, there
is a difference between detecting a floating-point exception, and generating a
signal for a floating-point exception (SIGFPE).

Detecting a Floating-point Exception

In accordance with the IEEE Standard, two things happen when a floating-
point exception occurs in the course of an operation.

• The handler returns a default result. For 0/0, return NaN as the result.
• A flag is set that an exception is raised. For 0/0, set “invalid operation” to 1.

Generating a Signal for a Floating-point Exception

The default on SPARC hardware systems is that they do not generate a signal
for a floating-point exception. The assumption is that signals degrade
performance, and that most developers do not care about most exceptions.

To generate a signal for a floating-point exception, you establish a signal
handler. You use a predefined handler or write your own. See “Exception
Handlers and ieee_handler()” on page 226.

Default Signal Handlers

By default, f77  sets up some signal handlers, mostly for dealing with such
things as a floating-point exception, interrupt, bus error, segmentation
violation, or illegal instruction.

Although, generally, you would not want to turn off this default behavior, you
can do so by setting the global C variable f77_no_handlers  to 1, as shown in
the following steps.

1.  Create a C program.

demo% cat NoHandlers.c
int  f77_no_handlers=1 ;

demo%



Floating Point  219

8

2. Compile it and save the .o  file.

3. Link the corresponding .o  file into your executable file.

Otherwise, by default, it is 0. The effect is felt just before execution is
transferred to the program, so it does not make sense to set or unset it there.

This variable is in the name space of the program, so do not use
f77_no_handlers  as the name of a variable anywhere else other than in the
above C program.

8.4 IEEE Routines
The following interfaces help people use the functionality of IEEE arithmetic.
These are mostly in the math library libsunmath  and in several .h  files.

• ieee_flags (3m)—Control rounding direction and rounding precision.
Query exception status. Clear exception status.

• ieee_handler (3m)—Establish exception handler. Remove exception
handler.

• ieee_functions (3m)—List name and purpose of each IEEE function.

• ieee_values (3m)—A list of functions that return special values.

• Other libm  functions:
• ieee_retrospective
• nonstandard_arithmetic
• standard_arithmetic

Many vendors support the IEEE Standard. The SPARC processors conform to
the IEEE Standard in a combination of hardware and software support for
different aspects.

The older Sun-4 uses the Weitek 1164/5, and the Sun-4/110 has that as an
option.

demo% cc -c -o NoHand NoHandlers.c

demo% f77 NoHand.o Any.f



 220 FORTRAN 77 User’s Guide

8

The newer Sun-4 and the SPARC system series both use floating-point units
with hardware square root. This is accessed if you compile with the -cg89
option.

The newest SPARC system series uses new floating-point units, including
SuperSPARC, with hardware integer multiply and divide instructions. These
are accessed if you compile with the -cg92  option.

The utility fpversion  tells which floating-point hardware is installed. This
utility runs on all Sun architectures. See fpversion (1), and read the Numerical
Computation Guide for details. This utility replaces the older utility,
fpuversion4 .

Flags and ieee_flags()

The ieee_flags  function is used to query and clear exception status flags. It
is part of the libsunmath  shipped with SPARC operating systems, and
performs the following tasks.

• Control rounding direction and rounding precision
• Check the status of the exception flags
• Clear exception status flags

The general form of a call to ieee_flags  is as follows:

Each of the four arguments is a string. The input is: action , mode, and in. The
output is: out and i. ieee_flags  is an integer-valued function. Useful
information is returned in i.  Refer to the man page for ieee_flags (3m) for
complete details.

Possible parameter values are shown in the following table:

i = ieee_flags( action, mode, in, out )

action: get, set, clear, clearall
mode: direction, precision, exception
in,out: nearest, tozero, negative, positive,

extended, double, single,
inexact, division, underflow, overflow, invalid,
all, common



Floating Point  221

8

The meanings of the possible values for in  and out  depend on the action and
mode they are used with. These are summarized in the following table.

Note – These examples show only how to call the routines to get the
information or set the behavior. They make no attempt to teach the numerical
analysis that lets you know when to call them or what behavior to set.

For example, to determine what is the highest priority exception that has a flag
raised, pass the input argument in  as the null string:

Also, to determine if the overflow  exception flag is raised, set the input
argument in  to overflow . On return, if out equals overflow , then the
overflow  exception flag is raised; otherwise it is not raised.

Example: Clear the invalid  exception:

Table 8-1 ieee_flags  Argument Meanings

Value of in and out Refers to

nearest , tozero , negative , positive Rounding direction

extended , double , single Rounding precision

inexact, division, underflow, overflow, invalid Exceptions

all All 5 exceptions

common Common exceptions:
invalid, division, overflow

ieeer = ieee_flags( 'get', 'exception', '', out )
PRINT *, out, ' flag raised'

ieeer = ieee_flags( 'get', 'exception', 'overflow', out )
IF ( out.eq. 'overflow') PRINT *,'overflow flag raised'

ieeer = ieee_flags( 'clear', 'exception', 'invalid', out )



 222 FORTRAN 77 User’s Guide

8

Example: Clear all exceptions:

Example: Set rounding direction to zero:

Example: Set rounding precision to double :

Turning Off All Warning Messages with ieee_flags

Use this option if you do not want to know about the unrequited exceptions.
To do this, clear all accrued exceptions by putting a call to ieee_flags()  just
before your program exits.

Example: Clear all accrued exceptions with ieee_flags() :

ieeer = ieee_flags( 'clear', 'exception', 'all', out )

ieeer = ieee_flags( 'set', 'direction', 'tozero', out )

ieeer = ieee_flags( 'set', 'precision', 'double', out )

i = ieee_flags('clear', 'exception', 'all', out )



Floating Point  223

8

Detecting an Exception with ieee_flags

These examples show only how to call the routines to get the information.
They make no attempt to teach the numerical analysis that lets you know when
to call them and what to do with the information.

Example: Detect an exception using ieee_flags , and decode it:

Use the .F  suffix so the preprocessor brings in the f77_floating.h header file.

Example: Compile and run to detect an exception with ieee_flags :

(Solaris 2.x)
DetExcFlg.F

#include "f77_floatingpoint.h"
CHARACTER*16 out
DOUBLE PRECISION d_max_subnormal, x
INTEGER div, flgs, inv, inx, over, under

        x = d_max_subnormal() / 2.0               ! Cause underflow

        flgs=ieee_flags('get','exception','',out) ! Which are raised?

        inx   = and(rshift(flgs, fp_inexact)  , 1) ! Decode
        div   = and(rshift(flgs, fp_division) , 1)  ! the value
        under = and(rshift(flgs, fp_underflow), 1)   ! returned
        over  = and(rshift(flgs, fp_overflow) , 1)    ! by
        inv   = and(rshift(flgs, fp_invalid)  , 1)     ! ieee_flags

        PRINT *, "Highest priority exception is: ", out
        PRINT *, ' invalid  divide  overflo underflo inexact'
        PRINT '(5i8)', inv, div, over, under, inx
        PRINT *, '(1 = exception is raised; 0 = it is not)'
        i = ieee_flags('clear', 'exception', 'all', out) ! Clear all
        END

demo% f77  -silent DetExcFlg.F
demo% a.out
 Highest priority exception is: underflow
  invalid  divide  overflo underflo inexact
       0       0       0       1       1
 (1 = exception is raised; 0 = it is not)
demo%



 224 FORTRAN 77 User’s Guide

8

Detecting All Five Exceptions with ieee_flags

How to call, not when to call or what to do with the information:

Example: Detect all five exceptions using ieee_flags , and decode them:

Use the .F  suffix so the preprocessor will bring in the f77_floating.h header file.

Compile and run to detect all five exceptions with ieee_flags :

DetAllFlg.F #include "f77_floatingpoint.h"
CHARACTER*16 out
DOUBLE PRECISION d_max_normal, d_max_subnormal, x, y /0.0/
INTEGER div, flgs, inv, inx, over, under

x = log( -37.8 )                      ! Cause invalid
x = 3.14159 / y                       ! Cause division by zero
x = d_max_subnormal() / 2.0           ! Cause underflow
x = d_max_normal() * 2.0D0            ! Cause overflow
x = 2.0D0 / 3.0D0                     ! Cause inexact

flgs=ieee_flags('get','exception','',out)! which exceptions raised?

inx   = and(rshift(flgs, fp_inexact)  , 1)  ! Decode the
div   = and(rshift(flgs, fp_division) , 1)   ! value
under = and(rshift(flgs, fp_underflow), 1)    ! returned in
over  = and(rshift(flgs, fp_overflow) , 1)     ! flgs, using
inv   = and(rshift(flgs, fp_invalid)  , 1)      ! bit-shifts

PRINT *, "Highest priority exception is: ", out

PRINT *, ' invalid  divide  overflo underflo inexact' !  1=raised
PRINT '(5i8)', inv,div,over,under,inx             ! 0=not raised
i = ieee_flags('clear', 'exception', 'all', out)! Clear all
END

demo% f77  -silent DetAllFlg.F
demo% a.out
Highest priority exception is: invalid
 invalid  divide  overflo underflo inexact
       1       1       1       1       1
demo%



Floating Point  225

8

Values and ieee_values

The ieee_values (3m) file describes a collection of functions. Each function
returns a special IEEE value. You can use these special IEEE entities, such as
infinity or minimum normal, in a user program.

Example: A convergence test may be like this:

The values available are listed in the following table.

For the two NaN functions, you can assign or print out the values, but
comparisons using either of them always yield false. To determine whether
some value is a NaN, use the function ir_isnan(r)  or id_isnan(d) .

The FORTRAN 77 names for these functions are listed in:

• libm_double (3f)
• libm_single (3f)
• ieee_functions (3m)

Also see:

• ieee_values (3m)
• The f77_floatingpoint.h  header file

IF ( delta .LE. r_min_normal() ) RETURN

Table 8-2 Functions for Using IEEE Values

IEEE Value Double Precision Single Precision

infinity d_infinity() r_infinity()

quiet NaN d_quiet_nan() r_quiet_nan()

signaling NaN d_signaling_nan() r_signaling_nan()

min normal d_min_normal() r_min_normal()

min subnormal d_min_subnormal() r_min_subnormal()

max subnormal d_max_subnormal() r_max_subnormal()

max normal d_max_normal() r_max_normal()



 226 FORTRAN 77 User’s Guide

8

Exception Handlers and ieee_handler()

Most floating-point users need to know the following about IEEE exceptions:

• What happens when an exception occurs?
• How to use ieee_handler()  to establish a function as a signal handler
• How to write a function that can be used as a signal handler
• How to locate the exception—where did it occur?

To obtain this information, you need to generate a signal for a floating-point
exception. The official UNIX name for signal: floating-point exception is SIGFPE.
To generate a SIGFPE, establish a signal handler. The default on SPARC
hardware systems is that they do not generate a SIGFPE.

Establishing a Signal Handler Function with ieee_handler()

To establish a function as a signal handler, pass the name of the function to
ieee_handler() , together with the exception to watch for and the action to
take. Once you establish a handler, a signal is generated whenever the
particular floating-point exception occurs.

The form of invoking ieee_handler()  is:

There are two general kinds of signal handler functions:

• Predefined signal handler functions
• Functions that you write yourself

i = ieee_handler( action, exception, handler )

action character get , set , or clear

exception character invalid , division , overflow, underflow ,
or inexact

handler function name The name of the function you wrote, or
SIGFPE_DEFAULT, SIGFPE_IGNORE,  or
SIGFPE_ABORT

return value integer 0=OK



Floating Point  227

8

Writing Predefined Signal Handler Functions

The predefined handlers are:

• SIGFPE_DEFAULT (better to get default behavior without calling this)
• SIGFPE_IGNORE
• SIGFPE_ABORT

Actions taken by the function are up to you. However, the function must be an
integer function and must have three arguments and data types, as follows:

• hand5x( sig, sip, uap  )
• hand5x  is the name for your integer function.
• sig  is an integer.
• sip  is a record which has the structure siginfo  (see example below).
• uap  is not used here.

Example: Form of signal handler function, Solaris 2.x:

If the handler installed by ieee_handler()  is written in FORTRAN 77,
then the handler should not make any reference to the first argument (sig
in the example above). The first argument is passed by value, but is
expected by reference in a FORTRAN 77 handler. The actual signal number
can be referenced as loc(sig) .

INTEGER FUNCTION hand( sig, sip, uap ) ! Form, Handler, Solaris 2.x
INTEGER sig, location
STRUCTURE /fault_typ/

INTEGER address
END STRUCTURE
STRUCTURE /siginfo/

INTEGER si_signo
INTEGER si_code
INTEGER si_errno
RECORD /fault_typ/ fault

END STRUCTURE
RECORD /siginfo/ sip
location = sip.fault.address
... actions you take ...
END

Solaris 2.x



 228 FORTRAN 77 User’s Guide

8

• hand4x( sig, code, context )

• hand4x  is the name for your integer function.
• sig  is an integer.
• code  is an integer.
• context  is an array of five integers.

Example: Form of signal handler function (Solaris 1.x):

Detecting an Exception by Handler (Solaris 2.x and 1.x)
These examples show only how to call the routines for the information. They
make no attempt to teach the numerical analysis that lets you know when to
call them and what to do with the information.

Example: Detect exception, by handler (Solaris 2.x and 1.x):

SIGFPE is generated whenever that floating-point exception occurs. Then the
SIGFPE is detected, and control is passed to the myhandler  function.

INTEGER FUNCTION hand( sig, code, context ) ! Form, Handler, 1.x
INTEGER sig, code, context(5)
location = context(4)
... actions you take ...
END

Solaris 1.x/ 2.x
DetExcHan.f

EXTERNAL myhandler                           ! Main
REAL r / 14.2 /, s / 0.0 /
i = ieee_handler ('set', 'division', myhandler )
t = r/s
END

INTEGER FUNCTION myhandler(sig,code,context)!  Handler, 2.x or 1.x
*    { OK in Solaris 2.x/1.x since all it does is abort.}

INTEGER sig, code, context(5)
CALL abort()
END

demo% f77 -silent DetExcHan.f
demo%  a.out
abort: called
Abort (core dumped)
demo%

Solaris 1.x



Floating Point  229

8

Locating an Exception by Handler (Solaris 2.x)
Example: Locate an exception (get address) using a handler (Solaris 2.x):

Note – An address is mostly for those who use such low-level debuggers as adb .

Solaris 2.x
LocExcHan5x.F

#include "f77_floatingpoint.h"
EXTERNAL hand5x                              ! Main
INTEGER hand5x, i, ieee_handler
REAL r / 14.2 /,  s / 0.0 /, t
i = ieee_handler( 'set', 'division', hand5x )
t = r/s
END

INTEGER FUNCTION hand5x( sig, sip, uap)! Handler, Solaris 2.x
INTEGER sig, location
STRUCTURE /fault_typ/

INTEGER address
END STRUCTURE
STRUCTURE /siginfo/

INTEGER si_signo
INTEGER si_code
INTEGER si_errno
RECORD /fault_typ/ fault

END STRUCTURE
RECORD /siginfo/ sip
location = sip.fault.address
WRITE (*,10)  location          !  Caveat: I/O in a handler is risky.

10 FORMAT('Exception at hex address ', Z8 )
CALL abort()                    ! This reduces the risk mentioned above.
END

demo%

Solaris 2.x demo% f77 -silent LocExcHan5x.F
demo%  a.out
Exception at hex address    10DC4 {The actual address varies with }
abort: called {installation and architecture.}
Abort (core dumped)
demo%



 230 FORTRAN 77 User’s Guide

8

Locating an Exception by Handler (Solaris 1.x)
Example: Locate an exception (get address) using a handler (Solaris 1.x):

Caveat: Above,  I/O in a handler is risky.

Above, the actual address varies with installation and architecture.

Note – How to call, not when to call or what to do with the information.

Solaris 1.x
LocExcHan4x.f

EXTERNAL hand4x                           ! Main
INTEGER hand4x, i, ieee_handler
REAL r /14.2/,  s /0.0/, t
i = ieee_handler('set', 'division', hand4x)
t = r / s
END

INTEGER FUNCTION hand4x(sig,code,context) ! Handler, Solaris 1.x
INTEGER sig, code, context(5)
WRITE( *, '("Exception at pc", I5 )' ) context(4)
CALL abort()                              ! Just to reduce risk
RETURN
END

Solaris 1.x demo% f77 -silent LocExcHan4x.f
demo%  a.out
Exception at pc 8980
abort: called
Abort
demo%



Floating Point  231

8

Detecting All Exceptions by Handler (Solaris 2.x)
Example: Detect and locate all exceptions with a signal handler (Solaris 2.x):

Use the .F  suffix so the preprocessor will bring in the f77_floating.h
header file.

Note – How to call, not when to call or what to do with the information.

Solaris 2.x
DetAllHan5x.F

#include "f77_floatingpoint.h"
  DOUBLE PRECISION x, y, d_max_normal, d_min_normal, z/0.0d0/
  EXTERNAL continue5x
  INTEGER continue5x
  ieeer = ieee_handler('set', 'all', continue5x) ! Establish handler
  IF (ieeer.ne.0) PRINT *,'cannot establish handler: continue5x'
ieeer = ieee_handler('set', 'inexact', SIGFPE_IGNORE) ! Ignore inexact

  WRITE(*,"(/'0/0:')")
  x = 0.0d0 / z                                    ! Invalid
  WRITE(*,"(/'3.14159/0.0 Trapped:')")
  x = 3.14159d0 / z                                ! Div by 0, trapped

  WRITE(*,"(/'max_normal**2:')")
  y = d_max_normal()
  x = y * y                                        ! Overflow
  WRITE(*,"(/'min_normal**2:')")
  y = d_min_normal()
  x = y * y                                        ! Underflow

  ieeer = ieee_handler('set', 'inexact', continue5x)! Trap inexact
  IF (ieeer.ne.0) PRINT *,"Can't set inexact, handler continue5x"
  WRITE(*,"(/'2.0/3.0:')")
  x = 2.0d0 / 3.0d0                                 ! Inexact

ieeer = ieee_handler('clear','division',SIGFPE_DEFAULT)! Set div dflt
  IF (ieeer.ne.0) PRINT *, 'cannot clear division handler'
  WRITE(*,"(/'3.14159/0.0 Untrapped:')")
  x = 3.14159d0 / z                                 ! Div by 0, untrapped
  WRITE(*,"(' 3.14159/0.0 = ', F12.8/)") x
  END
...Continued...



 232 FORTRAN 77 User’s Guide

8

Example: Detect and locate all exceptions with handler (Solaris 2.x) (Continued).

Solaris 2.x
DetAllHan5x.F (Continued)

Handler →

< Uses sysmachsig.h  values >
which is schlepped in by
f77_floatingpoint.h .

These codes may be different on
Solaris x86. Check the
/usr/include/sys/machsig.h
file.

INTEGER FUNCTION continue5x(sig, sip, uap) ! Handler-2.x
INTEGER sig, code, location
CHARACTER*9 label
STRUCTURE /fault_typ/

INTEGER address
END STRUCTURE
STRUCTURE /siginfo/         ! Translate siginfo_t in sys/siginfo.h

INTEGER si_signo
INTEGER si_code
INTEGER si_errno
RECORD /fault_typ/ fault

END STRUCTURE
RECORD /siginfo/ sip
code = sip.si_code    ! Which exception raised SIGFPE?
IF (code .eq. 3) label = 'division' ! These
IF (code .eq. 4) label = 'overflow'  ! 5 codes
IF (code .eq. 5) label = 'underflow'  ! are defined
IF (code .eq. 6) label = 'inexact'     ! in
IF (code .eq. 7) label = 'invalid'      ! sys/machsig.h
location = sip.fault.address
WRITE(*,10) label, code, location   ! I/O in handler is risky

10 FORMAT(A10,' exception, sigfpe code',I2,',at address ',Z8)
END

Solaris 2.x
Compile, load, and run.

The addresses vary, depending
on installation and architecture.
The addresses are mostly for
those who use such low-level
debuggers as adb . See
page 237 on how to get the
source line number.

demo% f77 -silent DetAllHan5x.F
demo% a.out
0/0:
 invalid   exception, sigfpe code 7, at address    11144
3.14159/0.0 Trapped:
 division  exception, sigfpe code 3, at address    11190
 max_normal**2:
 overflow  exception, sigfpe code 4, at address    111DC
min_normal**2:
 underflow exception, sigfpe code 5, at address    11228
2.0/3.0:
 inexact   exception, sigfpe code 6, at address    1130C
3.14159/0.0 Untrapped:
 3.14159/0.0 = Infinity
 ... retrospective messages about exceptions ...
demo%



Floating Point  233

8

Example: Detect and locate all exceptions with a signal handler (Solaris 1.x):

Solaris 1.x
DetAllHan4x.F

Main →
Use the .F suffix so the
preprocessor will bring in the
f77_floating.h header file.

The next page has  details on
inexact . →

Handler→

Note special codes.

#include "f77_floatingpoint.h"
    DOUBLE PRECISION x, y, d_max_normal, d_min_normal, z/0.0d0/
    EXTERNAL continue4x
    INTEGER continue4x
    ieeer = ieee_handler('set', 'all', continue4x)   !  Establish handler
    IF (ieeer.ne.0) PRINT *,'cannot establish handler: continue4x'
    ieeer = ieee_handler('set','inexact',SIGFPE_IGNORE)!  Ignore inexact

    WRITE(*,"(/'0/0:')")
    x = 0.0d0 / z                                     ! Invalid
    WRITE(*,"(/'3.14159/0.0:')")
     x = 3.14159d0 / z                                ! Div by 0, trapped

    WRITE(*,"(/'max_normal**2:')")
    y = d_max_normal()
    x = y * y                                         ! Overflow
    WRITE(*,"(/'min_normal**2:')")
    y = d_min_normal()
    x = y * y                                         ! Underflow

    ieeer = ieee_handler('set', 'inexact', continue4x)!  Trap inexact
    IF (ieeer.ne.0) PRINT *,'Cannnot establish handler: inexact'
    WRITE(*,"(/'2.0/3.0:')")
    x = 2.0d0 / 3.0d0                                 ! Inexact

    ieeer=ieee_handler('clear','division',SIGFPE_DEFAULT)!  Div default
    IF (ieeer.ne.0) PRINT *, 'could not clear division handler'
    WRITE(*,"(/'3.14159/0.0:')")
    x = 3.14159d0 / z                             ! Div by 0, untrapped
    WRITE(*,"(' 3.14159/0.0 = ', F12.8/)") x
    END

    INTEGER FUNCTION continue4x(sig,code,sigcontext) ! Handler- 1.x
    INTEGER code, sig, sigcontext(5)
    CHARACTER label*16
    IF (loc(code) .eq. 208) label = 'invalid'
    IF (loc(code) .eq. 200) label = 'division by zero'
    IF (loc(code) .eq. 212) label = 'overflow'
    IF (loc(code) .eq. 204) label = 'underflow'
    IF (loc(code) .eq. 196) label = 'inexact'
    WRITE (*,1) loc(code), label, sigcontext(4) ! I/O in handler is risky
 1  FORMAT(' ieee exception code',I4, ',', A17, ',', ' at pc',I6)
    END



 234 FORTRAN 77 User’s Guide

8

Example: Detect and locate all exceptions, with handler (Continued):

In the above example, after the execution of x=2.0d0/3.0d0 , x  contains:

The value is “garbage” because it is unpredictable; it depends on various
actions that happen immediately before the exception.

Solaris 1.x
Compile, load, and run.

The addresses vary, depending on
installation and architecture. The
addresses are mostly for those who
use such low-level debuggers as
adb .

See page 237 on how to get the
source line number.

demo% f77 -silent DetAllHan4x.F
demo% a.out
0/0:
 ieee exception code 208, invalid         , at pc  9176

3.14159/0.0 Trapped:
 ieee exception code 200, division by zero, at pc  9252

max_normal**2:
 ieee exception code 212, overflow        , at pc  9328

min_normal**2:
 ieee exception code 204, underflow       , at pc  9404

2.0/3.0:
 ieee exception code 196, inexact         , at pc  9632

3.14159/0.0 Untrapped:
 3.14159/0.0 = Infinity

 Note: the following IEEE floating-point arithmetic exceptions
 occurred and were never cleared; see ieee_flags(3M):
 Division by Zero;
 Note: IEEE Infinities were written to ASCII strings or output files;
see econvert(3).
 Note: Following IEEE floating-point traps enabled; see
ieee_handler(3M):
 Inexact;  Underflow;  Overflow;  Invalid Operand;
 Sun's implementation of IEEE arithmetic is discussed in
 the Numerical Computation Guide.
demo%

x contains Solaris 2.x Solaris 1.1.3 and Later Before Solaris 1.1.3

Untrapped inexact 0.666… 0.666… 0.666…

Trapped inexact garbage garbage 0.666…



Floating Point  235

8

Retrospective

The ieee_retrospective  function queries the floating-point status registers
to find out which exceptions have accrued. If any exception has a raised
accrued exception flag, a message is printed to standard error to inform the
programmer which exceptions were raised but not cleared. For FORTRAN 77,
this function is called automatically just before normal termination. The
message typically looks like this; the format varies with each release:

Nonstandard Arithmetic

Another useful math library function is nonstandard arithmetic.

The IEEE Standard for arithmetic specifies a way of handling underflowed
results gradually by dynamically adjusting the radix point of the significand.
Recall that in IEEE floating-point format, the radix point occurs before the
significand, and there is an implicit leading bit of 1. Gradual underflow allows
the implicit leading bit to be cleared to 0 and to shift the radix point into the
significand, when the result of a floating-point computation would otherwise
underflow. This result is not accomplished in hardware on a SPARC processor,
but in software. If your program happens to generate many underflows
(perhaps a sign of a problem with your algorithm?), and you run on a SPARC
processor, you may experience a performance loss.

To turn off gradual underflow, compile with -fnonstd , or insert this line:

To turn on gradual underflow (after you have turned it off), insert this line:

NOTE: The following IEEE floating-point arithmetic exceptions
occurred and were never cleared: Inexact; Division by Zero;
Underflow; Overflow; Invalid Operand. Sun's implementation of
IEEE arithmetic is discussed in the Numerical Computation Guide.

CALL nonstandard_arithmetic()

CALL standard_arithmetic()



 236 FORTRAN 77 User’s Guide

8

Legacy
• The standard_arithmetic()  subroutine corresponds exactly to an

earlier version named gradual_underflow() .

• The nonstandard_arithmetic()  subroutine corresponds exactly to an
earlier version named abrupt_underflow() .

Messages about Floating-point Exceptions

For FORTRAN 77, the current default is to display a list of accrued floating-
point exceptions at the end of execution. In general, you get a message if any
one of the invalid, division-by-zero, or overflow exceptions occur. Since most
real programs raise inexact exceptions, you get a message if exceptions other
than inexact exceptions occur. If it is only inexact, then no message is issued.

You can turn off any or all of these messages with ieee_flags()  by clearing
exception status flags. Do this at the end of your program. You can gain
complete control with ieee_handler() .

In your own exception handler routine, you can:

• Specify actions
• Turn off messages with ieee_flags()  by clearing exception status flags

Note – Clearing all messages is not recommended. If you need to turn off these
messages, record invalid, division-by-zero, and overflow some place.

8.5 Debugging IEEE Exceptions
You may want to debug programs that generate messages like this:

To locate the line number where the exception occurred, do the following:

• Establish a signal handler so that a SIGFPE is generated.
• After you invoke dbx , enter the catch FPE  command.

NOTE: the following IEEE floating-point arithmetic exceptions
occurred and were never cleared: Inexact; Division by Zero;
Underflow; Overflow; Invalid Operand. Sun's implementation of
IEEE arithmetic is discussed in the Numerical Computation Guide.



Floating Point  237

8

Locating such a line number is shown in the following example. Also see
page 226 for details about exception handlers.

You can find the source code line where a floating-point exception occurred by
using the ieee_handler  routine with either dbx  or debugger .

Example: Locate the line number of an exception, dbx /handler (2.x and 1.x):

Solaris 2.x and 1.x
LocExcDbx.f

demo% cat LocExcDbx.f
INTEGER myhandler                               ! Main
EXTERNAL myhandler
REAL r /14.2/, s /0.0/
ieeer = ieee_handler('set', 'common', myhandler)
PRINT *, r/s
END

INTEGER FUNCTION myhandler( sig, code, context ) ! Handler
! {OK in Solaris 2.x/1.x, since all it does is abort.}

INTEGER sig, code, context(5)
CALL abort()
END

demo% f77 -g -silent LocExcDbx.f
demo% dbx a.out
Reading symbolic information …
(dbx) catch FPE {Note the catch FPE  command.}
(dbx) run
Running: a.out
signal FPE (floating point exception)
           in MAIN at line 5 in file "LocExcDbx.f"
    5 PRINT *, r/s
(dbx) quit
demo%



 238 FORTRAN 77 User’s Guide

8

8.6 Guidelines
To sum up, SPARC arithmetic is a state-of-the art implementation of IEEE
arithmetic, optimized for the most common cases.

More problems can safely be solved in single precision, due to the clever
design of IEEE arithmetic.

To get the benefits of IEEE math for most applications, if your program gets
one of the common exceptions, then you probably want to continue with a
sensible result. That is, you do not want to use ieee_handler  to abort on the
common exceptions.

If your system time is very large with over 50% of runtime, look into
modifying your code or using nonstandard_arithmetic .

8.7 Miscellaneous Examples
A miscellaneous collection of examples is provided here as additional tips.

Kinds of Problems

The problems in this chapter usually involve arithmetic operations with a
result of invalid, division by zero, overflow, underflow, or inexact.

For instance, take underflow—in old arithmetic, that is, prior to IEEE, if you
multiply two very small numbers on a computer, you get zero. Most
mainframes and minicomputers behave that way. In IEEE arithmetic, there is
gradual underflow, which expands the dynamic range of computations.

For example, consider a machine with 1.0E-38  as the machine epsilon, the
smallest representable value on the machine. Multiply two small numbers.

In old arithmetic, you get 0.0 , but with IEEE arithmetic and the same word
length, you get 1.40130E-45 . With old arithmetic, if a result is near zero, it
becomes zero. This result can cause problems, especially when you are
subtracting two numbers, because this is a principal way accuracy is lost.

a = 1.0E-30
b = 1.0E-15
x = a * b



Floating Point  239

8

You can also detect that the answer is inexact. The inexact  exception is
common, and means the calculated result cannot be represented exactly, at
least not in the precision being used, but it is as good as can be delivered.

Underflow tells us, as we can tell in this case, that we have an answer smaller
than the machine naturally represents. This result is accomplished by
“stealing” some bits from the mantissa and shifting them over to the exponent.
The result is less precise, in some sense, but more so in another. The deep
implications are beyond this discussion. If you are interested, consult Computer,
January 1980, Volume 13, Number 1, particularly I. Coonen’s article,
“Underflow and the Denormalized Numbers.”

Most scientific programs have sections of code that are sensitive to roundoff,
often in an equation solution or matrix factorization. So be concerned about
numerical accuracy—if your computer doesn’t do a good job, your results will
be tainted, and there is often no way to know that this has happened.

Simple Underflow

Some applications actually do a lot of work very near zero. This is common in
algorithms which are computing residuals or differential corrections. For
maximum numerically safe performance, perform the key computations in
extended precision. If the application is a single-precision application, this is
easy, as we can perform key computations in double precision.

Example: A simple dot product computation:

sum = 0
DO i = 1, n

sum = sum + a(i) * b(i)
END DO



 240 FORTRAN 77 User’s Guide

8

If a(i)  and b(i)  are small, many underflows occur. By forcing the
computation to double precision, you compute the dot product with greater
accuracy, and not suffer underflows:

It may be advisable to have both versions, and switch to the double precision
version only when required.

You can force a SPARC processor to behave like an older computer with
respect to underflow. Add the following line to your FORTRAN 77 main
program:

Bee aware, however, that you are giving up the numerical safety belt that is the
operating system default. You can get your answers faster, and you won’t be
any less safe than, say, a VAX, but use at your own risk.

Continuing with Wrong Answer

You might wonder why continue if the answer is clearly wrong. The general
idea is that IEEE arithmetic allows you to make distinctions about what kind of
wrong, such as NaN or Inf . Then decisions can be made based on such
distinctions.

For an example, consider a circuit simulation. The only variable of interest (for
the sake of argument) from a particular 50-line computation is the voltage.
Further, assume that the only values which are possible are +5v, 0, -5v.

REAL*8 sum
DO i = 1, n

sum = sum + dble(a(i)) * dble(b(i))
END DO
result = sum

CALL nonstandard_arithmetic()



Floating Point  241

8

It is possible to carefully arrange each part of the calculation to coerce each
subresult to the correct range.

Furthermore, since Inf  is not an allowed value, you need special logic to
ensure that big numbers are not multiplied.

IEEE arithmetic allows the logic to be much simpler, as the computation can be
written in the obvious fashion, and only the final result need be coerced to the
correct value, since ±Inf  can occur, and can be easily tested.

Furthermore, the special case of 0/0 can be detected and dealt with as you
wish. The result is easier to read, and faster in executing, since you don’t do
unneeded comparisons.

Excessive Underflow

If two very small numbers are multiplied, the result underflows.

For some SPARC platforms, the hardware, being designed for the typical case,
does not produce a result; instead, software is employed to compute the correct
IEEE complying result. As you may guess, this method is much slower. In the
majority of applications, it is invisible. When it is not, the symptom is that the
system time component of your runtime, which can be determined by running
your application with the time  command, is much too large.

For other SPARC platforms, the hardware does produce the result at a much
faster speed.

The following examples have varying differences, depending on the platform.

 4.0 < computed <  Inf →  5 volts
-4.0 ≤ computed ≤  4.0 →  0 volts
-Inf < computed ≤ -4.0 → -5 volts



 242 FORTRAN 77 User’s Guide

8

Example: Excessive underflow:

After compiling and running dotprod , the results of the time  command are:

The real computation took about 0.1 second, but the software fix took two
seconds. In a real application, the difference can be hours, and is not desirable,
of course.

Solution 1: Change All of the Program

If you rewrite with all double precision, there is vast improvement in speed:

It may not be desirable to promote an entire program to double precision,
though this is what is traditionally done to make up for the fact that old-style
arithmetic is less accurate.

DotProd.f PROGRAM dotprod
INTEGER maxn
PARAMETER (maxn=10000)
REAL a(maxn), b(maxn), eps /1.0e-37/, sum
DO i = 1, maxn

a(i) = 1.0e-30
b(i) = 1.0e-15

END DO
sum = 0.
DO i = 1, maxn

sum = sum + a(i)*b(i)
END DO
END

        2.3 real         0.1 user         1.8 sys

        0.2 real         0.0 user         0.1 sys



Floating Point  243

8

Solution 2: Change One Double Precision Variable

Declare only sum to be double precision, and change only the summation line
of code as follows:

Doing so minimizes the software underflow problem:

In a real application, you should put the variable sum in double precision, and
coerce it to single precision only on output. This is not a performance issue, but
a numeric one. Of course, it may not be easy to tell which variables in a
complex program need to be promoted. The effort is worthwhile, not only
because of the performance (which, as you will learn, can be achieved in other
ways), but because the numerics are enhanced as well.

Solution 3: Nonstandard Arithmetic

There is a “quick and dirty” solution, which is:

This code tells the hardware to act like an old-style computer, and when
underflow occurs, just flush to zero. A runtime results:

This time is about the same as promoting one variable to double. The
difference is that now the computed result is 0. This is a bad result because if
this dot product is really the final result, there is probably nothing wrong with
this solution.

sum = sum + a(i)*dble(b(i))

        0.3 real         0.1 user         0.0 sys

CALL nonstandard_arithmetic()

        0.5 real         0.0 user         0.1 sys



 244 FORTRAN 77 User’s Guide

8

If, however, this result feeds into more elaborate computations, you have
thrown away some information, which may be important. If the algorithm is
stable, the input well conditioned, and the implementation careful, it does not
matter. If there is anything else “shaky,” this result may push it over.

Solution 4: The -r8  Option

Another quick fix is to use the -r8  option. This workaround is safe, but just a
bit costly. It informs the compiler to interpret REAL as DOUBLE PRECISION.
You may prefer this solution if the code was developed on a CRAY, CDC, or
other 64-bit machine. In many cases, -r8  suffices to produce correct results,
thanks to the miracles of modern arithmetic, and is faster.

If you recompile DotProd.f  with -r8 , the time  command results in:

If you wish to look further, read the section on ieee_handler  and employ it
to track down the affected lines.

-r8  with Migrating
Those migrating from chips like 68881 or 80387 processors may wonder why
-r8  is necessary. The code worked well (full speed) on their last machine. The
reason is that these numeric processors provide internal registers which are 80-
bit wide.

• Advantage

An 80-bit FPU has the advantage that when everything fits in the 80-bit
registers, the results are a little better.

• Disadvantages
• An 80-bit FPU is typically slower or more expensive than either a 32-bit or

a 64-bit FPU.
• Since some intermediate results are computed with 80-bit precision, and

others with only 32-bit or 64-bit precision, answers depend on exactly how
the code is written, what optimization level is selected, the compiler
version, and other factors not under your control. Results tend to vary,
making it harder to validate the software, and so forth.

        0.8 real         0.0 user         0.1 sys



Floating Point  245

8

At this point, every SPARC processor performs arithmetic with 32-bit or 64-bit
precision as coded by you.

If you are porting codes that were developed on old arithmetic machines, it is
probably preferable to stop on overflows, division by zero, and so on. A
solution is to use the ieee_handler , as in the examples.

The -dalign  Option
If –r8  is combined with –dalign , the program runs more slowly than without
the -r8  option. This is likely to happen if the key computational loops are very
heavily exercised and involve mixed precision (double + single).

-r8  with Double Precision
If –r8  is used, and the key computational loops are very heavily exercised and
involve double precision, then on SPARC platforms, the program runs more
slowly than without the -r8  option. The double precision is converted to
quadruple precision, which is slower.



 246 FORTRAN 77 User’s Guide

8



 247

Porting from Other FORTRAN 77s 9

This chapter is organized into the following sections:

This chapter introduces porting programs from other dialects of FORTRAN 77.
If you have VMS FORTRAN 77 programs, most compile almost exactly as is; if
they don’t, see the chapter on VMS extensions in the FORTRAN 77 4.0 Reference
Manual.

9.1 General Hints
Keep these conventions in mind when transporting from another machine:

• Your source file name must have a .f , .F,  or .for  extension.

• If you are entering programs manually instead of reading them from tape,
start lines with a tab or space so the code begins after column five, except
for comments and labels.

General Hints page 247

Time Functions page 248

Formats page 251

Carriage-Control page 251

File Equates page 252

Data Representation page 252

Hollerith page 253

Porting Steps page 256



 248 FORTRAN 77 User’s Guide

9

9.2 Time Functions
When porting programs from a different FORTRAN 77 system, check the code
to make sure that time functions used in the programs operate like those in this
FORTRAN 77 compiler. If they do not, change the program to use equivalent
functions.

The following time functions, which are found on some other machines, are
not directly supported, but you can write subroutines to duplicate their
functions:

• Time-of-day in 10h  format
• Date in A10 format
• Milliseconds of job CPU time
• Julian date in ASCII

For example, to find the current Julian date, call TIME()  to get the number of
seconds since January 1, 1970, convert the result to days (divide by 86,400), and
add 2,440,587 (the Julian date of December 31, 1969).

Several time functions are supported in the f77  extensions to standard
FORTRAN 77, and are described in the following two tables.

Table 9-1 Time Functions Available to FORTRAN 77

Name Function Man Page

time Return the number of seconds elapsed since 1 January, 1970, time (3f)

fdate Return the current time and date as a character string, fdate (3f)

idate Return the current month, day, and year in an integer array, idate (3f)

itime Return the current hour, minute, and second in an integer array, itime (3f)

ctime Convert the time returned by the time  function to a character string, ctime (3f)

ltime Convert the time returned by the time  function to the local time, ltime (3f)

gmtime Convert the time returned by the time  function to Greenwich time, gmtime (3f)

etime Single Processor: Return elapsed user and system time for program execution.
Multiple Processors: Return the wall clock time.

etime (3f)

dtime Return the elapsed user and system time since last call to dtime , dtime (3f)



Porting from Other FORTRAN 77s  249

9

The routines listed in Table 9-2 provide compatibility with VMS FORTRAN 77
system routines. To use these routines, you must include the -lV77  option on
the f77  command line, in which case you also get the VMS versions of idate
and time  instead of the standard versions.

Example: Using the -lV77  option:

The error condition subroutine errsns  is not provided, because it is totally
specific to the VMS operating system. The terminate program subroutine exit
was already provided by the operating system.

demo% f77 myprog.f -lV77

Table 9-2 Summary: VMS FORTRAN 77 System Routines

Name Definition Calling Sequence Argument Type

idate ♦ Date as d, m, y call idate( d, m, y ) integer

time ♦ Current time as hhmmss call time( t ) character*8



 250 FORTRAN 77 User’s Guide

9

A sample implementation of time functions that may appear on other systems:

subroutine startclock
common / myclock / mytime
integer mytime
integer time
mytime = time()
return
end
function wallclock
integer wallclock
common / myclock / mytime
integer mytime
integer time
integer newtime
newtime = time()
wallclock = newtime - mytime
mytime = newtime
return
end
integer wallclock, elapsed
character*24 greeting
real dtime
real timediff, timearray(2)

c print a heading
call fdate( greeting )
write( 6, 10 ) greeting

10 format('1hi, it''s ', a24 /)
c see how long an ‘ls' takes, in seconds

call startclock
call system( 'ls' )
elapsed = wallclock()
write( 6, 20 ) elapsed

20 format(//,'elapsed time ', i4, ' seconds'///)
c now test the cpu time for some trivial computing

timediff = dtime( timearray )
q = 0.01
do 30 i = 1, 1000

q = atan( q )
30 continue

timediff = dtime( timearray )
write( 6, 40 ) timediff

40 format(//,'computing atan(q) 1000 times',
&  /   'took ', f6.3,' seconds.'/)

end



Porting from Other FORTRAN 77s  251

9

9.3 Formats
Some f77  format features may be different from the formats provided in other
versions of FORTRAN 77. Even when the formats used in other FORTRAN 77
implementations are different, with a little care, programs are still often
transportable to f77 .

Here are some format specifiers that f77  treats differently than some other
implementations:

• A—Used with character type data elements. In FORTRAN 77, this specifier
worked with any variable type. f77  supports the older usage, up to four
characters to a word.

• $—Suppress newline character output.

• R—Set an arbitrary radix for the I  formats that follow in the descriptor.

• SU—Select unsigned output for following I  formats. For example, you can
convert output to either hexadecimal or octal with the following formats,
instead of using the Z or O edit descriptors:

9.4 Carriage-Control
FORTRAN 77 carriage-control grew out of the capabilities of the equipment
used when FORTRAN 77 was originally developed. For similar historical
reasons, an operating system, derived from the UNIX operating system, does
not have FORTRAN 77 carriage-control, but you can simulate it in two ways.

• For simple jobs, use OPEN(N, FORM='PRINT') . You then get single or
double spacing, formfeed, and stripping off of column one. It is legal to
reopen unit 6 to change the form parameter to PRINT, for example:

You can use lp (1) to print a file that is opened in this manner.

10 FORMAT( SU, 16R, I4 )
20 FORMAT( SU, 8R, I4 )

OPEN( 6, FORM='PRINT')



 252 FORTRAN 77 User’s Guide

9

• Use the asa  filter to transform FORTRAN 77 carriage-control conventions
into the UNIX carriage-control format (see the asa  (1) man page) before
printing files with the lpr  command.

9.5 File Equates
Early versions of FORTRAN 77 did not use named files, and file equates
provided some ability to open files by name. You can use pipes and I/O
redirection, as well as hard or soft links, in place of file equates in transported
programs.

Example: This example uses csh (1). Redirect stdin  from redir.data :

See Chapter 3, “File System and FORTRAN 77 I/O” for more on piping and
redirection.

9.6 Data Representation
Read the appendix, “Data Representations,” in the FORTRAN 77 4.0 Reference
Manual for the exact representation of different kinds of data in FORTRAN 77.
This section points out information necessary for transporting FORTRAN 77
programs. Remember the following caveats:

• Because we adhere to the IEEE 754 standard for floating-point, the first four
bytes in a REAL*8 are not the same as in a REAL*4.

demo% cat redir.data ← The data file
 9 9.9

demo% cat redir.f ← The source file
read(*,*) i, z
print *, i, z
stop
end

demo% f77 redir.f ← The compile
redir.f:
 MAIN:
demo% a.out < redir.data ← Run with redirection
  9 9.90000
demo%



Porting from Other FORTRAN 77s  253

9

• The default sizes for reals, integers, and logicals are the same according to
the FORTRAN 77 Standard, except when the -i2  flag is used, which shrinks
integers and logicals to two bytes, but leaves reals as four bytes.

• Character variables can be freely mixed and equivalenced with variables of
other types, but be careful of potential alignment problems.

• SPARC system floating-point arithmetic does raise exceptions on overflow
or divide-by-zero, but does not signal SIGFPE by default. It does deliver
IEEE indeterminate forms in cases where exceptions would otherwise be
signaled. See the appendix, “Data Representations,” in the FORTRAN 77 4.0
Reference Manual.

• The extreme finite, normalized values can be determined. See
libm_single (3f) and libm_double (3f). The indeterminate forms can be
written and read, using formatted and list-directed I/O statements.

9.7 Hollerith
This section is useful for porting older programs, not for writing or heavily
modifying a program. It is recommended that you use character variables for
this purpose. You can initialize variables with the older FORTRAN 77 Hollerith
(nH) feature, but this is not standard practice.

Table 9-3 Maximum Characters in Data Types

Maximum Number of Standard ASCII Characters

Data Type
No -i2 , -i4 ,
-r8 , -dbl -i2 -i4 -r8 -dbl

BYTE 1 1 1 1 1

COMPLEX 8 8 8 16 16

COMPLEX*16 16 16 16 16 16

COMPLEX*32 32 32 32 32 32

DOUBLE COMPLEX 16 16 16 32 32

DOUBLE PRECISION 8 8 8 16 16

INTEGER 4 2 4 4 8

INTEGER*2 2 2 2 2 2

INTEGER*4 4 4 4 4 4



 254 FORTRAN 77 User’s Guide

9

For storing standard ASCII characters with normal Fortran:

• With -r8 , unspecified size INTEGER and LOGICAL do not hold double.
• With -dbl , unspecified size INTEGER and LOGICAL do hold double.

That is, the storage is there with both options, but is unavailable in normal
Fortran with -r8 .

Example: Initialize variables with Hollerith:

If you pass Hollerith constants as arguments, or if you use them in expressions
or comparisons, they are interpreted as character-type expressions.

If you must, you can initialize a data item of a compatible type with a
Hollerith, and then pass it around.

INTEGER*8 needs -dbl 8 8 8 8

LOGICAL 4 2 4 4 8

LOGICAL*1 1 1 1 1 1

LOGICAL*8 needs -dbl 8 8 8 8

REAL 4 4 4 8 8

REAL*4 4 4 4 4 4

REAL*8 8 8 8 8 8

REAL*16 16 16 16 16 16

double complex x(2)
data x /16HHello there, sai, 16Hlor, new in town/
write( 6, '(4A8, "?")' ) x
end

Table 9-3 Maximum Characters in Data Types (Continued)

Maximum Number of Standard ASCII Characters

Data Type
No -i2 , -i4 ,
-r8 , -dbl -i2 -i4 -r8 -dbl



Porting from Other FORTRAN 77s  255

9

Example:

All these constructs produce warning messages from the compiler.

        integer function doyouloveme()
        double precision fortran, beloved
        integer yes, no
        data yes, no / 3hyes, 2hno /
        data fortran/ 7hFORTRAN/
10      format( "Whom do you love? ", $ )
        write( 6, 10 )
        read ( 5, 20 ) beloved
20      format( a8 )
        doyouloveme = no
        if ( beloved .eq. fortran ) doyouloveme = yes
        return
        end

        program trouble
        integer yes, no
        integer doyouloveme
        data yes, no / 3hyes, 2hno /

        if ( doyouloveme() .eq. yes ) then
            print *, 'You are sick'
        else
            print *, 'See if I ever speak to you again'
        endif
        end



 256 FORTRAN 77 User’s Guide

9

9.8 Porting Steps
The following outline of steps leads into performance issues, which is the topic
of the next chapter, but does not contain all that you need to know about
porting. It is designed for someone who must do a large job in a short time,
and who does not code in FORTRAN 77 regularly.

Typical Case

Here is a sample situation:

• The code is of modest size (10K lines).
• All the subroutines are contained in one file.
• A simple command line: f77 -O prog.f, does not work.

What to do?

1. For your own protection, first save a complete set of the original files,
including any README and .COM files.

2. Make a new directory, say src , and copy your files to it, and go there.

3. Split the one file with many subroutines into many files, one subroutine
per file.

This command may produce a lot of files. fsplit  may not always work, so
do not delete prog.f .

demo% mkdir src
demo% cd src

demo% fsplit ../prog.f



Porting from Other FORTRAN 77s  257

9

4. Create a makefile.

If the -pg  option is placed on the ld  line, it results in a profile that does not
include the columns, #calls time/call , because the individual routines
are not compiled with -pg . That is why -pg  is on the compile line.

5. Compile all the source files with one makefile command.

Since we selected –fast  as the default compilation flag in the makefile, we
have implicitly asked for the –O3 level of optimization, among other
options.

6. Execute the code.

7. Check the answers; make sure they are correct.

8. Run gprof .

Examine the profile reports of gprof , using more  or your editor of choice.

The report comes in two parts, a flat profile and a call graph report. The flat
report comes second, and can be found by searching for the “flat” string.

FFLAGS = -fast $(FLAGS)
OBJ = subs.o main.o

example: $(OBJ)
f77 $(FFLAGS) $(OBJ) -pg -o example \

-Bstatic -lm

demo% make

demo% example

demo% gprof example > profile

Performance issues start about
here.



 258 FORTRAN 77 User’s Guide

9

You may want to recompile the most expensive routines (those coming first in
the flat report) with –fast –O4 . Compile either by hand, or by editing the
makefile. A simplistic makefile rewrite looks like this:

If the answers are correct and the timing information is fast enough, that is.
within about 20% of your target, you have completed the job. If it is not fast
enough, tune the code.

Troubleshooting

Here are a few troubleshooting tips.

If the Answers Are Close, but Not Right On

Do the following:

• Pay attention to the size and the engineering units. Numbers very close to
zero can appear to be different, but the difference is not significant. For
example, 1.9999999e-30 ≈ -9.9992112e-33, especially if this number is the
difference between two large numbers, such as the distance across the
continent in feet, as calculated on two different computers.

VAX math is not as good as IEEE math, and even different IEEE processors
may differ. This is especially true if it involves many trig functions. These
functions are much more complicated than one might think, and the
standard defines only the basic arithmetic functions, so there can be subtle
differences, even between IEEE machines.

FFLAGS = -fast $(FLAGS)
OBJ = subs.o main.o

example: $(OBJ)
f77 $(FFLAGS) $(OBJ) -pg -o example \
-Bstatic -lm

expensive_routine.o: expensive_routine.f
f77 -fast -O4 -c expensive_routine



Porting from Other FORTRAN 77s  259

9

• Try running with call nonstandard_arithmetic . Doing so can also
improve performance considerably, and make your Sun workstation behave
more like a VAX. If you have a VAX or some other computer handy, run it
there, also. It is quite common for many numerical applications to produce
slightly different results on each floating-point implementation.

• Check for NaN, +Inf , and other signs of probable errors. See “IEEE
Routines” or the man page ieee_handler (3m) for instructions on how to
trap the various exceptions. On most machines, these exceptions simply
abort the run.

• Two numbers can differ by 6 x 1029 but have the same floating-point form.
Here is an example of different numbers, but the same representation:

The output is:

In this example, the difference is 6 x 1029. The reason for this
indistinguishable, wide gap is that in IEEE single precision, you are only
guaranteed six decimal digits for any one decimal-to-binary conversion. You
may be able to convert seven or eight digits correctly, but it depends on the
number.

      real*4 x,y
      x=99999990e+29
      y=99999996e+29
      write (*,10), x, x
 10   format('99,999,990 x 10^29 = ', e14.8, ' = ', z8)
      write(*,20) y, y
 20   format('99,999,996 x 10^29 = ', e14.8, ' = ', z8)
      end

99,999,990 x 10^29 = 0.99999993E+37 = 7cf0bdc1
99,999,996 x 10^29 = 0.99999993E+37 = 7cf0bdc1



 260 FORTRAN 77 User’s Guide

9

If the Program Fails without Warning

If the program fails without warning, and it runs different lengths of time
between failures, then:

• Turn off the optimizer. If the program then works, turn the optimizer back
on for only the top routines.

• Understand that optimizers must make assumptions about the program. If
you have done some nonstandard things, like using the SAVE statement,
they can cause problems. Almost no optimizer handles all programs at all
levels of optimization.

Before calling for help, make sure you have the current software, such as
FORTRAN 77 4.0 and Solaris 2.x or Solaris 1.x, and you are either under
warranty or have a software support contract.



 261

Profiling 10

This chapter is organized into the following sections:

This chapter describes how to measure the resources used by programs.

10.1 Examples
This following program is used in several examples. It is a revised version of
the one in Chapter 7, “Debugging,” and it calls mkidentity  100,000 times.

Example: Function for profiling:

Examples page 261

The time Command page 263

The gprof Command page 264

The tcov Command page 268

I/O Profiling page 269

Missing Profile Libraries page 272

p3.f real function determinant(m)
real m(2,2)
determinant = m(1,1) * m(2,2) - m(1,2) * m(2,1)
return
end



 262 FORTRAN 77 User’s Guide

10

Example: Main for profiling:

Example: Subroutine for profiling:

p1.f program silly
paramater (n=2)
real twobytwo(2,2) / 4 *-1 /
do i = 1, 100000

call mkidentity( twobytwo, n )
end do
print *, determinant(twobytwo)
end

p2.f subroutine mkidentity(matrix,dim)
real matrix(dim,dim)
integer dim
do 90 m = 1, dim

do 20 n = 1, dim
if(m.eq.n) then

matrix(m,n) = 1.
else

matrix(m,n) = 0.
endif

20 continue
90 continue

return
end



Profiling  263

10

10.2 The time  Command
The simplest way to gather data about the resources consumed by a program is
to use the time  (1) command, or, in csh , the set time  command.

Example

Let’s compile the above sample program with or without -g , and run time  on
it. The output format may vary.

The interpretation is:

• 3.2 seconds on user code
• 0.3 seconds executing system code on behalf of the user
• 0 minutes and 8 seconds to complete
• 41% of the machine’s resources dedicated to this program, approximately
• 0 kilobytes of program memory, 104 kilobytes of data memory (averages)
• 0 reads and 0 writes
• 0 page faults
• 0 swapouts

If there is I/O, the output is similar to this:

The interpretation is:

• 6 seconds on user code, approximately
• 17 seconds on system code on behalf of the user, approximately
• 1 minute 16 seconds to complete
• 31% of the resources dedicated to this program
• 11 kilobytes of shared program memory
• 21 kilobytes of private data memory

demo% f77 -o silly -silent p1.f p2.f p3.f
Linking:
demo% time silly
     1.00000
3.2u 0.3s 0:08 41% 0+104k 0+0io 0pf+0w
demo%

6.5u 17.1s 1:16 31% 11+21k 354+210io 135pf+0w



 264 FORTRAN 77 User’s Guide

10

• 354 reads
• 210 writes
• 135 page faults
• 0 swapouts

iMPact FORTRAN 77 MP Notes

If iMPact FORTRAN 77 MP is used, the number from /bin/time  is
interpreted in a different way. Since /bin/time  accumulates the user time on
different threads, the user number is no longer used, and only real time is
used.

Since the user time displayed includes the time spent on all the processors, it
can be quite large, and is not a good measure of performance. A better measure
is the real time, which is the wall clock time.

Also, since the real time is the wall clock time, if you run the parallel version of
the benchmark, avoid running too many programs at the same time.

10.3 The gprof  Command
The gprof  (1) command provides a detailed procedure-by-procedure analysis
of execution time, including how many times a procedure was called, who
called it and who it called, and how much time was spent in the procedure and
by the routines that it called.

Compiling and Linking

First, compile and link the program with the -pg  flag:

demo% f77 -o silly -silent -pg p1.f p2.f p3.f
Linking:
demo%



Profiling  265

10

Execution

To obtain meaningful timing information, execution must complete normally.

After execution completes, a file named gmon.out  is written in the working
directory. This file contains profiling data that can be interpreted with gprof .

The gprof  Utility

Run the gprof  utility on the program, silly . gprof  produces about 14 pages
of report for this short program.

The report is mostly two profiles of how the total time is distributed across the
program procedures: the call graph and the flat profile. They are preceded by
an explanation of the column labels, followed by an index.

In the following graph profile, the line that begins with [4]  is called the
function line; the lines above it, the parent lines; and the lines below it, the
descendant lines.

demo% silly
    1.00000
demo%



 266 FORTRAN 77 User’s Guide

10

Only the first few lines of some sections are shown in the following table.

demo% gprof silly
     @(#)callg.blurb 1.5 88/02/08 SMI
 call graph profile:
    …
                                   called/total       parents
 index  %time    self descendents  called+self    name index
                                   called/total       children

                                                      <spontaneous>
 [1]     99.5    0.00        3.82                 start [1]
                 0.00        3.82       1/1           _main [3]
                 0.00        0.00       1/1           _finitfp_ [303]
                 0.00        0.00       1/1           _on_exit [314]
 -----------------------------------------------
                 0.15        3.67       1/1           _main [3]
 [2]     99.5    0.15        3.67       1         _MAIN_ [2]
                 3.67        0.00  100000/100000      _mkidentity_ [4]
                 0.00        0.00       1/1           _s_wsle [317]
                 0.00        0.00       1/1           _determinant_ [296]
                 0.00        0.00       1/1           _do_l_out [297]
                 0.00        0.00       1/1           _e_wsle [299]
 -----------------------------------------------
                 0.00        3.82       1/1           start [1]
 [3]     99.5    0.00        3.82       1         _main [3]
                 0.15        3.67       1/1           _MAIN_ [2]
                 0.00        0.00      16/16          _signal [254]
                 0.00        0.00       1/1           _f_init [302]
                 0.00        0.00       1/1           __enable_sigfpe_master [277]
                 0.00        0.00       1/1           _ieee_retrospective_ [308]
                 0.00        0.00       1/1           _f_exit [301]
                 0.00        0.00       1/1           _exit [300]
 -----------------------------------------------
                 3.67        0.00  100000/100000      _MAIN_ [2]
 [4]     95.6    3.67        0.00  100000         _mkidentity_ [4]
 -----------------------------------------------
    …
demo%



Profiling  267

10

Function Line

The function line in the example above reveals that:

• mkidentity  was called 100,000 times.
• 3.67 seconds were spent in mkidentity  itself.
• 0 second was spent in routines called by mkidentity .
• 95.6% of the execution time of silly  is from mkidentity .

Parent line

The single parent line reveals that MAIN was the only procedure to call
mkidentity , that is, all 100,000 invocations of mkidentity  came from MAIN.
Thus, all of the 3.67 seconds spent in mkidentity  were spent on behalf of
MAIN.

If mkidentity  had also been called from another procedure, there would be
two parent lines, and the 3.67 seconds of self time would be divided between
MAIN and the other caller. The descendant lines are interpreted similarly.

Overhead

When you enable profiling, the running time of a program may significantly
increase. The fact that mcount , the utility routine used to gather the raw
profiling data, is usually at the top of the flat profile shows this.

To eliminate this overhead in the completed version of the program, recompile
all the source files without the -pg  option. Ignore the overhead incurred by
mcount  when interpreting the flat profile. The graph profile attempts to
automatically subtract time attributed to mcount  when computing percentages
of total runtime. The result may not be accurate due to UNIX timekeeping
conventions.

The FORTRAN 77 library includes two routines that return the total time used
by the calling process. See dtime (3F) and etime (3F).



 268 FORTRAN 77 User’s Guide

10

10.4 The tcov  Command
The tcov  (1) command provides a detailed statement-by-statement profile of
an actual test case of a program.

Compiling and Linking

First, compile and link it with -a , as in this example. This example uses -a  on
all modules, but it is usually better to use this option on only those modules
which profiling has shown to be most expensive.

Execution

To generate meaningful timing information, execution must complete
normally, or the user code must call exit(2) .

After execution completes, there is a new file named p1.tcov  in the working
directory. This file contains profiling data that can be interpreted with tcov .

The tcov  Utility

Run the tcov  utility on the source file, p1.f :

demo% f77 -silent -o silly -a p1.f p2.f p3.f

demo% silly
1.00000
demo%

demo% tcov p1.f



Profiling  269

10

Then list p1.tcov :

10.5 I/O Profiling
You can obtain a report about how much data was transferred by your
program. For each FORTRAN 77 unit, the report shows the file name, the
number of I/O statements, the number of bytes, and some statistics on these
items.

To obtain a I/O profiling report:

1. Insert the statement, external start_iostats , before the first
executable statement, and insert a call to start_iostats  before the first
I/O statement that you want to measure.

demo% cat p1.tcov
program silly
parameter (n=2)
real twobytwo(2,2) / 4 *-1 /

1 -> do i = 1, 100000
100000 -> call mkidentity( twobytwo, n )

   end do
1 -> print *, determinant(twobytwo)

end
Top 10 Blocks

Line  Count
5  100000
4       1
7       1
3 Basic blocks in this file
3 Basic blocks executed
100.00 Percent of the file executed
100002 Total basic block executions
33334.00Average executions per basic block

demo%

external start_iostats
…
call start_iostats



 270 FORTRAN 77 User’s Guide

10

I/O statements profiled include READ, WRITE, PRINT, OPEN, CLOSE,
INQUIRE, BACKSPACE, ENDFILE, and REWIND. The runtime system opens
stdin , stdout , and stderr  before the first executable statement of your
program, so you must reopen these units after the call to
start_iostats, without first closing them.

Example: Profile stdin , stdout , and stderr :

Call end_iostats  to stop the process, if you want to measure only part of
the program. A call to end_iostats  may be required also if your program
terminates with an END or STOP statement rather than CALL EXIT .

2. Compile with the -pg  option and run your program.

EXTERNAL start_iostats
…
CALL start_iostats
OPEN(5)
OPEN(6)
OPEN(0)

demo% f77 -pg src.f
demo% a.out



Profiling  271

10

3. View the report file.
If the executable file name is name, the report is on the name.io_stats  file.

demo% cat a.out.io_stats
 Input Report

1. unit    2. file name             3. input data          4. map
                           cnt     total    avg   std dev    (cnt)
---------------------------------------------------------------------
      0          stderr      0         0    0.0      0.00    No
                             0         0    0.0      0.00
      5           stdin      0         0    0.0      0.00    No
                             0         0    0.0      0.00
      6          stdout      0         0    0.0      0.00    No
                             0         0    0.0      0.00
     10            temp      0         0    0.0      0.00    No
     …

 Output Report
1. unit             5. output data         6. blk size  7. fmt  8. direct
           cnt     total    avg   std dev                        (rec len)
--------------------------------------------------------------------------
      0      0         0    0.0      0.00            0     Yes     seq
             0         0    0.0      0.00
      5      0         0    0.0      0.00            0     Yes     seq
             0         0    0.0      0.00
      6      1         3    3.0      0.00            0     Yes     seq
             1         3    3.0      0.00
     10   2000      8000    4.0      0.00        16384     Yes     dir
     …



 272 FORTRAN 77 User’s Guide

10

10.6 Missing Profile Libraries
If the profiling libraries are not installed, and if you try to use profiling, you
may get an error message like this:

There is a system utility to extract files from the release CD. You can use it to
get the debugging files after the system is installed. See add_services (8). You
may want to get help from your system administrator.

demo% f77 -p real.f
real.f:
 MAIN stuff:
ld: -lc_p: No such file or directory
demo%



 273

Performance 11

This chapter introduces performance and optimizing issues. Most of the
references that are cited delve into the subject far more deeply than this
chapter. This chapter is organized into the following sections.

For a helpful mind set, remember that:

• There can be no cookbook for tuning.
• There is no substitute for experience and human cleverness. Many tactics

can and must be employed.
• The best I/O is no I/O.
• You should concentrate on the big picture. Solve the real problem.
• A cycle here and a cycle there in a key loop add up to many mips.
• Code tuning is not for the squeamish nor the faint of heart.
• It can be exciting—but frustrating.

Why Tune Code? page 274

Algorithm Choice page 274

Tuning Methodology page 275

Loop Jamming page 277

Benchmark Case History page 278

Optimization page 282



 274 FORTRAN 77 User’s Guide

11

11.1 Why Tune Code?
There are two situations where code tuning is important:

• Benchmarking
• Application porting

11.2 Algorithm Choice
Algorithm choice is critical, and is always made on the basis of machine
architecture.

In olden times (1950-1970), all machines were scalar. Most were 32-60 bits, with
extended precision accumulators. Memory was expensive. Therefore, old
algorithms were inner-product based, that is, dot-product based, like the Crout
reduction, Cholesky Decomposition, and so forth. sqrt  was expensive, but
improved numerical properties of the algorithms that were employed, so it
allowed more problems to be run in single precision.

With the advent of the CRAY-1, vector algorithms became the rage. Dot
products were replaced with SAXPY operations. New constraints on
algorithms came about due to the difference between what computer scientists
and mathematicians thought constituted a vector operation. In general, a
vector algorithm does more work than a similar scalar algorithm.

Actually, SAXPY became popular somewhat before the advent of vector
machines. Dot product formulations tend to march through memory in the
natural way (through the rows of each column) for one matrix, and the other
way (through the columns of each row) for the other. On some high-
performance scalar machines of that era, this change resulted in suboptimal
performance due to cache affects. SAXPY allows each matrix to be addressed in
the natural fashion, at the cost of doing somewhat more memory accesses and
losing some accuracy, due to the failure to accumulate in extended-precision
registers. On vector machines, SAXPY is always the preferred technique
because vector performance is really devastated by dot product formulations.

For example: Best incore sort: 300 < n < 700:
                    scalar → quicksort
                    vector → Pangali’s bubble sort

The Pangali bubble sort does a lot more work, but executes 15 to 20 times
faster on many vector machines.



Performance  275

11

Since most of us do not have vector machines, why worry about vector
algorithms? One reason is that the user code may include attempts at complex
vectorized algorithms. If you can replace complex vectorized code with simple
scalar code, you can do less work and run faster. It can be much easier to
concentrate on the underlying science and worry less about the programming.

11.3 Tuning Methodology
Get the program to run and generate correct answers. Do not apply any tricks
until you have correct results.

If the run is long, say longer than 20 minutes, and it is obvious how to reduce
the problem size, do it. Rerun and save the output to be used as correct. If the
code runs for a very long time (many hours), you must do this. If it runs for 22
minutes and changing the problem is not easy, skip to the next step.

Examine the profile. Recompile the top routines (say 80% of the total time)
with the -a  switch to enable tcov  analysis. Also toss in the -pg  switch to
count the number of calls and time spent in the routine. Don’t throw away the
optimized (good) versions. You may have uses for them.

Rerun. It will take a little longer. Do not bother to obtain a dry machine, as this
will not matter.

Run gprof  and tcov . See the man pages or Chapter 10, “Profiling.”

Compare the gprof  with the regular run. Have the routines maintained their
relative order? If so, continue without reservation. If not, work on routines in
the order of their original import.

Consider the subroutine, COSTSaLOT:

subroutine COSTSaLOT(randvec,n)
real randvec(n)
do i = 1, n

randvec(i) = random() ! user random no. generator
end do
return
end



 276 FORTRAN 77 User’s Guide

11

tcov  shows the following:

The trick here is to inline the random number generator; that is, rewrite the
program as:

On a vector machine, it is generally better to inline the code of rand  itself, and
then this is close to optimal. On SPARC systems, it may be better not to
compute a whole vector at a time. Since there is limited cache, it may be better
to remove COSTSaLOT entirely, and simply call rand(0)  from the calling
program.

We’ve learned from this exercise that:

• tcov  is handy for pinpointing exactly where to work.

• We should try to inline small subroutines to reduce call overhead.

• Thinking that the best solution is to precompute a lot of things, does not
make it so.

subroutine COSTSaLOT(randvec,n)
real randvec(n)

 1 ->  do i = 1, n
1000000 -> randvec(i) = random()

  end do
 1 ->  return

  end

real function random()

1000000 -> random = rand(0)
return
end

subroutine COSTSaLOT(randvec,n)
real randvec(n)
do i = 1, n

randvec(i) = rand(0)
end do
return
end



Performance  277

11

11.4 Loop Jamming
Start with a double loop like the following:

You can rewrite the loop like this:

This loop can be a fair win on SPARC systems. It can also be a loss, depending
on cache sizes, SCRAM1, and other considerations.

So, time it and try it. Always take the loop in question and run it in isolation.
Experimentation works. But concentrate on the loops that consume the most
time. It is often necessary to run some profiler program on the code.

This list only scratches the surface. Once you have narrowed down the
expensive sections, it is easy to ask for assistance.

Do not forget to think about the algorithm—are you computing the best way?

1.  SCRAM is on only the Sun-4/110, and stands for Static Column Random Access Memory.

do i = 1, n
stuff

end do
do i = 1, n

more stuff
end do

do i = 1, n
stuff
more stuff

end do



 278 FORTRAN 77 User’s Guide

11

11.5 Benchmark Case History
Consider the following trigonometric function benchmark:

This is one minute too slow, compared to some particular computer, so
recompile with the -p  profiling option, and then profile the code with the
prof  utility.

test.f program test
integer*4 limit, i, n
parameter (limit=100000)
double precision hold(3,limit), x1, x2, x3
do 10 i = 1, limit

do 5 n = 1, 3
hold(n,i) = 0.0

5 continue
10 continue

x1 = 0.0
x2 = 0.0
x3 = 0.0
open( 3, file='test.tmp', form='FORMATTED' )
do 20 i = 1, limit

x1 = x1 + 1
hold(1,i) = x1
x2 = sin(hold(1,i)) - cos(hold(1,i))
hold(2,i) = x2
x3 = sqrt(hold(1,i)**2 + hold(2,i)**2)
hold(3,i) = x3
write(3,*) (hold(n,i),n = 1, 3)
if (  x3 .le. 0.00001d0 .and.

x3 .ge. -0.00001d0 ) then
   write(3,*) 'x3 = 0.0'
elseif ( x2 .le. 0.00001d0 .and.

   x2 .ge. -0.00001d0 ) then
   write(2,*) 'x2 = 0.0'
else

x2 = atan(x2/x3)
x1 = hold(2,i) * hold(3,i)

endif
20 continue

close(3)
end



Performance  279

11

The output from prof  is:

You can also use -pg  and gprof . Examples are shown in Chapter 10,
“Profiling.”

demo% f77 -p -O3 test.f
test.f:
 AIN test:
demo% prof a.out

time a.out
real    4m19.36s
user    4m1.00s
sys     0m4.05s
prof
 %time  cumsecs  #call  ms/call  name
  24.0    58.32                  mcount
  10.2    83.10 499995     0.05  __fp_rightshift
   7.8   102.15 100000     0.19  _s_wsle
   7.3   119.96                .div
   7.2   137.42     64   272.81.rem
   4.7   148.874600144     0.00.umul
   4.0   158.65 300000     0.03  _unpacked_to_decimal
   3.9   168.09 300000     0.03  _wrt_F
   3.8   177.24 300000     0.03  __fp_leftshift
   3.0   184.44 300000     0.02  _fconvert
   2.6   190.881499992     0.00  __fourdigits
   2.6   197.28 300000     0.02  _binary_to_decimal_fraction
   2.4   203.081199996     0.00  __mul_10000
   1.6   207.01 299996     0.01  _binary_to_decimal_integer
   1.6   210.886299964     0.00.urem
   1.3   213.95                  _sincos
   1.1   216.57                  _MAIN_
   1.1   219.18 299996     0.01  __fp_normalize
   1.1   221.77                  _nwrt_A

… many more lines …
   0.0   243.24      1     0.00  _strcpy
   0.0   243.24      1     0.00  _strlen
   0.0   243.24      3     0.00  _t_runc
demo%



 280 FORTRAN 77 User’s Guide

11

What can you tell from this profile?

mcount  is taking much of the CPU. Therefore, the program spends more time
jumping between modules than computing. The user code is very simple,
however. Optimization was high (O3/4), and in-lining was turned on. So
where is the time going?

Notice that the top routines are .mul , .div , .rightshift , and the user code
is not doing that. Furthermore, sincos , which is usually one of the most used
routines, accounts for only 2% of the runtime.

From this analysis, you can infer that something else, aside from trigonometric
calculations, is a performance issue. The output file shows:

The file is quite large.

Now examine the code. Note that every time through the loop, it writes to the
output file. If the program were large, you may have to recompile with -a , and
run tcov  to catch this phenomenon.

Modify the code. Eliminate not only the write, but the unnecessary if  tests by
commenting them out, for example.

Why unnecessary? Because on any IEEE machine, such as a SPARC system,
there is no difficulty in computing x/0.0. It is ±Inf  or 0.0/0.0 (NaN), or a bad
atan . In real applications, you can do a large chain of operations, and only
need to check the final result by using libm_single  and libm_double

-rw-r--r-- 1 khb 5800000 Jan 25 13:02 test.tmp

cccccccc write(3,*) (hold(n,i),n = 1, 3)
cccccccc if ( x3 .le. 0.00001d0 .and.
cccccccc x3 .ge. -0.00001d0 ) then
cccccccc    write(3,*) 'x3 = 0.0'
cccccccc elseif ( x2 .le. 0.00001d0 .and.
cccccccc   x2 .ge. -0.00001d0 ) then
cccccccc    write(2,*) 'x2 = 0.0'

 x2 = atan(x2/x3)
 x1 = jold(2,i) * hold(3,i)

cccccccc endif



Performance  281

11

routines for IEEE handling, and perhaps ieee_flags  to condition the
exception flags. Doing so can remove millions of if  tests; that is, one if  test in
a key loop is executed millions of times.

This is the output from prof :

Run it again without profiling, for optimal reporting time:

real    0m9.65s           profiled times
user    0m4.35s
sys     0m0.60s

 %time  cumsecs  #call  ms/call  name
  62.3     2.71                  _sincos {much more sensible!}
  36.6     4.30                  _MAIN_
   0.5     4.32                  _cos
   0.5     4.34                  _sin
   0.2     4.35      5     2.00  _ioctl
   0.0     4.35     64     0.00 .rem
   0.0     4.35      1     0.00 .udiv
   0.0     4.35      3     0.00 .umul
   0.0     4.35      1     0.00  __enable_sigfpe_master
   0.0     4.35      1     0.00  __findiop
   0.0     4.35      1     0.00  _access
   0.0     4.35      2     0.00  _bzero
   0.0     4.35      2     0.00  _calloc
   0.0     4.35      4     0.00  _canseek
   0.0     4.35      4     0.00  _close
   0.0     4.35      1     0.00  _exit

… many more lines …

   0.0     4.35      1     0.00  _strcpy
   0.0     4.35      1     0.00  _strlen
   0.0     4.35      2     0.00  _t_runc
demo%

real 0m5.20s
user 0m4.28s
sys  0m0.61s



 282 FORTRAN 77 User’s Guide

11

From this example, we have learned that:

• Performance analysis and tuning are iterative processes. Think about what
you can do differently:
• Use different compile options.
• Profile, but profile carefully; don’t jump to conclusions.
• If necessary, use prof  and tcov  to find out what is really happening.

• If you can get a 20-times speedup by changing the code, do it. The IEEE
arithmetic is new enough that not everyone knows how to use it to good
advantage. Knowing why it is good and what it is good for can really help.
It can be the start of a commitment to state-of-the-art standards.

11.6 Optimization
At optimization level –O4, the compiler inlines calls to functions and
subroutines which are defined in the same file as the caller. Thus, the usual
UNIX advice of splitting each function and subroutine into a separate file may
adversely impact performance. It may require experimentation with collecting
different modules in different files to achieve maximum performance.

11.7 References
The following reference books provide more details:

• FORTRAN 77 4.0 Reference Manual, SunSoft, Inc.

• Numerical Computation Guide, SunSoft, Inc.

• Performance Tuning an Application, SunSoft, Inc.

• Programming Pearls, by Jon Louis Bentley, Addison Wesley

• More Programming Pearls, by Jon Louis Bentley, Addison Wesley

• Writing Efficient Programs, by Jon Louis Bentley, Prentice Hall

• FORTRAN Optimization, by Michael Metcalf, Academic Press 1982

• Optimizing FORTRAN Programs, by C. F. Schofield Ellis Horwood Ltd., 1989

• A Guidebook to Fortran on Supercomputers, Levesque, Williamson, Academic
Press, 1989



 283

C–FORTRAN 77 Interface 12

This chapter is organized into the following sections:

Glendower: I can call spirits from the vasty deep.
Hotspur: Why, so can I, or so can any man;
                But will they come when you do call for them?

Henry IV, Part I

12.1 Sample Interface
As an introductory example, a FORTRAN 77 main calls a C function:

Sample Interface page 283

How to Use this Chapter page 284

Getting It Right page 285

FORTRAN 77 Calls C page 293

C Calls FORTRAN 77 page 317

Samp.c samp ( i, f )
int *i;
float *f;

{
*i = 9;
*f = 9.9;

}



 284 FORTRAN 77 User’s Guide

12

In the above program, both i  and f  are pointers.

Both i  and f  are passed by reference, which is the default.

Compile and execute, with output:

12.2 How to Use this Chapter
We suggest you use this chapter in the following manner:

1. Examine the above example and the section, “Getting It Right.”

2. Read the section, “FORTRAN 77 Calls C,” or “C Calls FORTRAN 77.”

3. Within that section, choose one of these subsections:

• Arguments passed by reference
• Arguments passed by value
• Function return values
• Labeled common
• Sharing I/O
• Alternate returns

4. Within that subsection, choose one of these examples:

For the arguments, there is an example for each of these, or a note that it
cannot be done.

Sampmain.f integer i
real r
external Samp !$pragma C ( Samp )
call Samp ( i, r )
write( *, "(I2, F4.1)") i, r
end

demo% cc -c Samp.c
demo% f77 -silent Samp.o Sampmain.f
demo% a.out
 9 9.9
demo%



C–FORTRAN 77 Interface  285

12

• Simple types (character*1 , logical , integer , real , double
precision , quad )

• Complex types (complex , double complex )

• Character strings (character*n )

• One-dimensional arrays (integer a(9) )

• Two-dimensional arrays (integer a(4,4) )

• Structured records (structure and record)

• Pointers

For function return values, there is an example for each of these:
• Integer (int )
• Real (float )
• Pointer to real (pointer to float )
• Double precision (double )
• Quadruple precision (long double )
• Complex
• Character string

For each of labeled common, sharing I/O, and alternate returns, there is one set
of examples. These are the same for “FORTRAN 77 calls C” or” C calls
FORTRAN 77.”

12.3 Getting It Right
Most C/FORTRAN 77 interfaces must be correct in all of these aspects:

• Function/subroutine: definition and call
• Data types: compatibility of types
• Arguments: passing by reference or value
• Arguments: order
• Procedure name: uppercase and lowercase and trailing underscore (_)
• Libraries: telling the linker to use FORTRAN 77 libraries

Some C/FORTRAN 77 interfaces must also be correct on these constructs:

• Arrays: indexing and order
• File descriptors and stdio
• File permissions



 286 FORTRAN 77 User’s Guide

12

Function or Subroutine

The word function have different meanings in C and FORTRAN 77:

• In C, all subprograms are functions; it is just that some of them return a null
value.

• In FORTRAN 77, a function passes a return value, but a subroutine does not.

FORTRAN 77 Calls a C Function

If the called C function returns a value, call it from FORTRAN 77 as a function.

If the called C function does not return a value, call it as a subroutine.

C Calls a FORTRAN 77 Subprogram

If the called FORTRAN 77 subprogram is a function, call it from C as a function
that returns a comparable data type.

If the called FORTRAN 77 subprogram is a subroutine, call it from C as a
function that returns a value of int  (comparable to FORTRAN 77 INTEGER*4)
or void . This return value is useful if the FORTRAN 77 routine does a
nonstandard return.



C–FORTRAN 77 Interface  287

12

Data Type Compatibility

Data types have the following sizes and alignments without –f , –i2 ,
-misalign , –r4 , or –r8 .

Note the following:

• The REAL*16  and the COMPLEX*32 can be passed between f77  and ANSI
C, but not between f77  and some previous versions of C.

• Alignments are for f77  types.

• Arrays pass by reference, if the elements are compatible.

• Structures pass by reference, if the fields are compatible.

Table 12-1 Argument Sizes and Alignments—Pass by Reference

FORTRAN 77 Type C Type
Size
(Bytes)

Alignment
(Bytes)

BYTE X
CHARACTER X
CHARACTER*n X

char x
char x
char x[n]

1
1
n

1
1
1

COMPLEX X
COMPLEX*8 X
DOUBLE COMPLEX X
COMPLEX*16 X
COMPLEX*32 X (SPARC only)

struct {float r,i;} x;
struct {float r,i;} x;
struct {double dr,di;}x;
struct {double dr,di;}x;
struct {long double dr,di;} x;

8
8
16
16
32

4
4
4
4
4

DOUBLE PRECISION X
REAL X
REAL*4 X
REAL*8 X
REAL*16 X (SPARC only)

double x
float x
float x
double x
long double x

8
4
4
8
16

4
4
4
4
4

INTEGER X
INTEGER*2 X
INTEGER*4 X
INTEGER*8 X

int x
short x
int x
long long int x

4
2
4
8

4
2
4
4

LOGICAL X
LOGICAL*1 X
LOGICAL*2 X
LOGICAL*4 X
LOGICAL*8 X

int x
char x
short x
int x
long long int x

4
1
2
4
8

4
1
2
4
8



 288 FORTRAN 77 User’s Guide

12

• Passing arguments by value:
• You cannot pass arrays, character strings, or structures by value.
• You can pass arguments by value from f77  to C, but not from C to f77 ,

since the %VAL()  does not work in a SUBROUTINE statement.

Case Sensitivity

C and FORTRAN 77 take opposite perspectives on case sensitivity:

• C is case sensitive—uppercase or lowercase matters.
• FORTRAN 77 ignores case.

The f77  default is to ignore case by converting subprogram names to
lowercase. It converts all uppercase letters to lowercase letters, except within
character-string constants.

There are two usual solutions to the uppercase/lowercase problem:

• In the C subprogram, make the name of the C function all lowercase.

• Compile the f77  program with the -U  option, which tells f77  to preserve
existing uppercase/lowercase distinctions, that is, not to convert to all
lowercase letters.

Use one or the other, but not both.

Most examples in this chapter use all lowercase letters for the name in the C
function, and do not use the f77 –U  compiler option.

Underscore in Names of Routines

The FORTRAN 77 compiler normally appends an underscore (_) to the names
of subprograms for both a subprogram and a call to a subprogram. This
convention distinguishes it from C procedures or external variables with the
same user-assigned name. If the name has exactly 32 characters, the underscore
is not appended. All FORTRAN 77 library procedure names have double
leading underscores to reduce clashes with user-assigned subroutine names.

There are three usual solutions to the underscore problem:

• In the C function, change the name of the function by appending an
underscore to that name.



C–FORTRAN 77 Interface  289

12

• Use the C()  pragma to tell the FORTRAN 77 compiler to omit those trailing
underscores.

• Use the -ext_names  option to make external names without underscores.

See “-ext_names=e” on page 47, for more information.

Use one of these solutions, but not all three.

Most of the examples in this chapter use the FORTRAN 77 C()  compiler
pragma, and do not use the underscores. The C()  pragma directive takes the
names of external functions as arguments. It specifies that these functions are
written in the C language, so the FORTRAN 77 compiler does not append an
underscore to such names, as it ordinarily does with external names. The
C() directive for a particular function must appear before the first reference to
that function. It must also appear in each subprogram that contains such a
reference. The conventional usage is:

If you use this pragma, then in the C function, you must not append an
underscore to those names.

Argument-Passing by Reference or Value

In general, FORTRAN 77 passes arguments by reference. In a call, if you
enclose an argument with the nonstandard function %VAL() , FORTRAN 77
passes it by value.

In general, C passes arguments by value. If you precede an argument by an
ampersand (&), C passes it by reference. C always passes arrays and character
strings by reference.

Arguments and Order

For every argument of character type, an argument is passed giving the length
of the value. The string lengths are equivalent to C long int  quantities,
passed by value.

The order of arguments is:

EXTERNAL ABC, XYZ!$PRAGMA C( ABC, XYZ )



 290 FORTRAN 77 User’s Guide

12

• Address for each argument (datum or function)

• A long int  for each character argument. The whole list of string lengths
comes after the whole list of other arguments.

Example: A FORTRAN 77 call in a code fragment:

The above call is equivalent to the C call in this code fragment:

Array Indexing and Order

Array indexing and order work in the following manner.

Array Indexing

C arrays always start at zero, but by default, FORTRAN 77 arrays start at 1.
There are two usual ways of approaching indexing.

• You can use the FORTRAN 77 default, as in the above example. Then the
FORTRAN 77 element B(2)  is equivalent to the C element b[1] .

• You can specify that the FORTRAN 77 array B starts at 0. as follows:

This way, the FORTRAN 77 element B(1)  is equivalent to the C element
b[1] .

CHARACTER*7 S
INTEGER B(3)
 …
CALL SAM( B(2), S )

char s[7];
long b[3];
  …
sam_( &b[1], s, 7L ) ;

INTEGER B(0:2)



C–FORTRAN 77 Interface  291

12

Array Order

FORTRAN 77 arrays are stored in column-major order, C arrays in row-major
order. For one-dimensional arrays, this is no problem. For two-dimensional
and higher arrays, switch subscripts in all references and declarations.

Tip

Some may find it confusing to, say, triangularize in C and then pass the parts
to FORTRAN 77. More generally, it may be confusing to do some of the matrix
manipulation in C and some in FORTRAN 77.

So, if passing parts of arrays between C and FORTRAN 77 does not work, or if
it is confusing, try passing the whole array to the other language and do all the
matrix manipulation there. Avoid doing part in C and part in FORTRAN 77.

Libraries and Linking with the f77  Command

To link the proper FORTRAN 77 libraries, use the f77  command to pass the.o
files on to the linker. Doing so usually shows up as a problem only if a C main
calls FORTRAN 77. Dynamic linking is encouraged and made easy.

Example 1: Use f77  to link:

Example 2: Use cc  to link. A failure occurs; the libraries are not linked.

demo% f77 -c -silent RetCmplx.f
demo% cc -c RetCmplxmain.c
demo% f77 RetCmplx.o RetCmplxmain.o ← This command line does the linking.
demo% a.out
 4.0 4.5
 8.0 9.0
demo%

demo% f77 -silent -c RetCmplx.f
demo% cc RetCmplx.o RetCmplxmain.c ← Wrong link command
ld: Undefined symbol ← missing routine
 _ _Fc_mult
demo%



 292 FORTRAN 77 User’s Guide

12

File Descriptors and stdio

FORTRAN 77 I/O channels are in terms of unit numbers. The I/O system does
not deal with unit numbers, but with file descriptors. The FORTRAN 77 runtime
system translates from one to the other, so most FORTRAN 77 programs do not
have to recognize file descriptors.

Many C programs use a set of subroutines, called standard I/O (or stdio ).
Many functions of FORTRAN 77 I/O use standard I/O, which in turn uses
operating system I/O calls. Some of the characteristics of these I/O systems are
listed in the following table.

File Permissions

C programmers traditionally open input files for reading and output files for
writing, sometimes for both. In FORTRAN 77, it is not possible for the system
to foresee what use you will make of the file, since there is no parameter to the
OPEN statement that gives that information.

FORTRAN 77 tries to open a file with the maximum permissions possible, first
for both reading and writing, then for each separately.

Table 12-2 Characteristics of Three I/O Systems

FORTRAN 77 Units Standard I/O File Pointers  File Descriptors

Files Open Opened for reading and
writing

Opened for reading; or Opened for
writing; or Opened for both; or
Opened for appending. See OPEN(3S).

Opened for reading; or Opened for
writing; or Opened for both

Attributes Formatted or unformatted Always unformatted, but can be read
or written with format-interpreting
routines

Always unformatted

Access Direct or sequential Direct access if the physical file
representation is direct access, but can
always be read sequentially

Direct access if the physical file
representation is direct access, but
can always be read sequentially

Structure Record Character stream Character stream

Form Arbitrary nonnegative
integers

Pointers to structures in the user’s
address space

Integers from 0-63



C–FORTRAN 77 Interface  293

12

This event occurs transparently and is of concern only if you try to perform a
READ, WRITE, or ENDFILE,  but you do not have permission. Magnetic tape
operations are an exception to this general freedom, since you can have write
permissions on a file, but not have a write ring on the tape.

12.4 FORTRAN 77 Calls C
This section covers arguments passed by reference or value, functions,
common blocks, sharing I/O, and alternate returns.

Arguments Passed by Reference (f77  Calls C)

This subsection covers simple types, complex types, strings, and arrays.

Simple Types Passed by Reference (f77  Calls C)

For simple types, define each C argument as a pointer:

SimRef.c simref ( t, f, c, i, r, d, q, si )
   char    * t, * f, * c ;
   int     * i ;
   float   * r ;
   double  * d ;
   long double  * q ;
   short   * si ;
{
        *t = 1 ; *f = 0 ;
        *c  = 'z' ;
        *i  = 9 ;
        *r  = 9.9 ;
        *d  = 9.9 ;
        *q  = 9.9 ;
        *si = 9 ;
}



 294 FORTRAN 77 User’s Guide

12

Default: Pass each FORTRAN 77 argument by reference:

Compile and execute, with output:

Complex Types Passed by Reference (f77  Calls C)

Here, the C argument is a pointer to a structure:

SimRefmain.f

real*16  is SPARC only

        logical*1  t, f
        character  c
        integer    i*4, si*2
        real       r*4, d*8, q*16
        external SimRef !$pragma C( SimRef )
        call SimRef ( t, f, c, i, r, d, q, si )
        write(*, "(L2,L2,A2,I2,F4.1,F4.1,F4.1,I2)")
&                  t, f, c, i, r,   d,   q,   si
        end

demo% cc -c SimRef.c
demo% f77 -silent SimRef.o SimRefmain.f
demo% a.out
 T F z 9 9.9 9.9 9.9 9
demo%

CmplxRef.c cmplxref ( w, z )
struct complex { float r, i; } *w;
struct dcomplex { double r, i; } *z;

{
w -> r = 6;
w -> i = 7;
z -> r = 8;
z -> i = 9;

}



C–FORTRAN 77 Interface  295

12

Compile and execute, with output:

Character Strings Passed by Reference (f77  Calls C)

Passing strings between C and FORTRAN 77 is not encouraged.

The rules are:

• All C strings pass by reference.

• For each FORTRAN 77 argument of character type, an extra argument is
passed giving the length of the string. The extra argument is equivalent to a
C long int  passed by value. This rule is nonstandard.

• The order of arguments is:

1. A list of the regular arguments

2. A list of lengths, one for each character argument, each as a long int

3. The list of extra arguments comes after the list of regular arguments.

CmplxRefmain.f complex w
double complex z
external CmplxRef !$pragma C( CmplxRef )
call CmplxRef ( w, z )
write(*,*) w
write(*,*) z
end

demo% cc -c CmplxRef.c
demo% f77 -silent CmplxRef.o CmplxRefmain.f
demo% a.out
  ( 6.00000, 7.00000)
  ( 8.0000000000000, 9.0000000000000)
demo%



 296 FORTRAN 77 User’s Guide

12

Example: Character strings passed by reference. A FORTRAN 77 call:

The above call is equivalent to the C call in

Ignoring the Extra Arguments of Passed Strings
You can ignore the extra arguments, since they are after the list of other
arguments. The following C function ignores the extra arguments:

The following FORTRAN 77 call generates hidden extra arguments:

CHARACTER*7 S
INTEGER B(3)

…
CALL SAM( B(2), S )

char s[7];
long b[3];

…
sam_( &b[1], s, 7L );

StrRef.c strref ( s10, s80 )
char *s10, *s80;

{
static char ax[11] = "abcdefghij";
static char sx[81] = "abcdefghijklmnopqrstuvwxyz";
strncpy ( s10, ax, 11 );
strncpy ( s80, sx, 26 );

}

StrRefmain.f character s10*10, s80*80
external StrRef !$pragma C( StrRef )
call StrRef( s10, s80 )
write (*, 1) s10, s80

1 format("s10='", A, "'", / "s80='", A, "'")
end



C–FORTRAN 77 Interface  297

12

Compile and execute, with output:

Using the Extra Arguments of Passed Strings
You can use the extra arguments.

The following C function uses the extra arguments. It prints the lengths.

If you compile StrRef2.c  and StrRefmain.f , then you get this output:

demo% cc -c StrRef.c
demo% f77 -silent StrRef.o StrRefmain.f
demo% a.out
s10='abcdefghij'
s80='abcdefghijklmnopqrstuvwxyz'
demo%

StrRef2.c strref ( s10, s80, L10, L80 )
char *s10, *s80 ;
long L10, L80 ;

{
static char ax[11] = "abcdefghij" ;
static char sx[81] = "abcdefghijklmnopqrstuvwxyz" ;
printf("%d %d \n", L10, L80 ) ;
strncpy ( s10, ax, 11 ) ;
strncpy ( s80, sx, 26 ) ;

}

10 80
s10='abcdefghij'
s80='abcdefghijklmnopqrstuvwxyz'



 298 FORTRAN 77 User’s Guide

12

One-Dimensional Arrays Passed by Reference (f77  Calls C)

 A C array, indexed from 0 to 8:

A FORTRAN 77 array, implicitly indexed from 1 to 9:

Compile and execute, with output:

A FORTRAN 77 array, explicitly indexed from 0 to 8:

FixVec.c fixvec ( V, Sum )
int *Sum;
int V[9];

{
int i;
*Sum = 0;
for ( i = 0; i <= 8; i++ ) *Sum = *Sum + V[i];

}

FixVecmain.f integer i, Sum
integer a(9) / 1,2,3,4,5,6,7,8,9 /
external FixVec !$pragma C( FixVec )
call FixVec ( a, Sum )
write(*, '(9I2, " ->" I3)') (a(i),i=1,9), Sum
end

demo% cc -c FixVec.c
demo% f77 -silent FixVec.o FixVecmain.f
demo% a.out
 1 2 3 4 5 6 7 8 9 -> 45
demo%

FixVecmain2.f integer i, Sum
integer a(0:8) / 1,2,3,4,5,6,7,8,9 /
external FixVec !$pragma C( FixVec )
call FixVec ( a, Sum )
write(*, '(9I2, " ->" I3)') (a(i),i=0,8), Sum
end



C–FORTRAN 77 Interface  299

12

Compile and execute, with output:

Two-Dimensional Arrays Passed by Reference (f77  Calls C)

In a two-dimensional array, the rows and columns are switched.

Example: A 2-by -2 C array, indexed from 0 to 1 and 0 to 1:

A 2-by-2 FORTRAN 77 array, explicitly indexed from 0 to 1, and 0 to 1:

demo% cc -c FixVec.c
demo% f77 -silent FixVec.o FixVecmain2.f
demo% a.out
 1 2 3 4 5 6 7 8 9 -> 45
demo%

FixMat.c fixmat ( a )
int a[2][2];

{
a[0][1] = 99;

}

FixMatmain.f integer c, m(0:1,0:1) / 00, 10, 01, 11 /, r
external FixMat !$pragma C ( FixMat )
do r = 0, 1

do c = 0, 1
   write(*,'("m(",I1,",",I1,")=",I2.2)') r, c, m(r,c)
end do

end do
call FixMat ( m )
do r = 0, 1

do c = 0, 1
   write(*,'("m(",I1,",",I1,")=",I2.2)') r, c, m(r,c)
end do

end do
end



 300 FORTRAN 77 User’s Guide

12

Compile and execute. Show m before and after the C call:

Structured Records Passed by Reference (f77  Calls C)

Example: A C structure of an integer and a character string:

Compare a[0][1]  with
m(1,0) :
C changed a[0][1] , which is
FORTRAN 77 m(1,0) .

demo% cc -c FixMat.c
demo% f77 -silent FixMat.o FixMatmain.f
demo% a.out
m(0,0) = 00
m(0,1) = 01
m(1,0) = 10
m(1,1) = 11
m(0,0) = 00
m(0,1) = 01
m(1,0) = 99
m(1,1) = 11
demo%

StruRef.c struct VarLenStr {
int nbytes;
char a[26];

};
void
struchr ( v )
struct VarLenStr *v;
{

bcopy( "oyvay", v->a, 5 );
v->nbytes = 5;

}



C–FORTRAN 77 Interface  301

12

A FORTRAN 77 structured record of an integer and a character string:

Compile and execute, with output:

StruRefmain.f structure /VarLenStr/
integer nbytes
character a*25

end structure
record /VarLenStr/ vls
character s25*25
external StruChr !$pragma C( StruChr )
vls.nbytes = 0
Call StruChr( vls )
s25(1:5) = vls.a(1:vls.nbytes)
write ( *, 1 ) vls.nbytes, s25

1 format("size =", I2, ", s25='", A, "'" )
end

demo% cc -c StruRef.c
demo% f77 -silent StruRef.o StruRefmain.f
demo% a.out
size = 5, s25='oyvay'
demo%



 302 FORTRAN 77 User’s Guide

12

Pointers Passed by Reference (f77  Calls C)

To C, it is a pointer to a pointer:

FORTRAN 77 passes by reference, and it is passing a pointer:

Compile and execute, with output:

PassPtr.c passptr ( i, d )
int **i;
double **d;

{
**i = 9;
**d = 9.9;

}

PassPtrmain.f program PassPtrmain
integer          i
double precision d
pointer ( iPtr, i ), ( dPtr, d )
external PassPtr !$pragma C( PassPtr )
iPtr = malloc( 4 )
dPtr = malloc( 8 )
i = 0
d = 0.0
call PassPtr ( iPtr, dPtr )
write( *, "(i2, f4.1)" )  i, d
end

demo% cc -c PassPtr.c
demo% f77 -silent PassPtr.o PassPtrmain.f
demo% a.out
 9 9.9
demo%



C–FORTRAN 77 Interface  303

12

Arguments Passed by Value (f77  Calls C)

In the call, enclose an argument in the nonstandard function %VAL() . This rule
works for all simple types and pointers.

Simple Types Passed by Value (f77  Calls C)

If you prototype the float parameter, C does not promote to double.

Pass each FORTRAN 77 argument by value, except for args :

SimVal.c simval ( char t, char c, int i, float r, double d,
long double q, short s, int *reply )

{
        *reply = 0 ;
        /* If nth arg ok, set nth octal digit to one */
        if ( t         ) *reply = *reply + 1 ;
        if ( c == 'z'  ) *reply = *reply + 8 ;
        if ( i == 9    ) *reply = *reply + 64 ;
        if ( r == 9.9F ) *reply = *reply + 512 ;
        if ( d == 9.9  ) *reply = *reply + 4096 ;
        if ( q == 9.9L ) *reply = *reply + 32768 ;
        if ( s == 9    ) *reply = *reply + 262144 ;
}

SimValmain.f

REAL*16  is SPARC only

        logical*1  t
        character  c
        integer    i*4, s*2, args*4
        real       r*4, d*8, q*16
        data t / .true. /,  c / 'z' /
&            i/ 9 /,  r/9.9/, d/ 9.9D0 /,  q/ 9.9Q0 /,  s/ 9 /
        external SimVal !$pragma C( SimVal )
        call SimVal( %VAL(t), %VAL(c), %VAL(i),
&     %VAL(r), %VAL(d), %VAL(q), %VAL(s), args )
        write( *, 1 )  args
 1      format('args=', o7, '(If nth digit=1, arg n OK)')
        end



 304 FORTRAN 77 User’s Guide

12

Compile and execute, with output:

Complex Types Passed by Value (f77  Calls C)

You can pass the complex  structure by value:

Compile and execute, with output:

demo% cc -c SimVal.c
demo% f77 -silent SimVal.o SimValmain.f
demo% a.out
args=1111111(If nth digit=1, arg n OK)
demo%

CmplxVal.c cmplxval ( w, z )
struct complex { float r, i; } w, *z;

{
z->r = w.r * 2.0;
z->i = w.i * 2.0;
w.r = 0.0;
w.i = 0.0;

}

CmplxValmain.f complex w / ( 4.0, 4.5 ) /
complex z
external CmplxVal !$pragma C( CmplxVal )
call CmplxVal ( %VAL(w), z )
write(*,*) w
write(*,*) z
end

demo% cc -c CmplxVal.c
demo% f77 -silent CmplxVal.o CmplxValmain.f
demo% a.out
  ( 4.00000, 4.50000)
  ( 8.00000, 9.00000)
demo%



C–FORTRAN 77 Interface  305

12

Arrays, Strings, Structures Passed by Value (f77  Calls C) - N/A

You cannot pass arrays, character strings, or structures by value—at least there
is no reliable way that works on all architectures. The workaround is to pass
them by reference.

Pointers Passed by Value (f77  Calls C)

C receives the argument as a pointer.

FORTRAN 77 passes a pointer by value:

Compile and execute, with output:

PassPtrVal.c passptrval ( i, d  )
int     *i ;
double   *d ;

{
*i  = 9 ;
*d = 9.9 ;

}

PassPtrValmain.f program PassPtrValmain
integer          i
double precision d
pointer ( iPtr, i ), ( dPtr, d )
external PassPtrVal !$pragma C( PassPtrVal )
iPtr = malloc( 4 )
dPtr = malloc( 8 )
i = 0
d = 0.0
call PassPtrVal ( %VAL(iPtr), %VAL(dPtr) ) ! Nonstandard
write( *, "(i2, f4.1)" )  i, d
end

demo% cc -c PassPtrVal.c
demo% f77 -silent PassPtrVal.o PassPtrValmain.f
demo% a.out
 9 9.9
demo%



 306 FORTRAN 77 User’s Guide

12

Function Return Values (f77  Calls C)

For function return values, a FORTRAN 77 function of type BYTE, INTEGER,
REAL, LOGICAL, DOUBLE PRECISION, or REAL*16  (quadruple precision) is
equivalent to a C function that returns the corresponding type. There are two
extra arguments for the return values of character functions, and one extra
argument for the return values of complex functions.

Return an int  (f77  Calls C)

Compile, link, and execute, with output:

In the same way, do a function of type BYTE, LOGICAL, REAL, or DOUBLE
PRECISION. Use matching types according to Table 12-1.

RetInt.c int retint ( r )
int *r;
{

int s;
s = *r;
s++;
return ( s );

}

RetIntmain.f integer r, s, RetInt
external RetInt !$pragma C( RetInt )
r = 8
s = RetInt ( r )
write( *, "(2I4)") r, s
end

demo% cc -c RetInt.c
demo% f77 -silent RetInt.o RetIntmain.f
demo% a.out
 8 9
demo%



C–FORTRAN 77 Interface  307

12

Return a float  (f77  Calls C)

Return a float as follows:

In earlier versions of C, if C returned a function value that was a float , C
promoted it to a double , and various workarounds were necessary.

RetFloat.c float  retfloat ( pf )
float *pf ;
{

float  f ;
f = *pf ;
f++ ;
return ( f ) ;

}

RetFloatmain.f real  RetFloat, R, S
external RetFloat !$pragma C( RetFloat )
R = 8.0
S = RetFloat ( R )
print *, R, S
end

demo% cc -c RetFloat.c
demo% f77 -silent RetFloat.o RetFloatmain.f
demo% a.out
    8.00000 9.00000
demo%



 308 FORTRAN 77 User’s Guide

12

Return a Pointer to a float  (f77  Calls C)

This example shows how to return a function value that is a pointer to a
float . Compare it with the previous example.

Compile and execute, with output:

Since the function return value is an address, you can assign it to the pointer
value, or possibly do some pointer arithmetic. You cannot use it in an
expression with, say, reals, such as RetPtrF(R)+100.0 .

RetPtrF.c static float f;
float *retptrf ( a )
float *a;
{

f = *a;
f++;
return &f;

}

RetPtrFmain.f integer RetPtrF
external RetPtrF !$pragma C( RetPtrF )
pointer ( P, S )
real R, S
R = 8.0
P = RetPtrF ( R )
print *, S
end

demo% cc -c RetPtrF.c
demo% f77 -silent RetPtrF.o RetPtrFmain.f
demo% a.out
9.00000
demo%



C–FORTRAN 77 Interface  309

12

Return a DOUBLE PRECISION (f77  Calls C)

Here is an example of C returning a type double  function value to a
FORTRAN 77 DOUBLE PRECISION variable:

Compile and execute, with output:

RetDbl.c double retdbl ( r )
double *r;
{

double s;
s = *r;
s++;
return ( s );

}

RetDblmain.f double precision r, s, RetDbl
external RetDbl !$pragma C( RetDbl )
r = 8.0
s = RetDbl ( r )
write( *, "(2F6.1)") r, s
end

demo% cc -c RetDbl.c
demo% f77 -silent RetDbl.o RetDblmain.f
demo% a.out
   8.0 9.0
demo%



 310 FORTRAN 77 User’s Guide

12

Return a Quadruple Precision (f77  Calls C)

Example: C returns a long double  to a FORTRAN 77 REAL*16 .

Compile and execute, with output:

RetQuad.c (SPARC only) long double  retquad ( pq )
long double *pq ;
{

long double  q ;
q = *pq ;
q++ ;
return ( q ) ;

}

RetQuadmain.f (SPARC only) real*16  RetQuad, R, S
external RetQuad !$pragma C( RetQuad )
R = 8.0
S = RetQuad ( R )
write(*,'(2F6.1)') R, S
end

demo% cc -c RetQuad.c
demo% f77 -silent RetQuad.o RetQuadmain.f
demo% a.out
   8.0   9.0
demo%



C–FORTRAN 77 Interface  311

12

Return a COMPLEX (f77  Calls C)

A COMPLEX or DOUBLE COMPLEX function is equivalent to a C routine with an
additional initial argument that points to the return value storage location. A
general pattern for such a FORTRAN 77 function is:

The pattern for a corresponding C function is

Example: C returns a type COMPLEX function value to FORTRAN 77:

COMPLEX FUNCTION F (…)

f_ (temp, … )
struct { float r, i; } *temp;

RetCmplx.c struct complex { float r, i; };
void retcmplx ( temp, w )
struct complex *temp;
struct complex *w;
{

temp->r = w->r + 1.0;
temp->i = w->i + 1.0;
return;

}

RetCmplxmain.f complex u, v, RetCmplx
external RetCmplx !$pragma C( RetCmplx )
u = ( 7.0, 8.0 )
v = RetCmplx ( u )
write( *, * ) u
write( *, * ) v
end



 312 FORTRAN 77 User’s Guide

12

Compile and execute, with output:

Return a Character String (f77  Calls C)

Passing strings between C and FORTRAN 77 is not encouraged. A character-
string-valued FORTRAN 77 function is equivalent to a C function with the two
extra initial arguments—data address and length.

A FORTRAN 77 function of this form, with no C()  pragma is:

The above FORTRAN 77 function is equivalent to a C function of this form:

 In either form, the function can be invoked in C with this call:

demo% cc -c -silent RetCmplx.c
demo% f77 -silent RetCmplx.o RetCmplxmain.f
demo% a.out
  ( 7.00000, 8.00000)
  ( 8.00000, 9.00000)
demo%

CHARACTER*15 FUNCTION G ( … )

g_ ( result, length, … )
char result[ ];
long length;

char chars[15];
…

g_ ( chars, 15L, … );



C–FORTRAN 77 Interface  313

12

Example: No pragma:

In the above example:

• The returned string is passed by the extra arguments, retval_ptr  and
retval_len , a pointer to the start and length of the string.

• The character-string argument is passed with ch_ptr  and ch_len .

• The ch_len  is at the end of the argument list.

• The repeat factor is passed as n_ptr .

In FORTRAN 77, use the above C function from RetStr.c, as follows:

The output from RetStrmain.f  is:

RetStr.c retstr_ ( retval_ptr, retval_len, ch_ptr, n_ptr, ch_len )
char *retval_ptr, *ch_ptr;
int retval_len, *n_ptr, ch_len;
{

int count, i;
char *cp;
count = *n_ptr;
cp = retval_ptr;
for (i=0; i<count; i++) {

*cp++ = *ch_ptr;
}

}

RetStrmain.f CHARACTER String*100, RetStr*50
String = RetStr ( '*', 10 )
PRINT *, "'", String(1:10), "'"
END

demo% cc -c RetStr.c
demo% f77 -silent RetStr.o RetStrmain.f
demo% a.out
'**********'
demo%



 314 FORTRAN 77 User’s Guide

12

Labeled Common (f77  Calls C)

C and FORTRAN 77 can share values in labeled common.
The C function:

FORTRAN 77 main program (labeled common):

UseCom.c

The method is the same no
matter which language calls
which.

extern struct comtype { /* Define a  structure  appropriate for this common */
float p ;
float q ;
float r ;
} ;

extern struct comtype ilk_ ; /* Establish the labeled common */

void
usecom ( int *count )        /* Like the SUBROUTINE statement */
{

*count = 3 ;
ilk_.p = 7.0 ;
ilk_.q = 8.0 ;
ilk_.r = 9.0 ;

}

UseCommain.f INTEGER n
REAL u, v, w
COMMON / ilk / u, v, w
EXTERNAL UseCom !$pragma C( UseCom )
n = 3
u = 1.0
v = 2.0
w = 3.0
CALL UseCom ( n )
WRITE(*,"(' u =', F4.1, ', v =', F4.1, ', w =', F4.1)") u,v,w
END



C–FORTRAN 77 Interface  315

12

Compile and execute, with output:

Sharing I/O (f77  Calls C)

Mixing FORTRAN 77 I/O with C I/O is not recommended. If you must mix
them, it is usually safer to pick one and stick with it, rather than alternating.

The FORTRAN 77 I/O library is implemented largely on top of the C standard
I/O library. Every open unit in a FORTRAN 77 program has an associated
standard I/O file structure. For the stdin , stdout , and stderr  streams, the
file structure need not be explicitly referenced, so it is possible to share them.

If a FORTRAN 77 main program calls C, then before the FORTRAN 77
program starts, the FORTRAN 77 I/O library is initialized to connect units 0, 5,
and 6 to stderr , stdin , and stdout , respectively. The C function must take
the FORTRAN 77 I/O environment into consideration to perform I/O on open
file descriptors.

Mixing with stdout  (f77  Calls C)

A C function that writes to stderr  and to stdout  is shown as follows:

Any of the options that change
size or alignment (or any
equivalences that change
alignment) may invalidate such
sharing.

demo% f77 -c -silent UseCommain.f
demo% cc -c UseCom.c
demo% f77 UseCom.o UseCommain.o
demo% a.out
 u = 7.0, v = 8.0, w = 9.0
demo%

MixIO.c #include <stdio.h>
mixio ( n )
int *n;
{

if ( *n <= 0 ) {
fprintf ( stderr, "error: negative line #\n" );
*n = 1;

}
printf ( "In C: line # = %d \n", *n );

}



 316 FORTRAN 77 User’s Guide

12

In FORTRAN 77, use the above C function as follows:

Compile and execute, with output:

Mixing with stdin  (f77  Calls C)

A C function that reads from stdin  is shown as follows:

MixIOmain.f integer n / -9 /
external MixIO !$pragma C( MixIO )
do i = 1, 6

n = n + 1
if ( abs(mod(n,2)) .eq. 1 ) then

call MixIO ( n )
else

write(*,'("In FORTRAN 77: line # =",i2)') n
end if

end do
end

demo% cc -c MixIO.c
demo% f77 -silent MixIO.o MixIOmain.f
demo% a.out
In FORTRAN 77: line # =-8
error: negative line #
In C: line # = 1
In FORTRAN 77: line # = 2
In C: line # = 3
In FORTRAN 77: line # = 4
In C: line # = 5
demo%

MixStdin.c #include <stdio.h>
int c_read_ ( fd, buf, nbytes, buf_len )
FILE **fd;
char *buf;
int *nbytes, buf_len;
{

return fread ( buf, 1, *nbytes, *fd );
}



C–FORTRAN 77 Interface  317

12

In FORTRAN 77, use the above C function, as follows:

FORTRAN 77 does the prompt. C does the read:

Alternate Returns (f77  Calls C) - N/A

C does not have an alternate return. The workaround is to pass an argument
and branch on that.

12.5 C Calls FORTRAN 77
This section covers arguments passed by reference or value, functions,
common blocks, sharing I/O, and alternate returns.

Arguments Passed by Reference (C Calls f77 )

This subsection covers simple types, complex types, strings, and arrays.

MixStdinmain.f character*1 inbyte
integer*4 c_read, getfilep
external getfilep
write(*,'(a,$)') 'What is the digit? '
irtn = c_read ( getfilep(5), inbyte, 1 )
write(*,9) inbyte

9 format('The digit read by C is ', a )
end

demo% cc -c MixStdin.c
demo% f77 -silent MixStdin.o MixStdinmain.f
demo% a.out
What is the digit? 3
The digit read by C is 3
demo%



 318 FORTRAN 77 User’s Guide

12

Simple Types Passed by Reference (C Calls f77 )

FORTRAN 77 passes all these arguments by reference (default):

C passes the address of each:

SimRef.f

REAL*16   is SPARC only

        subroutine SimRef ( t, c, i, si, r, d, q )
        logical*1  t
        character  c
        integer    i*4, si*2
        real       r*4, d*8, q*16
        t = .true.
        c  = 'z'
        i  = 9
        si = 9
        r  = 9.9
        d  = 9.9
        q = 9.9
        return
        end

SimRefmain.c main ( )
{
   char    t ;
   char    c ;
   int     i ;
   short   si ;
   float   r ;
   double  d ;
   long double  q = 5.5 ;
   extern simref_ ( char *t, char *c, int *i, short *si,

float *r, double *d, long double *q ) ;
   simref_ ( &t, &c, &i, &si, &r, &d, &q ) ;
   printf ( "%08o %c %d  %d %3.1f %3.1f %L3.1f \n",
              t,   c, i, si,    r,    d,    q ) ;
}



C–FORTRAN 77 Interface  319

12

Here are some simple types passed by reference:

Complex Types Passed by Reference (C Calls f77 )

The complex types require a simple structure:

In the above example, w and z  are passed by reference (default).

demo% f77 -c -silent SimRef.f
demo% cc -c SimRefmain.c
demo% f77 SimRef.o SimRefmain.o ← This command line does the linking.
demo% a.out
00000001 z 9  9 9.9 9.9 9.9
demo%

CmplxRef.f subroutine CmplxRef ( w, z )
complex w
double complex z
w = ( 6, 7 )
z = ( 8, 9 )
return
end

CmplxRefmain.c main ( )
{

struct complex { float r, i; };
struct complex d1;
struct complex *w = &d1;
struct dcomplex { double r, i; };
struct dcomplex d2;
struct dcomplex *z = &d2;
extern cmplxref_ ();
cmplxref_ ( w, z );
printf ( "%3.1f %3.1f \n%3.1f %3.1f \n",

w->r, w->i, z->r, z->i );
}



 320 FORTRAN 77 User’s Guide

12

w and z  are pointers, so if you pass w and z , you pass the address. This is
passing by reference.

Compile and execute, with output:

Character Strings Passed by Reference (C Calls f77 )

Passing strings between C and FORTRAN 77 is not encouraged.

Here are the rules for passing strings:

• All C strings pass by reference.

• For each FORTRAN 77 argument of character type, an extra argument is
passed, giving the length of the string. The extra argument is equivalent to a
C long int  passed by value. This practice is nonstandard.

• The order of arguments is as follows:

1. A list of the regular arguments

2. A list of lengths, one for each character argument, as a long int

3. The list of extra arguments comes after the list of regular arguments

Example: Character strings passed by reference. A FORTRAN 77 call:

demo% f77 -c -silent CmplxRef.f
demo% cc -c CmplxRefmain.c
demo% f77 CmplxRef.o CmplxRefmain.o
demo% a.out
6.0 7.0
8.0 9.0
demo%

CHARACTER*7 S
INTEGER B(3)

…
CALL SAM( B(2), S )



C–FORTRAN 77 Interface  321

12

The above call is equivalent to the this C call:

If you make a string in FORTRAN 77, you must provide an explicit null
terminator because FORTRAN 77 does not automatically do that, and C
expects it.

Ignoring the Extra Arguments of Passed Strings
You can ignore the extra arguments, since they are after the list of other
arguments.

The following FORTRAN 77 subroutine gets no values of the extra arguments
from the C main:

The following C main ignores the extra arguments:

In the above example, C strings pass by reference.

char s[7];
long b[3];

…
sam_( &b[1], s, 7L );

StrRef.f subroutine StrRef ( a, s )
character a*10, s*80
a = 'abcdefghi' // char(0)
s = 'abcdefghijklmnopqrstuvwxyz' // char(0)
return
end

StrRefmain.c main ( )
{

char s10[10], s80[80];
strref_ ( s10, s80 );
printf ( " s10='%s' \n s80='%s' \n", s10, s80 );

}



 322 FORTRAN 77 User’s Guide

12

Compile and execute, with output:

Using the Extra Arguments of Passed Strings
You can use the extra arguments.

The following FORTRAN 77 routine uses the extra arguments (the sizes)
implicitly. The FORTRAN 77 source code cannot use them explicitly.

The following C main passes the extra arguments explicitly:

In the above example, C strings pass by reference.

demo% f77 -c -silent StrRef.f
demo% cc -c StrRefmain.c
demo% f77 StrRef.o StrRefmain.o
demo% a.out
s10='abcdefghi'
s80='abcdefghijklmnopqrstuvwxyz'
demo%

StrRef2.f subroutine StrRef2 ( a, s )
character a*(*), s*(*)
a = 'abcdefghi' // char(0)
s = 'abcdefghijklmnopqrstuvwxyz' // char(0)
return
end

StrRef2main.c main ( )
{

char s10[10], s80[80] ; /*Provide memory for the strings*/
long  L10, L80 ;
L10 = 10 ;              /*Initialize extra args*/
L80 = 80 ;
strref2_ ( s10, s80, L10, L80 ) ; /*pass extra args to f77*/
printf ( " s10='%s' \n s80='%s' \n", s10, s80 ) ;

}



C–FORTRAN 77 Interface  323

12

Compile and execute, with output:

Arguments Passed by Value (C Calls f77 ) - N/A

FORTRAN 77 can call C, and pass an argument by value. However,
FORTRAN 77 cannot handle an argument passed by value if C calls
FORTRAN 77. The workaround is to pass all arguments by reference.

Function Return Values (C Calls f77 )

For function return values, a FORTRAN 77 function of type BYTE, INTEGER,
LOGICAL, DOUBLE PRECISION, or REAL*16  (quadruple precision) is
equivalent to a C function that returns the corresponding type. There are two
extra arguments for the return values of character functions, and one extra
argument for the return values of complex functions.

Return an int  (C Calls f77 )

Example: FORTRAN 77 returns an INTEGER function value to C:

demo% f77 -c -silent StrRef2.f
demo% cc -c StrRef2main.c
demo% f77 StrRef2.o StrRef2main.o
demo% a.out
s10='abcdefghi'
s80='abcdefghijklmnopqrstuvwxyz'
demo%

RetInt.f integer function RetInt ( k )
integer k
RetInt = k + 1
return
end



 324 FORTRAN 77 User’s Guide

12

Compile and execute, with output:

Return a float  (C Calls f77 )

Example: FORTRAN 77 returns a REAL to a C float :

RetIntmain.c main()
{

int k, m;
extern int retint_ ();
k = 8;
m = retint_ ( &k );
printf( "%d %d\n", k, m );

}

demo% f77 -c -silent RetInt.f
demo% cc -c RetIntmain.c
demo% f77 RetInt.o RetIntmain.o
demo% a.out
8 9
demo%

RetFloat.f real function RetReal ( x )
real x
RetReal = x + 1.0
return
end



C–FORTRAN 77 Interface  325

12

Compile and execute, with output:

In earlier versions of C, if C returned a function value that was a float , C
promoted it to a double , and various workarounds were necessary.

Return a double  (C Calls f77 )

Example: FORTRAN 77 returns a DOUBLE PRECISION function value to C:

RetFloatmain.c main ( )
{
        float r, s ;
        extern  float retreal_ () ;
        r = 8.0 ;
        s = retreal_ ( &r ) ;
        printf( " %8.6f %8.6f \n", r, s ) ;
}

demo% f77 -c -silent RetFloat.f
demo% cc -c RetFloatmain.c
demo% f77 RetFloat.o RetFloatmain.o
demo% a.out
 8.000000 9.000000
demo%

RetDbl.f double precision function RetDbl ( x )
double precision x
RetDbl = x + 1.0
return
end



 326 FORTRAN 77 User’s Guide

12

Compile and execute, with output:

Return a long double  (C Calls f77 )

Example: FORTRAN 77 returns a REAL*16 to a C long double .

RetDblmain.c main()
{

double x, y;
extern double retdbl_ ();
x = 8.0;
y = retdbl_ ( &x );
printf( "%8.6f %8.6f\n", x, y );

}

demo% f77 -c -silent RetDbl.f
demo% cc -c RetDblmain.c
demo% f77 RetDbl.o RetDblmain.o
demo% a.out
8.000000 9.000000
demo%

RetQuad.f

REAL*16  is SPARC only.

real*16 function  RetQuad ( x )
real*16 x
RetQuad = x + 1.0
return
end



C–FORTRAN 77 Interface  327

12

Compile and execute, with output:

Return a COMPLEX (C Calls f77 )

A COMPLEX or DOUBLE COMPLEX function is equivalent to a C routine with an
additional initial argument that points to the return value storage location. A
general pattern for such a FORTRAN 77 function is shown here.

RetQuadmain.c main ( )
{
        long double r, s ;
        extern  long double retquad_ ( long double * ) ;
        r = 8.0 ;
        s = retquad_ ( &r ) ;
        printf( " %8.6Lf %8.6Lf \n", r, s ) ;
}

demo% f77 -c -silent RetQuad.f
demo% cc -c RetQuadmain.c
demo% f77 RetQuad.o RetQuadmain.o
demo% a.out
 8.000000 9.000000
demo%

COMPLEX FUNCTION F ( … )



 328 FORTRAN 77 User’s Guide

12

The pattern for a corresponding C function is:

Example: FORTRAN 77 returns a COMPLEX to a C struct :

Return a COMPLEX. Compile, link, and execute, with output:

f_( temp, … )
struct { float r, i; } *temp;

RetCmplx.f complex function RetCmplx ( x )
complex x
RetCmplx = x * 2.0
return
end

RetCmplxmain.c main ( )
{

struct complex { float r, i; };
struct complex c1, c2;
struct complex *w = &c1, *t = &c2;
extern retcmplx_ ();
w -> r = 4.0;
w -> i = 4.5;
retcmplx_ ( t, w );
printf ( " %3.1f %3.1f \n %3.1f %3.1f \n",
w -> r, w -> i, t -> r, t -> i );

}

demo% f77 -c -silent RetCmplx.f
demo% cc -c RetCmplxmain.c
demo% f77 RetCmplx.o RetCmplxmain.o
demo% a.out
 4.0 4.5
 8.0 9.0
demo%



C–FORTRAN 77 Interface  329

12

Return a Character String   (C Calls f77 )

Passing strings between C and FORTRAN 77 is not recommended.

A FORTRAN 77 string function has two extra initial arguments—data address
and length.

Example: A FORTRAN 77 function of the following form, with no C()  pragma:

A C function of the following form:

The above two functions are equivalent, and can be invoked in C as follows:

The lengths are passed by value. You must provide the null terminator.

CHARACTER*15 FUNCTION G ( … )

g_ ( result, length, … )
char result[ ];
long length;

char chars[15];
g_ ( chars, 15L, … );

RetChr.f FUNCTION RetChr( C, N )
CHARACTER RetChr*(*), C
RetChr = ''
DO I = 1, N

RetChr(I:I) = C
END DO
RetChr(N+1:N+1) = CHAR(0) ! Put in the null terminator.
RETURN
END



 330 FORTRAN 77 User’s Guide

12

Return a character string (Continued):

Compile, link, and execute, with output:

The caller must set up more actual arguments than are apparent as formal
parameters to the FORTRAN 77 function:

• Arguments that are lengths of character strings are passed by value.
• Arguments that are not lengths of character strings are passed by reference.

RetChrmain.c main()
{ /* Use a FORTRAN 77 character function, (C calls f77) */
        char strbuffer[9] = "123456789" ;
        char *rval_ptr = strbuffer ;       /* extra initial arg 1 */
        int rval_len = sizeof(strbuffer) ; /* extra initial arg 2 */
        extern void retchr_() ;
        char ch = '*' ;
        int n = 4 ;
        int ch_len = sizeof(ch) ;          /* extra final arg */
        printf( " '%s'\n", strbuffer ) ;
        retchr_ ( rval_ptr, rval_len, &ch, &n, ch_len ) ;
        printf( " '%s'\n", strbuffer ) ;
}

demo% f77 -c -silent RetChr.f
demo% cc -c RetChrmain.c
demo% f77 RetChr.o RetChrmain.o
demo% a.out
 '123456789'
 '****'
demo%



C–FORTRAN 77 Interface  331

12

Labeled Common (C Calls f77 )

C and FORTRAN 77 can share values in labeled common. Here is a FORTRAN
77 subroutine:

The C main program:

UseCom.f

The method is the same, no
matter which language calls
which.

SUBROUTINE UseCom ( n )
INTEGER n
REAL u, v, w
COMMON / ilk / u, v, w
n = 9
u = 7.0
v = 8.0
w = 9.0
RETURN
END

UseCommain.c #include <stdio.h>
extern struct comtype {  /* <-- Define a structure appropriate for this common. */

float p ;
float q ;
float r ;
} ;

extern struct comtype ilk_ ;   /* <-- Establish the labeled common. */
main()
{

int count = 3 ;
extern void usecom_ ( ) ;
ilk_.p = 1.0 ;
ilk_.q = 2.0 ;
ilk_.r = 3.0 ;
usecom_ ( &count ) ;   /* <--- This calls the subroutine. */
printf(" ilk_.p=%4.1f, ilk_.q=%4.1f, ilk_.r=%4.1f\n",
ilk_.p, ilk_.q, ilk_.r ) ;

}



 332 FORTRAN 77 User’s Guide

12

Compile and execute, with output:

Sharing I/O (C Calls f77 )

Mixing FORTRAN 77 I/O with C I/O is not recommended. If you must mix
them, it is usually safer to pick one and stick with it, rather than alternating.

The FORTRAN 77 I/O library uses the C standard I/O library. Every open unit
in a FORTRAN 77 program has an associated standard I/O file structure. For
the stdin , stdout , and stderr  streams, the file structure need not be
explicitly referenced, so it is possible to share them.

For sharing I/O, if a C main program calls a FORTRAN 77 subprogram, then
there is no automatic initialization of the FORTRAN 77 I/O library that
connects units 0, 5, and 6 to stderr , stdin , and stdout , respectively. If a
FORTRAN 77 function attempts to reference the stderr  stream (unit 0), then
any output is written to a file named fort.0, instead of to the stderr  stream.

To make the C program initialize I/O—establish the preconnection of units 0,
5, and 6—do the following:

1. Insert the following line at the start of the C main :

2. At the end of the C main , insert the following line:

The second step may not be strictly necessary.

Any of the options that change
the size or alignment (or any
equivalences that change
alignment) may invalidate such
sharing.

demo% f77 -c -silent UseCom.f
demo% cc -c UseCommain.c
demo% f77 UseCom.o UseCommain.o
demo% a.out
 ilk_.p = 7.0, ilk_.q = 8.0, ilk_.r = 9.0
demo%

f_init();

f_exit();



C–FORTRAN 77 Interface  333

12

Example: Sharing I/O using a C main and a FORTRAN 77 subroutine:

Compile and execute, with output:

With a C main program, the following FORTRAN 77 library routines may not
work correctly: signal() , getarg() , iargc() .

MixIO.f subroutine MixIO ( n )
integer n
if ( n .LE. 0 ) then

write(0,*) "error: negative line #"
n = 1

end if
write(*,'("In FORTRAN 77: line # =",i2)') n
end

MixIOmain.c

Insertion 1 →

Insertion 2 →

#include <stdio.h>
main ( )
{

int i, m = -9;
f_init();

for ( i=0; i<=4; i++ ) {
m++;
if ( m == 2 || m == 4 )

printf("In C: line # = %d\n",m);
else

mixio_ ( &m );
}
f_exit();

}

demo% f77 -c -silent MixIO.f
demo% cc -c MixIOmain.c
demo% f77 MixIO.o MixIOmain.o
demo% a.out
error: negative line #
In FORTRAN 77: line # = 1
In C: line # = 2
In FORTRAN 77: line # = 3
In C: line # = 4
In FORTRAN 77: line # = 5
demo%



 334 FORTRAN 77 User’s Guide

12

Alternate Returns (C Calls f77 )

Some C programs need to use a FORTRAN 77 subroutine that has nonstandard
returns. To C, such subroutines return an int  (INTEGER*4). The return value
specifies which alternate return to use. If the subroutine has no entry points
with alternate return arguments, the returned value is undefined.

Example: One regular argument and two alternate returns:

C invokes the subroutine as a function:

Compile, link, and execute:

In this example, the C main  receives a 2 as the return value of the subroutine
because RETURN 2 has been executed.

AltRet.f subroutine AltRet ( i, *, * )
integer i, k
i = 9
k = 20
if ( k .eq. 10 ) return 1
if ( k .eq. 20 ) return 2
return
end

AltRetmain.c main()
{

int k, m ;
extern  int  altret_ () ;
k = 0 ;
m = altret_ ( &k ) ;
printf( "%d %d\n", k, m ) ;

}

demo% f77 -c -silent AltRet.f
demo% acc -c AltRetmain.c
demo% f77 AltRet.o AltRetmain.o
demo% a.out
9 2
demo%



 335

Runtime Error Messages A

This appendix is organized into the following sections:

The f77  I/O library, signal handler, and operating system, when they are
called by FORTRAN 77 routines, can all generate f77  error messages.

A.1 Operating System Error Messages
Operating system error messages include system call failures, C library errors,
and shell diagnostics. The system call error messages are found in intro (2).
System calls made through the f77  library do not produce error messages
directly. The following system routine in the f77  library calls C library
routines which produce an error message:

The following message is displayed:

Operating System Error Messages page 335

Signal Handler Error Messages page 336

I/O Error Messages page 336

CALL SYSTEM("rm /")
END

rm: / directory



 336 FORTRAN 77 User’s Guide

A

A.2 Signal Handler Error Messages
Before beginning execution of a program, the FORTRAN 77 library sets up a
signal handler (sigdie ) for signals that can cause termination of the program.
sigdie  prints a message that describes the signal, flushes any pending output,
and generates a core image and a traceback.

Presently, the only arithmetic exception that produces an error message is the
INTEGER*2 division with a denominator of zero. All other arithmetic
exceptions are ignored.

A signal handler error example follows, where the subroutine SUB tries to
access parameters that are not passed to it:

The following error message results:

A.3 I/O Error Messages
The error messages in this section are generated by the FORTRAN 77 I/O
library. The error numbers are returned in the IOSTAT variable if the ERR
return is taken.

The following program tries to do an unformatted write to a file opened for
formatted output:

CALL SUB()
END
SUBROUTINE SUB(I,J,K)
I=J+K
RETURN
END

*** Segmentation violation
Ille gal instruction (core dumped)

WRITE( 6 ) 1
END



Runtime Error Messages  337

A

and produces error messages like the following:

The following error messages are generated. These same messages are also
documented at the end of the man page, perror (3f).

If the error number is less than 1000, then it is a system error. See intro  (2).

1000 error in format

Read the error message output for the location of the error in the format. It
can be caused by more than 10 levels of nested parentheses or an extremely
long format statement.

1001 illegal unit number

It is illegal to close logical unit 0. Negative unit numbers are not allowed.
The upper limit is 231 - 1.

1002 formatted io not allowed

The logical unit was opened for unformatted I/O.

1003 unformatted io not allowed

The logical unit was opened for formatted I/O.

1004 direct io not allowed

The logical unit was opened for sequential access, or the logical record
length was specified as 0.

1005 sequential io not allowed

The logical unit was opened for direct access I/O.

1006 can’t backspace file

You cannot do a seek  on the file associated with the logical unit; therefore,
you cannot backspace. The file may be a tty  device or a pipe.

sue: [1003] unformatted io not allowed
logical unit 6, named 'stdout'
lately: writing sequential unformatted external IO



 338 FORTRAN 77 User’s Guide

A

1007 off beginning of record

You tried to do a left tab to a position before the beginning of an internal
input record.

1008 can’t stat file

The system cannot return status information about the file. Perhaps the
directory is unreadable.

1009 no * after repeat count

Repeat counts in list-directed I/O must be followed by an *  with no blank
spaces.

1010 off end of record

A formatted write tried to go beyond the logical end-of-record. An
unformatted read or write also causes this.

1011 < Not used>

1012 incomprehensible list input

List input has to be as specified in the declaration.

1013 out of free space

The library dynamically creates buffers for internal use. You ran out of
memory for them; that is, your program is too big.

1014 unit not connected

The logical unit was not open.

1015 read unexpected character

Certain format conversions cannot tolerate nonnumeric data.

1016 illegal logical input field

logical  data must be T or F.

1017 'new' file exists

You tried to open an existing file with status='new' .



Runtime Error Messages  339

A

1018 can’t find 'old' file

You tried to open a nonexistent file with status='old' .

1019 unknown system error

This error should not happen, but...

1020 requires seek ability

You tried to do a seek  on a file that does not allow that. Some of the ways
of performing an I/O operation that require a seek  are:

• Direct access
• Sequential unformatted I/O
• Tabbing left

1021 illegal argument

Certain arguments to open  and related functions are checked for legitimacy.
Often only nondefault forms are checked.

1022 negative repeat count

The repeat count for list-directed input must be a positive integer.

1023 illegal operation for unit

You tried to do an I/O operation that is not possible for the device
associated with the logical unit. You get this error if you try to read past
end-of-tape, or end-of-file.

1024 < Not used>

1025 incompatible specifiers in open

You tried to open a file with the 'new'  option and the access='append'
option, or some other invalid combination.

1026 illegal input for namelist

A namelist read encountered an invalid data item.



 340 FORTRAN 77 User’s Guide

A

1027 error in FILEOPT parameter

Using OPEN, the FILEOPT string has a bad syntax.

For example, the following error message is printed:

open: [1027] error in FILEOPT parameter
logical unit 8, named 'temp'
Abort



 341

XView Toolkit B

This appendix is organized into the following sections:

This appendix introduces the f77  interface to the XView programmer’s toolkit,
for FORTRAN 77 4.0 and OpenWindows 3.x

It is assumed that you are familiar with the XView windows system from the
user point of view—that is, you know the appearance and function of the
windows, scrollbars, menus, and so forth.

It is also assumed that you are familiar with XView from a programmer’s point
of view, as described in the XView Programming Manual. See “Reference” for
how to order this book.

B.1 XView Overview
The XView Application Programmer’s Interface is an object-oriented, server-
based, user-interface toolkit for the X Window System Version 11 (X11). It is
designed and documented to help C programmers manipulate XView
windows and other XView objects.

XView Overview page 341

FORTRAN 77 Interface page 342

C to FORTRAN 77 page 349

Sample Programs page 352

Reference page 355



 342 FORTRAN 77 User’s Guide

B

Tools

The tool kit is a collection of functions. The runtime system is based on each
application having access to a server-based Notifier, which distributes input to
the appropriate window, and a window manager which manages overlapping
windows.

There is also a Selection Service for exchanging data between windows in the
same or different processes.

Objects

XView is an object-oriented system. XView applications create and manipulate
XView objects. All such objects are associated with XView packages. Objects in
the same package share common properties. The major objects are windows,
icons, cursors, menus, scrollbars, and frames. A frame contains non-
overlapping subwindows within its borders.

You manipulate an object by passing a unique identifier or handle for that
object to procedures associated with that object.

Compatibility

The Solaris 2.x binding is to the 3.2 version of the XView library.

The Solaris 1.x binding is to the 3.0 version of the XView library.

Any new entry points introduced in XView version 3.3 and 3.4 are not
supported by our binding.

B.2 FORTRAN 77 Interface
This chapter focuses on manipulating XView windows and objects with
FORTRAN 77. The FORTRAN 77 XView interface consists of a set of header
files and an interface library. To write XView applications, you need to use the
library, header files, object handles, and standard procedures.



XView Toolkit  343

B

Compiling

The library Fxview  provides a FORTRAN 77 interface to XView. The actual
XView procedures are in the libraries, xview  and X11. To compile an XView
program, you include some header files and link the libraries.

Example: Compiling an XView program in Solaris 2.x:

Above, if you use pixrect , you must put in -lpixrect  before -xvol .

Example: Compiling an XView program in Solaris 1.x:

Initializing

Initialize the XView library using the xv_init  function. Some of the functions
require special initialization, and some do not, so, in general, it is safer to do
this initialization. There are two special aspects:

• This initialization must be done before the FORTRAN 77 main program
starts executing its internal initialization code.

• There is a special function named f77_init  that each FORTRAN 77 main
program always calls before executing its internal initialization code. The
version of f77_init  provided in libF77  does nothing, but you can
provide a substitute version to do the initialization.

demo% f77 -U -Nx2000 -Nn4000 -o app \
 -I/opt/SUNWspro/SC4.0/include/f77 app.F \
 -lFxview -lxview -lolgx -lX11

demo% f77 -U -Nx2000 -Nn4000 -o app \
 -I/usr/lang/SC4.0/include/f77 app.F \
 -lFxview -lxview -lolgx -lX11



 344 FORTRAN 77 User’s Guide

B

The following example shows one way to use f77_init  to invoke xv_init :

The global variable, f77_no_handlers, is a flag that affects subsequent
initialization routines. If it is nonzero, the FORTRAN 77 runtime system does
not set up any signal handlers.

Signal handlers are for dealing with floating-point exceptions, interrupts, bus
errors, segmentation violations, illegal instructions, and so forth.

One problem with XView is that many XView programs do their own signal
handling. These programs fail if the FORTRAN 77 runtime system sets and
uses the normal signal handlers. These normal signal handlers intercept
signals, flush the output buffers, and print a descriptive message. If you have
two sets of signal handlers in the same program, they interfere with each other.

Header Files

The header files define the necessary data types, constants, and external
procedures necessary to write programs, using the XView interface with
FORTRAN 77.

Names of Header Files
Every XView program needs the header file stddefs_F.h  for standard
definitions. It must be first.

The names of the header file are the same as the XView C language header files
with the .h  extension changed to the _F.h  extension. For example, the
FORTRAN 77 header file corresponding to the XView file, panel.h, is named
panel_F.h . Other header files are canvas_F.h , text_F.h , and so forth.

demo% cat xvini.c
#include <xview/xview.h>
void
f77_init(int *argcp, char ***argvp, char ***envp)
{
    xv_init(XV_INIT_ARGC_PTR_ARGV, argcp, *argvp) ;
    f77_no_handlers = 1 ;                    /*  See next paragraph. */
}
demo% cc -o xvini xvini.c
demo% f77 xvini.o Any.f



XView Toolkit  345

B

In addition to the header files corresponding to the XView headers, there are
three additional ones. They are:

• stddefs_F.h

This file defines some basic types that are used by most of the other
FORTRAN 77 XView header files. You must include this file before any
other of the FORTRAN 77 XView files.

• undef_F.h

This file is used if you have more than one subroutine in a single file that
needs the XView data types. It undefines certain symbols which are used in
the header files, so that you can include the header files in multiple
subroutines or functions in the same source file.

• procitf_F.h

This header file contains declarations for routines which will generate
interface routines for all procedure types, which are passed to XView.

Some of the features of XView require you to provide a subroutine that is
called by XView when certain events happen. Since FORTRAN 77 routines
pass arguments differently than C routines. Since XView assumes the C
calling conventions, interface routines are needed to map the arguments
correctly.

The input argument is a FORTRAN 77 subroutine. The output is the address
of an interface routine that calls the FORTRAN 77 routine with the
arguments properly mapped.

Example: Interpose event call:

There can be at most 30 different interface procedures of each type.

EXTERNAL event_func, my_repaint
CALL set_CANVAS_REPAINT_PROC ( canvas,

& canvas_repaint_itf ( my_repaint ) )
err = notify_interpose_event_func ( frame,

& notify_event_itf ( event_func ),
& NOTIFY_IMMEDIATE )



 346 FORTRAN 77 User’s Guide

B

Usage of Header Files
To use header files with f77 , do all three of the following:

• Specify -I/opt/SUNWspro/include/f77 , in the compile command.

• In your source file, insert the following line:

Put it in such include  lines for any other header files that you need.

• Make .F  the suffix of your source file.

When you compile a FORTRAN 77 source file that has a .F  suffix, the C
preprocessor replaces the #include  line with the contents of the file.

Generic Procedures

There is one general initialization procedure: xv_init() .

There are three the standard generic procedures for you to work with objects:

• xv_create()
• xv_find()
• xv_destroy()

Some special procedures for FORTRAN 77 are also available. See “Attribute
Lists” for details.

Attribute Procedures

Each class of objects has its own set of attributes. Each attribute has a
predefined, or default, value. For example, for the class of scrollbars, there is a
width and a color.

The standard C interface to XView defines two routines, xv_get()  and
xv_set() , which locate and set attributes of XView objects. These routines
take an arbitrary number and type of parameters and return various types,
depending on its arguments.

Instead of these routines, the FORTRAN 77 interface to XView defines a
separate routine to get and set each attribute:

#include "stddefs_F.h"



XView Toolkit  347

B

• get —The routine to get the value of an attribute is named get_attrname :
• Each get  routine is a function.
• Each get  routine takes an XView object as the first argument.
• Each get  routine returns the value of the attribute requested.

For example:

• set —The routine to set an attribute is named set_attrname :
• Each set  routine is a subroutine.
• Each set  routine takes, as its first argument, the object for which the

attribute is being set.
• The second argument is the value of the attribute.

Attribute Lists

Some of the XView C routines may optionally take extra arguments that are
lists of attributes and values. The extra arguments vary in number and type.

The FORTRAN 77 versions of these routines do not support this variable
number of arguments, and these versions ignore any arguments after the
required ones. However, a 0 must be passed as the last argument to be
compatible with future versions which may support the extra arguments.

Instead, special versions of these routines are provided that take as a last
argument an argument of type Attr_avlist . This type is a pointer to an
array of attributes and values. The special routines are:

• xv_init_l()
• xv_create_l()
• xv_find_l()
• selection_ask_l()
• selection_init_request_l()

CALL set_WIN_SHOW ( frame, TRUE )
width = get_CANVAS_WIDTH ( canvas )



 348 FORTRAN 77 User’s Guide

B

Example calls:

Above, mymenu is an object of type XV_object .

The lists for Attr_avlist  are created by functions which have the names:

• attr_create_list_n()
• attr_create_list_ns( )

The n indicates the number of arguments the routine accepts.

The number of arguments can be 1-16.

The routines ending in s  return a pointer to a static attribute-value array,
which is reused with each call to the static list routines.

The versions without the s  return a dynamically allocated list, which you pass
to xv_destroy()  when you are finished with the list.

For any attribute which expects a pointer, you must pass loc()  of the address
of the object, instead of the address of the object, because these routines know
that FORTRAN 77 passes arguments by reference, and always dereference each
argument. This usage is shown in the last example in this appendix.

Handles

If you create an XView object, then xv_create()  returns a handle for that
object. You pass this handle to the appropriate procedure for manipulating the
object.

Data Types

Each XView object has its own specific data type. The name of an object’s data
type always starts with a capital letter. For example, the data type for a
scrollbar is Scrollbar . The standard list of these types is in the header files.

mymenu = xv_create ( NULL, MENU, 0 )
ncols = get_MENU_NCOLS ( mymenu )
call set_MENU_NITEMS ( mymenu, items )
call xv_find_l ( mymenu, MENU,

& attr_create_list_2s ( MENU_DEFAULT,4) )
call xv_destroy( mymenu )



XView Toolkit  349

B

Code Fragment

Here, we provide an example program to illustrate the style of programming
with the XView interface in FORTRAN 77. It performs three functions:

• Creates a scrollbar with a page length of 100 units and a starting offset of 10.
• Changes the page length to 20.
• Destroys the scrollbar.

Here is the program:

In this example:

• bar  is declared to be of type Scrollbar .
• xv_create_l()  is invoked as a function.
• set_SCROLLBAR_PAGE_LENGTH() is invoked as a subroutine.
• xv_destroy()  is invoked as a subroutine.

B.3 C to FORTRAN 77
In converting C to FORTRAN 77, besides the six standard generic procedures,
there are approximately 80 other procedures plus hundreds of attributes. These
are all documented in the manual, XView 1.0 Reference Manual: Summary of the
XView API. The problem is that all of the coding is in C.

You can use the following as you find it in the manual, with no change:

• XView procedure names
• XView object names
• XView object data types (except Boolean , more on this below)

Scrollbar bar
bar = xv_create_l ( 0, SCROLLBAR,

& attr_create_list_4s ( SCROLLBAR_PAGE_LENGTH, 100,
&                         SCROLLBAR_VIEW_START, 10 )
&  )

call set_SCROLLBAR_PAGE_LENGTH ( bar,  20 )
call xv_destroy ( bar )



 350 FORTRAN 77 User’s Guide

B

However, you must make the following changes:

• Any elementary C data type used must be converted to the corresponding
FORTRAN 77 data type.

• If a C procedure returns something, then it must be invoked in FORTRAN 77
as a function; otherwise, it must be invoked as a subroutine.

• The XView type Boolean  must be converted to the FORTRAN 77 type
LOGICAL.

• Arguments which are declared as type*  have a FORTRAN 77 type of
type_ptr .

• Arguments of type struct str have a FORTRAN 77 type of Str .

This table summarizes the equivalents of C declarations in FORTRAN 77:

Note – The C declaration for “x is a pointer to a character” is char*x . The
FORTRAN 77 declaration for “X is a character string” is CHARACTER*n X ,
where n can be any size. The f77  character string itself must be null-
terminated, however. These two declarations are equivalent.

In standard FORTRAN 77, variables of type INTEGER, LOGICAL, and REAL use
the same amount of memory. Since LOGICAL*1  or BYTE violate such rules,
they are not standard FORTRAN 77, and can result in nonportable programs.

Table B-1 C and FORTRAN 77 Declarations

C FORTRAN 77

short int x; INTEGER*2 X

long int x; INTEGER*4 X

int x; INTEGER*4 X

long long int x; INTEGER*8 X {requires -dbl}

char x; BYTE X or LOGICAL*1 X

char *x; CHARACTER* n X (See Note following this table)

char x[6]; CHARACTER*6 X

float x; REAL X

double x; DOUBLE PRECISION X



XView Toolkit  351

B

If you use a character constant, it is null-terminated automatically. If you use a
character variable, you have to terminate it explicitly with a null character,
CHAR(0) .

Example: Terminate a variable character string with the null character:

Sample Translation: C Function Returning Something

In the chapter, “XView Procedures and Macros,” in the manual, XView 1.0
Reference Manual: Summary of the XView API, is this entry:

A translation to FORTRAN 77 is:

• Leave the object data type Textsw  as is.
• Since it returns the number of characters inserted, invoke it as a function.

CHARACTER X*10, Z*20
X = 'abc'
Z = X // CHAR(0)

texsw_insert()
Inserts characters in buf  into textsw  at the current insertion
point. The number of characters actually inserted is returned.
This will equal buf_len unless there was a memory allocation
failure. If there was a failure, it will return 0.

Textsw_index
textsw_insert(textsw, buf, buf_len)

Textsw textsw;
char buf;
int buf_len;

Textsw textsw
CHARACTER*4 buf
INTEGER*4 N, buf_len, textsw_insert
…
buf(4:4) = CHAR(0)
N = textsw_insert(textsw, buf, buf_len)
IF ( N .EQ. 0 ) …



 352 FORTRAN 77 User’s Guide

B

Sample Translation: C Function Returning Nothing

In the same manual and chapter is this entry:

A translation to f77  is: it does not return anything; invoke as a subroutine.

B.4 Sample Programs
Some of the XView C routines (such as xv_create() ) take a variable number
of arguments. The corresponding FORTRAN 77 versions do not. They ignore
any arguments passed after the required arguments.

Alternate versions of the variable-argument-list routines are provided with an
_l  appended to the name. The final argument is an attribute-value list which
can be created by the attr_create_list_*  routines.

frame_set_rect()
sets the rect of the frame. X, y is the upper left corner of the
window coordinate space. Width and height include the window decoration.

void
frame_set_rect(frame,rect)
Frameframe;
Rectrect;

…
Frame frame
Rect rect
…
CALL frame_set_rect ( frame, rect )
…



XView Toolkit  353

B

Sample 1: Hello World—a small f77  program using the XView toolkit:

Compile in Solaris 2.x:

demo% cat  xhello.F
PROGRAM hello1F

#include "stddefs_F.h"
#include "frame_F.h"
#include "panel_F.h"
#include "window_F.h"
#include "attrgetset_F.h"

EXTERNAL loc
Frame base_frame               ! Three special XView type statements
Panel panel
Xv_panel_or_item_ptr pi
base_frame = xv_create ( 0, FRAME, 0 )
panel = xv_create_l ( base_frame, PANEL, 0 )
pi = xv_create_l ( panel, PANEL_MESSAGE,

& attr_create_list_2s ( PANEL_LABEL_STRING,
&                       loc("Hello world!"))
& )

CALL window_main_loop ( base_frame )
END

demo%

demo% f77 -U -Nn5000 -Nx2000 -o hello_world \
xhello.F -lFxview \
 -I/opt/SUNWspro/SC4.0/include/f77 \
 -lxview  -lolgx  -lX11

xhello.F:
MAIN xhello:

demo%



 354 FORTRAN 77 User’s Guide

B

Compile in Solaris 1.x:

Many warning messages are produced about names being over 32 characters.
To suppress these messages, compiled with the –w option. Then run the
executable file:

Soon after the executable is run, the window pops up as a single frame, with
the words, hello world , in the frame header.

demo% f77 -U -Nn5000 -Nx2000 -o hello_world \
xhello.F -lFxview \
 -I/usr/lang/SC4.0/include/f77 \
 -lxview -lolgx -lX11

xhello.F:
MAIN xhello:

demo%

demo% hello_world



XView Toolkit  355

B

Sample 2: Create a tty  subwindow and run /bin/ls  in it:

We pass l oc(my_argv)  to attr_create_list_2() .

B.5 Reference
A comprehensive programmer’s reference manual, XView Programming Manual,
is now available from O’Reilly & Associates, Incorporated, as Volume Seven of
their series of X Window System documentation. To order, contact:

O’Reilly & Associates, Inc.
632 Petaluma Avenue
Sebastopol, CA  95472
Phone: (800) 338-6887
Email: uunet!ora!xview

#include "stddefs_F.h"
#include <textsw_F.h>
#include <frame_F.h>
#include <panel_F.h>
#include <termsw_F.h>
#include <tty_F.h>
        Frame           frame
        character*8     command
        Termsw          tty
        integer         my_argv(2)
        command = '/bin/ls' // char(0)
        my_argv(1) = loc(command)
        my_argv(2) = 0
        call xv_init(0)
        frame = xv_create(0, FRAME, 0)
        tty = xv_create_l(frame, TERMSW,
     1           attr_create_list_2(TTY_ARGV, loc(my_argv)), 0)
        call set_TERMSW_MODE(tty, TTYSW_MODE_TYPE)
        call set_WIN_ROWS(tty, 24)
        call set_WIN_COLUMNS(tty, 80)
        call window_fit(frame)
        call window_main_loop( frame )
        end



 356 FORTRAN 77 User’s Guide

B



 357

iMPact: Multiple Processors C

This appendix is organized into the following sections:

This appendix describes ways to spread a set of programming instructions
over a multiprocessor system so they execute in parallel. This process is called
parallelizing; the goal is speed of execution.

C.1 Overview
In general, this compiler can parallelize certain kinds of loops that include
arrays. You can let the compiler determine which loops to parallelize, a process
called automatic parallelizing; or you can specify each loop yourself, known as
explicit parallelizing.

The parallelizer is integrated tightly with optimization, and operates on the
same intermediate representation used by the optimizer.

It is assumed that you are familiar with the concepts of parallel processing, as
well as this FORTRAN 77 compiler and the Solaris or UNIX operating system.

Overview page 357

Speed Gained or Lost page 361

Number of Processors page 362

Automatic Parallelization page 363

Explicit Parallelization page 374

Debugging Tips and Hints for Parallelized Code page 399



 358 FORTRAN 77 User’s Guide

C

Requirements

 Multiprocessor FORTRAN 77 requires the following components:

• A Sun multiprocessor system, such as a SPARCstation 10 or 1000 server
• The Solaris 2.3 operating environment or later, that supports multithreading
• iMPact FORTRAN 77 MP

The multiprocessing system can have more than one processor. Solaris 2.3
includes the SunOS 5.3 operating system, which supports the libthread
library and runs many processors simultaneously. The Solaris 1.x system does
not support libthread . FORTRAN 77 MP has features that exploit
multiprocessors, using the Solaris 2.3 operating system.

Automatic Parallelization

Automatic parallelization is both fast and safe. To automatically parallelize
loops:

• Compile with -autopar .

With this option, the software determines which loops are appropriate to
parallelize. For example, to turn on automatic parallelization that does all
the appropriate loops:

• Make sure you have set the number of processors.

See Section C.3, “Number of Processors,” for the commands.

• Run the executable.

Explicit Parallelizing

Explicit parallelization can produce extra performance. However, this method
has a risk of producing incorrect results.

To explicitly parallelize all user-specified loops:

• Determine which loops are appropriate to parallelize.

• Insert a directive just before each loop that you want to parallelize.

demo% f77 -autopar any.f



iMPact: Multiple Processors  359

C

• Compile with -explicitpar .

• Make sure you have set PARALLEL to indicate the number of processors.

• Run the executable and check the results very carefully.

For example, to turn on explicit parallelization that does only the i  loop:

C$PAR DOALL is explained later in this chapter. See page 400.

The libthread  Primitives

If you do your own multithreaded coding that uses the libthread
primitives, do not use -autopar  or -explicitpar . Either do it all yourself,
or let the compiler do it. Conflicts and unexpected results may occur if you and
the compiler are both trying to manage threads with the same primitives. See
the description for -mt  in Chapter 2, “The Compiler.”

demo% cat t1.f
...

C$PAR DOALL
do i = 1, n! This loop gets parallelized.

a(i) = b(i) * c(i)
end do

do k = 1, m! This loop does not get parallelized.
x(k) = y(k) * z(k)

end do

...
demo% f77 -explicitpar t1.f



 360 FORTRAN 77 User’s Guide

C

Parallel Options and the Directives

The following table lists f77  parallel options.

The following table lists f77  parallel directives.

Rules and Restrictions for Parallelization

Here is a summary of the rules and restrictions:

• -reduction  requires -autopar .
• -autopar  includes dependence analysis and loop structure optimization.
• -parallel  is equivalent to -autopar -explicitpar .
• -explicit -depend  is equivalent to -parallel .
• -noautopar , -noexplicitpar , -noreduction  are the negations.
• The parallelization options can be in any order, but must be all lowercase.
• Using a parallel directive has a high risk of nondeterministic results..

Table C-1 Parallel Options for f77

Options Syntax

Automatic (only) -autopar

Automatic and Reduction -autopar -reduction

Explicit (only) -explicitpar

Automatic and Explicit -parallel

Automatic and Reduction and Explicit -parallel -reduction

Show which loops are parallelized -loopinfo

Show warnings with explicit -vpara

Use Sun-style MP directives -mp=sun

Use Cray- style MP directives -mp=cray

Table C-2 Parallel Directives for f77

Parallel Directives   Purpose

C$PAR DOALL    optional qualifiers   Parallelize next loop, if possible

C$PAR DOSERIAL   Inhibit parallelization of next loop

C$PAR DOSERIAL*   Inhibit parallelization of loop nest



iMPact: Multiple Processors  361

C

• A loop with an explicit directive gets no reductions.

Standards

Multiprocessing is an evolving concept. When standards for multiprocessing
are established, the above features may be superceded.

C.2 Speed Gained or Lost
To get faster code from parallelization requires a multiprocessor system; on a
single-processor system, the code usually runs slower.

The speed gained with parallelization varies widely with the application. Some
programs are inherently parallel and show great speedup. Many have no
parallel potential, and show no speedup at all. There is such a wide range of
improvement that it is hard to predict what speedup any one program will get.

Variations in Speedups
To illustrate the range of possible speedups, here is a hypothetical scenario.

Assume there are four processors. With parallelization, the following variations
occur. The normal upper limit with four processors is about three times as fast.

• Many perfectly good programs, tuned for single-processor computation,
and with the overhead of the parallelization, actually run slower.

• Many programs tuned for single-processor computation, get no speedup.

• Some programs run 10% faster.

• A few less run 50% faster.

• Even fewer run 100% faster.

• A few have so much parallelism that they run three or four times faster.



 362 FORTRAN 77 User’s Guide

C

Vectorization Comparison
If you have good speedup on vector machines with an autovectorizing
compiler, a first-order rough approximation can be performed as follows:

speedup = vectorization * (number of CPUS -1)

Remember that this is only a first-order rough approximation.

C.3 Number of Processors
To set the number of processors, set the environment variable PARALLEL. The
method of setting varies with the shell: csh (1) or sh (1).

In sh :

In csh :

The following are general guidelines, not hard and fast rules. It usually helps
to be flexible and experimental with number of processors. Assume that n is
the number of processors on the machine.

• Do not set PARALLEL greater than n. Doing so can seriously degrade
performance.

• Try PARALLEL set to the number of processors wanted and expected to get.

• In general, allow at least one processor for activities other than the program
you are running—for overhead, other users, and so forth.

• For a one-user, multiprocessor system, try PARALLEL=n-1  and
PARALLEL=n.

• For a one-user system, if the user asks for more processors than are available
on the machine, there can be serious degradation in performance.

demo$ PARALLEL=4
demo$ export PARALLEL

demo% setenv PARALLEL 4



iMPact: Multiple Processors  363

C

• For a multiple-user system, if all users together ask for more processors than
are available on the machine, it can seriously degrade performance.

If the machine is overloaded with users, it may help to set PARALLEL to
much less than n. For example, with a 10-user machine, try PARALLEL at 4,
6, or 8. If you ask for 10 and cannot get 10, then you may end up time-
sharing some CPUs with other users.

C.4 Automatic Parallelization
This section shows how to automatically parallelize programs for multiple
processors. This method is known as automatic parallelization.

What You Do

Example: Set the number of processors and parallelize automatically:

To parallelize automatically:

• Use the -autopar  option
• Use the PARALLEL environment variable to set the number of processors

Section C.3, “Number of Processors,” shows you how to do so.

To determine which programs benefit from automatic parallelization, study the
rules the compiler uses to detect parallelizable constructs. Alternatively,
compile the programs with automatic parallelization, then time the executions.

do i = 1, 1000          ! ← Parallelized
a(i) = b(i) * c(i)

end do
do k = 3, 1000          ! ← Not parallelized -- dependency

x(k) = x(k-1) * x(k-2) ! See page 365
end do

demo% setenv PARALLEL 4 ← Sets the number of processors
demo% f77 -autopar t2.f ← Tells f77 to parallelize automatically



 364 FORTRAN 77 User’s Guide

C

If you do your own multithreaded coding using the libthread  primitives,
do not use -autopar . Either do it all yourself or let the compiler do it.
Conflicts and unexpected results may happen if you and the compiler are both
trying to manage threads with the same primitives. See -mt  in Chapter 2, “The
Compiler.”

What the Compiler Does

For automatic parallelization, the compiler does two things:

• Dependency analysis to detect loops that are parallelizable
• Parallelization of those loops

What f77  does for automatic parallelization is similar to the analysis and
transformations of a vectorizing compiler.

Loop Parallelization

The compiler applies appropriate dependence-based restructuring
transformations. It then distributes the work evenly over the available
processors. Each processor executes a different chunk of iterations.

Example: With four CPUs and 1000 iterations, the following are simultaneous:

Dependency Analysis

A set of operations can be executed in parallel only if the computational result
does not depend on the order of execution. The compiler does a dependency
analysis to detect loops with no order dependence. If it errs, it does so on the
side of caution. Also, it may not parallelize a loop that could be parallelized
because the gain in performance does not justify the overhead.

Processor 1 executing iterations 1 through 250
Processor 2 executing iterations 251 through 500
Processor 3 executing iterations 501 through 750
Processor 4 executing iterations 751 through 1000



iMPact: Multiple Processors  365

C

Example: Automatic parallelizing skips this loop; it has data dependencies:

You cannot calculate x(k)  until two previous elements are ready.

Definitions: Array, Scalar, and Pure Scalar

An array variable is one that is declared with dimensioning in a DIMENSION
statement or a type statement (see the examples).

A scalar variable is a variable that is not an array variable.

A pure scalar variable is a scalar variable that is not aliased—not referenced in
an equivalence  statement and not in a pointer  statement.

Examples: Array/scalar—both m and a are array variables; s  is pure scalar:

The variables u, x , z , and px  are scalar variables, but not pure scalar.

Automatic Parallelization Criteria

Automatic parallelization parallelizes DO loops that have no inter-iteration data
dependencies. This compiler finds and parallelizes any loop that meets the
following criteria:

• The construct is a DO loop which uses the DO statement, but not DO WHILE.

• The values of array variables for each iteration of the loop do not depend on
the values of array variables for any other iteration of the loop.

do k = 3, 1000
x(k) = x(k-1) * x(k-2)

end do

dimension a(10)
real m(100,10), s, u, x, z
equivalence ( u, z )
pointer ( px, x )
s = 0.0
...



 366 FORTRAN 77 User’s Guide

C

• Calculations within the loop do not conditionally change any pure scalar
variable that is referenced after the loop terminates.

• Calculations within the loop do not change a scalar variable across
iterations. This is called loop-carried dependency.

There are slight differences from vendor to vendor, since no two vendors have
compilers with precisely the same criteria.

Note the exceptions that are described in “Exceptions for Automatic
Parallelizing.”

Example: Using the -autopar  option:

Apparent Dependencies

Sometimes, the dependencies are only apparent and can be eliminated
automatically by the compiler. One of the many transformations the compiler
does is make and use its own private versions of some of the arrays. Typically,
it can do this if it can determine that such arrays are used in the original loops
only as temporary storage.

Example: Using -autopar , with dependencies eliminated by private arrays:

...
do i = 1, n          ! ← Parallelized

a(i) = b(i) * c(i)
end do
...

demo% f77 -autopar t.f

f77  automatically eliminates
the apparent dependencies
                                                   here →

                                                        and

                                                   here →
by making and using its own
private versions of array a() .

parameter (n=1000)
real a(n), b(n), c(n,n)
do i = 1, 1000          ! ← Parallelized
  do k = 1, n

a(k) = b(k) + 2.0
  end do
  do j = 1, n

c(i,j) = a(j) + 2.3
  end do
end do
end



iMPact: Multiple Processors  367

C

In the above example, we do not do both inner and outer loops.

Exceptions for Automatic Parallelizing

For automatic parallelization, the compiler does not parallelize a loop if any of
the following conditions occur:

• The DO loop is nested inside another DO loop that is parallelized.
• Flow control allows jumping out of the DO loop.
• A user-level subprogram is invoked inside the loop.
• An I/O statement is in the loop.
• Calculations within the loop change an aliased scalar variable.

Nested Loops

Traditionally, both hand and automatic transformations concentrated on the
innermost loop, since performance improvements are multiplied by the
number of times the outer loops are executed. For example:

On a single processing system, improving the k  loop by three seconds results
in the performance being increased considerably more than the i  loop.

However, on a parallel processing system with a relatively small number of
processors, it can be most effective to parallelize the outermost loop. Parallel
processing typically involves relatively large loop overheads, so by
parallelizing the outermost loop, we minimize the overhead and maximize the
work done for each processor.

In general, if there are enough processors, you may want to allocate them from
the top down. There are many allocation heuristics, some much more
complicated than this. The best heuristic requires information about the
number of processors, costs of synchronizing parallel threads, and the specific
program behavior.

do i                    ! 10 seconds   10k iterations
do j                ! 10 seconds   10k iterations
    do k            ! 10 seconds   10k iterations
    end do
end do

end do



 368 FORTRAN 77 User’s Guide

C

Examples

The following examples illustrate the definition of what is done with automatic
parallelization, plus the exceptions.

Example: Using -autopar , a call inside a loop:

Example: Using -autopar , a constant step size loop:

Example: Using -autopar , nested loops:

...
do 40 kb = 1, n          ! ← Not parallelized

k = n + 1 - kb
b(k) = b(k)/a(k,k)
t = -b(k)
call daxpy(k-1,t,a(1,k),1,b(1),1)

40 continue
...

parameter (del = 2)
...
do k = 3, 1000, del         ! ← Parallelized

x(k) = x(k) * z(k,k)
end do
...

do 900 i = 1, 1000           ! ← Parallelized (outer loop)
do 200 j = 1, 1000       ! ← Not parallelized (inner loop)
...

200 continue
900 continue



iMPact: Multiple Processors  369

C

Example: Using -autopar , a jump out of a loop:

Example: Using -autopar , a loop that conditionally changes a scalar variable
referenced after a loop:

Reduction for Automatic Parallelizing

A construct that collapses an array to a scalar is called a reduction. Typical
reductions are summing the elements of a vector, Σvi, or multiplying the
elements of a vector, ∏vi. A reduction violates the criterion that calculations
within a loop not change a scalar variable in a cumulative way across
iterations.

Example: The scalar s  is changed cumulatively with each iteration:

do i = 1, 1000         ! ← Not parallelized
...

if (a(i) .gt. min_threshold ) go to 20
...
end do

20 continue
...

...
do i = 1, 1000         ! ← Not parallelized

...
if ( whatever ) s = v(i)

end do
t(k) = s
...

s = 0.0
do i = 1, 1000

s = s + v(i)
end do
t(k) = s



 370 FORTRAN 77 User’s Guide

C

However, for some constructs, if the reduction is the only factor that prevents
parallelization, then it is possible to parallelize the construct anyway. Some
reductions occur so frequently that it is worthwhile for the compiler to be able
to recognize them as special cases and parallelize the constructs.

What You Do

For reduction, use a combination of the options: -autopar -reduction .

What the Compiler Does

For reduction, the compiler parallelizes loops that meet the following criteria:

• The programming construct satisfies all the automatic parallelizing rules,
except that there is a reduction.

• The reduction is one of the recognized reductions that are described in the
next section.

Example: Automatic with reduction, the sum of elements:

s = 0.0
do i = 1, 1000         ! ← Parallelized

s = s + v(i)
end do
t(k) = s
...

demo% f77 -autopar -reduction any.f1



iMPact: Multiple Processors  371

C

Recognized Reductions

The following table lists the reductions that are recognized by f77 .

Note – Actually, all forms of the MIN and MAX functions are recognized.

Table C-1 Reductions Recognized by the Compiler

Mathematical Entity Key FORTRAN 77 Statements

Sum of the elements s = s + v(i)

Product of the elements s = s * v(i)

Dot product of two vectors s = s + v(i) * u(i)

Minimum of the elements s = amin( s, v(i))

Maximum of the elements s = amax( s, v(i))

OR of the elements do i = 1, n
b = b .or. v(i)

end do

AND of nonpositive elements b = .true.
do i = 1, n

if (v(i) .le. 0) b=b .and. v(i)
end do

Count nonzero elements k = 0
do i = 1, n

if ( v(i) .ne. 0 ) k = k + 1
end do



 372 FORTRAN 77 User’s Guide

C

Roundoff and Overflow/Underflow for Reductions

Results from reductions with sums or products of floating-point numbers can
be indeterminate for the following reasons:

• In distributing the calculations over the several processors, the compiler and
the runtime environment determine the order of the calculations.

• The order of calculation affects the sum or product of floating-point
numbers, that is, computer floating-point addition and multiplication are
not associative. This way, you can get (or not get) roundoff, overflow, or
underflow, depending on how you associate the operands. That is, (X*Y)*Z
and X*(Y*Z)  may not have the same roundoff, overflow, or underflow.

In some situations, the error is acceptable; in others, it is not, so use reduction
with discretion, depending on your application.

Example: Overflow and underflow, with and without reduction:

demo% cat t3.f
real A(10002), result, MAXFLOAT
MAXFLOAT = r_max_normal()
do 10 i = 1 , 10000, 2

A(i) = MAXFLOAT
A(i+1) = -MAXFLOAT

10 continue

A(5001)=-MAXFLOAT
A(5002)=MAXFLOAT

do 20 i = 1 ,10002! Add up the array
RESULT = RESULT + A(i)

20 continue
write(6,*) RESULT
end

demo% setenv PARALLEL 2 {Number of processors is 2}
demo% f77 -silent -autopar t3.f
demo% a.out
   0. {Without reduction, 0. is correct}
demo% f77 -silent -autopar -reduction t3.f
demo% a.out
  Inf {With reduction, Inf. is not correct}
demo%



iMPact: Multiple Processors  373

C

Example: Roundoff: get the sum of 100,000 random numbers between -1 and +1:

Results vary with the number of processors. The following table shows the
sum of 100,000 random numbers between -1 and +1.

In this situation, the roundoff error is acceptable on the order of 10-14 for data
that is random to begin with. For more information, see the document, “What
Every Computer Scientist Should Know About Floating-point Arithmetic” by David
Goldberg, which is provided in the online book system.

demo% cat t4.f
parameter ( n = 100000 )
double precision d_lcrans, lb / -1.0 /, s, ub / +1.0 /, v(n)
s = d_lcrans ( v, n, lb, ub ) ! Get n random nos. between -1 and +1
s = 0.0
do i = 1, n

s = s + v(i)
end do
write(*, '(" s = ", e21.15)') s
end

demo% f77 -autopar -reduction t4.f

Number of Processors Output

1  s = 0.568582080884714E+02

2  s = 0.568582080884722E+02

3  s = 0.568582080884721E+02

4  s = 0.568582080884724E+02



 374 FORTRAN 77 User’s Guide

C

C.5 Explicit Parallelization
This section shows how to specify a loop for parallelization.

What You Do

To parallelize specific loops, do the following:

• Analyze loops to detect those with no order dependence.
• Insert a directive just before each loop that you want to be parallelized.
• Compile with the -explicitpar  or -parallel  option.
• Make sure the number of processors is set.
• Run the executable and check the results very carefully.

Example: Parallelize the i  loop:

The directive, C$PAR DOALL, is described later, as is setting the number of
processors, and both are illustrated in the following example. See also
Section C.3, “Number of Processors.”

Note – This method can produce executables that run faster, but there is a risk
of incorrect results.

If you do your own multithreaded coding using the libthread  primitives,
do not use -explicitpar . Either do it all yourself, or let the compiler do it.
Conflicts and unexpected results may happen if you and the compiler are both
trying to manage threads with the same thread primitives. See -mt  in
Chapter 2, “The Compiler.”

C$PAR DOALL
do i = 1, n ! This loop is parallelized.

a(i) = b(i) * c(i)
end do
do k = 1, m ! This loop is not parallelized.

x(k) = y(k) * z(k)
end do

demo% setenv PARALLEL 2
demo% f77 -explicitpar t1.f



iMPact: Multiple Processors  375

C

What the Compiler Does

For explicit parallelization, the compiler parallelizes those loops that you have
specified. This process is similar to the transformations of a vectorizing
compiler.

The compiler assumes it can apply some appropriate dependence-based
restructuring transformations. It then distributes the work over the available
processors. Each processor executes a different chunk of iterations.

For example, with 1,000 iterations, PARALLEL=4, and static scheduling, these
calculations can be simultaneous:

• Processor 1 executes iterations 1 through 250.
• Processor 2 executes iterations 251 through 500.
• Processor 3 executes iterations 501 through 750.
• Processor 4 executes iterations 751 through 1,000.

Parallel Directive Syntax

A parallel directive is a special kind of comment that directs the compiler to
parallelize or not to parallelize the specified DO loop. Directives are sometimes
called pragmas.

A parallel directive consists of one or more directive lines.

A directive line is defined as follows:

• The letters of a directive line can be in uppercase, lowercase, or mixed.
• The first 5 characters are C$PAR, *$PAR, or !$PAR .
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.
• Directives are listed in columns 7 and beyond.
• Qualifiers, if any, follow directives—on the same line or continuation lines.
• Multiple qualifiers on one line are separated by commas.
• Spaces before, after, or within a directive or qualifier are ignored.
• Columns beyond 72 are ignored. See -e  on page 46.

See “Alternate Syntax for Directives” on page 397.



 376 FORTRAN 77 User’s Guide

C

The parallel directives and their purposes are as follows:

Examples: Some parallel directives with and without qualifiers:

DOALL Loop

A DOALL loop is defined as follows:

• The construct is a DO loop, which uses the DO statement, but not DO WHILE.

• The values of array variables for each iteration of the loop do  not depend on
the values of array variables for any other iteration of the loop.

• If the loop changes a scalar, then that scalar is not referenced after the loop
terminates. Such scalar variables are not guaranteed to have a defined value
after the loop terminates, since the compiler does not automatically ensure a
proper storeback for them.

• For each iteration, any subprogram that is invoked inside the loop does not
reference or change values of array variables for any other iteration.

• The DO loop index must be an integer.

Directive Purpose

DOALL Parallelize the next loop found, if possible.

DOSERIAL Do not parallelize the next loop.

DOSERIAL* Do not parallelize the next nest of loops.

C$PAR DOALL

C$PAR DOSERIAL

C$PAR DOALL SHARED(I,K,X,V), PRIVATE(A)

C$PAR DOALL
C$PAR& SHARED(I,K,X,V)
C$PAR& PRIVATE(A)

No qualifiers

This one-line directive is equivalent to
the three-line directive that follows.



iMPact: Multiple Processors  377

C

Scoping Rules

By definition, a private variable or array is one that is private to a single
iteration of a loop. The value assigned to a private variable or array in one
iteration is not propagated to any other iteration of the loop.

By definition, a shared variable or array is one that is shared with all other
iterations. The value assigned to a shared variable or array in an iteration is
seen by other iterations of the loop.

If an explicitly parallelized loop contains shared references, then you must
ensure that sharing does not cause correctness problems. The compiler does no
synchronization on updates or accesses to shared variables.

If you specify a variable as private, and its only initialization is outside the loop,
then the value of that variable can be undefined in the loop.

Default Scoping Rules for Sun-Style Directives
For Sun-style explicit directives, the compiler uses default rules to determine
whether a scalar or array is shared or private. You can override the default
rules to specify the attributes of scalars or arrays referenced inside a loop.

The compiler applies these default rules:

• All scalars are treated as private. A processor local copy of the scalar is made
in each processor, and that local copy is used within that process.

• All array references are treated as shared references. Any write of an array
element by one processor is visible to all processors. No synchronization is
performed on accesses to shared variables.

If inter-iteration dependencies exist in a loop, then the execution may result in
erroneous results. You must ensure that these cases do not arise. The compiler
may sometimes be able to detect such a situation at compile-time, and issue a
warning, but it does not disable parallelization of such loops.



 378 FORTRAN 77 User’s Guide

C

Example: Potential problem through equivalence:

In the above example, since the scalar variable y  has been equivalenced to
a(1) , it is no longer a private variable, even though the compiler treats it as
such by the default scoping rule. Thus, the presence of the DOALL directive
may lead to erroneous results when the parallelized i  loop is executed.

You can alter the above example by using C$PAR DOALL SHARED(y) .

DOALL Directive

Explicit parallelization of a DOALL loop requires far more analysis and
sophistication than automatic parallelization. There is far more risk of
indeterminate results—not only roundoff, but also inter-iteration interference.

To explicitly parallelize a DOALLloop, insert a DOALL parallel directive
immediately before the specific loop, and compile with -explicitpar .

Note – A loop with an explicit directive does not get automatic reductions.

Example: Explicit parallelization of a DOALL loop:

equivalence (a(1),y)
C$PAR DOALL

do i = 1,n
y = i
a(i) = y

end do

demo% cat t4.f
...

C$PAR DOALL
do i = 1, n          ! ← Parallelized

a(i) = b(i) * c(i)
end do
do k = 1, m          ! ← Not parallelized

x(k) = x(k) * z(k,k)
end do
...

demo% f77 -explicitpar t4.f



iMPact: Multiple Processors  379

C

Example: Explicit parallelization of DOALL; some calls can create dependencies:

This example is an instance where explicit parallelization is useful over
automatic parallelization. The code is taken from linpack . The subroutine,
daxpy , was analyzed by a software engineer for iteration dependencies, and
found to not have any. It is a nontrivial analysis.

CALL in a Loop

It is sometimes difficult to determine if there are any inter-iteration
dependencies. A subprogram invoked from within the loop requires advanced
dependency analysis. Since such a case works only under explicit
parallelization, you must do the advanced dependency analysis, not the
compiler.

The following rule sometimes helps with subprogram calls in a loop:

Within a subprogram, if all local variables are automatic, rather than static,
then the subprogram does not have iteration dependencies.

Even though the above rule is sufficient, it is by no means necessary. For
instance, the daxpy()  routine in the previous example does not satisfy this
rule, and it does not have iteration dependencies, although that is not obvious.

You can make all local variables of a subprogram automatic in two ways:

• List them in an automatic  statement. However, then you cannot initialize
them in a data  statement.

• Compile the subprogram with the -stackvar  option. Doing so can result
in stack overflow.

demo% cat t5.f
...

C$PAR DOALL
do 40 kb = 1, n          ! ← Parallelized

k = n + 1 - kb
b(k) = b(k)/a(k,k)
t = -b(k)
call daxpy(k-1,t,a(1,k),1,b(1),1)

40 continue
...

demo% f77 -explicitpar t5.f



 380 FORTRAN 77 User’s Guide

C

Qualifiers

All qualifiers are optional. The following table summarizes available qualifiers.

PRIVATE( varlist)
The PRIVATE( varlist)  qualifier specifies that all scalars and arrays in the list
varlist are private for the DOALL loop. Both arrays and scalars can be specified
as private. In the case of an array, each iteration of the DOALL loop gets a copy
of the entire array. All other scalars and arrays referenced in the DOALL loop,
but not contained in the private list, will conform to their appropriate default
scoping rules.

Table C-2 DOALL Qualifiers

Qualifiers Action Syntax

PRIVATE Do not share variables u1, u2, …
between iterations.

DOALL PRIVATE( u1, u2,  … )

SHARED Share variables v1, v2, … between
iterations.

DOALL SHARED( v1, v2,  … )

MAXCPUS Use no more than n CPUs. DOALL MAXCPUS( n )

READONLY The listed variables are not
modified in the DOALL loop.

DOALL READONLY( v1, v2, … )

SAVELAST Save the values of all private
variables from the last DO
iteration.

DOALL SAVELAST

STOREBACK Save the values of variables v1,
v2, … from the last DO iteration.

DOALL STOREBACK(v1, v2, … )

REDUCTION Treat the variables v1, v2, … as
reduction variables for the loop.

DOALL REDUCTION( v1, v2, … )

SCHEDTYPE Set the scheduling type to t. (See
“SCHEDTYPE(t)” on page 384.)

DOALL SCHEDTYPE( t )



iMPact: Multiple Processors  381

C

Example: Specify a private array:

In the above example, the array a is specified as private to the i  loop.

SHARED(varlist)
The SHARED(varlist) qualifier specifies that all scalars and arrays in the list
varlist are shared for the DOALL loop. Both arrays and scalars can be specified
as shared. Shared scalars and arrays are common to all the iterations of a
DOALL loop. All other scalars and arrays referenced in the DOALL loop, but not
contained in the shared list, will conform to their appropriate default scoping
rules.

Example: Specify a shared variable:

In the above example, the variable y  has been specified as a variable whose
value should be shared among the iterations of the i  loop.

READONLY(varlist)
The READONLY(varlist)  qualifier specifies that all scalars and arrays in the list
varlist are read-only for the DOALL loop. Read-only scalars and arrays are a
special class of shared scalars and arrays that are not modified in any iteration
of the DOALL loop. Specifying scalars and arrays as READONLY indicates to the
compiler that it can use a separate copy of that variable or array (with the same
value) in each iteration of the DOALL loop.

C$PAR DOALL PRIVATE(a)
do i = 1, n

a(1) = b(i)
do j = 2, n

a(j) = a(j-1) + b(j) * c(j)
end do
x(i) = f(a)

end do

equivalence (a(1),y)
C$PAR DOALL SHARED(y)

do i = 1,n
a(i) = y

end do



 382 FORTRAN 77 User’s Guide

C

Example: Specify a read-only variable:

In the above example, even though the variable x  is a shared variable, the
compiler can still choose to use a separate, private copy of it (with the value 3)
in each iteration of the i  loop because of its READONLY specification.

STOREBACK(varlist)
The STOREBACK(varlist)  qualifier specifies that all scalars and arrays in the list
varlist are storeback for the DOALL loop. A STOREBACK variable or array is one
whose value is computed in a DOALL loop, and this computed value can be
used after the termination of the loop. In other words, the last loop iteration
values of storeback scalars and arrays may be visible outside of the DOALL
loop.

Example: Specify the loop index variable as storeback:

In the above example, both the variables x  and i  are STOREBACK variables,
even though both variables are private to the i  loop.

There are some potential problems for STOREBACK, however.

The STOREBACK operation occurs at the last iteration of the explicitly
parallelized loop, regardless if this last iteration is the same as the iteration that
last updates the value of the STOREBACK variable or array.

x = 3
C$PAR DOALL SHARED(x),READONLY(x)

do i = 1, n
b(i) = x + 1

end do

C$PAR DOALL PRIVATE(x), STOREBACK(x,i)
do i = 1, n

x = ...
end do
... = i
... = x



iMPact: Multiple Processors  383

C

Example: STOREBACK variable potentially different from the serial version:

In the above example, the value of the STOREBACK variable x  that is printed
out may not be the same as that printed out by a serial version of the i  loop. In
the explicitly parallelized case, the processor that processes the last iteration of
the i  loop (when i  = n), which performs the STOREBACK operation for x , may
not be the same processor that currently contains the last updated value for x .
The compiler issues a warning message on these potential problems.

In an explicitly parallelized loop, arrays are not treated by default as
STOREBACK, so include them in the list varlist if such a storeback operation is
desired, for example, if the arrays have been declared as private.

SAVELAST

The SAVELAST qualifier specifies that all private scalars and arrays are
STOREBACK for the DOALL loop. A STOREBACK variable or array is one whose
value is computed in a DOALL loop, and this computed value can be used after
the termination of the loop. In other words, the last loop iteration values of
STOREBACK scalars and arrays may be visible outside of the DOALL loop.

Example: Specify SAVELAST:

In the above example, variables x , y  and i  are STOREBACK variables.

C$PAR DOALL PRIVATE(x), STOREBACK(x)
do i = 1, n

if (...) then
x = ...

end if
end do
print *,x

C$PAR DOALL PRIVATE(x,y), SAVELAST
do i = 1, n

x = ...
y = ...

end do
... = i
... = x
... = y



 384 FORTRAN 77 User’s Guide

C

REDUCTION(varlist)
The REDUCTION(varlist) qualifier specifies that all variables in the list varlist are
reduction variables for the DOALL loop. A reduction variable is one whose partial
values can be individually computed on various processors, and whose final
value can be computed from all its partial values.

The presence of a list of reduction variables can aid the compiler in identifying
that the DOALL loop in question is a reduction loop, and in generating parallel
reduction code for it.

Example: Specify a reduction variable:

In the above example, the variable x  is a (sum) reduction variable; the i  loop is
a (sum) reduction loop.

SCHEDTYPE(t)
The SCHEDTYPE(t)  qualifier specifies that the specific scheduling type t be
used to schedule the DOALL loop.

For Sun-style directives, the SCHEDTYPE qualifier has a specific scheduling
type, for example, C$PAR& SCHEDTYPE(STATIC).

C$PAR DOALL REDUCTION(x)
do i = 1, n

x = x + a(i)
end do

Scheduling Type Action

STATIC Use static scheduling for this DO loop.
Distribute all iterations uniformly to all available processors.

SELF[( chunksize)] Use self-scheduling for this DO loop.
Distribute chunksize iterations to each available processor:
• Repeat with the remaining iterations until all the iterations
have been processed.
• If chunksize is not provided, f77  selects a value.

Example: With 1000 iterations and chunksize of 4, distribute 4
iterations to each CPU.



iMPact: Multiple Processors  385

C

Multiple Qualifiers

The qualifiers can appear multiple times, with cumulative effect. In case of
conflicting qualifiers, the compiler issues a warning message, and the qualifier
appearing last prevails.

Scheduling Type Action

FACTORING[( m )] Use factoring scheduling for this DO loop.
If there are i iterations at the start, then distribute i/(2m)
iterations uniformly to each processor:
• Repeat with the remaining iterations until all iterations have
been processed.
• The number of iterations assigned to each CPU must be at
least m.
• There can be one final smaller residual chunk.
• If m is not provided, f77  selects a value.

Example: With 1000 iterations and FACTORING(4), and 4
CPUs, distribute 125 iterations to each CPU, then 62 iterations,
then 31 iterations, …

GSS[( m )] Use guided self-scheduling for this DO loop.
If there are i iterations to start with, and k CPUs, then:
• Assign i/k iterations to the first processor.
• Assign (i-i/k)/k (remaining iterations divided by k) to the
second processor.
• Continue for the remaining iterations, dividing by k,
assigning to the next processor,
    until all the iterations have been processed.
Note:
• The number of iterations assigned to each CPU must be at
least m.
• There can be one final smaller residual chunk.
• If m is not provided, f77  selects a value.

Example: With 1000 iterations and GSS(10), and 4 CPUs,
distribute 250 iterations to the first CPU, then 187 to the
second CPU, then 140 to the third CPU, …



 386 FORTRAN 77 User’s Guide

C

Example: A three-line directive:

Example: A one-line equivalent of the above three lines:

DOSERIAL Directive

The DOSERIAL directive tells f77 not to parallelize the specified loop. It
applies to the one loop immediately following it, and only if you compile with
-explicitpar  or -parallel .

Example: Exclude one loop from parallelization:

In the above example, the j  loop is not parallelized, but the i  or k  loop can be.

DOSERIAL* Directive

The DOSERIAL* directive tells f77  not to parallelize the specified nest of
loops. It applies to the whole nest of loops immediately following it, and only
if you compile with -explicitpar  or -parallel .

C$PAR DOALL MAXCPUS(4) READONLY(S) PRIVATE(A,B,X) MAXCPUS(2)
C$PAR DOALL SHARED(B,X,Y) PRIVATE(Y,Z)
C$PAR DOALL READONLY(T)

C$PAR DOALL MAXCPUS(2), PRIVATE(A,Y,Z), SHARED(B,X), READONLY(S,T)

do i = 1, n
C$PAR DOSERIAL

do j = 1, n
do k = 1, n

...
end do

end do
end do



iMPact: Multiple Processors  387

C

Example: Exclude a whole nest of loops from parallelization:

In the above loops, the j  and k  loops are not parallelized; the i  loop may be.

Interaction between DOSERIAL* and DOALL

If both DOSERIAL and DOALL are specified, the last one prevails.

Example: Specifying both DOSERIAL and DOALL:

In the above example, the i  loop is not parallelized, but the j  loop is.

Also, the scope of the DOSERIAL* directive does not extend beyond the textual
loop nest immediately following it. It is limited to the same function or
subroutine that it is in.

do i = 1, n
C$PAR DOSERIAL*

do j = 1, n
do k = 1, n

...
end do

end do
end do

C$PAR DOSERIAL*
do i = 1, 1000

C$PAR DOALL
do j = 1, 1000

...
end do

end do



 388 FORTRAN 77 User’s Guide

C

Example: DOSERIAL* does not extend to a loop of a called subroutine:

In the above example, DOSERIAL* applies only to the i  loop and not to the j
loop, regardless if the call to the subroutine callee  is inlined or not.

Exceptions for Explicit Parallelization

In general, the compiler parallelizes a loop if you explicitly direct it to, but
there are exceptions—some loops the compiler just cannot parallelize.

The following are the primary detectable exceptions that may prevent
explicitly parallelizing a DO loop. Examples are also included.

• The DO loop is nested inside another DO loop that is parallelized.

This exception holds for indirect nesting, too. If you explicitly parallelize a
loop, and it includes a call to a subroutine, then even if you parallelize loops
in that subroutine, still, at runtime, those loops are not run in parallel.

• A flow control statement allows jumping out of the DO loop.

• The index variable of the loop is subject to side effects, such as being
equivalenced.

program caller
common /block/ a(10,10)

C$PAR DOSERIAL*
do i = 1, 10

call callee(i)
end do
end

subroutine callee(k)
common /block/a(10,10)
do j = 1, 10

a(j,k) = j + k
end do
return
end



iMPact: Multiple Processors  389

C

Warning Messages by -vpara

If you compile with -vpara , you may get a warning message if f77  detects a
problem with explicitly parallelizing a loop. f77  may still parallelize the loop.

Example: Nested loops, not parallelized, no warning:

Table C-3 Exceptions that Prevent Explicit Parallelizing

Exception Parallelized Message

Loop is nested inside another loop that is
parallelized.

No No

Loop is in a subroutine, and a call to the subroutine
is in a parallelized loop.

No No

Jumping out of loop is allowed by a flow control
statement.

No Yes

Index variable of loop is subject to side effects. Yes No

Some variable in the loop keeps a loop-carried
dependency.

Yes Yes

I/O statement in the loop—usually unwise, because the
order of the output is random.

Yes No

...
C$PAR DOALL

do 900 i = 1, 1000           ! ← Parallelized (outer loop)
do 200 j = 1, 1000       ! ← Not parallelized, no warning

...
200 continue
900 continue

...
demo% f77 -explicitpar -vpara t6.f



 390 FORTRAN 77 User’s Guide

C

Example: A loop in subroutine; a call to it is in a parallelized loop, which is not
parallelized with no warning:

In the above example, the loop in the subroutine is not parallelized because the
subroutine itself is run in parallel.

Example: Jumping out of loop: not parallelized, with warning:

Example: Index variable subject to side effects: parallelized, no warning:

C$PAR DOALL
do 100 i = 1, 200

...
call calc (a, x)
...

100 continue
...

demo% f77 -explicitpar -vpara t.f

subroutine calc ( b, y )
...

C$PAR DOALL
do 1 m = 1, 1000

...
1 continue

return
end

↑ At runtime, loop may run in parallel. ↑ At runtime, loops do not run in parallel.

C$PAR DOALL
do i = 1, 1000         ! ← Not parallelized, with warning

...
if (a(i) .gt. min_threshold ) go to 20
...

end do
20 continue

...
demo% f77 -explicitpar -vpara t9.f

equivalence ( a(1), y )    ! ← Source of possible side effects
...

C$PAR DOALL
do i = 1, 2000              ! ← Parallelized: no warning, but not safe

y = i
a(i) = y

end do
...

demo% f77 -explicitpar -vpara t11.f



iMPact: Multiple Processors  391

C

Example: Variable in loop has loop-carried dependency: parallelized, warning:

I/O with Explicit Parallelization

You can do I/O in a loop that executes in parallel, provided that:

• It does not matter that the output from different threads is
interleaved, so program output is nondeterministic.

• You ensure the safety of executing the loop in parallel, because you must
use an explicit directive and the -explicitpar  or -parallel  option.

In other words, a loop with I/O is never automatically parallelized. So don’t
do I/O in loops you want to be considered for automatic parallelization.

Example: I/O statement in loop, parallelized, no warning (usually unwise):

C$PAR DOALL
do 100 i = 1, 200               ! ← Parallelized, with warning

y = y * i                  ! ← y  has a loop-carried dependency
a(i) = y

100 continue
...

demo% f77 -explicitpar -vpara t12.f

C$PAR DOALL
do i = 1, 10         ! ←  Parallelized with no warning (not advisable)

k = i
call show ( k )

end do
subroutine show( j )
write(6,1) j

1 format('Line number ', i3, '.')
end

demo% f77 -silent -explicitpar -vpara t13.f
demo% setenv PARALLEL 2
demo% a.out
(The output displays the numbers 1 through 10, but in a different order each time.)



 392 FORTRAN 77 User’s Guide

C

Example: Recursive I/O hangs:

In the example above, the program deadlocks in libF77_mt , and hangs. Press
Control-C to regain keyboard control. In general:

• The library libF77_mt  is MT-safe, but mostly not MT-hot.
• It is not allowed to do recursive (nested) I/O if you compile with -mt .

As an informal definition, an interface is MT-safe if:

• It can be simultaneously invoked by more than one thread of control

• The caller is not required to do any explicit synchronization before calling
the function

• The interface is free of data races

A data race occurs when the content of memory is being updated by more than
one thread, and that bit of memory is not protected by a lock. In this case, the
value of that bit of memory is nondeterministic—the two threads race to see
who gets to update the thread (but in this case, the one who gets there later,
wins!).

An interface is colloquially called MT hot if the implementation has been tuned
for performance advantage, using the techniques of multithreading. This is not
a rigorous definition—one distinction is that MT safe is really meant to be a
rigorously defined concept.

For some formal definitions, read The Solaris 2.4 Multithreaded Programming
Guide. See also the Threads page (The FAQ answers this sort of question):
http://www.sun.com/sunsoft/Developer-products/sig/threads/

do i = 1, 10         ! ←  Parallelized with no warning ---unsafe
k = i
print *, list( k ) ! list  is a function that does I/O

end do
end
function list( j )
write(6,"(’Line number ’, i3, ’.’)") j
list = j
end

demo% f77 -silent -mt t14.f
demo% setenv PARALLEL 2
demo% a.out



iMPact: Multiple Processors  393

C

Risk with Explicit Parallelization: Nondeterministic Results

A set of operations can be safely executed in parallel only if the computational
result does not depend on the order of execution. For explicit parallelization,
you (rather than the compiler) specify which constructs to parallelize, and then
the compiler parallelizes the specified constructs. That is, you do your own
dependency analysis.

If you force parallelization where dependencies are real, then the results
depend on the order of execution; they are nondeterministic, and you can get
incorrect results.

How Testing Fails

An entire test suite can produce correct results over and over again, and then
produce incorrect results. What happens is that the number of processors or
the system load, or some other parameter changed. So you must test with
different numbers of processors, different system loads, and so forth. But this
means you cannot be exhaustive in your test cases.

The problem is not roundoff, but interference between iterations. An example
of this is one iteration referencing an element of an array that is calculated in
another iteration, but the reference happens before the calculation.

One approach is systematic analysis of every explicitly parallelized loop. To be
sure of correct results, you must be certain there are no dependencies.



 394 FORTRAN 77 User’s Guide

C

Example: Dependency: parallelize explicitly, get nondeterministic results:

In the example above, a different sum (s ) probably results every time.
Statements like a(i) = a(i+1) are inherently serial in nature.

How Indeterminacy Arises

In a simpler example, with four processors, eight iterations, and the same kind
of initialization:

• The first two iterations run on processor 1
• The next two iterations run on processor 2
• …

All processors run simultaneously, and usually finish at about the same time.
However, the compiler provides no synchronization for arrays, and for many
reasons, one processor can finish before others; you cannot predict the finishing
order in advance.

real a(1001), s / 0.0 /
do i = 1, 1001! Initialize array a.

a(i) = i
end do

C$PAR DOALL
do i = 1, 1000! This loop has dependencies.

a(i) = a(i+1)
end do
do i = 1, 1000! Get the sum of all a(i) .

s = s + a(i)
end do
print *, s! Print the sum.
end

demo% f77 -explicitpar t1.f

Processor 1 Processor 2 Processor 3 Processor 4

a(1) = a(2) a(3) = a(4) a(5) = a(6) a(7) = a(8)

a(2) = a(3) a(4) = a(5) a(6) = a(7) a(8) = a(9)



iMPact: Multiple Processors  395

C

When processor 1 does a(2) = a(3) :

• If processor 2 has done a(3) = a(4) , then a(2)  gets 4.
• If processor 2 has not yet done a(3) = a(4) , then a(2)  gets 3.

Therefore, the values in a(2)  depend on which processor finishes first. After
completion of the parallelized loop, the values in array a depend on which
processor finishes first and which finishes second, … so the sum depends on
events you cannot determine.

The major variables in the runtime environment that cause this kind of trouble
are the number of processors in the system, the system load, interrupts, and so
forth. However, you usually cannot know them all, much less control them all.

Signals

In general, if the loop you are parallelizing does any signal handling, then
there is a risk of unpredictable behavior, including system hangs.

In particular, if:

• The I/O statement raises an exception
• The signal handler you provide does I/O

then your system can lock up. These conditions cause problems even on single-
processor machines.

Two common ways of doing signal handling without being explicitly aware of
it are:

• Input/output statements (WRITE, PRINT, and so forth) that raise exceptions
• Requesting exception handling

Example: Output that can raise exceptions:

Input/output statements do locking, and if an exception is raised then, there
may be an attempt to lock an already locked item, resulting in a deadlock.

real x / 1.0 /, y / 0.0 /
print *, x/y
end



 396 FORTRAN 77 User’s Guide

C

One possibly over-cautious approach is: if you are parallelizing, do not have
I/O in that loop, and do not request exception handling.

Example: Using a signal handler which breaks the rules:

The exception_handler  function is called as a result of the expression,
1e300 * 1e10 , being evaluated in the print  statement.

The output is:

character  string*5, out*20
double precision value
external exception_handler
i = ieee_handler('set', 'all', exception_handler)
string = '1e310'
print *, 'Input string ', string, ' becomes: ', value
print *, 'Value of 1e300 * 1e10 is:', 1e300 * 1e10
i = ieee_flags('clear', 'exception', 'all', out)
end

integer function exception_handler(sig, code, sigcontext)
integer sig, code, sigcontext(5)
print *, '*** IEEE exception raised!'
return
end

 *** IEEE exception raised!
 Input string 1e310 becomes:  Infinity
 Value of 1e300 * 1e10 is: Inf
 Note: Following IEEE floating-point traps enabled; see
ieee_handler(3M):
 Inexact;  Underflow;  Overflow;  Division by Zero;  Invalid
Operand;
 Sun's implementation of IEEE arithmetic is discussed in
 the Numerical Computation Guide.



iMPact: Multiple Processors  397

C

Alternate Syntax for Directives

The following table shows f77  parallel directive in the Cray style.

Cray Directive Syntax

A parallel directive consists of one or more directive lines. A directive line is
defined as follows:

• The letters of a directive line can be in uppercase, lowercase, or mixed.
• The first 5 characters are CMIC$, *MIC$ , or !MIC$ .
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.
• Directives are listed in columns 7 and beyond.
• Qualifiers, if any, follow directives—on the same line or continuation lines.
• Multiple qualifiers on a line are separated by commas.
• All variables and arrays are in qualifiers SHARED or PRIVATE.
• Spaces before, after, or within a directive or qualifier are ignored.

Columns beyond 72 are ignored.

Forms of Parallel Directives

Parallel directives have two forms: Cray style and Sun style. The default is Sun
style (-mp=sun ). If you use Cray-style directives, you must compile with
-mp=cray .

A program compiled and run with both the Sun and Cray computers can
produce different results.

With the Cray style, you must assign each and every scalar and array within
the loop to either a SHARED or a PRIVATE qualifiers.

Table C-3 Overview of Alternate Directive Syntax for f77

Parallel Directive Syntax (Cray Style)

!MIC$ DOALL
!MIC$&  SHARED( v1, v2,  … )
!MIC$&  PRIVATE( u1, u2,  … )
    ... optional qualifiers



 398 FORTRAN 77 User’s Guide

C

Qualifiers (Cray Style)

For Cray-style directives, the PRIVATE qualifier is required, and it is not
optional. Each variable within the DO loop must be qualified as private or
shared, and the DO loop index must always be private. The following table
summarizes available Cray-style qualifiers.

For Cray-style directives, the DOALL directive allows a scheduling qualifier, for
example, !MIC$& SINGLE . Use at most one scheduling qualifier for any
particular directive.

The default scheduling type is the Sun-style STATIC.

Table C-1 DOALL Qualifiers (Cray Style)

Qualifier Action

SHARED( v1, v2, … ) Share the variables v1, v2, … between parallel processes. That is,
they are accessible to all the tasks.

PRIVATE( x1, x2, … ) Do not share the variables x1, x2, … between parallel processes.
That is, each task has its own private copy of these variables.

SAVELAST Save the values of private variables from the last DO iteration.

MAXCPUS( n ) Use no more than n CPUs.

Table C-2 DOALL Cray Scheduling

Qualifier Action

SINGLE Distribute one iteration to each available processor.

CHUNKSIZE( n ) Distribute n iterations to each available processor.
 n is an expression. For best performance, n must be an integer
constant. Example: With 100 iterations and CHUNKSIZE(4) ,
distribute 4 iterations to each CPU.

NUMCHUNKS(m ) If there are i iterations, then distribute i/m iterations to each
available processor. There can be one smaller residual chunk.
m is an expression. For best performance, m must be an integer
constant. Example: With 100 iterations and NUMCHUNKS(4),
distribute 25 iterations to each CPU.

GUIDED Distribute the iterations by use of guided self-scheduling.
This distribution minimizes synchronization overhead, with
acceptable dynamic load balancing.



iMPact: Multiple Processors  399

C

C.6 Debugging Tips and Hints for Parallelized Code
The parallelization options limit the utility of debugging the program with
dbx . Only the dbx where  command will be enabled, allowing a symbolic
traceback of the parallelized program.

While the -autopar , -explicitpar , and -parallel  options generate code
that conflicts with -g , dbx  can still be used to display a symbolic traceback.
However, dbx  will not be able to display the value of any variables in the
parallelized program.

Although the -g  option does not inhibit parallelization of the program by the
-autopar , -explicitpar , and -parallel  options, it does reduce the utility
of dbx  in debugging these programs. Some alternative ways to debug
parallelized code are suggested below.

Some Solutions without dbx

Debugging parallelized programs requires some cleverness. The following
schemes suggest ways to approach the problem:

• Turn off parallelization.

You can do one of the following:
• Turn off the parallelization options—Compile and run the program first

with -O3  or -O4 , but without -autopar , -explicitpar , and
-parallel  to verify that it works correctly.

• Set the CPUs to one—Run the program with the environment variable,
PARALLEL=1.

If the problem disappears, then you know it is due to parallelization.

If the problem remains, and you are using -autopar , then the compiler is
parallelizing something it should not. Some differences may exist, because
parallelized programs are always optimized.

• Turn off -reduction .

If you are using the -reduction  option, summation reduction may be
occurring and yielding slightly different answers. Try running without this
option.



 400 FORTRAN 77 User’s Guide

C

• Reduce the number of compile options.

Try to reduce the number of compile options to the minimum set of
-parallel -O3  and see if the results. are correct.

• Use fsplit .

If you have a lot of subroutines in your program, use fsplit  to break them
into separate files. Then compile some with and without -parallel , and
use ld  to link the .o  files. You need to use -parallel  on the ld  command.

Execute the binary and verify results.

Repeat this process until the problem is narrowed down to one subroutine.

You can proceed with using a dummy subroutine or explicit parallelization
to track down the loop that causes the problem.

• Use -loopinfo

Check which loops are being parallelized and which loops are not.

• Use a dummy subroutine

Create a dummy subroutine or function which does nothing. Put calls to this
subroutine in a few of the loops which are being parallelized. Recompile
and execute. Use -loopinfo  to see which loops are being parallelized.

Continue this process until you start getting the correct results.

Then remove the calls from the other loops, compile, and execute to verify
that you are getting the correct results.

• Use explicit parallelization.

Add the C$PAR DOALL directive to a couple of the loops which are being
parallelized. Compile with -explicitpar , then execute and verify the
results. Use -loopinfo  to see which loops to get the loops which are being
parallelized. This method permits the addition of I/O statements to the
parallelized loop.

Repeat this process until you find the loop that causes the wrong results.



iMPact: Multiple Processors  401

C

Note – If you need -explicitpar  only (without -autopar ), do not compile
with -explicitpar  and -depend . This method is the same as compiling with
-parallel , which, of course, includes -autopar .

• Run loops backwards serially.

Replace DO I=1,N  with DO I=N,1,-1 . Different results point to data
dependences.

• Avoid using the loop index.

It is safer to do so in the loop body, especially if the index is used as an
argument in a call.

One Solution with dbx

To use dbx  on a parallel loop—temporarily rewrite the program as follows:

• Isolate the body of the loop in a file and subroutine of its own.
• In the original routine, replace loop body with a call to the new subroutine.
• Compile the new subroutine with -g  and no parallelization options.
• Compile the changed original routine with parallelization and no -g .

DO I=1,N ! Replace this DO statement

DO I1=1,N ! with these two statements.
I=I1



 402 FORTRAN 77 User’s Guide

C

Example: Manually transform a loop to allow using dbx  in parallel:

Original: split loop.f  into
two parts:
             Part 1 on loop1.f
             Part 2 on loop2.f

Part 1: Loop replaced loop body
(the “main”)

Part 2: Body of the loop  →

Compile Part 1: parallel, no dbx .
Compile Part 2: dbx , no parallel.
Bind both into a.out .
Start a.out  under dbx  control.

Put a breakpoint into the loop
body.

Run.

dbx  stops at the breakpoint.

Show k . See the debugger
documentation.

demo% cat loop.f
C$PAR DOALL

DO i = 1,10
WRITE(0,*) 'Iteration ', i

END DO
END

demo% cat loop1.f
C$PAR DOALL

DO i = 1,10
k = i
CALL loop_body ( k )

END DO
END

demo% cat loop2.f
SUBROUTINE loop_body ( k )
WRITE(0,*) 'Iteration ', k
RETURN
END

demo% f77 -O3 -c -explicitpar loop1.f
demo% f77 -c -g loop2.f
demo% f77 loop1.o loop2.o -explicitpar
demo% dbx a.out         ← Various dbx  messages not shown
(dbx) stop in loop_body
(2) stop in loop_body
(dbx) run
Running: a.out
(process id 28163)
t@1 (l@1) stopped in loop_body at line 2 in file "loop2.f"
    2           write(0,*) 'Iteration ', k
(dbx) print k
k = 1             ← Various values other than 1 are possible
(dbx)



403

Index

Symbols
#include  path, 54
%VAL() , pass by value, 289
.F  suffix, 25, 135
.fln  files

directory, -Xlist , 184
-Xlist , 177

/usr/ccs/lib , error to specify it, 57
/usr/lib , error to specify it, 57
/usr/lib , never use -L dir, 149
_, do not append _ to external names, 94,

289

Numerics
132-column lines, -e , 46
2-byte integers, 55
-386 , 39
-486 , 39
4-byte integers, 56
80-column lines, -e , 46
8-bit

characters, 96
clean, 96

A
-a , 39
a.out  file, 24
abort on exceptions, 49
abrupt underflow, 50, 236
access

named files, 117
on multifile tapes, 130
unnamed files, 120

accrued exceptions, do not warn, 222
action

summary, 28
addenda for manuals, README file, xxvi
agreement across routines, -Xlist , 173
alarm() , do not call from MP, 11
alias

creating an, 132
many options, short commands, 99

-align , 101
align

block, -align  workaround, 101
data types, 287
errors across routines, -Xlist , 173
page boundary, -align , 40, 101
structures as in VMS, 81

-align , 40
analysis files, .fln , -Xlist , 177



404 FORTRAN 77 User’s Guide

analyzer compile option, -xF , 80
ANSI

conformance check, -Xlist , 175
FORTRAN 77 standard, 3

-ansi  extensions, 40
ar , create static library, 153, 156
-arg=local , pass by value result, 40
arithmetic

nonstandard, 49, 235
standard, 235

array
bounds, 42
bounds, exceeding, 196
C–FORTRAN 77 differences, 290
dbx , 201, 202
slices in dbx , 202

asa , FORTRAN print utility, 16
-assert pure-text , 163
attributes XView, 346
audience for this manual, xxii
automatic

parallelization
definition, 365
exceptions, 367
overview, 358
usage, 363
what the compiler does, 364

variables, 72
-autopar , parallelize automatically, 40
auto-read, dbx , 86
auto-read, dbx , disable, 86
autovectorizing compiler,

comparison, 362

B
backslash, 81
basic block, profile by, -a , 39
-Bdynamic , 41
benchmark case history, 278
best

floating point -native , 60
performance, 64

binding
dynamic, 41, 45
static, 41

bindings
POSIX, 168
Xlib, 168
XView, 168

boldface font conventions, xxvii
bounds of arrays, 42, 189

checking, 196
box

clear, xxvii
indicates nonstandard, xxvii

browser, 71
BS 6832, 3
-bsdmalloc , 42
-Bstatic , 41
bus error

locating, 199
some causes, 199

C
C, 306, 323

called by FORTRAN 77, 293
calls FORTRAN 77, 317
directive, 93, 289
pragma, 93
preprocessor, 47, 134

-C , 189, 196
check subscripts, 42

C$pragma sun unroll=  n pragma, 94
-c , compile only, 42
cache, fast, Solaris 1.x, 147
call

C from FORTRAN 77, 293
FORTRAN 77 from C, 317
graphs, -Xlistc , 184

CALL in a loop, parallelize, 72
case preserving, 73, 190, 288
catch FPE , 198, 236, 237
C–FORTRAN 77

function compared to subroutine, 286



Index 405

key aspects of calls, 285
labeled common, 314, 331
sharing I/O, 315, 332

-cg89 , 42
-cg92 , 43
change a constant, 10
check

strictness, -Xlist , 186
subscripts, -C , 42

clear box, xxvii
code generator option, -cg yr, 42
commands, f77 , 23
comment as directive, 375
comments

debug, VMS, 82, 190
to Sun, xxvi, 54

common block
maps, -Xlist , 186
page-alignment, 40, 101

compatibility
FORTRAN 2.0/2.0.1 source with

FORTRAN 3.0/3.0.1, 15
none for FORTRAN 1.4 binaries with

FORTRAN 2.X, 15
compile

assume no memory-based traps,
-xsafe=mem , 86

check across routines, -Xlist , 176
collect data for optimization,

-xprofile= p, 84
define the cache properties,

-xcache= c, 77
do no optimizations, -xspace , 86
fails, message, 24
link for a dynamic shared library, 52
link sequence, 24
link, consistent, 147
list the instruction set, -xarch= a, 75
make assembler source files only, 71
make source listing with

diagnostics, 208
off, do cpp  only, -F , 47
only, -c , 42
passes, times for, 73

set IEEE rounding mode,
-fround= r, 50

set IEEE trapping mode,
-ftrap= t, 52

specify the target processor,
-xchip= c, 78

specify the target system,
-xtarget= t, 87

specify the usage of registers,
-xregs= r, 85

turn on nonstandard floating-point
mode, -fns , 50

compile action
4-byte integers, -i4 , 56
accept only Cray style MP directives,

-mp=cray , 59
accept only Sun-style MP directives,

-mp=sun , 59
align

common blocks, -align , 40, 101
on 8-byte boundaries, -f , 47

analyze threads, -Ztha , 93
ANSI, show non-ANSI extensions,

-ansi , 40
assembly-language output files, keep,

-S , 71
automatic parallelization,

-autopar , 41
blank in column one, none, list-

directed output,
-oldldo , 65

C preprocessor, 47
check

across routines, -Xlist , 83
subscripts, -C , 42

compile only, -c , 42
debug

-g , 52
statement, VMS, -xld , 82

debug without object (.o ) files, 86
define name for cpp , -D name, 43
dependency-based scalar

optimization in loops,
-depend , 45



406 FORTRAN 77 User’s Guide

DO loops for one trip min,
-onetrip , 65

do not make library if relocations
remain, -ztext , 92

double, interpret real as double
precision, -r8 , 70

dynamic binding
-Bdynamic , 41
-dy , 45

executable file is made smaller, 60
executable file, name the, -o outfil, 65
explicit parallelization,

-explicitpar , 46
extend lines to 132 columns, -e , 46
extend the language, VMS, -xl  or

-vax=misalign , 74, 81
fast

execution, -fast , 48
global checking, -Xlistf , 184
malloc , 42
SourceBrowser, -sbfast , 71

feedback to Sun, -help , 54
floating point

best, -native , 60
nonstandard, -fnonstd , 49

force floating-point precision of
expression, 52

function-level reordering, -xF , 80
generate code for

80386, -386 , 39
80486, -486 , 39
generic SPARC, -cg89 , 42
Pentium, -pentium , 67
SPARC, V8 -cg92 , 43

generate double load/store
instructions, -dalign , 44

global program checking,
-Xlist , 83

inline templates
off, -nolibmil , 62
select best, -libmil , 58

inline the specified user routines,
-inline= rlst, 56

library
add to search path for, -L dir, 56
build shared library, -G , 52

name a shared dynamic,
-h name, 53

license
do not queue request,

-noqueue , 62
information, -xlicinfo , 82

link with library x, -l x, 57
list of options, -help , 54
list-directed output, old,

-oldldo , 65
loops, show which loops are

parallelized, 58
math speed, use selected math

routines optimized for
performance, 82

misaligned data, -misalign , 58
MT, use multithread safe libraries, 59
no automatic libraries, -nolib , 61
no automatic parallelization,

-noautopar , 60
no -depend , -nodepend , 61
no explicit parallelization,

-noexplicitpar , 61
no forcing of expression precision,

-nofstore , 61
no reduction, -noreduction , 62
no run path, -norunpath , 62
not specifying ¬xl  or

¬vax=misalign ,
¬vax=no , 74

optimize object code, -On, 63
pad local variables or common blocks,

-pad= p, 65
parallelize, -parallel , 67
pass by value result,

-arg=local , 40
pass option to other program,

-Qoption , 68
paths, store into object file, -R list, 69
print

name of each pass as compiler
executes, -v , 74

version id of each pass as
compiler executes, -V , 74

produce



Index 407

position-independent code,
-PIC , 68

position-independent code,
-pic , 68

profile by
loop, MP, -Zlp , 91
procedure, -p , 65
procedure, -pg , 67
statement, -a , 39

quiet compile, -silent , 71
reduction, analyze loops for

reduction, -reduction , 70
report execution times for

compilation passes,
-time , 73

reset -fast so that it does not use
-xlibmopt , 83

resize static compiler tables, -N , 62
retain the old -xl  behavior,

-vax=align , 74
set

#include  path, -I dir, 54
directory for temporary files,

-temp dir, 73
level of checking strictness,

-Xlistv n, 186
nesting level of

control structures, 62
data structures, 63

number of
continuation lines, 63
equivalenced variables, 63
external names, 63
identifiers, 63
statement numbers, 63

short integers, -i2 , 55
show commands, -dryrun , 45
simple floating-point mode,

-fsimple , 51
source browser, prepare for, -sb , 71
stack the local variables,

-stackvar , 72
standard integers, -i4 , 56
static binding, -Bstatic , 41
strip executable file of symbol table,

-S , 71

turn INTEGER into true INTEGER*8,
-dbl , 44

turn off the incremental linker,
-xildoff , 80

turn on the incremental linker,
-xildon , 80

undeclared, make default type
undeclared, -u , 73

unroll loops, -unroll= n, 73
uppercase in variable names, -U , 73
verbose

parallelization warnings,
-vpara , 74

-v , 74
VMS features, -xl , 81
warnings, suppress all f77  warning

messages, -w , 75
compile option differences for Solaris 2.x,

1.x, x86, 9
compiler

commands, 23
error messages in local language, 97
frequently used options, 27
passes, 74
recognizes files by types, 24
tables, 62
XView commands, 343

compiler directive for parallelization, 375
complete path name, 112
complex expressions in dbx , 204
consistent

across routines, -Xlist , 173
arguments, commons, parameters,

etc., 83
compile and link, 26, 147
compile options, 26, 70, 91

constant, trying to change a constant, 10
continuation lines, number of, 63
control structure level, 62
conventions in text, 4
Courier font, xxvii
cpp , the C preprocessor, 25, 134
create

library, 155



408 FORTRAN 77 User’s Guide

dynamic, 161
static, 155

SCCS files, 140
cross reference table, -Xlist , 83, 186
current working directory, 111

D
d

comment line debug statements,
VMS, 190

in column one, 82
-D  option, define name for cpp , 135
-dalign , 44
data

inspection, dbx , 207
structure levels, 63
types XView, 348

-dbl , 44
dbx , 191

arrays, 201
catch FPE , 196, 198, 237
commands, 206
complex expressions, 204
current procedure and file, 206
debug, 17
f77 -g , 52
-g , 193
initializes faster, 86
intrinsic functions, 203
language  command, 12
locate exception by line number, 198,

237
logical operators, 205
next , 195
print , 194
quit , 193
run , 194
set breakpoint, 194

dd  conversion utility, 129
debug, 173, 236

arguments, agree in number and
type, 173

array, 201

print row or column, 202
slices, 202

block data, 15
case-sensitive compiles, -U , 73
checking across routines for global

consistency, 173
column print, array, 202
comments, VMS, 82
common blocks, agree in size and

type, 173
compiler options, 189
dbx , 17
debugger , 17
disable auto-read for dbx , 86
IEEE exceptions, 236
locating exception by line

number, 198, 237
option, 52
parallelized code, 399
parameters, agree globally, 173
row print, array, 202
sbrowser , 17
slices of arrays, 202
tips for parallelized code, 399
with optimized code, 14
with other languages, 12

debugger, main features, 207
debugging

aids, linker, 147
declared but unused, checking,

-Xlist , 175
default

size
complex, 70
integers, 56
logicals, 56
reals, 70

type undeclared, 73
define name for cpp , -D name, 43
delete .fln  files, 177
-depend , scalar optimization, 45
dependency

analysis, 364
analysis -depend , 45



Index 409

with explicit parallelization, 394
depth for

control structures, 62
data structures, 63

diagnostics, source, 208
diamond indicates nonstandard, xxvii
direct I/O, 124
directive

explicit parallelization, 375
form of explicit parallelization, 397

directive line, 375, 397
directory, 111

.fln  files, 177
current working, 111
object library search, 56
temporary files, 73
tree, 109

display to terminal, -Xlist , 176
division by zero IEEE, 217
dmesg, actual real memory, 104
-dn , 45
DO loops executed once, -onetrip , 65
DOALL

directive, 376
loop, 376

documents on-line, xxiii
DOSERIAL directive, 376
DOSERIAL* directive, 376
double quote, 81
double-word align, 44
-dryrun , 45
dtime  in MP, 13
-dy , 45
dynamic

binding, 45
library, 158

advantages, disadvantages, 159
build, -G , 52
create

Solaris 1.x, 162
Solaris 2.x, 160

initialized data, Solaris 1.x, 164
name a dynamic library, 53

path in executables, 69
show if a.out  is dynamically

linked, 167

E
-e , extended source lines, 46
email

alias, Sun Programmer SIG, 423
send feedback comments to Sun, xxvi

environment
getenv , 118
variables, shorten command

lines, 100
equivalence block maps, -Xlist , 186
equivalenced variables, number of, 63
errata and addenda for manuals, README

file, xxvi
error

messages, 335
in the local language, 97
with source listing, error , 208

standard error, 115, 121
accrued exceptions, 235

utility, 208
errors only, -XlistE , 184
establish a signal handler, 228
event management, dbx , 207
exceptions

accrued, 223
detect

all 5 IEEE, 224
all 5, ieee_handler , 231, 232
by signal handler, 228, 237

explicit parallelization, 388
handlers, 218, 226
ieee_handler , 226
location in dbx , by line number, 198,

237
unrequited, 235

executable file
built-in path to dynamic libraries, 69
dynamically linked, 167
generating it, 24



410 FORTRAN 77 User’s Guide

names in, nm command, 157
naming it, 65
strip symbol table from, 71

execution time
compilation passes, 73
optimization, 63

explicit
parallelization, 374

exceptions, 388
overview, 358
risk, 393

typing, 73
-explicitpar , parallelize explicitly, 46
export initialized data from dynamic

library, Solaris 1.x, 165
extended

language -xl , 81
lines -e , 46
syntax check, -Xlist , 175

extensions
non-ANSI, 40
VMS features with -xl , 81

external
C functions, 94, 289
names, 288
names, number of, 63

F
-F , 47
F file suffix, 25
-f , align on 8-byte boundaries, 47
f_exit() , 332, 333
f_init() , 332, 333
f77 , 23
-fast

fast execution, 48
no libm.il , 62

fast cache, Solaris 1.x, 147
faster

linking and initializing, 86
malloc , 42
output, global checking,

-Xlistf , 184

features
debugger, 207
new or changed since 2.0 and 2.0.1, 7
new or changed since 3.0, 6
new or changed since 3.0.1, 4
VMS, with -xl , 81

feedback  file for email to Sun, xxvi
feedback to Sun, -help , 54
FFLAGS variable, 100
file

.fln
directory, -Xlist , 184
-Xlist , 177

a.out , 24
directory, 111
executable, 24
information files, xxvi
internal, 126
object, 24
permissions, C–FORTRAN 77, 292
pipe, 115
preattached, 122
redirection, 114
size too big, 102
split by fsplit , 17
standard

error, 121
input, 121
output, 121

standard error, 121
system, 109

file  command, 162, 167
file names, 118

passing to programs, 120
recognized by the compiler, 24

files and optimization, 282
FIPS 69-1, 3
fix and continue, dbx , 207
-flags , 49
floating-point

Goldberg white paper, xxiii
hardware

installation, 99
nonstandard initialization, 49



Index 411

option, -native , 60
-fnonstd , 49
-fns , 50
font

boldface, xxvii
conventions, xxvii
Courier, xxvii
italic, xxvii

FORTRAN 77
called by C, 317
calls C, 293
MP, 358
README file, bugs, new and changed

features, xxvi
four-byte integers, 56
FPE catch in dbx , 198, 237
fpversion , show floating-point

version, 99
-fround= r, 50
-fsimple , simple floating-point

model, 51
fsplit , FORTRAN 77 file split

utility, 17, 102
-fstore , 52
-ftrap= t, 52
function

called within a loop,
parallelization, 379

compared to subroutine, C–
FORTRAN 77, 286

data type of, checking, -Xlist , 175
external C, 94
library, 168
names, 288
return values

from C, 306
to C, 323

unused, checking, -Xlist , 175
used as a subroutine, checking,

-Xlist , 175
function-level reordering, 80

G
-G , 52, 161
-g , 52
gencat , 97
generic procedures for XView, 346
getc  library routine, 130
getcwd , 111
getenv  environment, 118
global

optimization, 4, 64
program checking, 173

Goldberg, floating-point white
paper, xxiii

gprof
-pg , profile by procedure, 67
profile by procedure utility, 17
usage, 264

gradual underflow, 235
graphically monitor variables, dbx , 207
GSA validation, 3
guidelines for number of processors, 362

H
handlers, exception, 218, 226
handles, XView, 348
hardware

floating-point fpversion , 99
floating-point nonstandard

initialization, 49
header files for XView, 344
-help , 54
Henry IV quote, 283
hierarchical file system, 109
-h name, 53

I
I/O, 114, 269
-i2 , short integers, 55
-i4 , 56
idate  VMS routine, 168



412 FORTRAN 77 User’s Guide

identifiers, number of, 63
-I dir, 54
IEEE, 217, 235, 236

754 standard, 3
exceptions, 218
signal handler, 228
warning messages off, 222

ieee_flags , 219, 220
ieee_functions , 219
ieee_handler , 219, 226
ieee_values , 219, 225
impatient user’s guide, 20
implicit typing, off, 73
INCLUDE, 123
incompatibility FORTRAN 1.4 binaries

with FORTRAN 2.X, 15
inconsistency

arguments, checking, -Xlist , 175
named common blocks, checking,

-Xlist , 175
increase stack size, 72
indeterminacy, how it arises, 394
index check of arrays, 189, 196
inexact exception, 234
information files, xxvi
initialize

I/O for FORTRAN 77 from C, 332
nonstandard floating-point

hardware, 49
initialize data, dynamic library, Solaris

1.x, 164
inline, 48

code and optimization, 282
templates none, -nolibmil , 62
templates, -libmil , 58
user-written routines, 56, 81

-inline , 56
input

output, initialize for FORTRAN 77
from C, 332

redirection, 114
standard, 121

inserting SCCS ID keywords, 139

integer, size four and eight bytes, 56
interface

for C and FORTRAN 77, 283
problems, checking for, -Xlist , 175

internal files, 126
internationalization, 96
interpret REAL as DOUBLE

PRECISION, 70
intrinsic functions in dbx , 203
invalid, IEEE exception, 217
IOINIT , 13, 122
iostats , 269
italic font conventions, xxvii

K
-KPIC , 56
-Kpic , 56

L
labeled common, C–FORTRAN 77, 314,

331
labels, unused, -Xlist , 175
language

extended -xl  or
-vax=misalign , 74, 81

local, 97
preprocessor, 25

language  command, dbx , 12
large files, 102
LC_MESSAGES, 99
LD_LIBRARY_PATH, 149, 150, 153
LD_RUN_PATH, 152, 153
LD_RUN_PATH and -R , not identical, 69
ldd  command, 162, 167
-L dir, 56
level of

checking strictness, -Xlistv n, 186
control structure, 62
data structures, 63

libm , user error making it unavailable, 57
-libmil , 58



Index 413

libraries
advantages, disadvantages, 146
C–FORTRAN 77, 291
in general, 145
math, 168
order on command line, -l x, 151
paths in executables, 69
POSIX, 169
profile missing, 272
redistributable, 171
search order, 149, 151
SunSoft Performance Library, 18
used by a.out , file  command, 167
VMS, 168
XView, 343

library
build, -G , 52
create, dynamic, 161
create, static, 155
initialized data, Solaris 1.x, 164
load, 57
loaded, 146
name a shared library, 53
not found, 150
paths in executables, 69
replace module, 158
shared, 158
static, 153

libV77 , 168
license

information, 82
no queue, 62

licensing, 18
limit

command, 103
stack size, 72

line number of
bus error (SIGBUS), 199
exception, 198
segmentation fault (SIGSEGV), 196

line width, output, -Xlist , 186
line-numbered listing, -Xlist , 176
lines extended -e , 46
link

options, 147
sequence, 24
suppress, 42

linker, 24
links faster, 86
search order, 149

lint-like checking across routines,
-Xlist , 173

list of options, 54
listing

line numbered with diagnostics,
-Xlist , 173

with diagnostics, error , 208
-Xlist , 185

load
library, 57
map, 146

loaded library, 146
loader, 24
loading more slowly, 10
local

language, 97
variables, 72

locating
bus error by line number, 199
exception by line number, 198, 237
segmentation fault by line

number, 196
logical

file names, 81
file names in the INCLUDE, 123
operators in dbx , 205
size four, 56
unit preattached, 122

long command lines, 99
loop

dependence analysis, -depend , 45
jamming, 277
parallelizing a CALL in a loop, 72
profiling, 91
restructuring, -depend , 45

-loopinfo , show which loops are
parallelized, 58



414 FORTRAN 77 User’s Guide

looptool , loop profiler for MP, 91
lowercase, do not convert to, 73, 288
-lV77 , 168

M
-m linker option for load map, 146
macros

overriding values, 136
with make, 136

magnetic tape I/O, 128
main stack in a program, 72
make, 132, 137
making SCCS directory, 138
many options, short commands, 99
maps

common blocks, -Xlist , 186
equivalence blocks, -Xlist , 186
load, 146

math library
in FORTRAN 77, 168
user error making it unavailable, 57,

149
membership in SunPro SIG, Sun

Programmer Special Interest
Group, 423

memory
actual real memory, display, 104
limit virtual memory, 103
optimizer out of memory, 102
usage, 263

messages, 335
error, in source listing, 208
local language versions, 97

MIL-STD-1753, 3
miscellaneous tips

alias, many options, short
commands, 99

environment variables, many options,
short commands, 100

floating-point version, 99
missing

library, 150
profile libraries, 272

-Mmapfile , 80
monitor variables graphically, dbx , 207
MP FORTRAN, 358
-mp=cray , Cray MP directives, 59
-mp=sun , Sun MP directives, 59
–mt , multithread safe libraries, 59
multifile tape access, 130
multiplying and reduction, automatic

parallelization, 369
multiprocessing standards, 361
multiprocessor FORTRAN, 358

N
-N , 62
name

compiler pass, show each, 74
executable file, 65

names in executable, nm command, 157
-native

floating point, 60
option, 48

native language characters, 96
NBS validation, 3
-Nc , 62
-Nd , 63
nesting

control structures, 62
data structures, 63
parallelized loops, 367, 388

network licensing, 18
new features since 3.0.1, 4
NIST validation, 3
-Nl , 63
nm, names in executable, 157
-Nn , 63
no such file or directory, cause, 272
-noautopar , 60
-nocx , 60
-nodepend , 61
-noexplicitpar , 61
-nofstore , 61



Index 415

-nolib , 61
-nolibmil , 62
non-ANSI extensions, 40
nondeterministic results, explicit

parallelization, 393
nonstandard

arithmetic, 50, 235
indicated by diamond, xxvii
initialization of floating point, 49
PARAMETER, 81

-noqueue , 62
-noreduction , 62
-norunpath , 62
-Nq , 63
-Ns , 63
number of

bytes of I/O, 269
continuation lines, 63
equivalenced variables, 63
external names, 63
I/O statements, 269
identifiers, 63
processors for parallelization, 11, 362
reads and writes, 263
statement numbers, 63
swapouts, 263

-Nx , 63

O
-O , 64

with -g , 53, 63
-o , output file, 65
-O1 , 64
-O2 , 64
-O3 , 64
-O4 , 64
-O5 , 65
object library search directories, 56
obscurities, checking for -Xlist , 175
ode to trace, 200
off

auto-read for dbx , 86

blank in listed-directed output, 65
converting uppercase letters to

lowercase, 73
display of entry names and file

names, 71
implicit typing, 73
inline templates for -fast , 62
-lcx , 60
license queue, 62
link system library, 61
linking, 42
underscores, 94, 289
warnings

f77 , 75
IEEE accrued exceptions, 222

-xlibmopt , 83
-oldldo , 65
-onetrip , 65
on-line documentation, xxiii
OPEN specifier FILEOPT, 125
opt/SUNWspro  standard location for Sun

software, 55, 151
optimization

files, 282
global, 4
inline user-written routines, 56
object code, 63
peephole, 4
performance, 48
performance tuning, 282
splitting, 282

optimizer out of memory, 102
option

debugging, useful, 189
differences for Solaris 2.x, 1.x, x86, 9
frequently used options, 27
list, 54
pass to program, 68

options
listed by option name, 39
lsorted by action, 28
order of processing, 26
show list of, -help , 54
summary, 34



416 FORTRAN 77 User’s Guide

OPTIONS variable, 100
order of

functions, 80
linker search, 151, 152
options on command line, -l x, 151

order of processing, options, 26
original case, 73
output

file, naming it, 65
from an exception handler, 12
redirection, 114
standard, 121
to terminal, -Xlist , 176

overflow
IEEE, 217
stack, 72
with reductions, 372

overriding macro values, 136

P
-p , profile by procedure, 65
-pad= p, 65
page-align common blocks, 40, 101
PARALLEL, number of processors, 362
-parallel , parallelize loops, 67
parallelization

automatic, 363
CALL in a loop, 72
debug tips, 399
explicit, 46
general requirements, 357
loop information, 58
number of processors, 362
overview, 358
overview of options, 360
reduction, 70
speed gained or lost, 361
warnings, 74

parts of large arrays in dbx , 202
pass

arguments by reference, 289
arguments by value, 289
file names to programs, 120

option to program, 68
passes of the compiler, 74
path, 110

#include , 54
library search, 149
name, 112

absolute, 112
complete, 112
relative, 112

peephole optimization, 4
-pentium , 67
performance

case history, 278
lessons, 282
optimization, 48
SunSoft performance library, 18
time  command, 278
tuning and optimization, 282

-pg , profile by procedure, 67
-PIC , 68, 160
-pic , 68, 160
piping

how to use, 115
standard output and error, 211

pixrect  with XView, 343
porting, 247

carriage-control, 251
file-equates, 252
formats, 251
guidelines, 258
problems, checking, -Xlist , 175

position-independent code, 68
and -pic , 160

POSIX
bindings, 168, 169
documents, 169
option, 168
runtime checking, 168

pragma
C$pragma sun unroll=  n, 94
C()  directive, 289
explicit parallelization, 95, 375
parallel, 95



Index 417

preattached
files, 122
logical units, 122

preconnect units 0, 5, 6 from C, 332
preconnected units, 121
preprocessor, 25
prerequisites for using this manual, xxii
preserve case, 73, 288
print

array
parts of large, in dbx , 202
slices in dbx , 202

asa , 16
procedure

names, 288
profile -pg gprof , 67

process control, dbx , 207
processors, number for

parallelization, 362
produce

position-independent code, 68
prof , -p , 65
profile

gprof , 17, 264
I/O, 269
libraries missing, 272
tcov , 17, 268
time , 263

profile by
basic block, 39
loop for MP, -Zlp , looptool , 91
procedure, -pg , gprof , 67

prompt
only, 71

pstat , actual swap space, 1.x, 104
pure scalar variable, 365
purpose of this manual, xxi
pwd command, 111

Q
-Qoption , 68

quadruple precision trigonometric
functions, 14

R
-R  and LD_RUN_PATH, not identical, 69
-R list , 69
-r  option for ar , 158
-r8 , 70
random I/O, 124
range of subscripts, 42
ranlib , randomize static library, 157
Ratfor User’s Guide, xxvi
README file, xxvi
reads, number of, 263
REAL as DOUBLE PRECISION, 70
recursive I/O, 12, 60
redirection of standard output and

error, 116, 211
redistributable libraries, 171
-reduction , parallelize automatically,

with reduction, 70
reductions

for automatic parallelization, 369
recognized by the compiler, 371
roundoff with automatic

parallelization, 372
reference versus value, C–FORTRAN

77, 289
referenced but not declared, checking,

-Xlist , 175
relative path name, 112
remove .fln  files, 177
rename executable file, 22
reorder functions, 80
replace library module, 158
retrospective of accrued exceptions, 235
return function values to C, 323
risk with explicit parallelization, 393
root, 109
roundoff with reductions, 372
run path in executable, 62



418 FORTRAN 77 User’s Guide

running FORTRAN, 21
runtime error messages, 335
runtime.libraries ,

redistributable, 171

S
-S , 71
-s , 71
safe libraries for multithread

programming, 59
sample interface, C–FORTRAN 77, 283
-sb , SourceBrowser, 71
-sbfast , 71
sbrowser , code-browsing utility, 17
SCCS, 138

checking in files, 144
checking out files, 144
creating files, 140
inserting keywords, 139
making directory, 138
putting files under SCCS, 138

search
object library directories, 56
order for libraries, 151

segmentation fault, 42, 72, 189, 196
some causes, 196
use -C  to find line number, 197
use dbx  to find line number, 197

set
#include  path, 54
directory for

.fln  files, 184
temporary files, 73

LD_LIBRARY_PATH, 150
level of checking strictness,

-Xlist , 186
nesting level of

control structures, 62
data structures, 63

number of
continuation lines, 63
equivalenced variables, 63
external names, 63

identifiers, 63
processors for

parallelization, 362
statement numbers, 63

Shakespeare quote, 283
shared library, 158

build, -G , 52
name a shared library, 53

sharing I/O, C–FORTRAN 77, 315, 332
shell

limits, 103
script, 131

shippable libraries, 171
shorten command lines

alias, 100
alias method, 100
environment variable method, 100

show commands, 45
SIG, Sun Programmer Special Interest

Group, xxvii, 423
SIGBUS, some causes, 199
SIGFPE, 50

definition, 218, 226
generate, 226
when generated, 228, 236

signal
handler, 228
with explicit parallelization, 395

SIGSEGV, segmentation fault
changing a constant, 10
some causes, 196

–silent , 71
size

four-byte integers, 56
of data types, 287

slices of arrays in dbx , 202
slower loading, 10
Solaris operating system, 2
source

browser, 71
catalogs, 97
diagnostics, 208
lines -e , 46



Index 419

SourceBrowser, 71
speed gained or lost from

parallelization, 361
splitting and optimization, 282
stack

overflow, 72
variables, 72

stack trace, 200
-stackvar , 72
standard

arithmetic, 236
conformance to standards, 3
error

accrued exceptions, 235
redirecting in csh()  and

sh() , 115, 211
input, 114, 121
output, 114, 121

statement
numbers, number of, 63
profile by, -a  and tcov , 39
unreachable, checking, -Xlist , 175

static
binding, 45
library, 153
tables in compiler, 62

strictness of checking, -Xlist , 186
strip executable of symbol table, -s , 71
strong typing, 73
subprogram in loop, explicit

parallelization, 379
subroutine

compared to function, C–FORTRAN
77, 286

names, 288
unused, checking, -Xlist , 175
used as a function, checking,

-Xlist , 175
subscript checking, 11, 42, 189, 196
suffix

of file names recognized by
compiler, 24

rules in make, 137

summing and reduction, automatic
parallelization, 369

Sun Programmer Quarterly
Newsletter, 423

Sun, sending feedback to, xxvi, 54
SunOS

4.1.x, 2
5.x, 2

suppress
auto-read for dbx , 86
blank in listed-directed output, 65
converting uppercase letters to

lowercase, 73
display of entry names and file

names, 71
error nnn, -Xlist , 184
implicit typing, 73
license queue, 62
linking, 42
unreferenced identifiers,

-Xlist , 185
warnings

f77  warnings, 75
-Xlist , 186

SVR4, 2
swap  command, 103
swap space

display actual swap space, 103, 104
limit amount of disk swap space, 102

swapouts, number of, 263
symbol table

for dbx , 52, 86
strip executable of, 71

syntax
compiler, 23
errors, -Xlist , 175
f77 , 23
parallel directive, 375, 397

system time, 263
System V Release 4 (SVR4), 2

T
tape



420 FORTRAN 77 User’s Guide

file representation, 129
multifile access, 130

tcov , 268
-a , profile by statement, 39
profile utility, 17

-temp , 73
templates inline, 57, 58
temporary files, directory for, 73
terminal display, -Xlist , 176, 185
textedit , 16
Thread Analyzer, 93
thread stack, 72
time

compilation passes, 73
execution, optimization, 63
functions, 248
system, user, etc., 263

-time , 73
time  VMS routine, 168
tips and hints, debug parallelized

code, 399
traceback

dbx , 200
ode, 200

transporting, 247
carriage-control, 251
file-equates, 252
formats, 251

tree, directories as a, 109
triangle as blank space, xxvii
turn off warnings about IEEE accrued

exceptions, 222
type checking across routines,

-Xlist , 175
typewriter font, xxvii
typing, strong, 73

U
-u , 73
-U  do not convert to lowercase, 73, 288
UCB 4.3 BSD, 2
ulimit  command, 103

undeclared
default type, 73
variables, 189

underflow
abrupt, 236
forced to zero, 49
gradual, 235
IEEE, 217
with reductions, 372

underscore
do not append to external names, 94
external names with, 94
in external names, 289

unformatted record size, 81
unit

logical unit preattached, 122
preconnected units, 121

unrecognized options, 26
unrequited exceptions, 235
unresolved reference, order on command

line, -l x, 151
unroll  directive, 94
-unroll , unroll loops, 73
unused functions, subroutines, variables,

labels, -Xlist , 175
upgrading from

1.4, 14
2.0/2.0.1, 10
3.0, 10

uppercase
debug, 206
external names, 288

usage
automatic parallelization, 363
compiler, 23
explicit parallelization, 374
TOPEN, 128

user time, 263

V
-V , 74, 189, 190
-v , 74
VAL() , pass by value, 289



Index 421

validation of FORTRAN 77, 3
variable

unused, checking, -Xlist , 175
used but unset, checking,

-Xlist , 175
-vax=align , 74
-vax=misalign , 74, 81
-vax=no , 74
-vax= v, 74
verify agreement across routines,

-Xlist , 173
version

checking, 190
id of each compiler pass, 74

vi , 16
VMS

debug statements, d, 82
features with -xl , 81
library, 168
routines, 168

W
-w , 75
warnings

explicit parallelization, 389
suppress f77  warnings, 75

watchpoints, dbx , 207
where

exception occurred, by line
number, 198, 237

execution stopped, 200
width of output lines, -Xlist , 186
wimp

interface to dbx , 207
interface to SourceBrowser, 17

writes, number of, 263

X
X Windows, 341
X11 interface, 168
X3.9-1978, 3

-xa , 75
-xarch= a, 75
-xautopar , 77
-xcache= c, 77
-xcgyear , 78
-xchip= c, 78
-xdepend , 79
xemacs , 16
-xexplicitpar , 79
-xF , 80
-xildoff , 80
-xildon , 80
-xinline , 81
-xl  or -vax=misalign , 74
-xl  or -vax=misalign , extended

language, VMS, 81
-xld , 82, 190, 191
-xlibmil , 82
-xlicinfo , 82
-Xlist , 176

a la carte options, 182
combination special, 182
defaults, 176
display directly to terminal, 176
errors and

call graph, -Xlistc , 183
cross reference, -XlistX , 183
listing, -XlistL , 183

sample usage, 178
suboptions, 182

details, 184
summary, 183

-Xlist , global program checking, 83, 173
-Xlistc , 184
-XlistE , 183, 184
-Xlisterr , 184
-Xlistf , 184
-Xlistfln dir, 177

.fln  files directory, 184
-Xlists , 185
-Xlistv n, 186
-Xlistw , 186



422 FORTRAN 77 User’s Guide

-Xlistwar , 186
-XlistX , 186
-xloopinfo , 83
-xnolib , 83, 91
-xparallel , 83
-xpg , 83
-xprofile= p, 84
-xreduction , 85
-xregs= r, 85
-xs , debug without object files., 86
-xsafe=mem , 86
-xsb , 86
-xsbfast , 86
-xspace , 86
-xtarget= t, 87
XView, 343, 346, 348

toolkit, 341
translate C to FORTRAN, 351

-xvpara , 91

Z
zero

division by, 216, 217
on underflow, 49

-Zlp , loop profiler, MP, 91
-ztext , 92, 161
-Ztha , prepare for Thread Analyzer, 93



Please
Recycle

Join the SunPro SIG Today
Sun Programmer Special Interest Group

The benefits are SIGnificant

At SunSoft, in the Software Development Products business of Sun Microsystems, our goal is to meet the needs of
professional software developers by providing the most useful line of software development products for the
Solaris platform. We’ve also recently formed a special interest group, SunPro SIG, designed to provide a worldwide
forum for exchanging software development information. This is your invitation to join our world-class
organization for professional programmers. For a nominal annual fee of $20, your SunPro SIG membership
automatically entitles you to:

• Membership on an International SunPro SIG Email Alias

Share tips on performance tuning, product feedback, or anything you
wish; available as a UUNET address and a dial-up number

• Subscription to the SunProgrammer Quarterly Newsletter

Includes advice on getting the most out of your code, regular features,
guest columns, product previews and the latest industry gossip

• Access to a Repository of Free Software

SunSoft will collect software related to application development and
make it available for downloading

• Free SunSoft Best-of-Repository CD-ROM

Periodically, we’ll take the cream of the crop from the depository and
distribute it to members annually

• Free Access to SIG Events

Including national events, like SIG seminars held at the SUG conference,
and regional SunPro SIG seminars

SPECIAL OFFER

Sign up today, and receive a SunPro SIG Tote Bag: A spiffy 15” x 12” black nylon Cordura tote with the SIG logo, proof
positive of your Power Programmer status.



So join the SunPro SIG today. And plug into what’s happening in SPARC and Solaris development world-wide.
Simply complete the form below.

Mail to: SunPro SIG, 2550 Garcia Avenue MS UMPK 03-205, Mountain View, CA,94043-1100

TEL: (415) 688-9862

or

FAX: (415) 968-6396

Unfortunately we cannot accept credit card orders via Email since we need to have your signature on file.

Sign me up for SunPro SIG!

Sun Programmer Special Interest Group I’d like to pay
for my one-year
membership fee
of $20 by:

Date

Name

Title

Company ❐ VISA

Email Address

Address ❐ MASTERCARD

City State

ZIP Country Card # _______________

Phone Expiration Date: _________

Fax Signature:

_____________________

ALL INFO MUST BE FILLED OUT ❐ Check made
payable to
SunSoft

SunSoft, A Sun Microsystems, Inc. Business





Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS
sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une
marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK
est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.




