वार्षिक प्रतिवेदन

और लेखापरीक्षित लेखा विवरण

2020-21

भौतिकी संस्थान

सचिवालय मार्ग

डाक : सैनिक स्कूल

भुवनेश्वर - 751 005

ओड़िशा, भारत

दूरभाष : + 91-674-2306400/444/555

फैक्स: + 91-674-2300142

यूआरएल : http://www.iopb.res.in

संपादक मंडल

प्रो. पंकज अग्रवाल

प्रो. अरिजित साहा

प्रो. सत्यप्रकाश साहु

प्रो. अरुण कुमार नायक

डाँ. बासुदेव मोहांति

श्री आर.के.रथ, रजिस्ट्रार

द्वारा प्रकाशित

सुश्री लिपिका साहु

द्वारा संकलित

श्री भगवान बेहेरा

द्वारा हिन्दी अनुवाद

विषय-सूची

संस्थान के बारे में		(iv)	
शासी परिषद			
	शक की कलम से	(vi)	
भाग	ा : वार्षिक प्रतिवेदन	1-70	
1.	शैक्षणिक कार्यक्रम	01-06	
2	अनुसंधान	07-34	
3	प्रकाशन	35-46	
4.	अन्य गतिविधियाँ	47-56	
5.	सुविधाएँ	57-62	
6.	कार्मिक	63-70	
भाग	ा । : लेखा परीक्षित लेखा विवरण	71 -9 7	
क्.	लेखापरीक्षक का निष्पक्ष प्रतिवेदन तथा अनुलग्नक	75-77	
ख.	वित्तीय विवरण	78-96	
ग.	कार्रवाई रिपोर्ट	97-97	

संस्थान के बारे में

भौतिकी संस्थान, भुवनेश्वर, परमाणु ऊर्जा विभाग (पऊवि) भारत सरकार का एक स्वायत्त अनुसंधान संस्थान है । इस संस्थान की स्थापना सन् 1972 में ओडिशा सरकार द्वारा की गयी थी और यह संस्थान पऊवि और ओडिशा सरकार से निरन्तर वित्तीय सहायता प्राप्त करती है।

इस संस्थान में, सैद्धांतिक और प्रायोगिक संघिनत पदार्थ भौतिकी, सैद्धांतिक उच्च ऊर्जी भौतिकी, और स्ट्रिंग सिद्धांत, सैद्धांतिक नाभिकीय भौतिकी, परा-आपेक्षिकीय भारी आयन संघट्टन और खगोल कण, क्वांटम सूचना, और प्रायोगिक उच्च ऊर्जा नाभिकीय भौतिकी के क्षेत्रों में आकर्षक अनुसंधान कार्यक्रम है। त्वरित्व सुविधाओं में से 3MV पैलेट्रॉन त्वरक और एक निम्न ऊर्जा रोपण उपकरण हैं। उन उपकरणों का प्रयोग निम्न ऊर्जा नाभिकीय भौतिकी, आयन किरणपुंज अंतिक्रियायें, पृष्ठीय परिवर्तन एवं विश्लेषण, लेश तात्विक विश्लेषण, द्वयों का चरित्व चित्वण एवं काल प्रभावन आदि के अध्ययन होता है। काल निर्धारण के लिए बाह्य शोधकर्ताओं से नियमित रूप से नमूनें स्वीकार करके रेडियोकार्बन एएमएस उपकरण का प्रयोग किया जाता है। साधारणतः नैनोविज्ञान एवं नैनोप्रौद्योगिकी क्षेत्र और विशेषकर पृष्ठीय तथा अंतरापृष्ठीय में अध्ययन करने में हमारे संस्थान का स्थान महत्वपूर्ण है। इस संस्थान में नमूनें तैयार करने और नैनोसंरचनाओं के विभिन्न भौतिकी तथा रासायनिकी गुणधर्मों के अध्ययन के लिए संघिनत पद्यर्थ प्रणालियों के अत्याधुनिक उपकरण उपलब्ध है। यह संस्थान सर्न (स्विटजरलैंड), बीएनएल (यूएसए), एएनएल (यूएसए), जीएसआई (जर्मनी) स्थित और विदेशों में स्थित अन्य प्रयोगशालाओं के साथ अंतरराष्ट्रीय सहयोग में सिक्रय रूप से कार्य कर रहा है। यह संस्थान भारत-आधारित न्यूट्रॉनो प्रयोगशाला कार्यक्रम में भी भाग लेता है।

यह संस्थान एक एक वर्षीय प्रि-डाक्टोराल पाठ्यक्रम को पूरा करने के बाद पीएचडी कार्यक्रम प्रदान करता है। प्री-डाक्टोराल पाठ्यक्रम में प्रवेश का चयन संयुक्त प्रवेश परीक्षा (JEST) द्वारा होता है। सीएसआईआर,यूजीसी,एनईटी परीक्षा में उत्तीर्ण तथा जीएटीइ परीक्षा में अच्छे अंक प्राप्त करने वालों को भी प्रि-डाक्टोराल कार्यक्रम में प्रवेश दिया जाता है।

संस्थान परिसर में ही कर्मचारियों के लिए आवास और अध्येताओं और पोस्ट डाक्टोराल फेलों के लिए होस्टल की सुविधा उपलब्ध हैं। पोस्ट डाक्टोराल फेलों और परिदर्शक वैज्ञानिकों के लिए मनोहर दक्षता आपार्टमेंट भी मौजूद हैं। परिसर में इंडोर तथा आऊटडोर दोनों की खेलकूद सुविधायें उपलब्ध हैं। न्यू होस्टल में छोटी सी व्यायामशाला भी उपलब्ध है। इस संस्थान परिसर में एक अतिथि भवन, एक सभागार और एक औषधालय उपलब्ध हैं। यह संस्थान अपना प्रतिष्ठा दिवस प्रत्येक वर्ष 4 सितम्बर को मनाता है।

1 1

वर्ष 2020-21 के लिए शासी परिषद के अध्यक्ष और सदस्यगण

1.	डॉ. के. एन. व्यास, अध्यक्ष, परमाणु ऊर्जा आयोग एवं	:	अध्यक्ष
	सचिव, भारत सरकार, परमाणु ऊर्जा विभाग		
	अणुशक्ति भवन, छ.शि.म. मार्ग, मुंबई-400001		
2.	प्रो. एस. एम. यूसुफ, निदेशक, भौतिकी संस्थान, भुवनेश्वर-751005	:	सदस्य
3.	प्रो. पिनाकी मजूमदार, निदेशक, हरिश-चंद्र अनुसंधान संस्थान	:	सदस्य
	छटनाग रोड, झूंसी, इलाहाबाद-211019		
4.	प्रो. गौतम भट्टाचार्या, निदेशक,	:	सदस्य
	साहा नाभिकीय भौतिकी संस्थान		
	सेक्टर-1, ब्लॉक-ए/एफ, विधान नगर, कोलकाता-700064		
5.	प्रो. सुधाकर पंडा, निदेशक	:	सदस्य
	राष्ट्रीय विज्ञान शिक्षा एवं अनुसंधान संस्थान		
	डाक ः भिमपुर-पदनपुर, ब्लॉक-जटनी, खोरधा - 752050		
6.	डॉ. शशांक चतुर्वेदी, निदेशक, प्लाज्मा अनुसंधान संस्थान	:	सदस्य
	ग्राम-भट, इंदिरा ब्रिज के पास, गांधीनगर-382428		
7.	श्री. ए. आर. सुले, आईडीएएस, संयुक्त सचिव (अ.एवं वि.) (17.05.2020 तक)	:	सदस्य
	परमाणु ऊर्जा विभाग,		
	अणुशक्ति भवन, छ.शि.म. मार्ग, मुंबइ -400001		
8.	श्रीमति सुषमा ताईशेटे, संयुक्त सचिव (अ.एवं वि.), (18.05.2020 से)	:	सदस्य
	परमाणु ऊर्जा विभाग,		
	अणुशक्ति भवन, छ.शि.म. मार्ग, मुंबइ -400001		
9.	श्रीमति रिचा बागला, भाप्रसे, संयुक्त सचिव (वित्त)	:	सदस्य
	परमाणु ऊर्जा विभाग, अणुशक्ति भवन,		
	छ. शि. म. मार्ग, मुंबई - 400 001		
10.	श्री संतोष कुमार सरंगी,	:	सदस्य
	प्रमुख सचिव, ओड़िशा सरकार,		
	विज्ञान एवं प्रौद्योगिकी विभाग, ओडिशा सिचवालय		
	भुवनेश्वर-751001		
11.	प्रो. सूर्य नारायण नायक, भौतिक विज्ञान विभाग	:	सदस्य
	संबलपुर विश्वविद्यालय, ज्योति विहार,बुर्ला, संबलपुर-768019		
12.	प्रो. सुकांत कुमार त्रिपाठी, स्नातकोत्तर भौतिक विज्ञान विभाग	:	सदस्य
	ब्रह्मपुर विश्वविद्यालय, भंज विहार, गंजाम-760007		

शासी परिषद के सचिव

श्री आर.के. रथ, रजिस्ट्रार भौतिकी संस्थान, भुवनेश्वर -751005

निदेशक की कलम से....

मुझे वित्तीय वर्ष 2020-21 के लिए भौतिकी संस्थान (आईओपी), भुवनेश्वर का " वार्षिक प्रतिवेदन और लेखापरीक्षित लेखा विवरण" आपके सामने प्रस्तुत करते हुए हर्ष हो रहा है । यह वार्षिक प्रतिवेदन हमारे शैक्षणिक एवं अनुसंघान प्रयासों और उपलब्धियों का सारांश प्रवान करता है । भौतिकी संस्थान, भुवनेश्वर परमाणु ऊर्जा विभाग (पऊवि), भारत सरकार के तहत एक स्वनिहित संस्थान है । यह संस्थान प्रायोगिक और सद्धांतिक भौतिक विज्ञान में उच्च गुणवत्ता से युक्त अत्याधुनिक अनुसंघान के लिए समर्पित भारत के अग्रणी अनुसंघान संस्थानों में से एक है, उन भौतिक विज्ञानों का नाम है सद्धांतिक उच्च ऊर्जा भौतिक विज्ञान, संघनित पदार्थ भौतिक विज्ञान, नाभिकीय भौतिक विज्ञान, प्रायोगिक संघनित पदार्थ भौतिक विज्ञान, प्रायोगिक नाभिकीय भौतिक विज्ञान और प्रायोगिक उच्च ऊर्जा भौतिक विज्ञान और क्वांटम सूचना ।

इस वर्ष आईओपी के सदस्यों ने उच्च-गुणवत्ता अंतरराष्ट्रीय पीर-रिव्यूड पत्रिकाओं में 88 से अधिक शोधपत्रों को प्रकाशित किया है, अनुसंधान के सर्वोत्कृष्ट स्तर का प्रदर्शित किया है। संस्थान के सदस्यों ने कई राष्ट्रीय और अंतरराष्ट्रीय संस्थानों के वैज्ञानिकों के साथ आभासी के माध्यम से संपर्क किया है और कई शोधपत्र प्रकाशित किए हैं। उच्च ऊर्जा भौतिकी समृह के एक सदस्य प्रो. एस.के. अगरवाला ने विज्ञान एवं प्रौद्योगिकी विभाग (डीएसटी), भारत सरकार से गौरवपूर्ण "स्वर्णजंयती फेलोशिप 2019-20" पुरस्कार और इंडियन फिजिक्स एसोसिएशन (आईपीए) से "एन.एस. सत्यमूर्ति पुरस्कार 2020" प्राप्त किया है। प्रो. डी. चौधूरी ने एसईआरबी-एमएटीआरआईसीएस परियोजना अनुवान प्राप्त किया है और आईसीटीएस-टीएफआईआर के एसोसीएटस के रूप में चुना गया है। प्रो. के.घोष को आईएसीएस, बेंगालूर के एसोसीएटस के रूप में चुना गया है। प्रो. एम. मित्रा ने इंडो-फ्रेंच सेंटर फॉर वॉ प्रमोशन ऑफ एडवांसड रिसर्च (आईएफसीपीएआर/सीइएफआईपीआरए) द्वारा वित्त पोषित भारत-फ्रेच द्विपक्षीय सहयोगात्मक अनुसंघान अनुवान प्राप्त किया है।

महामारी के प्रभाव के बावजूद, ऑनलाइन के माध्यम से 40 से अधिक संगोष्ठियाँ, परिसंवाद और कार्यशालायें आयोजित किए गए । संस्थान ने विद्यालय और महाविद्यालय के विद्यार्थियों, शिक्षकों और जनता के मन में विज्ञान और वैज्ञानिक स्वभाव को संप्रेषित करने के लिए आउटरीच कार्यक्रम भी आयोजित किया है। हमारे सदस्यों ने उत्साहपूर्वक राष्ट्रीय विज्ञान दिवस मनाया है और लोकप्रिय वैज्ञानिक वार्ताओं के माध्यम से ओपन हाउस हे / चर्चाएं कीं । बृहस्पित-शिन ग्रह के महान संयोग के अवसर पर दूरबीन के माध्यम से रात्रि आकाश दर्शन कार्यक्रम जैसी गतिविधियाँ आईओपी के सदस्यों और उनके परिजनों के लिए कोविड-19 सुरक्षा मानदंडों का संख्ती से पालन करते हुए आयोजित की गयीं । संस्थान अपने 46वें प्रतिष्ठा दिवस 4 सितम्बर 2020 को मनाया जिसमें डॉ. राजीव स्वांई, जीव विज्ञान संस्थान (आईएलएस), भुवनेश्वर ने समसामियक प्रसंग "कोविड-19 महामारी : यह कैसे शुरु हुआ और यह कैसे समाप्त हो सकता है" पर एक वार्ता प्रदान की ।

अंत में, मैं शासी परिषद के सदस्यों के साथ साथ आईओपी समुदाय के सभी संकाय सदस्यों, शोधछात्रों, कर्मचारियों और शुभचिंतकों से मिले समर्थन और प्रोत्साहन के लिए उनके प्रति अपनी हार्दिक प्रशंसा व्यक्त करता हूं। मैं समिति के उन सदस्यों के उद्यमों की भी सराहना करना चाहूंगा जिन्होंने इस वार्षिक प्रतिवेदन को प्रकाशित करने के लिए बहुत परिश्रम किया है।

प्रोफेसर करूणा कर नन्द निदेशक, भौतिकी संस्थान

परमाणु ऊर्जा विभाग की परिकल्पना में भौतिकी संस्थान (आईओपी) का योगदान

वार्षिक प्रतिवेदन 2020-2021 का संक्षिप्त सारांश

भौतिकी संस्थान, भुवनेश्वर देश का एक प्रमुख अनुसंधान संस्थान है, जो सैद्धांतिक एवं प्रायोगिक संघिनत पदार्थ भौतिकी, सैद्धांतिक उच्च ऊर्जा भौतिकी, सैद्धांतिक नाभिकीय भौतिकी, परा-सापेक्षिकीय भारी-आयन टकराव, खगोल-किणका भौतिकी एवं ब्रह्मांड विज्ञान, क्वांटम सूचना, प्रायोगिक उच्च ऊर्जा नाभिकीय और किणका भौतिकी के अग्रणी क्षेत्रों में और अंत:विषय क्षेत्रों जैसे कि क्वांटम कंप्यूटेशन, जैविक भौतिकी, जिटल प्रणालियाँ, नैनो-विज्ञान और वस्तु विज्ञान आदि के अनुसंधान कार्य में जुड़ा है।

यह संस्थान सर्न (स्वीटजरलैंड), बीएनएल (यूएसए), एएनएल (यूएसए), जीएसआई (जर्मनी), मैक्स प्लॉक इंस्टीच्यूट (जर्मनी) और विदेश स्थित अन्य प्रयोगशालाओं के अंतरराष्ट्रीय सहयोग में सिक्रय रूप में शामिल है और भारत-आधारित न्यूट्रिनो वेधशाला से संबंधित विभिन्न अनुसंधान गितविधियों में भी भाग लेता रहा है। इस संस्थान में अनेक आधुनिक प्रयोगात्मक सुविधायें उपलब्ध हैं जैसे कि 3 एमवी पैलेट्रॉन किणका त्वरक, इलेक्ट्रॉन साइक्लोट्रॉन अनुनाद आधारित त्वरक, उच्च संवेदन ट्रॉशिमशन इलेक्ट्रॉन माइक्रोस्कोप, आणविक बीम दीर्घवृत्तीय सिस्टम, पल्सड लेजर डिपोजीशन सिस्टम, रमण स्पेक्ट्रोमीटर, प्रकाशउत्सर्जन स्पेक्ट्रोमीटर आदि । सफल डॉक्टरॉल कार्यक्रम संस्थान के लिए एक गौरव का विषय है और संस्थान ने बड़ी संख्या में उच्च प्रशिक्षित और योग्य वैज्ञानिकों को सृजन किया है । अब तक लगभग 70 से अधिक विद्यार्थियों ने अपनी पीएच.डी. इसी संस्थान में पूरी की है और वे देश के अधिकांश सभी प्रमुख अनुसंधान संस्थानों , भारतीय प्रौद्योगिकी संस्थानों, राष्ट्रीय प्रौद्योगिकी संस्थानों, केंद्रीय और राज्य विश्वविद्यालयों में प्रतिष्ठित संकाय/वैज्ञानिक पदों पर अवस्थापित हैं । संस्थान में आउटरीच कार्यक्रम आयोजित हो रहा है जिसका लक्ष्य है विज्ञान के साथ साथ परमाणु ऊर्जा से संबंधित पऊवि कार्यक्रमों को विद्यालयों, महाविद्यालयों और विश्वविद्यालयों के विद्यार्थियों में लोकप्रिय बनाना है।

आईओपी का संघिनत पदार्थ सैद्धांतिक समूह सिक्रय रूप से बैक्टिरियत क्रोमजोम के संगठन, सिक्रय पदार्थ, उच्चावचन सिद्धांत, क्वांटम संघिनत पदार्थ प्रणालियों के स्थालाकार, पहलुओं, डाइराक/वियेल, सामिग्रयों में क्वांटम परिवहन, क्वांटम चुंबकत्व, और कृतिम जालक प्रणालियों की स्थलाकृति और गहरा संबंध को समझने पर जोर देने के साथ साथ अनुसंधान कार्य में सिक्रय रूप से जुड़ा है ।

आईओपी का प्रयोगात्मक उच्च ऊर्जा भौतिकी समूह विभिन्न अंतरराष्ट्रीय प्रयोगशालाओं जैसे कि सर्न-एलएचसी स्थित सीएमएस एवं एएलआईसी, आरएचआईसी, बीएनएल (यूएसए) स्थित एसटीएआर परीक्षण और एफएआईआर, जीएसआई (जर्मनी) स्थित प्रस्तावित सीबीएम परीक्षण में भाग ले रहा है । यह समूह प्रेक्षित हिग्गस बोसॉन के गुणधर्मों के अध्ययन और एसएचसी स्थित प्रोटॉन-प्रोटॉन टकराव घटनाओं में बिअंड स्टांडार्ड मॉडल की खोज के साथ साथ क्वार्क ग्लुऑन प्लाज्मा, एक प्राक् ब्रह्मांड में पदार्थ की एक अवस्था, जिसे भारी अयन टकराव सृजन किया है, के अध्ययन में योगदान दे रहा है । इसके अलावा, यह समूह भविष्य में परीक्षण के लिए आधुनिक संसूचकों के अनुसंधान एवं विकास में योगदान दे रहा है ।

प्रायोगिक संघिनत पदार्थ भौतिकी की प्रमुख कार्यविधियों में शामिल हैं त्वरक आधारित वस्तु विज्ञान, पृष्ठीय एवं अंतरापृष्ठीय भौतिकी, प्रगत कार्यात्मक वस्तुओं और नैनोप्रणालियों के अध्ययन। आयन बीम प्रयोगशाला में एनइसी निर्मित 3 एमवी पैलेट्रॉन त्वरक उपलब्ध है जो एक प्रमुख सुविधा है जिसे पूरे देश के खोजकर्ता उपयोग करते हैं । यह त्वरक प्रोटॉन एवं अल्फा से लेकर भारी आयन तक 1-15 मेगावोल्ट की आयन बीम प्रदान करती है। यह सुविधा विभिन्न उपयोगकर्ताओं (दोनों आंतरिक एवं बाह्य) और पूरे देश के शोधकर्ताटों के द्वारा उपयोग किया जा रहा है। दूसरी महत्वपूर्ण अनुसंधान गतिविधियों में शामिल हैं सौर ऊर्जा फोटोवोल्टाइक के अध्ययन, अर्धचालक सतह पर स्वत:संगठित सोपान का गठन और सोपानित अवस्तरों पर धात्विक नैनोसंरचना एवं चुंबकीय पतली फिल्मों को विकसित करके उनके नैनोस्केल कार्यात्मक, ऊर्जक आयन बीम के उपयोग करते हुए न्यूरोमरिफिक अनुप्रयोग के लिए परिवर्तनशील धातव अक्साइड आधारित प्रतिरोध स्वीचन उपकरणों के विषमदेशिक प्लाज्मोनिक एवं चुंबकीय गुणधर्मों के अध्ययन के लिए मजबूती सहसंबंधित इलेक्ट्रॉन प्रणाली, स्पीन-आर्बिट युग्मित प्रणालियों के क्वांटम परिवहन, इंटरफेसीएल बदलाव समर्थित स्पेक्ट्रोस्कोपी, और 2 डी चालकोजेनाइड आधारित वस्तुओं और उपकरणों की भौतिकी ।

आईओपी की प्रमुख शैक्षणिक/अनुसंधान गतिविधियाँ:

प्री-डॉक्टरॉल विद्यार्थियों की प्रवेश प्रक्रिया ऑनलाइन के माध्यम से दोनों लिखित एवं साक्षात्कार पूरे हो चुके हैं । जिनमें से 15 विद्यार्थियों को चुना गया है। जनवरी 2021 के प्रथम या दूसरे सप्ताह में दाखिले के लिए प्रवेश पत्र भेजा जा चुका है । आईओपी में इस वर्ष के लिए 9 पोस्ट डॉक्टरॉल विद्यार्थियों को चुना गया है, वे संस्थान में दाखिले हो रहे हैं । कोविड-19 महामारी के कारण जिन डॉक्टरॉल विद्यार्थी अपना निवास स्थान को चले गये थे उन्हें वारी-वारी से राज्य सरकार के कोविड-19 मार्गदर्शन का पालन करते हुए संस्थान में वापस आने के लिए कहा गया है । संस्थान में एक परिदर्शन वैज्ञानिक ने योगदान दिया है । इसके अलावा एक डीएसटी-इनस्पायर संकाय और एक परिदर्शन वैज्ञानिक बहुत जल्दी संस्थान में शामिल होंगे । संस्थान की सीएमएस गतिविधि में एक संकाय की नियुक्ति प्रक्रिया चल रही है ।

आईओपी के संकाय सदस्यों ने संघित पदार्थ भौतिकी और वस्तु विज्ञान, उच्च ऊर्जा भौतिकी, नािभकीय भौतिकी, और क्वांटम कंप्यूटेशन से संबंधित क्षेत्रों में लगभग 76 शोधपत्रों का प्रकाशन अंतरराष्ट्रीय पीयर-रिव्यूड जर्नलों में किया है । इन अत्यधिक प्रभावित जर्नलों में से कुछ हैं जर्नल ऑफ फिजिकॉल रिव्यू लैटर्स (प्रभाव कारक : 9.16), फिजिक्स रिव्यू ए,बी,सी,डी एंड ई (प्रभाव कारक : 2.53 से 5.3 तक), एडवांसड फंकशनॉल मेटरिएल्स (प्रभाव कारक : 18.81), नेचर कम्युनिकेशनस (प्रभाव कारक : 14.92), जर्नल ऑफ फिजिकॉल केमेस्ट्री लैटर्स (प्रभाव कारक : 6.71), जर्नल ऑफ हाई एनर्जी फिजिक्स (प्रभाव कारक : 5.875), जर्नल ऑफ मेटरिएल्स केमेस्ट्री सी (प्रभाव कारक : 7.059), सोलॉर एनर्जी (प्रभाव कारक :

4.608) और रॉयल एस्ट्रोनोमिकॉल सोसाइटी की मासिक नोटिस (प्रभाव कारक: 5.356) आदि । प्रो. डी सामल ने जर्नल ऑफ फिजिक्स: कंडेनसड मैटर में इलेक्ट्रोनिक एंड टोपोलोजिकॉल प्रपर्टी ऑफ ग्रुप-10 ट्रांजिशन मेटाल डिकालकोजेनाइडस पर एक सामियक समीक्षा का सह-लेखक बना है। इसके अलावा आईओपी के दो संकाय सदस्यों प्रो. पी.के. साहु और डॉ.अरुण कुमार नायक ने अंतरराष्ट्रीय एएलआईसीई और सीएमएस मेगा सांइस सहयोग कार्यक्रम के तहत अनुसंधार कार्य किया है और इस अवधि के दौरान अत्यधिक प्रभावी पित्रकाओं में लगभग 30 शोधपत्रों का सह-लेखक बना है ।

- आईओपी के संकाय सदस्यों ने राष्ट्रीय/अंतरराष्ट्रीय मान्यता /पुरस्कार/नियुक्ति/अनुसंधान सहायता राशि प्राप्त किया है । उनमें से कुछ हैं प्रो. संजीव कुमार अगरवाला को न्यूट्रिनो परीक्षणों में बियंड स्टांडार्ड मॉडल (बीएसएम) के परिदृश्यों को जानने के लिए डीएसटी, भारत सरकार से सम्मानजनक स्वर्णजयंती फेलोशिप-2019-20 प्राप्त हुआ है और स्टान्डार्ड मॉडल से परे भौतिकी के संभाव्य चिह्नों के लिए न्यूट्रिनो मिश्रण मापदंडों के परिमापन को ढूंढने, न्यूट्रिनो दोलन परिघटना में उनके व्यावहारिक अनुसंधान को मान्यता देकर इंडियन फिजिक्स एसोसीएशन (आईपीए) से एस.एन. सत्यमूर्ति पुरस्कार-2020 प्राप्त हुआ है। डीएसटी स्वर्ण जयंती समारोह के अंश के रूप में पचास वर्ष से कम पचास वैज्ञानिक"शिर्षक कॉफी टेबुल बुक बनाने के लिए डीएसटी द्वारा प्रो. अगरवाला नामित हुए हैं। प्रो. अगरवाला को भी आगामी पाँच वर्षों में न्यूट्रिनो भौतिकी के क्षेत्र में अनुसंधान को आगे बढ़ाने के लिए विज्ञान एवं यांत्रिकी अनुसंधान बोर्ड (एसईआरबी) से रु.80 लाख अनुसंधान अनुदान प्राप्त हुआ है। प्रो.अरुण कुमार नायक को सीएमएस ट्रिगर समन्वयन के तहत संयोजक (लेबल-3) के रूप में नियुक्ति मिली है। प्रो. मणिमाला मित्रा को भारत-फ्रेंच द्विपक्षीय अनुसंधान अनुदान प्राप्त हुआ है। प्रो. डी. चौधूरी को आईसीटीएस-टीएफआईआर, बेंगालूर के एसोसीएटस के रूप में चुना गया है। प्रो. कीर्तिमान घोष को आईजर, ब्रह्मपुर में एक सहायक संकाय के रूप में चुना गया है। प्रो. सीखा वर्मा को आईओपी प्रकाशक, यूके द्वारा प्रकाशित जर्नल ऑफ फिजिक्स-कंडेनसड मैटर के संपादकीय बोर्ड के सदस्य के रूप में चुना गया है।
- आईओपी के संकाय सदस्यों ने विभिन्न राष्ट्रीय/अंतरराष्ट्रीय संगोष्ठियों/परिसंवादों/सम्मेलनों में ऑनलाइन के माध्यम से लगभग 40 आमंत्रित वार्ताएं प्रदान की हैं । आईओपी के कई संकाय सदस्यों ने उच्च ऊर्जा भौतिकी में दो अंतरराष्ट्रीय सम्मेलनों के आयोजन में शामिल हुए हैं । 23-24 नवम्बर 2020 के दौरान आईओपी में क्वांटम पदार्थ में उभरती प्रवृतियाँ, सांख्यिकी और जैविकी भौतिकी शीर्षक पर ऑनलाइन के माध्यम से सम्मेलन का आयोजन किया गया था । दिनांक 01.05.2020 के दौरान आईओपी, भुवनेश्वर के सहयोग से भौतिक शास्त्र विभाग, सीईटी द्वारा "From Tiny Atoms to Solid to Cosmos: The Quantum Aspects" पर ऑनलाइन के माध्यम से एक व्याख्यानमाला (वेबनॉर) आयोजित की गर्यों ।
- प्रो. अजित मोहन श्रीवास्तव ने विश्वब्रह्मांड, भौतिक किणकायें और डार्क ऊर्जा पर पाँच लोकप्रिय वार्ताएं
 प्रदान की है जिसमें अल इंडिया रेडियो के इंग्लिश वर्ल्ड सर्विस में विश्व क्षुद्रग्रह दिवस पर दी गयी वार्ता भी शामिल है ।

भौतिकी संस्थान

- पऊवि द्वारा वित्तपोषित स्पीन स्ट्रक्चर परियोजना के अंतर्गत रु.6.45 करोड.के दो महत्वपूर्ण उपकरणों के खरीद ओदश देकर इस परियोजना को आगे बढाया गया है, और रु.2.10 करोड़ के लिए एलसी खोली गई है लगभग रु.1.20 करोड़ की अन्य मदों के लिए निविदा प्रक्रिया जारी है।
- आईओपी के प्रतिष्ठित वैज्ञानिक प्रो. अरुण एम. जायण्णवर जिन्होंने विस्तारित सेवा अविध के दूसरे कार्यकाल में थे, उनकी सेवानिवृत्ति 31.07.2020 को हुई थी संस्थान सैद्धांतिक संघिनत पदार्थ भौतिकी में उनके उत्कृष्ट वैज्ञानिक योगदान पर गर्वित है।
- शासी परिषद के अनुमोदन से प्रो. ए. एम. श्रीवास्तव की सेवा अविध 60 से 62 वर्ष तक 01.09.2020 से बढ़ायी गयी है।

अन्य गतिविधियों की प्रमुख विशेषताएं :

 कोविड-19: अब तक आईओपी परिसर में कोविड-19 से 19 लोग प्रभावित हुए हैं और इन्हें स्थानीय अधिकारियों की मदद से प्रभावी और कुशलता से संभाला गया है। पोस्ट कोविड परिस्थितियों को भी सही तरीके से निपटाया गया है।

संस्थान में हिंदी पखवाड़ा का आयोजन किया गया, इस पखवाड़ा के दौरान वर्तमान घटना जैसे कि कोविड-19 महामारी की प्रासंगिकता और उपचार, कोविड-19 स्थिति में कार्यालय संचालन के वर्तमान परिदृश्य आदि पर एक व्याख्यान माल ऑनलाइन के माध्यम से की गई है । आईओपी ने भुवनेश्वर स्थित अन्य संस्थानों जैसे नाइजर, आईएलएस, सीफा और एम्स, भुवनेश्वर के सहयोग से दो ऑनलाइन सम्मेलनों का आयोजन किया था । आईओपी ने अपनी स्थापना दिवस 04 सितम्बर 2020 को ऑनलाइन के माध्यम से आयोजित किया था और व्याख्यान का आयोजन ऑनलाइन के माध्यम से हुआ था । इसके अलावा, इस अविध के दौरान अन्य दो महत्वपूर्ण दिवस सद्भावना दिवस और संविधान दिवस भी आयोजित हुआ था ।

शैक्षणिक कार्यक्रम

1.1	प्री-डॉक्टरॉल कार्यक्रम	:	03
1.2	डॉक्टरॉल कार्यक्रम	:	04
1.3	प्रस्तुत शोधप्रबंध	•	04
1 4	आई(सोपी द्वारा आयोजित सम्मेलन एवं कार्यशाला	•	05

1.1 प्री-डॉक्टरॉल कार्यक्रम

भौतिक विज्ञान में अनुसंधान करने के लिए युवा छात्रों को प्रशिक्षण देना और मार्गदर्शन करना संस्थान का एक महत्वपूर्ण उद्देश्य है। वर्ष 1975 से प्रि-डॉक्टोरल कोर्स (एम. एससी. के बाद) संस्थान का एक नियमित पाठ्यक्रम है जो एक अत्यंत महत्वपूर्ण शैक्षणिक कार्यक्रम है क्योंकि एमएस.सी. छात्रों को अनुसंधान गतिविधाँ चलाने के लिए इसकी परिकल्पना की गयी है । प्रगत भौतिक विज्ञान और अनुसंधान प्रविधि में व्यापक प्रशिक्षण दिलाना इसका लक्ष्य है । पाठ्यक्रम योजना इस दृष्टि बनायी गयी है ताकि यह हर एक छात्र को न केवल डॉक्टरॉल रिसर्च में सहायक होगा बल्कि एक अच्छे भौतिक विज्ञान शिक्षक बनने के लिए सहायक होगा । यह संस्थान भौतिक विज्ञान में पीएच.डी.कार्यक्रम में शोध कार्य करने कमें रुचि रखने वाले छात्रों के चयन के लिए संयुक्त चयन परीक्षा (JEST) को संचालन कराने में शामिल हुआ है । इस संयुक्त परीक्षा और संस्थान में संचालित साक्षात्कार के परिणाम के आधार पर एक छात्र का अंतिम चयन होता है। इसी वर्ष प्री-डॉक्टरॉल पाठ्रयक्रम जनवरी 2021 शुरु हुआ। प्रि.डॉक्टरॉल कार्यक्रम पूरा होने के बाद, छात्रों को संस्थान के किसी भी संकाय सदस्य के तत्वावधान में पीएच. डी. के लिए पावता मिलती है जो होमी भाभा राष्ट्रीय संस्थान (एचबीएनआई) द्वारा प्रदान की जाती है ।

प्रतिभा को पहचानने के लिए, संस्थान ने सबसे उत्कृष्ट प्री-डॉक्टरॉल छात्रों के लिए ललित कुमार पंडा मेमोरियल एंडोमेंट फेलोशिप (एल.के. पंडा मेमोरियल फेलोशिप) स्थापित किया है। इस फेलोशिप में पुरस्कार राशि के रूप में रु.5000/ - और एक प्रशस्ति पत्र समाहित हैं। अंतिम वर्ष श्री रामेश्वर साहु को यह पुरस्कार प्राप्त हुआ है।

अक्तूवर 2020 में प्री-डॉक्टरॉल पाठ्यक्रम में प्रवेश हेतु कुल 386 छात्रों को लिखित परीक्षा और साक्षात्कार के लिए बुलाया गया था। इसमें शामिल हैं जेइएसटी, यूजीसी-सीएसआईआर अहर्तकों और वैध जीएटीई स्कोर धारककर्ता शामिल हैं। निम्नलिखित छात्रों ने 2020-2021 के लिए डॉक्टरॉल कोर्स वर्क में दाखिले हुए हैं।

- 1. श्री सुमन राय
- 2. श्री राजु मंडल
- 3. सुश्री शर्मिष्ठा चटोपाद्याय
- 4. श्री मनिष पटेल
- 5. श्री अश्विन कुमार बर्मा
- 6. सुश्री पुजालिन बिस्वाल
- 7. श्री कमलेश बेरा

चलाये जा रहे पाठ्यक्रमों और शिक्षकों का विवरण नीचे दिया जा रहा है :

सेमेस्टर_ I

प्रगत क्वांटम प्रक्रिया : डॉ. किर्तीमान घोष

प्रगत सांख्यिकीय प्रक्रिया : डॉ.देवाशिष चौधूरी

क्वांटम क्षेत्र सिद्धांत – I : डॉ. देबोत्तम दास

प्रगत प्रायोगिक तकनीकी : डॉ. सत्यप्रकाश साहु

प्रायोगिक भौतिकी प्रयोगशाला : डॉ. दिनेश तोपवाल

सेमेस्टर-11

सांख्यिकीय पद्धतियां, गाणितिक पद्धतियां शोध प्रविधि : डॉ. गौतम त्रिपाठी प्रगत संघिनत पदार्थ भौतिकी : डॉ. अरिजित साहा क्वांटम क्षेत्र सिद्धांत – II : प्रो. पंकज अग्रवाल : डॉ. मिणिमाला मित्रा सांख्यिकीय भौतिकी : प्रो. सुदिप्त मुखर्जी : प्रो. सुदिप्त मुखर्जी : प्रो. बी. आर.शेखर और डॉ. देबकांत सामल

कोर्स वर्क के एक भाग के रूप में विद्यार्थियों ने संस्थान के संकाय सदस्यों के निर्देशन के तहत अंतिम सेमेस्टर में परियोजना कार्य भी किया था ।

1.2 डॉक्टरॉल कार्यक्रम

वर्तमान संस्थान में अपने संकाय सदस्यों के निर्देशन में विभिन्न विषयों में सड़तालीस शोधार्थी काम कर रहे हैं। सभी शोधार्थी होमी भाभा राष्ट्रीय संस्थान (एचबीएनआई), पऊवि में समकक्ष विश्वविद्यालय में पंजीकृत हैं। प्रत्येक शोधार्थी की प्रगति की समीक्षा प्रतिवर्ष एक समीक्षा समिति द्वारा की जाती है। इस साल जुलाई-अगस्त महीने में समीक्षा की गयी थी।

ठोस पदार्थों में चंबकीयता एवं सह-संबंध प्रभाव

1.3 शोधप्रबंध (प्रस्तुत किया गया /सफाई पेश किया गया *)

निम्नलिखित शोधार्थियों को शोध-प्रबंध प्रस्तुत/ङसफाई पेश करने के आधार पर होमी भाभा राष्ट्रीय संस्थान द्वारा पीएच.डी. की उपाधि प्रदान की गयीं-

1. श्री विजिगिरि विकास

शोध-निर्देशक : डॉ. सप्तर्षि मंडल शोधप्रबंध का शीर्षक : "छद्म स्पीन फरमालिज्म काउपयोग करते हुए स्ववारिक एसीड क्रिस्टल में प्रोटॉन गतिकी के कुछ पहलु"

2. श्री देबाशिष साहा*

शोध-निर्देशक : प्रो. पंकज अग्रवाल शोधप्रबंध का शीर्षक : " हैडॉन कालाइडर पर अन्य दो बोसॉनों के सहयोग से हिग्स बोसॉन के उत्पादन "

3. श्री आशिष मान्ना∗

शोध निर्देशक ः पो. सीखा वर्मा शोधप्रबंध का शीर्षक : "प्रतिरोधी स्वीचन, प्रकाश-अवशोषण गुणधर्म, ग्लुकोज सेसिंग और संरचनात्मक प्रावस्था संक्रमण की जांच के लिए TiO2, ZnO नैनोसंरचित फिल्मों के विकास "

4. श्री गणेश चं. पाउल *

शोध -निर्देशक : डॉ. अरिजित साहा शोधप्रबंध का शीर्षक : ह्ल प्रचक्रण कक्ष युग्मित, विषमदैशिक, डिराक सामग्रियों और माजरोना नैनोवायरों के परिवहन और चुंबकीय गुणधर्म बदलाव"

5. श्री अमित कुमार *

शोध निर्देशक : डॉ. देवाशिष चौधूरी शोधप्रबंध का शीर्षक : "क्रोमोजम संगठन की पॉलिमरिक नमूनें : क्रॉस-लिंकर, क्राउडरों और परिबद्ध के प्रभाव"

शैक्षणिक कार्यक्रम

1.4 आईओपी द्वारा आयोजित सम्मेलन एवं कार्यशाला

दिनांक 23-24 नवम्बर 2020 को क्वांटम वस्तु, सांख्यिकीय और जैविकी भौतिक विज्ञान में उभरती प्रवृत्तियाँ पर आयोजित हुआ

(प्रो. अरुण एम. जायण्णवर के सम्मान में आईओपी, भुवनेश्वर द्वारा आयोजित एक वेब कनफरेंस) https://www.iopb.res.in/felicitate2020/felicitate-conference.pdf

प्रोफेसर अरुण एम.जायण्णवर की सेवानिवृत्ति के उपलक्ष्य में एक सम्मानित सम्मेलन का आयोजन किया गया है। प्रो. जायण्णवर ने लगभग तीस वर्षो तक संस्थान में विशिष्ट संकाय के रूप में सेवा की है । इस लंबी याता में, उन्होंने कई युवा प्रतिभाओं को जन्म दिया है और उन्हें अपने संबंधित कार्यस्थलों में एक सफल वैज्ञानिक या शिक्षाविद् या विशेषज्ञ के रूप में स्थापित करने में मदद की है। इस अमूल्य योगदान के अलावा, उन्होंने संस्थान के लिए कई गौरव हासिल किए हैं, उनमें से कुछ नाम है, वर्ष 1996 में आईसीटीपी पुरस्कार से और वर्ष 1998 में शांति स्वरुप भट्टनागर पुरस्कार से सम्मानित हुए हैं । प्रो. जायण्णवर पूर्णकालिक निदेशक के रूप में भी काम किया है। आईओपी के संघनित पदार्थ समूह ने सर्वसम्मति से एक बधाई सम्मेलन का आयोजन करने के लिए निर्णय लिया था ताकि हम सभी अपने सामने उनके उदाहरणात्मक कैरियर की एक झलक देख सकें, इसके अलावा, अपने उच्च मानक को बनाए रखने के लिए आईओपी को सामग्रिक रूप से प्रेरित करना है। कोविड-19 महामारी के कारण, यह सम्मेलन ऑनलाइन के माध्यम से आयोजित किया गया । बीस आमंत्रित वार्ताओं सहित यह सम्मेलन सफल रहा। वक्ताओं और वार्ताओं के शीर्षक के बारे में अधिक जानकारी के लिए www.iopb.res.in/ felicitate2020/schedule.pdf. पर जा सकते हैं। यह स्पष्ट था कि इस सम्मेलन में कई प्रतिष्ठित वैज्ञानिकों (मुख्य रूप से प्रो. जायण्णवर के समकक्ष व्यक्ति) उपस्थित थे और उनके अतीत और वर्तमान के सहयोगियों द्वारा मनाया गया था।

प्रो. एस.एम.युसूफ, निदेशक ने इस सम्मेलन का उद्घाटन किया था। वार्ता बहुत उच्च स्तर के वैज्ञानिक सामग्री थी जिसमें विविध क्षेत्र शामिल थे। आमंत्रित वार्ताओं के अलावा, लगभग पचास प्रतिभागियों ने भाग लिया था। सभी प्रतिभागियों को प्रतिभागी प्रमाणपत्र प्रदान किया गया। सम्मेलन का समापन प्रोफेसर जायण्णवर के दोस्तों और प्रोफेसर जायण्णवर के परिवार के बीच मैत्रीपूर्ण बातचीत के साथ हुआ, जो अनिश्चित काल तक चला।

अनुसंधान

2.1	सैद्धांतिक उच्च ऊर्जा भौतिकी	:	09
2.2	सैद्धांतिक नाभिकीय भौतिकी	:	16
2.3	प्रायोगिक उच्च ऊर्जा भौतिकी	•	19
2.4	क्वांटम सूचना	•	22
2.5	प्रायोगिक संघनित पदार्थ भौतिकी	•	24
2.6	सैद्धांतिक संघनित पदार्थ भौतिकी	•	30

2.1. सैद्धांतिक उच्च ऊर्जा भौतिकी

भौतिकी संस्थान में सैद्धांतिक उच्च ऊर्जा भौतिकी समूह के संकाय सदस्यों (THEP@IoP) अत्याधुनिक अनुसंधान क्षेत्रों पर काम कर रहे हैं वे क्षेत्र हैं स्ट्रिंग सिद्धांत, ब्रह्मांड विज्ञान,खगोल भौतिक शास्त्र, क्वार्क-ग्लुऑन प्लाज्मा, आपेक्षिकीय भारी आयन टकराव, न्यूट्रिनो दोलन, और डार्क मैटर परीक्षण, और अंतिम है किंतु कम नहीं, मौजूदा हैड्रॉन कोलाइडर (एलएचसी) और प्रस्तावित इलेक्ट्रॉन-पोजिट्रान कोलाइडर परीक्षण के संदर्भ में स्टांडार्ड माडल परिदृश्यों से परे विभिन्न कोलाइडर परिघटना विज्ञान आदि । शैक्षणिक वर्ष 2020-21 के दौरान THEP@IoP के महत्वपूर्ण शोध परिणाम निम्नलिखित हैं:

प्रो. ए.एम. श्रीवास्तव और उनके सहयोगियों ने स्पंदक जड़त्व आघूर्ण में गुरुत्वाकर्षणीय तरंग-प्रेरित क्षेणिक परिवर्तन के कारण पल्सर संकेतों पर देखनेयोग्य छाप का अध्ययन किया है । उन्होंने विशिष्ट स्पंदकों की एक सूची बनाई है जिनके भविष्य के संकेतों में पिछले जीडब्ल्यू घटनाओं की छाप होगी। प्रो. पंकज अग्रवाल जी का अनुसंधान एलएचसी स्थित उच्च ऊर्जा पर स्वत :युग्मन हिग्स बोसॉन के परिमापन पर जोर देता है । उन्होंने पाया कि एलएचसी में 27 TeV उच्च ऊर्जा पर द्विगुना-हिग्स उत्पादन को अलग अलग हिग्स विभव परिदृश्य को भेद-भाव करने के लिए इस्तेमाल किया जा सकता है,जबिक पूर्ण रुप से हिग्स विभव के आकार का निर्धारण के लिए भविष्य के 100 TeV प्रोटॉन-प्रोटॉन कोलाइडर में तिगुना-हिग्स उत्पादन को इस्तेमाल करना अत्यावश्यक है। प्रो. एस.के. अग्रवाल गहरा भूमिगत न्यूट्रिनो परीक्षण (डीयूएनइ) के संवेदनशीलता पर लोरेंज अपरिवर्तनीय उल्लंघन के प्रभाव पर अनुसंधान करते हैं और डीयूएनइ परीक्षण में अष्टक खोज क्षमता में काफी गिरावाट पाई गई। प्रो. एस.के. अग्रवाल जी ने अलग से आईएनओ स्थित 50 kt चुंबकीय

आईसीएएल संसूचक का प्रयोग करते हुए पर्यावरणीय न्यूट्रिनो और प्रति-न्यूट्रिनो के दोलन में न्यूट्राल विद्युतधारा नॉन-स्टांडार्ड अंतक्रिया (एनएसआई) का उल्लंघनकारी फ्लेवर के प्रभाव की जांच की है । उन्होंने प्रत्येक घटना में म्युऑन ऊर्जा और म्युऑन दिशा सहित हैड्रॉन ऊर्जा सूचना को जोड़कर प्रदर्शित किया है, आईसीएएल से एनएसआई की संवेदनशीलता को अधिक बढ़ाया जा सकता है । प्रो. एस. बनर्जी ने उपगामी रूप से फ़्लैट स्पेस-टाइम में होलोग्राफी और प्रकीर्णन आयामों पर काम कर रहे हैं। प्रो. बनर्जी की एक उपलब्धि है उपगामी सममितियों का इस्तेमाल करते हुए साधारण सापेक्षता में ट्री-लेबल एमएचवी गुरुत्वाकर्षण की गणना । डॉ. डी. दास ने स्टांडार्ड मॉडल विस्तार के साथ लेप्टोक्वार्क (एलक्यू) और राइट हैंडेड न्यूट्रिनो को दिखाया जो हिग्स भौतिक शास्त्र के लिए नयी जानकारी हो सकती है। विशेष रूप से उन्होंने क्वार्क संलयन प्रक्रिया में महत्वपूर्ण योगदान दिया है, परिणाम स्वरुप एलचसी में हिग्स उत्पादन दर बढ़ी। डार्क मैटर (डीएम) निर्देशित संसूचन परीक्षण से अशक्त परिणामों की व्याख्या करने के लिए एक प्रयास किया गया है, डॉ. दास और उनके सहयोगियों ने डीएम-न्यूक्लियन प्रकीर्णन में विभिन्न समयों में रद्द करने की संभावना का अध्ययन किया है। उन्होंने दिखाया कि इस तरह के रददीकरण से गायब हो जाने वाले छोटे डीएम-प्रत्यक्ष पहचान क्रॉस-सेक्सन हो सकते हैं। डॉ. मणिमाला मित्रा और उनके सहयोगीगण कुछ अलग न्यूट्रिनो द्रव्यमान नमूनें और इससे संबंधित डार्क मैटर और कोलाइडर फेनोमेनोलॉजी पर जोर देते हैं। उनमें से कुछ डार्क मैटर अवशेष घनत्व की व्याख्या करने के लिए बी-एल नमुने का अनुमान लगाया है जहां आदिश के थर्मल द्रव्यमान संशोधन, टाइप -!!! प्रतिलोम सीसॉ सहित इनर्ट डार्क मैटर नमूने को ध्यान में रखा है। डॉ. मित्रा के उल्लेखनीय कार्यों में शामिल

है भविष्य के इपी कोलाइडर में एक सादिश लेप्टोक्वार्क की खोज की संभावना, सेम-साइन टेट्रा लेप्टॉन चिहृन, आवेशित हिग्स फेनोमेनोलोजिस और म्युऑन-फिलिक एक्स-बोसॉन के स्पीन-पारिटी की जांच करने के लिए एक नयी रणनीति। डॉ. के. घोष और उनके विद्यार्थियों ने टाइप सीसॉ नमुनें के संदर्भ में उच्च ऊर्जा से निम्न-ऊर्जा को वियुग्मन में खोई हुई जानकारी के फेनोमेनोलोजिकॉल प्रभाव पर काम किया है। डॉ. घोष का समूह भी 13 TeV पर एलएचसी डाटा के संदर्भ में न्यूनतम और अधिकतम वैश्विक अतिरिक्त विमा नमूनें की परिघटना पर कार्य किया है । उनका अध्ययन स्पष्ट करता है कि mUED का पैरामीटर स्पेस पूरी तरह से कोलाइडर खोज और डार्क मैटर अवशेष घनत्व डेटा द्वारा खारिज हो गया है। प्रो. ए.के. नायक ने वेक्टर-वोसोन चैनल में उत्पादित अदृश्य रूप से क्षयकारी हिग्स बोसॉन की खोज के लिए एक गहन शिक्षण दृष्टिकोण का उपयोग किया है। प्रो. नायक और उनके सहयोगियों ने भारी डिजेट अनुनादों की जांच के लिए जेट अध-संरचना तकनीकियों का उपयोग करते हुए सुविधाओं को अध्ययन किया है।

(ए.एम. श्रीवास्तव, पी. अग्रवाल, एस. मुखर्जी, एस.के. अगरवाला, एस.बनर्जी, डी. दास, एम. मित्रा, के. घोष)

क्यूजीपी और सोपक्षिकीय भारी आयन टकराव

आपेक्षिकीय भारी आयन टकराव में ध्वनिक ब्लैक होल से विकिरण खखारना

आपेक्षिकीय भारी आयन टकराव में क्वार्क ग्लुऑन प्लाज्मा को "सबसे अस्पष्ट" द्रव के रूप में जाना जाता है। यह क्वांटम द्रव का एक अच्छा उदाहरण प्रदान करता है, जो स्वाभाविक रूप से ध्वनिक हॉकिंग विकिरण के अध्यनन के लिए अनुकूल है। आपेक्षिकीय निम्न ऊर्जा टकराव के लिए परा आपेक्षिकीय क्वांटम आण्विक गतिकी (UrQMD) सतत अनुकरण का उपयोग करते हुए, हम कम समय के लिए दिखाया है कि हमारे पास स्पष्ट क्षितिज के साथ मेल खाने वाले किलिंग क्षितिज के साथ एक अनुरूप स्थिर ध्वनिक मीट्रिक हो सकता है। उसके बाद एक अलक्षणी अवर्जवर फोनोन के ऊष्मीय प्रवाह को देखेगा जो क्षितिज से आने वाले हॉकिंग विकिरण को बनाता है।

आपेक्षिकीय भारी-आयन टकराव में प्रवाह ऑनिसोट्रोपी के प्रारंभिक उतार-चढ़ाव और पावर स्पेक्ट्रम: समीक्षा लेख

आपेक्षिकीय भारी-आयन टकराव में प्राथमिक स्तर का उतार-चढाव की उत्पत्ति से प्रवाह गुणांक के पावर स्पेक्ट्रम पर छाप आता है, यह कोलाइडिंग नाभिक के पार्टन वितरण से उत्पन्न प्राथमिक स्तर का उतार-चढ़ाव का एक स्पष्ट प्रमाण प्रदान करता है। इसके कॉस्मिक सूक्ष्मतरंग भूमिगत विकिरण (सीएमबीआर) विषमदैशिकों के पावर स्पेक्ट्रम की भौतिकी से गहरा संबंध है, जो प्राथमिक स्फीतिकारी उतार-चढ़ाव का प्रत्यक्ष प्रमाण प्रदान करता है। हम इनके विकास की समीक्षा करते हैं। यह आगामी इलेक्ट्रॉन-आयन कोलाइडर के विशेष महत्व को प्राप्त करता है, जो नाभिक के प्रारंभिक पार्टन वितरण का प्रत्यक्ष प्रमाण प्रदान करेगा।

ब्रह्मांड विज्ञान और खगोल भौतिकी शास्त्र

विभिन्न स्रोतों से उत्सर्जित गुरुत्वकर्षणीय तरंगें उनके आकार में अस्थिर विकृतियों को पैदा करने वाले स्पंदकों (बहुत छोटे) को प्रभावित करते हैं। हम में से कई लोगों ने हाल ही में विखाया है कि स्पंदक के जड़त्व आघूर्ण में परिणामी अस्थिर परिवर्तन पृथ्वी पर पाए गए स्पंदक संकेतों पर देखनेयोग्य छाप छोड़ सकता है, विशेष रुप से अनुनाद पर। इस प्रकार, यह स्पंदक बहुत दूर में अवस्थापित वेबर गुरुत्वाकर्षणीय तरंग संसूचक की तरह काम कर सकता है। इससे हमें स्पंदकों के माध्यम से अतीत के जीडब्ल्यू परिघटनाओं (अतीत के सुपरनोवा परिघटनाओं सहित) पर पुन: अवलोकन के लिए अनुमति मिलती है। हम यहाँ विशेष प्रकार के स्पंदकों की नमूने सूची प्रदान करते हैं जिसके आगामी संकेत अतीत के जीडब्ल्यू परिघटनाओं के छापों का वाहक बनेगा। उदाहरण के लिए, स्पंदक B2310+42 के माध्यम से सुपरनोवा SN1885 का संकेत, जो वर्ष 2022 से 2044 तक और स्पंदक J1813-1246 के माध्यम से सुपरनोवा SN1604 का संकेत 1971 से 2052 तक कुछ समय के लिए पृथ्वी पर होगा।

(अजित मोहन श्रीवास्तव)

2. यद्यपि हिग्स बोसॉन का आविष्कार हो चुका है, फिर भी इसके स्वत :युग्मन बुरी तरह से मजबूर है । यह हिग्स बोसॉन की प्रकृति को अनिश्चित करके छोड़ देता है। स्टांडार्ड मॉडल में लांडाऊ-गिंजबर्ज टाइप के अलावा अलग अलग हिग्स विभव परिदृश्यों से प्रभावित हैं, हम व्यवस्थित ढंग से विभिन्न नयी भौतिकी परिदृश्यों को संगठित करते हैं- प्राथमिक हिग्स, नांबाऊ-गोल्डस्टोन हिग्स, कोलमैन-वेनबर्ज हिग्स, और टेडपोल प्रेरित हिग्स आदि । हम पाते हैं कि एलएचसी पर 27 TeV उच्च ऊर्जा में द्विगुना-हिग्स उत्पादन को अलग अलग हिग्स विभव परिदृश्यों को भेदभाव करने के लिए इस्तेमाल किया जा सकता है। परंतु, क्वार्टिक हिग्स युग्मन को और इस प्रकार विभिन्न परिदृश्यों में हिग्स विभव के आकार को पूरी तरह से मजबूर करने के लिए हमें तिगुना हिग्स उत्पादन प्रक्रिया की जांच करने की आवश्यकता है।

भविष्य के कोलाइडर में $pp \rightarrow hhh$ (पंकज अग्रवाल)

3. पर्यावरणीय न्यूट्रिनो परीक्षण आंकडें में "ओसिलेशन डिप" विशेषताओं को दिखा सकता है, इसका कारण है एक लंबी एल/ई सीमा पर उनकी संवेदनशीलता के कारण । परीक्षणों में, न्यूट्रिनों और एंटीन्यूट्रिनों के बीच अंतर किया जा सकता है जैसे कि आईएनओ, ओसिलेशन डिप को दोनों इन चैनलों में अलग रुप से देखा जा सकता है। हम डिप-आईडेंटिफिकेशन आलगोरिदम को एक डाटा-ड्रिवेल-एप्रोस को नियोजित करके प्रस्तुत करते हैं जो ऊपरी की ओर जाने वाली और नीचे की ओर आने वाली घटनाओं में असममिति को, डीप को दिखाने के लिए म्युऑन के पुन:निर्मित एल/इ खाली जगह में उपयोग करता है, जो ओसिलेशन परिकल्पना की पुष्टि करती है । पहली बार हम आगे पुन: निर्मित (Eu, cosθμ) समतल में "ओसिलेशन वेली" की पहचान का प्रस्ताव रखते हैं, संसूचकों के लिए सुविधाजनक है जिस तरह आईसीएएल के उत्कृष्ट म्युऑन ऊर्जा और दैशिक विभेदन होते हैं। हम उदाहरण देते हैं कि कैसे इस दो विमीय वेली एक स्पष्ट दृश्यमान प्रतिनिधित्व को प्रस्तुत करेगा और एल/ इ आश्रित की जांच करेगा,वेली का संरेखण वायुमंडलीय द्रव्यमान वर्ग अंतर को मापेगा ।

हम गहरी भूमिगत न्यूट्रिनो परीक्षण (डीयूएनइ) के संदर्भ में ओक्टांट θ 23 और सीपी प्रावस्थाओं को मापने में लोरेंज इनवेरिएंट उल्लंघन (एलआईवी) के प्रभाव की जांच करते हैं। हम सीपीटी उल्लंघनकारी एलआईवी मापदंडों पर विचार करते हैं जिसमें शामिल हैं $e - \mu$ ($ae\mu$) और $e - \tau$ ($ae\tau$) सुवासों जो न्यूट्रिनो और एंटीन्यूट्रिनो की उपस्थिति संभावनआों में एक अतिरिक्त इंटरफेरेंस टर्म उत्पन्न करते हैं। यह हस्तक्षेप संबंध दोनों मानक सीपी प्रावस्था δ और नया गतिकी सीपी प्रावस्था $\phi e\mu/\phi e\tau$ पर निर्भर करता है, उनमें (θ_{23} , δ , ϕ) नयी अधोगित को जन्म देता है। एक साथ एलआईवी मापदंड को लेकर और | $ae\mu$ | = | $ae\tau$ | = 5×10^{-24} GeV के कम मूल्य पर विचार करके, हम पाते हैं कि डीयूएनइ के ऑक्टेंट आविष्कार विभव δ और $\phi e\mu/\phi e\tau$ के प्रतिकूल संयोजन के लिए काफी हद तक बिगड़ जाता है। θ_{23} का

ऑक्टेंट 3 σ पर समाधान हो सकता है यदि δ और ϕ के किसी भी विकल्प के लिए $\sin^2\theta_{23} \le 0.42$ or ≥ 0.62 के सही मूल्य है तो। दिलचस्प की बात है कि हम यह भी देखते हैं कि जब दोनों एलआईवी मापदंड $ae\mu$ और $ae\tau$ एक साथ रहते हैं, वे एक-दूसरे के प्रभाव को काफी हद तक रद्द कर देते हैं जिससे डीयूएनई को बड़े पैमाने पर अपनी ऑक्टेंट विभेदन क्षमता हासिल करने की अनुमति मिलती है।

हम आईएनओ में 50 kt चुंबकीय आईसीएएल संसुचक का उपयोग करते हुए अलग से वायुमंडलीय न्यूट्रिनो और एंटीन्यूट्रिनो के दोलन में सुवास उल्लंघनकारी न्यूट्राल विद्युतधारा अमानक अंतक्रिया (एनएसआई) मापदंड के प्रभाव का पता लगाते हैं। हम पाते हैं कि अ-शून्य ε , के कारण म्युऑन न्यूट्रिनो और एंटीन्यूट्रिनो संक्रमण संभावनायें उच्चतर ऊर्जा और लंबी आधाररेखा पर काफी हद तक परिवर्तित हो जाता है, जहां निर्वात दोलन हावी हो जाता है । हमने पहली बार प्रत्येक घटना में म्युऑन ऊर्जा और म्युऑन दिशा के साथ हैड्रॉन ऊर्जा सूचना को जोड़कर दिखाया है, को उल्लेखनीय रूप से बढाया जा सकता है। सबसे आशावादी बाउंड $\epsilon_{_{\mu\tau}}$ पर है, जिससे हम 500 kt·yr एक्सपोजर का प्रयोग करते हुए और $E\mu$, \cos_{μ} , एवं E'_{had} पर विचार करते हुए 90% सी.एल. पर -0.01 < $\epsilon_{_{\mbox{\tiny LIT}}} <$ 0.01 प्राप्त करते हैं क्योंिक देखनेयोग्य वस्तुएँ उनकी श्रेणी क्रमानुसार [1, 21] GeV, [-1, 1] एवं [0, 25] GeV में है । हम पहली बार आईसीएएल संसूचक की आवेश क्षमता के महत्व पर चर्चा करते हैं ताकि $\epsilon_{\mu \tau}$ पर बेहतर बाधाएं हो। हम द्रव्यमान पदानुक्रम निर्धारण और दोलन मापदंडों के वास्तविक परिमापन पर अशुन्य हू के प्रभाव का भी अध्ययन करते हैं।

(एस.के. अगरवाला)

4. मेरा वर्तमान का अनुसंधान एसिम्प्टोटिक रूप से समतल अंतरकाशी समय में होलोग्राफी और प्रकीर्णन आयाम पर केंद्रित है । इस मामले में, उपगामी सममितियों में

अपरिमित विमीय होते हैं और एस-मैट्रिक्स उसी के अनुरूप वार्ड की पहचान को संतुष्ट करता है । यह बाहरी रेखाओं के रूप में गुरुत्वमंडल और ग्लुऑनों को शामिल करके एस-मैट्रिक्स की संरचना पर मजबूती बाधा डालता है । उपगामी समितियों का उपयोग करते हुए सामान्य सापेक्षकता में वृक्ष स्तरीय एमएचवी गुरुत्वमंडल प्रकीर्णन आयाम का परिकलन हमारी एक मुख्य उपलब्धि है । हमने भी परिमित उपगामी समितियों का उपयोग करते हुए एमएचवी ग्लुऑन प्रकीर्णन आयामों को परिकलन करने में समर्थ रहे हैं। यह परिकलन उपगामी रूप से समतल चार विमीय अंतरकाशी समय में होलोग्राफी के लिए एक मजबूत प्रमाण प्रदान करता है।

(एस. बनर्जी)

5. जब स्टांडार्ड मॉडल (एसएम) लेप्टोक्वार्क (एलक्यू) और राइट हैंडेड न्यूट्रिनों में प्रयोग किया गया, हिग्स भौतिक शास्त्र के लिए एक दिलचस्प की बात हुई। हम दिखाते हैं कि स्टेराइल न्यूट्रिनो क्वार्कों से सहसंबंधित एक विकर्ण युग्मन और विद्युतचुंबकीय आवेश 1/3 का एक आदिश एलक्यू के माध्यम से डाउन टाइप क्वार्क युकवा अंतक्रियाओं को अच्छी तरह से बढावा दे सकता है। सापेक्षिकीय परिवर्तन क्वार्क के प्रथम दो पीढ़ियों के क्षेत्र में अधिक हुआ है क्योंकि वे स्टांडार्ड मॉडल में छोटे युकवा युग्मन में गायब हो गए हैं। युग्मनों में वृद्धि होने से स्टांडार्ड मॉडल में 125 GeV हिग्स आदिश के उत्पादन में क्वार्क संलयन प्रक्रिया का बहुत कम योगदान भी होगा, चूंकि ग्लुऑन संलयन हमेशा हावी रहता है। परंतु, यह साधारण आदिश के लिए सच नहीं हो सकता है। उदाहरण के लिए, क्या हम हम स्टांडार्ड मॉडल-गेज-एकल आदिश की परिदृश्य पर विचार कर सकते हैं ? जहां आदिश और एलक्यू के बीच O(1) युगम्न के लिए अनुमति है। ?qq युकावा युग्मन केवल एलक्यू लूप और स्टेराइल न्यूट्रिनों के माध्यम से ही विकिरण रूप से उत्पादित हो सकते हैं। क्या यहाँ क्वार्क संलयन प्रक्रिया में उल्लेखनीय क्रॉस-सेक्सन हो सकते हैं. विशेष रुप से

एक प्रकाश के लिए ? । यह लेप्टोक्वार्क द्रव्यमान के मध्यम से बड़े मूल्य के लिए सामान्य रूप से प्रभावी ग्लुऑन संलयन प्रक्रिया को भी पीछे छोड़ सकता है। इस मॉडल को स्केलर के दो जेट के संभावित बड़े शाखाओं वाले अंश के माध्यम से एलएचसी के उच्च चमक वाले रन पर परीक्षण/विवश किया जा सकता है।

डार्क मैटर (डीएम) की कण प्रकृति की जांच के लिए व्यापक खोज कई दशकों से अब तक चली आ रही है, किंतु आज तक कोई ठोस सबूत नहीं मिला है। विभिन्न विकल्पों में से, विकली इंटरएक्टिंग मैसिव पार्टिकल्स (डब्ल्यूआईएमपी) TeV मान के पास डार्क मैटर के लिए कैंडिडेटस के रूप में प्रमुख संभावनाओं में से एक रही है । एक अभूतपूर्व परिदृश्य लेते हुए,ऐसे शुन्य परिणामों को एक हिग्स पोर्टल परिदृश्य में एक सामान्य डब्ल्युआईएमपी के लिए बताया जा सकता है, यदि हम स्टांडार्ड मॉडल (गैर-स्टांडार्ड मॉडल) के समान मान मानने की अनुमति देते हैं तो। यह डार्क मैटर न्यूक्लियन प्रकीर्णन में प्रत्यक्ष-संसूचन टर्म के बीच एक रद्दीकरण से होता है, जो इसके बदले में, गायब हो रहे छोटे प्रत्यक्ष-पहचान की ओर ले जा सकता है। इससे डार्क मैटर न्यूक्लियन प्रकीर्णन में आइसोस्पिन उल्लंघन भी हो सकता है। हल्के-क्वार्क युकावा युग्मन के ऐसे गैर-स्टांडार्ड मूल्यों को एलएचसी के उच्च चकम वाले रन में जांचा जा सकता है ।

(देबोत्तम दास)

6. मेरे चल रहे शोध का मुख्य उद्देश्य है प्रकृति को मौलिक स्तर पर समझना है। शोध कार्य आधुनिक कण भौतिकी, न्यूट्रिनो द्रव्यामन की उत्पत्ति और मिश्रण और ब्रह्मांड के डार्क मैटर बहुतायत के कुछ प्रमुख प्रश्नों से संबंधित हैं। शोध कार्य उच्च ऊर्जा भौतिकी के तीन प्रमुख क्षेत्रों को जोड़ता है, वे क्षेत्र हैं न्यूट्रिनो भौतिकी, डार्क मैटर और बिअंड स्टांडार्ड मॉडल फिजिक्स (बीएसएम फिजिक्स) हैं। हाल ही का शोधकार्य अप्रैल, 2020-मार्च 2021 के बीच प्रकाशित हुआ है, उनके शोधछात्र-छात्रा, पोस्ट डॉक्टरल और सहयोगिगण कुछ अलग न्यूट्रिनो द्रव्यमान नमूने और संबंधित डार्क मैटर और कोलाइडर परिघटनाओं पर ध्यान केंद्रित करते हैं। उनमें से कई लोगों ने डार्क मैटर अवशेष घनत्व की व्याख्या करने के लिए बी-एल नमूने को मापा जहां आदिशों के तापीय द्रव्यमान संशोधन को ध्यान में रखा गया है, टाइप -III प्रतिलोम सीसाँ के साथ अक्रिय डार्क मैटर नमूने के निर्वात् स्थिरता । अन्य एक काम मेरे छात्र अभिषेक रॉय के साथ किया है । हमने स्पष्ट रूप से दिखाया है कि मापा गया बी-एल नमूने में डार्क मैटर अवशेष घनत्व परिकलन में क्वांटम आंकड़ों का उचित कार्यान्वयन कैसे हुआ है जो महत्वपूर्ण रूप से अवशेष घनत्व के लिए मैक्सवेल-बोल्टजमैन अनुमान को बदल सकता है।

छात्रा रोजालिन पधान के साथ और एक कार्य में भविष्य के इपी कोलाइडर पर एक आदिश लेप्टोक्वार्क की खोज संभावना का पूरी तरह से विश्लेषण किया गया है। यह दिखाया गया है कि एक लेप्टोक्वार्क क्षय से एक लेप्टॉन+ जेट अंतिम अवस्था में केवल 100 प्रतिलोम एफबी आंकडें का प्रयोग करते हुए इपी कोलाइडर पर एक बहुत अच्छी खोज संभावना है। एक दूसरे कार्य में, एक नये चिह्न - समान-चिह्न टेट्रा लेप्टॉन चिह्न का विश्लेषण किया गया है। आवेशित हिग्स परिघटनाओं की जांच विस्तार से की गयी है। अंत में, डॉ. दिव्यकृपा साहु ने म्युटॉन फिलिक एक्स-बोसॉन की स्पिन समता की जांच के लिए एक नई खोज रणनीति लागू की गई है।

(एम. मित्रा)

7. छोटे न्यूट्रिनो द्रव्यमानों और अ-शून्य मिश्रण की व्याख्या करके स्टांडार्ड मॉडल (एसएम) की ढांचे से परे जाने के लिए प्रमुख प्रेरणाओं में से एक रहा है। हमने नमूनों की परिघटना का अध्ययन किया है जो 1-लूप-स्तर के साथ साथ वृक्ष स्तर पर न्यूट्रिनों द्रव्यमानों को उत्पन्न करता है। साधारणत: लूप प्रेरित न्यूट्रिनों द्रव्यमान नमूनें को वेनबर्ग

ऑपरेटर में वृक्ष स्तरीय सीसॉ योगदान को प्रतिबंधित करने के लिए कुछ अतिरिक्त समरुपता की आवश्यकता होती है। परंतु, हम एक नमूने का प्रस्ताव रखते हैं जिसमें अतिरिक्त क्षेत्रों और उनकी क्वांटम संख्याओं का मापन को इस तरह से चुना जाता है कि जो युग्मनों वृक्ष-स्तर पर वेनबर्ज ऑपरेटर को जन्म देते हैं, अनुपस्थित रहते हैं और इसलिए, न्यूट्रिनो द्रव्यमान में वृक्ष-स्तर योगदान के बिना किसी अतिरिक्त समरूपता वर्जित हैं। स्टांडार्ड मॉडल आवेशित लेप्टॉन युकावा युग्मनों का क्रम का युकावा युग्मनों के साथ न्यूट्रिनो दोलन आंकड़े को सहजता से समझाने के अलावा, यह नमूने प्रयोगात्मक माप और म्युऑन चुंबकीय आघूर्ण की स्टांडार्ड मॉडल अनुमान के बीच विसंगति की व्याख्या कर सकता है और कोलाइडर परीक्षणों में एक रोमांचकर चिह्नों को जन्म देता है । न्यूट्रिनो द्रव्यमानों और मिश्रण के फिटिंग्स के बाद, हमने निरपेक्ष न्यूट्रिनो द्रव्यमान मापन पर अपर बाउंड से उत्पन्न बाधाओं का अध्ययन किया है। हमने एलएचसी परीक्षण के संदर्भ में इन TeV माप फर्मियॉन/आदिशों के उत्पादन, क्षय और प्राप्त कोलाइडर चिह्नों की भी जांच की है।

टाइप -III सीसां : उच्च ऊर्जा से निम्न ऊर्जा को वियुग्मन में खोई हुई जानकारी की घटना संबंधी प्रभाव : उच्च ऊर्जा सीसां सिद्धांत में शामिल हैं 15(9) प्रभावी मापदंड, जबिक निम्न ऊर्जा न्यूट्रिनो परिघटना में 9(7) प्रत्यक्ष और राइट-हैंडेड न्यूट्रिनो [3RHN(2RHN)] के मामले में मापयोग्य मापदंडों शामिल हैं। भारी क्षेत्रों को एकीकृत करने में कई पैरामीटर खो जाते हैं। सबसे ज्ञात कासास-इबर्रा पैरामेट्रिजेशन सुविधायें 3RHN(2RHN) मामले में 6(2) वास्तविक पैरामीटरों सहित एक जटिल मनमाना अर्थोगोनॉल मैट्रिक्स (आर) में भारी फेर्मियॉन के वियुग्मन में खोई हुई जानकारी को एनकोडिंग करता है। हमने सीएमएस सहयोग द्वारा लेप्टॉन सुवास उल्लंघन, विस्थापित क्षय, की दृष्टि से उक्त मैट्रिस की परिघटनात्मक निहितार्थ और एक अंतिम मल्टिलेप्टॉन की अंतिम अवस्थाओं का पता लगाया है।

13 TeV पर एलएचसी आंकड़ों को ध्यान में रखते हुए न्यूनतम और गैर-न्यूनतम वैश्विक अतिरिक्त आयाम नमुनें : यूनिवर्सल एक्स्ट्रा डायमेंशन (यूईडी) एक अच्छी तरह से प्रेरित और अच्छी तरह से अध्ययन किया गया परिदृश्य है । मुख्य प्रेरणाओं में से एक है डार्क मैटर (डीएम) कैंडिडेट की उपस्थिति, जिसका नाम है यूईडी के कणिका स्पेक्ट्रम में सबसे हल्के स्तर- कालुजा क्लेन (केके) कणिका (एलकेपी) । यूईडी का न्यूनतम रूप (एमयूईडी) परिदृश्य को केवल दो मापदंडों से अधिक रूप से अनुमान लगाया जाता है जिसका नाम है सघनन की त्र्याज्या और परिघटना विज्ञान के निर्धारण के लिए अतंक मापन । इसलिए, ब्रह्मांड के डीएम अवशेष घनत्व (आरडी) के डब्ल्यूएमएपी/प्लांक परिमापन से कठोर प्रतिबंध परिणाम मिलते हैं। हमने एटीएलएएस सहयोग द्वारा अभिलिखित डाटासेट के लिए एक युईडी का अध्ययन किया है। हमारा अध्ययन यह स्पष्ट रूप से दिखाता है कि एमयूईडी मापदंड अंतरकाशी को कोलाईडर खोज और डार्क मैटर अवशेष घनत्व डाटा द्वारा पूरी तरह से खारिज कर दिया है। उसके बाद, हम एमयूईडी के विस्तार के रूप में बाउंडरी-लोकालाइज्ड टर्मस में लाये हैं जिसे नॉन-मिनिमॉल यूईडी कहा जाता है। इस तरह के शब्दों की शुरुआत घटनाविज्ञान को काफी हद तक परिवर्तन कर देती है। हम ने एटीएलएएस खोजों का अनुकारण करते हुए विस्तार से कर्तन आधारित विश्लेषण किया है और एनएमयूईडी मापदंडों पर परिबद्धों को प्राप्त किया है।

(कीर्तिमान घोष)

8. समग्र क्रॉस-सेक्सन पर फ्रोईसार्ट परिबद्ध उच्च ऊर्जा आंकडों के लिए परीक्षणाधीन है। हमें इसके उल्लंघन का कोई स्पष्ट सबूत नहीं मिला है। विवर्तन क्षेत्र में विभेदी क्रॉस-सेक्सन की स्केलिंग विशेषताओं की जांच की गयी है। यह आईएसआर, एसपीएस, टेवाट्रॉन और एलएचसी ऊर्जा क्षेत्र में स्केलिंग को प्रदर्शित करता है जो अब तक असुलझा हुआ रह गया है। विवर्तन शिखर का ढलान फिट किया गया है और कठोर सीमाओं की आंकड़ों का परीक्षण किया गया है।

वेक्टर बोसॉन संलयन अवलोकित हिग्स बोसॉन की प्रकृति की जांच करने या नई भौतिक शास्त्र की खोज करने के लिए एक महत्वपूर्ण उत्पादन तंत्र है। हम अदृश्य रूप से क्षय करने वाले हिग्स की खोज में निम्न-स्तरीय कैलोरीमीटर आंकड़े से पूरी तरह से गहन-शिक्षण की योग्यता का पता लगाते हैं। विभिन्न तांत्रिक नेटवर्क आर्किटेक्चरर्स, दो निम्न-स्तरीय और उच्च स्तरीय इन वेरिएबल्स पर विचार करते हुए, एक विस्तृत तुलनात्मक विश्लेषण के लिए जांच की गयी है। यह विश्लेषण अदृश्य हिग्स बोसॉन के लिए हॉल ही में सीएमएस द्वारा की गई एक प्रयोगात्मक खोज का अनुसरण करता है। यह पाया गया कि आंकड़ें की समान मात्रा का उपयोग करते हुए और किसी भी विशेष घटना का पुनर्निर्माण पर भरोसा किए बिना ज्ञानपूर्ण गहरी-अधिगम तकनीकियों में तीन कारक द्वारा अदृश्य शाखाओं के अनुपात पर परिबद्ध में सुधार करने की क्षमता है।

हमने अनुनाद खोजों की संवेदनशीलता में सुधार और जेट की जोड़ी को क्षय करने के लिए बहुभिन्नरूपी विश्लेषण पद्धित के साथ जेट सबस्ट्रक्चर तकनीकियों को नियोजित किया है। ये तकनीकि उनके ग्लुओनिक और क्वार्क पहचान के संदर्भ में जेट को अलग करने में सुधार करती है, इससे सभी हैड्रोनिक अंतिम अवस्थाओं में नये अनुनादों के भेदभाव में सुधार हुआ है।

(ए.के. नायक)

2.2. सैद्धांतिक नाभिकीय भौतिकी

भौतिकी संस्थान का नाभिकीय भौतिकी (एनपी) समूह का मुख्य अनुसंधान कार्य है परिमित नाभिक, अपरिमित नाभिकीय पदार्थ, न्यूट्रॉन तारकों के गुणधर्म, भारी आयन टकराव और एएलआईसीई और सीबीएम सहयोग के अध्ययन करना है।

परिमित नाभिक के गुणधर्म जैसे कि (क) न्यूट्रॉन-पूर्ण नाभिक के नाभिकीय विखंडन (ख) नाभिकीय संरचना और रेडियोसक्रिय क्षय का गुच्छ (ग) असामान्य और अतिभारी नाभिक की संरचना (घ) दोनों स्थिर और अस्थिर नाभिक के बृहत् नाभिकीय अनुनाद (ङ) नाभिकीय प्रतिक्रिया और (च) नाभिकीय स्पेक्ट्रोस्कोपी । अपरिमित नाभिकीय पदार्थ के गुणधर्म हैं इसकी अवस्था के समीकरण, बंधन ऊर्जा, असंपीड़नीयता. समरुपता ऊर्जा और उच्च/निम्न घनत्व वाले क्षेत्रों में तापमान के साथ/बिना इसके विभिन्न गुणांक । न्यूट्रॉन तारक के गुणधर्म हैं इसके अवस्था समीकरण (ईओएस), द्रव्यमान, त्रिज्या, ज्वारिय विकृति, जड्त्व आघूर्ण आदि, विभिन्न कणिका/कैंडिडेट के अलावा, अर्थात् हाईपेरान क्वार्कस, डार्क मैटर आदि, इसके अंतर का अध्ययन हॉल ही में हमारे द्वारा विकसित EOSs (जी3 और आईओपीबी-I) के साथ मौजूदा के साथ विस्तारित सापेक्षिकीय माध्य-क्षेत्र आकार (ई-आरएमएफ) का उपयोग करते हुए किया गया है। चुंबकीय क्षेत्र की उपस्थिति में न्यूट्रॉन तारकों के गुणधर्मों का अध्ययन किया गया है। हाल ही में,नाभिकीय भौतिकी समूह ने डार्क मैटर के साथ साथ प्रेरक बाइनरी न्यूट्रॉन तारकों के गुरुत्वाकर्षण तरंग गुणधर्मों की खोज की है। नाभिकीय भौतिकी समूह ने अलग अलग तापमात्रा में अपने EOSs का उपयोग करते हुए प्रोटो-न्यूट्रॉन-तारकों के न्यूट्रिनो उत्सर्जकता के तापीय गुणधर्मों का अध्ययन किया है । आपेक्षिक माध्य क्षेत्र सिद्धांत (आरएमएफ) के ढांचे में चरण संक्रमण और इससे संबंधित परिघटनाओं की गंभीर रुप से जांच की गई है। न्यूर्टिनो तारकों के अलावा, हमने कोहेरेंट घनत्व उच्चावचन मॉडल (सीडीएफएम) का उपयोग करते हुए परिमित नाभिक के पृष्ठीय गुणधर्मों की गणना भी की है । यहाँ आरएमएफ घनत्व कई परिमित नाभिक और न्यूट्रॉन तारक समरूपता ऊर्जा, असंपीड़ता आदि के नाभिकीय गुणधर्मों के मूल्यों को गिनने के लिए सीडीएफएम के अनुसार बदलता रहता है।

भारी आयन टकराव का अध्ययन मुख्यतः प्रोटॉन-न्युक्लियस के बीच जो असक्रिय नाभिकीय पदार्थ, आरंभिक स्थिति, ऊर्जा हानि और पार्टन विविध प्रकीर्णन के अध्ययन के लिए महत्वपूर्ण है । इसलिए, आपेक्षिकीय भारी आयन टकराव में निर्मित हैड्रोनिक पदार्थ की सक्रिय असीमित अवस्था पर प्रभाव को समझना अत्यंत अनिवार्य है। इसके अलावा, नाभिकीय भौतिकी समूह ने $\Lambda(1520)$ अनुनाद के अध्ययन के लिए एएलआईसीई आंकडें का विश्लेषण किया है। इसके अलावा, हम सैद्धांतिक रूप से (क) आपेक्षिकीय भारी आयन टकराव में विरूपित न्यूक्लियस की निलसन मॉडल का अनुप्रयोग (ख) एलएचसी ऊर्जाओं पर pp और p-Pb टकराव में ज्ञात और अज्ञात है ड्रोनिक उत्पादन और अनुपात के अध्ययन (ग) आपेक्षिकीय अंतक्रिया करने वाले हैड्रॉन-अनुनाद गैस नमूने आदि पर काम किया है । हॉल ही में, मौलिक रूप से हमने एएलआईसीई और सीबीएम के लिए उच्च ऊर्जा प्रयोगात्मक प्रयोगशाला में काम किया है जैसे कि (क) जीईएम संसूचक प्रोटोटाइप का लक्षणन (ख) चौगुनी जीईएम संसूचक के आयन बैकफ़्लो फ्राक्सन (ग) समीकरण और (घ) सीबीएम के लिए एमयूसीएच संसुचक के लिए एचवी नियंत्रण प्रणाली।

(एस.के. पात्र और पी.के. साहु)

यह सर्वविदित है कि ब्रह्मांड में 85% से अधिक पदार्थ डार्क वस्तु से बना है। न्यूट्रॉन तारें जैसे सघन वस्तुओं में, डार्क मैटर का संचय संभव होगा । यह इस तथ्य के कारण है कि न्यूट्रॉन तारे में उच्च गुरुत्वाकर्षण क्षमता और अपार बेरियोनिक घनत्व रहता है। डार्क मैटर के कणिकायें बेरियोन के साथ पारस्परिक क्रिया करते हैं जो न्यूट्रॉन तारक गुणों को प्रभावित करते हैं। हम अति घनत्व न्यूट्रॉन पूर्ण न्यूक्लिओनिक पदार्थ की समीकरण अवस्थाओं के लक्षण बताकर अवलाकनयोग्य नाभिकीय पदार्थ के मापदंडों और न्यूट्रॉन तारे पर डार्क मैटर के प्रभाव का अध्ययन करते हैं। डार्क मैटर को जोड़ने से अवस्था समीकरण कोमल बन जाता है और कोमलता मुख्य रूप से न्यूट्रॉन तारे के अंदर डार्क मैटर के प्रतिशत पर निर्भर करती है। अन्य अवलोकन योग्य पदार्थ हैं जैसे कि द्रव्यमान, त्राज्या, ज्वारीय विकृति और जड़त्व आघूर्ण डार्क मैटर की वृद्धि के साथ घट जाते हैं। न्यूट्रॉन तारकों की वक्रता की गणना बेरियन घनत्व की भिन्नता के साथ की जाती है। यह देखने को मिला कि विभिन्न व्रकताओं की रेडियल भिन्नता तारे के अंदर रहे डार्क मैटर से काफी प्रभावित होते हैं। अधिकतम न्यूट्रॉन तार द्रव्यमान की सघनता पर डार्क मैटर का प्रभाव कैनानीकल तारे की तुलना में कम होता है । न्यूट्रॉन तारे की बंधन ऊर्जा डार्क मैटर की गति बढ़ने के साथ सकारात्मक ओर जाता है और तंत्र को अस्थिर बनाता है। हमने पाया कि डार्क मैटर विहीन की तुलना में डार्क मैटर ~33% से अधिक वक्रता उत्पादित क्रता है।

हम पोस्ट-न्यूटोनियन फर्मालिज्म के भीतर बाइनरी न्यूट्रॉन तारों के इन-स्पाइरॉल चरण गुणधर्मों का पता लगाया है। सभी स्वीकृत बल विभिन्न इन-स्पाइरॉल गुणधर्मों का परिमाण लगभग समान होता है, परंतु, अंतिम कक्षाा में इन-स्पाइरॉल अवधि अलग है। हम पाते हैं कि अवस्था समीकरण सहित बाइनरी न्यूट्रॉन तारे और डार्क मैटर के एक उच्च प्रभाजी अपने इन-स्पाइरॉल चरण में अधिक समय तक टिके रहते हैं। हमारा सुझाव है कि न्यूट्रॉन तारे के भीतर डार्क मैटर को लेना चाहिए जब वे बाइनरी न्यूट्रॉन तारक प्रणालियों के लिए इन-स्पाइरॉल वेबफर्मस की नमूने बनाते हैं। हम इस परिघटना के अवलोकनयोग्य आंकड़ों का विश्लेषण करके GW190814 के द्वितीयक घटकों पर ध्यान देते हैं। हम अवलोकन करते हैं कि अनुमानित गुणधर्म GW190814 के अवलोकनीय आंकड़ों के अनुरूप हैं, यह सुझाव मिलता है कि डार्क मैटर में न्यूट्रॉन तारों का मिश्रण की संभावना है, यदि बताये गये अवस्था समीकरण पर्याप्त रूप से कठोर है तो।

हम आपेक्षिकीय माध्य क्षेत्र नमूनों की नाभिकीय पदार्थ गुणधर्मों पर तापीय प्रभाव का अध्ययन करते हैं। सममिति में द्रव-गैस-प्रावस्था संक्रमण की क्रांतिक तापमात्रा अतीत में किये गये सैद्धांतिक और प्रायोगिक अध्ययनों से पूरी तरह सहमत हैं। हम पाते हैं कि संतृप्ति घनत्व पर बंधन ऊर्जा और मुक्त सममित ऊर्ज के दूसरे अंतर गुणांक के गुणधर्म अनुभवजन्य/प्रायोकिंग परिणामों के अनुरूप है।

हमने बहुपदीय फिटिंग सिहत नाभिकीय पदार्थ की अलग अलग न्यूट्रॉन-प्रोटॉन असिमिति के प्रत्येक न्यूक्लियन की बंधन-ऊर्जा की घनत्व-आश्रित विश्लेषणात्मक अभिव्यक्ति को प्राप्त किया है, जो प्रभावी-क्षेत्र सिद्धांत प्रेरित आपेक्षिकीय माध्यम क्षेत्र नमूने के परिणामों को प्रकट करता है।

यह अभिव्यक्ति ब्रकनर का ऊर्जा घनत्व कार्यात्मकता पर बढ़त हैं क्योंकि यह कस्टर-बैंड समस्या का समाधान करता है। यह मान न्यूट्रिनो दाब, समिमति ऊर्जा से प्राप्त हुए हैं और इसका व्युत्पन्न को स्लोप पैरामीटर के रूप में जाना जाता ह। जो एक संकीर्ण क्षेत्र में रहता है जहां प्रकाश से भारी नाभिक की ओर घुमते समय आइसोस्कलॉर असंपीडनीयता और सतही असंपीड़नीयता में बड़ा अंतर है।

हल्के न्यूट्रिनो-पूर्ण असामान्य नाभिक में शामिल संलयन

प्रतिक्रियाओं की जांच खगोलभौतिकीय परिदृश्यों में न्यूक्लियोसिंथेसिस को समझने के लिए सर्वोपरि महत्व है । 12C+12C प्रतिक्रिया को प्रज्वलित करने के लिए और एक्रीटिंग न्यूट्रॉन तारकों से एक्स-रे सुपर बर्स्ट का उत्पादन के लिए यह एक ऊष्म स्राते है। हाल ही में 12C लक्ष्य सहित न्यूट्रॉन पूर्ण संलयन का अध्ययन किया गया है। बास नमूने से अनुमान किया जाता है कि σ-फस और समय आरित हार्टी फक नमूने प्रायोगिक आंकड़ों की व्याख्या करने में असफल रहा । उसकी व्याख्या के लिए बेरियर इंजन के पास 20O+12C प्रतिक्रिया की जांच क्वांटम मेकानिकल खंडीकरण आधारित गतिकीय गुच्छ क्षय नमूने (डीसीएम) में किया गया है। हमने माईक्रोस्कोपिक आपेक्षिकीय माध्य क्षेत्र (आरएमएफ) सिद्धांत के भीतर अलग अलग नाभिकीय गुणधर्मों और नाभिकीय सममिति ऊर्जा के आश्वित तापमात्रा का पता लगाया है। हम डीसीएम के भीतर आरएमएफ सिद्धांत से माईक्रोस्कोपिक तापमात्रा आश्रित बंधन ऊर्जाओं (टी.बी.ई) का हिसाब किया है और 20O+12C प्रतिक्रिया में निर्मित 32Si* के लिए खंडीकरण दक्षता की संरचना की जांच करते हैं। खंडीकरण क्षमता की संरचना और परिमाण टी.बी.इ. के माक्रोस्कोपिक (मेक) और माईक्रोस्कोपिक (मिक) चयनों के लिए ऊर्जक रूप से इष्टतम/न्यूनतम खंडों में परिवर्तन सहित संभावित / विशेष रुप से बदलते पाए जाते हैं। σ कणिकायें (4He, 5He) मिक टी.बी.ई मामले में केवल खंडीकरण प्रोफाइल में निम्न कोणीय संवेग पर इष्टतम है। σ-फस में अलग अलग हल्के आवेशित कणिका (एलसीपी) चैनलों के सापेक्ष क्रॉस-सेक्सन दोनों टी.बी.इ. के मामले में पूर्ण रुप से भिन्न है। 2H और 4He एलसीपी चैनलों के क्रॉस-सेक्सन मेक टी.बी.इ. की तुलना में मिक टी.बी.इ.के लिए अपेक्षाकृत बढ़ाया गया है ।

(एस.के. पात्र)

2. गोलाकार सममिति न्यूक्लियस (Au अथवा Pb) के लिए, वुड-सॉक्सन (डब्ल्यूएस) वितरण अत्यधिक गतिशील होना प्रमाणित करता है और एक न्यूक्लियस के अंदर न्यूक्लियन वितरण करने में बिल्कुल उपयुक्त है। हम एक वैकल्पिक एप्रोच का उपयोग करते हैं जिसे निलसन नमूने के रूप में जाना जाता है, आएचआईसी में 193 GeV पर U+U टकराव की व्याख्या के लिए यह किया गया है। हमने आवेशित कणिका बहुलता और छद्म तीव्रता वितरण का आकलन के लिए HIJING नमूने में फर्मालिज्म को कार्यान्वित किया है। यह नमूने डब्ल्यूएस/एमडब्ल्यूएस की तुलना में प्रयोगात्मक डेटा का अधिक बारकी से वर्णन करता है और इस प्रकार इस मॉडल औपचारिकता के भीतर विकृत नाभिक का अध्ययन करने के लिए अधिक उपयुक्त है।

आपेक्षिकीय माध्य-क्षेत्र (आरएमएफ) सिद्धांत पर आधारित मेसॉन आदान-प्रदान अंतक्रिया को हैड्रॉन अनुनाद गैस (एचआरजी) नमूने में बताया गया है जिसे इंटरएिक्टंग एचआरजी (iHRG) नमूने के रूप में जाना जाता है। इस नमूने को दोनों परिमित तापमात्रा (T) सिहत परिमित रासायनिक विभव पर प्रयोगात्मक आंकड़े की व्याख्या के लिए उपयोग किया जा सकता है और परिमित तापमात्रा रासायनिक विभव (µB) में अदृश्य हो जाता है। हमने समतापी संपीडयता (kT), विशिष्ट ऊष्मा (CV) और µB, के कार्य के रूप में ध्विन की तीव्रता और T, द्रव्यमान ऊर्जाओं के केंद्र को बताया है।

(पी.के. साहु)

2.3. प्रायोगिक उच्च ऊर्जा भौतिकी

आईओपी का प्रयोगिक उच्च ऊर्जा भौतिकी समूह विश्व के कई अग्रणी कोलाइडर आधारित कणिका भौतिकी परीक्षणों में जैसे कि एलएचसी (सीईआरएन, स्वीटजरलैंड) स्थित सीएमएस और एएलआईसीइ, आरएचआईसी (बीएनएल, यूएसए) स्थित एसटीएआर परीक्षण और एफएआईआर (जीएसआई,जर्मनी) स्थित सीबीएम परीक्षण में भाग लेता है।

सीएमएस समूह हिग्गस बोसॉन के परिमापन में प्रमुख योगदान दे रहा है, जिसकी खोज 2012 में एलएचसी स्थित एटीएलएएस और सीएमएस द्वारा खोजा गया था और जिसमें केंद्र का द्रव्यमान ऊर्जा 13 TeV पर प्रोटॉन-प्रोटॉन टकराव का उपयोग किया गया था । विशेष रुप से. दो शीर्षस्थ क्वार्क और दो टाऊ लेप्टानों में क्षय के सहयोग से हिग्गस बोसॉन के उत्पादन अध्ययन द्वारा दो शीर्षस्थ क्वार्क में हिग्गस बोसॉन के परिमापन में योगदान दिया था। सभी मल्टीलेप्टान अंतिम अवस्थाओं में विश्लेषण का परिणाम करीब 5 मानक विचलन के महत्व को बताया । यह समूह दो टाऊ लेप्टॉनों में क्षय हिग्गस बोसॉन सीपी गुणधर्मों में अधिक योगदान दिया है, जहां दो टाऊ लेप्टानों के क्षय समतलों के बीच कोण का नियोजन विभिन्न सीपी अवस्थाओं के बीच भेदभाव दिखाने वाले के रूप में किया गया है । पूर्ण 13 TeV आंकडे सहित विश्लेषण का परिणाम 20 डिग्री से कम सीपी मिश्रण कोण को विवश करता है और लगभग ३ मानक विचलनों द्वारा एक शुद्ध सीपी अप-अवस्था को शामिल नहीं करता है। इसके अलावा, यह समूह एक चार्म और एक अज्ञान क्वार्क में क्षयकारी आवेशित हिग्स बोसॉन के विश्लेषण में शामिल हैं, जहां आवेशित हिग्स शीर्षस्थ क्वार्क के क्षय से उत्पन्न होता है, जो विश्लेषणकारी आंकड़ों से प्राप्त इस शाखन अनुपात पर कठोर अपवर्जन सीमा प्रदान करता है। इसके अलावा, यह समूह टाऊ, जेट और लापता ऊर्जा ट्रिगर के परिमापन निष्पादन और विकास में योगदान दिया है। यह समूह ने सीएमएस ट्राकर समूह के सहयोग से सीएमएस सिलिकॉन-स्ट्रिप ट्राकिंग संसूचक मॉडयूल्स की कार्यात्मक

परीक्षण के लिए एक माईक्रो टीसीए आधारित परीक्षण सेटअप को विकसित किया है।

भारी आयन भौतिकी समूह सापेक्षिकीय भारी न्यूक्लियस टकराव और प्रोटॉन-न्यूविलयस टकराव की कई परिघटनाओं में शामिल है। यह समूह क्रमानुसार 7 TeV और 5.02 TeV पर p-p और p-Pb टकराव में एएलआईसीई पर अनुनाद Λ (1520) के उत्पादन का अध्ययन किया है । यह मापन 5.02 TeV पर p-Pb टकराव में हैड्रोनिक प्रकीर्णन माध्यम पर मॉडल को ऊपरी सीमा रखने में मदद करता है । इस समूह ने सैद्धांतिक नमुनों पर कई अध्ययन किया है जैसे कि विरूपित न्यूविलयस के लिए निलसन नमूने के अनुप्रयोग, एलएचसी ऊर्जाओं पर pp और p-Pb टकराव में ज्ञात एवं अज्ञात उत्पादन एवं अनुपात के अध्ययन, और सापेक्षिकीय अंतक्रिया करने वाले हैड्रॉन-अनुनाद गैस नमूने । इसके अलावा, यह समूह गैस-इलेक्ट्रॉन-मल्टीप्लायर (जीइएम) संसूचक पर अनुसंधान एवं विकास का काम कर रहा है। इस समूह ने भौतिकी संस्थान की आयन बीम सुविधा पर प्रोटॉन बीम टकराकर धातु के लक्ष्य से उत्सर्जित एक्स-रे का उपयोग करके एक प्रोटोटाइप के लक्षण वर्णन किया है। इस समूह ने एक चौगुनी जीईएम संसूचक के आयन बैकफ़्लो अंश की एक व्यवस्थित जांच की है और गारिफल्ड++ सिमुलेशन पैकेज का उपयोग करते हुए अपने गुणधर्म का सिमुलेशन अध्ययन किया है। इसके अलावा, सीबीएम परीक्षण में एमयूअसीएच संसूचक की एक उच्च वोल्टता नियंत्रण प्रणाली को विकसित कर रहा है।

(पी.के. साहु और ए.के. नायक)

1. कई हैड्रोनिक अनुनाद अवस्थायें अपने छोटे जीवनकाल (\sim few fm/c) के कारण कई गुणधर्म की जांच के लिए महत्वपूर्ण है जैसे कि सापेक्षिकीय भारी आयन टकराव में निर्मित हैड्रोनिक प्रकीर्णन माध्यम के जीवनकाल । हमने क्रमानुसार 7 TeV और 5.02 TeV पर p-p और p-Pb टकराव में Λ के उत्पादन का अध्ययन किया है ।

गैस इलेक्ट्रॉन मल्टीप्लाइयर (जीईएम) संसूचक में उच्च दर क्षमता और उच्च विभेदन का अधिकारी है। एक 10 X10 cm² आकार का ट्रिपल-जीईएम प्रोटोटाइप निर्माण किया गया ओर स्रात का इस्तेमाल करते हुए उसका लक्षण वर्णन किया गया है । 3 एमवी टांडेम पैलेट्रॉन से उत्पादित प्रोटॉन बीम का उपयोग जीईएम संसूचक की विशेषताओं के अध्ययन के लिए लक्षित विभिन्न धातुओं से एक्स-रे उत्पन्न के लिए किया गया था । जीईएम आधारित संसूचकों के आयन बैकफ़्लो भाग के अध्ययन के लिए एक व्यवस्थित जांज भी की गई है। संसुचक को मिली आयन विद्युतधारा का मापन ध्यानपूर्वक विभिन्न वोल्टता विन्यास और विभिन्न गैस अनुपात में किया गया है । पाये गये आयन बैकफ़्लो भाग बहाव क्षेत्र और संसूचक के प्रभावी लाभ के प्रति बहुत संवेदनशील लगता है। संसुचक के अभिलक्षणन के लिए गारफील्ड++ सहित सांख्यिकीय विश्लेषण के लिए कदम उठाए गए हैं । हमने गारीफिल्ड और एएनएसवाईएस फिल्ड सल्वर का इस्तेमाल करते हुए गैस अर्जन, प्रभावी अर्जन, प्रतिस्पर्धा, आयन बैकफ्लो, ऊर्जा और विभेदन स्थिति जैसी गुणधर्मों की विशेषता बताने के लिए 4-जीईएम का स्टाक का अनुकरण हमने किया।

सीबीएम के एमयूसीएच संसूचक की एचवी नियंत्रण प्रणाली के मूल प्रेरणा दूरस्थ स्थान से जीईएम संसूचक के अधिक विद्युतशक्ति खींचने भाग को अलग कर देता है। अभिकल्पना का मापदंड इस प्रकार है: एचवी चैनल को जीईएम संसूचक से अलग करना और एलवी भाग से अलगन को बनाए रखना मूल लक्ष्य है।

(पी.के. साहु)

2. आईओपी का सीएमएस समूह द्रव्यमान केंद्र ऊर्जा 13 TeV पर सीएमएस परीक्षण द्वारा अभिलिखित पीपी टकराव आंकडे में दो शीर्षस्थ क्वार्क (ttH) के सहयोग से होने वाले हिग्गस उत्पादन की खोज में प्रमुख योगदान दिया है। हमारा विश्लेषण का ध्यान अंतिम अवस्थाओं पर गया है, जहां हिग्गस बोसॉन दो शीर्षस्थ लेप्टॉनों में क्षय होता है । हमने इस विश्लेषण के लिए बुस्टेड डेसीसन ट्रीज (बीडीटी) पर आधारित मल्टीवेरिएट विभेदक के विकास में प्रमुख योगदान दिया है और 2016 और 2017 के आंकडों का इस्तेमाल करते हुए विश्लेषण किया गया । इसके अलावा, दो नयी अवस्थाओं को दो हैड्रोनिक टाऊ लेप्टानों से जोड़ा और कोई अतिरिक्त हल्के लेप्टानों नहीं जोड़ा, और आंकडे के Z→ tau tau पृष्ठभूमि के साधारणीकरण पर भी अध्ययन किया गया है। इस विश्लेषण का परिणाम इपीजेसी में प्रकाशित हुआ है, जो 5 मानक विचलन के आसपास का महत्व को प्रदान करता है।

हमने हिग्गस बोसॉन सीपी गुणधर्मों के मापन में प्रमुख योगदान दिया है दो टाऊ लेप्टानों में इसके क्षय में प्रमुख योगदान दिया है जहां दो टाऊ लेप्टानों के क्षय समतल के बीच का कोण को अलग अलग सीपी अवस्थाओं के बीच अंतर दिखाने के लिए विभेदक के रूप में नियोजित किया गया है। क्षय तल का निर्माण न्यूट्रॉल पॉयन के संवेग को जोड़कर अथवा प्राथमिक वेर्टेक्स के संबंध में आवेशित पॉयन के प्रभावी पैरामीटर के संवेग सादिश से किया गया है। पर पूर्ण रॉन-2 डाटा का विश्लेषण सीपी मिश्रण कोण का मान (4 +/- 17) डिग्री प्रदान करता है और 3.2 मानक विचलनों द्वारा एक विशुद्ध सीपी-विषम अवस्था को शामिल नहीं करता है।

हमने 13 TeV पर रन-- 2 डाटा में टाऊ ट्रिगर निष्पादन को मापा है और एमसी मान घटकों का आंकडा प्राप्त हुआ है जिसे एमसी अनुकरण के संशोधन के लिए भौतिकी विश्लेषण में उपयोग किया जाना है। मापे गये ट्रिगर दक्षता वक्रताओं में अपने मॉडलिंग में सुधार करने के लिए एक नॉन-पैरामेट्रिक

अनुसंधान

फिट के निष्पादन के लिए गैसियन रिग्रेसन तीकनीकी का उपयोग करते हुए एक नयी विधि को विकसित किया गया है। हमने ऑफलाइन वस्तुओं के संबंध में जेट और लापता अनुप्रस्थ ऊर्जा ट्रिगर की दक्षता को भी मापा है। विशेष रूप से हमने ट्रिगर स्तर के जेट कैंडिडेटों के लिए Z(डाई-म्युऑन)+1- जेट संतलन विधि का उपयोग करते हुए इसके असली जेट ऊर्जा मापन के संबंध में जेट ट्रिगर दक्षता का मापन के लिए एक नयी विधि को भी विकसित किया है।

हम एक कार्यात्मक परीक्षण सेट अप को एकत्रित कर रहे हैं, जिसका उपयोग एकत्रित के दौरान सिलिकॉन-स्ट्रिप ट्राकर संसूचक मॉड्यूल्स के कार्यात्मक परीक्षण के लिए किया जाएगा। आज तक, इलेक्ट्रिकॉल रिडआउट के संघटकों की आपूर्ति हो चुकी है और एकत्रित किये गये है। इस सेटअप की कार्यक्षमता की जांच एक 8CBC3 हाईब्रिड से हुई है। इसके अलावा, हमने इन मापों को करने के लिए आवश्यक बुनियादी ढांचे के साथ साथ प्रयोगशाला का स्थान तैयार किया है।

(ए.के. नायक)

2.4 क्वांटम सूचना

ववांटम सूचना समूह क्वांटम सहसंबंध, क्वांटम नॉन-लोकालिटी और प्रासंगिकता, क्वांटम संचार प्रोटोकॉल्स और क्वांटम कूटलेखन के क्षेत्र में काम करता आ रहा है । क्वांटम सहसंबंध के क्षेत्र में, एक नया माप जो न केवल सहसंबंध का परिमाण निर्धारित करता है बल्कि स्थानीय क्वांटमनेस का परिचय करवाया था। इसमें मिश्रित अवस्थायें हैं, जो उत्पाद अवस्थाओं का मिश्रण है, किंतु अवस्था का स्थानीय क्वांटमनेस इसके अविभाज्य अंग है। जिस नया उपाय परिचय करवाया गया वह है फाइन-ग्रेनड उपाय। कोई भी एक नया माप बता सकता है जो एक अवस्था के आनुपातिक क्वांटम गुणधर्मों का लक्षण बता सकता है। हम भी इस माप के कई अनुप्रयोगों के बारे में चर्चा करते हैं।

इसके अलावा,बहुपक्षीय अवस्थाओं का एक नया क्रिप्टोग्राफिक प्रोटोकॉल का आरंभ किया गया है और तीन क्यूबिटस की उपयुक्त संसाधन अवस्थायें मिली हैं । इन संसाधन अवस्थाओं का उपयोग करते हुए एक मुख्य करफरेंस उत्पादन की संभावना का अध्ययन किया गया था । अतीत में बताये गये बहुपक्षीय बेल असमानताओं का एक सेट का उल्लंघन एक घुसपैठिया होने की पहचानने में मदद करता है। यह मदद प्रोटोकॉल को सुरक्षित रखता है। ये संसाधन अवस्थायें भी कोअपरेटिव टेलीप्रोटेशन के लिए भी उचित है।

(पकंज अग्रवाल)

अनुसंधान

क्वान्टम जटिलता कई संचार प्रोटोकॉल्स में एक महत्वपूर्ण भूमिका निभाता है। हमने एक ऐसे परिदृश्य पर विचार किया जहां एक प्रोटोकॉल में दो से अधिक पार्टियां शामिल थे और एक बहुपक्षीय जटिल अवस्था से साझा करते हैं। विशेष रुप से, हमने नियंत्रित क्वांटम कुंजी वितरण के प्रोटोकॉल (CoQKD) पर विचार किया जहां दो पार्टियां आलिस एवं बब अन्य पार्टियों से सहयोग का एक संबंध स्थापित करते हैं । अन्य पार्टियां नियंत्रण एंव सुपरवाइज करते हैं कि क्या आलिस एवं बब संबंध स्थापित कर सकते हैं, इसकी सुरक्षा और संबंध की दर पर भी। तीन पक्षों के मामले में. हमने उचित संसाधन अवस्थाओं को पाया और तीसरी पार्टि चार्ले की नियंत्रण क्षमता पर चर्चा की। हमने कनफरेंस की और कोअपरेटिव टेलीप्रोटेशन के उत्पादन के लिए नयी संसाधन अवस्थाओं की उपयोगिता की जांच की। हमने पाया कि हाल ही में बतायी गयी बेल असमानताएं का उपयोग करफरेंस कुंजी की सुरक्षा स्थापित करने के लिए किया जा सकता है। हमने इस परिदृश्य को तीन से अधिक पार्टियों के लिए भी सामान्यकृत किया ।

हमने बहुकणिका प्रणालियों के लिए क्वांटम सहसंबंध के एक नये सूचना सैद्धांतिक माप का प्रारंभ किया है। हमने बहुभिन्नरूपी सूचना-पारस्परिक सूचनि के एक रूप का उपयोग किया और इस बहुकणिका क्वांटम प्रणालियों में साधारणीकृत किया। इसके कई अलग-अलग संभावित सामान्यीकरण होते हैं। हम उनमें से दो पर विचार करते हैं। उनमें से एक क्वांटम विकार की धारणा से संबंधित है और दूसरा क्वांटम मतभेद की अवधारणा से संबंधित है। यह नाय माप मतभेद सादिश है जो क्वांटमनेस सादिश है। इसे फाइन-ग्रेंड माप के रूप में विचार किया जा सकता है, जैसे कि एक पद्धति के कई आनुपातिक क्वांटम गुणधर्म की मात्रा का मापन के लिए प्रस्ताव दिया गया है। ये मात्रायें बहुकणिका अवस्थाओं में मौजूदा सहसंबंध का मापन/लक्षण करते हैं। हम कई मल्टिक्यूबिट अवस्थाओं पर विचार करते हैं और पाते हैं कि ये मात्रायें एक अवस्था में मौजूदा मात्रा

और सहसंबंध के विभिन्न पहलूओं के लिए उत्तरदायी हैं। हमने पाया कि विभिन्न विघटन वाले सादिश केवल सहसंबंध (दोनों क्लॉसिकल एवं क्वांटम) अथवा क्वांटमनेस को ट्रॉक कर सकता है। प्रत्यक्ष अनुप्रयोग के रूप में, हमने पाया कि इन सादिश विभिन्न सूचना प्रसंस्करण कार्य में उपयोगी हो सकते हैं। हम विघटन करने वाले सादिशों की भूमिका पर विचार करते हैं वे हैं (क) एक इवेसड्रॉपर के लिए प्रोटोकॉल की सुरक्षा पर विचार करने में (ख) ग्रोवर खोज आलगोरिदम के निष्पादन में सहसंबंध की संभाव्य भूमिका निर्धारण करने में। विशेष रुप से, ग्रोवर खोज आलगोरिदम में, हमने पाया कि विघटन सादिश सहसंबंधों का पता लगा सकते हैं और जरुरत होने पर अधिकतम संख्या में सहसंबंध को दिखा सकते हैं।

(पंकज अग्रवाल)

2.5 प्रायोगिक संघनित पदार्थ भौतिकी

भौतिकी संस्थान में प्रायोगिक संघनित पदार्थ भौतिकी समूह की एक विस्तृत श्रृंखला में सिक्रय अनुसंघान कार्यक्रम शामिल हैं, जिसमें त्वरक आधारित अनुसंघान गतिविधियां, पतली फिल्में, सतह विज्ञान, अत्यिधक सहसंबद्ध इलेक्ट्रॉन प्रणालियां, द्वि-आयामी सामग्री, क्वांटम सामग्री शामिल हैं। समूह के सदस्य सौर सेल, मेमोरी और सेंसर अनुप्रयोगों के लिए अग्रिम कार्यात्मक सामग्री की भी खोज कर रहे हैं। हमारा मुख्य लक्ष्य ठोस पदार्थों की संरचना और गुणों की जांच करना और उन्हें समझना है। हम उच्च गुणवत्ता वाले नवल पदार्थ तैयार करने के लिए विभिन्न तकनीकों जैसे आयन आरोपण, स्पंदित लेजर जमाव, आणविक बीम एपिटाइक

और उच्च तापमान ठोस अवस्था प्रतिक्रिया का उपयोग करते हैं। परिष्कृत और उन्नत उपकरणों का उपयोग करके पदार्थ के विभिन्न गुणधर्मों की जांच की जाती है, जिसमें उच्च रिजॉल्यूशन एक्स-रे विवर्तन, ट्रांसिमशन इलेक्ट्रॉन माइक्रोस्कोप, फील्ड उत्सर्जन स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप, परमाणु बल माइक्रोस्कोप, एसक्यूयूआईडी, भौतिक गुण माप प्रणाली, उच्च रिजॉल्यूशन रमन स्पेक्ट्रोमीटर, कोण-समाधान फोटोइमिशन स्पेक्ट्रोस्कोपी आदि शामिल हैं।

(एस वर्मा, बी आर शेखर, टी सोम, डी तोपवाल, सत्यप्रकाश साहू, डी सामल)

1. बायोसेसिंग और प्रकाशसंसूचकों के लिए नैनोसामग्री :

संयुग्मित संकर नैनोसंरचित Cu_2O -ZnO को एकल-चरण सह-विद्युतिनिक्षेपण (सीइडी) तकनकीक से विकसित किया गया है। यद्यपि ZnO नैनोसंरचना का विकास अकेले विद्युत-निक्षेपण तकनीकी से हुआ है किंतु कोई ग्लुकोज संवेदन प्रदर्शित नहीं करता है, सीइडी से विकसित Cu2O-ZnO नैनोसंरचनाएं बहुत उच्च संवेदनशीलता, लंबी रैखिक सीमा, कम संसूचन सीमा, और तेजी प्रतिक्रिया समय सहित नॉन-एंजामेटिक ग्लुकोज संवेदन और एम्परोमेट्रिक व्यवहार प्रदर्शित करती हैं। सीइडी विकसित प्रक्रिया संयुग्मित संकर नैनोसंरचित Cu_2O -ZnO को विकसित करता है जो गैर-एंजाइम ग्लुकोज संवेदन के लिए एक उत्कृष्ट टेम्पलैट प्रस्तुत करता है।

नैनोसंरचित SiOx अवस्तरों पर डीएनए का अवशोषण की जांच इनके बंधन व्यवहार को समझने के लिए की गई है। एक्सपीएस परिणाम से एक पूर्ण तस्वीर स्पष्ट होती है जहां SiO_x आवेश स्थानांतरण के माध्यम से इलेक्ट्रोस्टेटिक अंतक्रिया द्वारा डीएनए के नाईट्रोजेन आधारों से अंतक्रिया करते हुए प्रतीत होता है। इन परिणामों को डीएफटी से की गई क्वांटम स्तर की गणना से पूरक हैं। डीएफटी के माध्यम से प्राप्त आणविक इलेक्ट्रोस्टैटिक मानचित्र और आणविक कक्षीय मानचित्र, प्रायोगिक परिणामों से समर्थन करते हैं। जैवसंवेदन अनुप्रयोग के लिए ये परिणाम महत्वपूर्ण होंगे।

TiO2 पतली फिल्मों की पृष्ठीय गतिकी, 50 keV Ti आयनों रोपण के तहत विकसित हो रहा है, जिसकी जांच की जा चुकी है। आयन किरणन परीक्षण आईयूएसी, नई दिल्ली में किया गया था। रुपात्मक विकास जैसे कि परमाणु बल माइक्रोसकोपी से जांच की गई है, जहां आयन रोपण द्वारा एक पृष्ठीय चौरासाई को चित्रित करता है। सतहों पर नैनोस्केल संरचनाओं का आकार भी घटता है। स्केलिंग फर्मालिज्म का अनुप्रयोग हाईट-हाईट सुसंबंध कार्य और पावर स्पेक्ट्रॉल घनत्व (पीएसडी) जांच के माध्यम से स्केलिंग घातांक आकलन द्वारा इस अस्थायी और स्थानिक गतिशिलता

को समझने के लिए किया गया है ।

नाइट्रोजेन-प्रेरित रंग केंद्रों की जीवनकाल में एकल-क्रिस्टल डायमंड प्रकाशसंसूचक की परबैंगनी विद्युत प्रतिक्रिया की जांच की जा चुकी है। एकल-क्रिस्टल डायमंड प्रकाशसंसूचकों का निर्माण किया गया है और प्रकाशिक और वैद्युतिक परिमापन द्वारा चरित्र चित्रण किया गया है। जैसे कि प्रकाशविद्युत अध्ययन से पाया गया है,वर्तमान प्रक्रिया का परिणाम अंधेरे की स्थिति की तुलना में पाँच गुना तक बढ़ जाता है। प्रक्रिया में योगदान देने वाले प्रमुख रंग केंद्र के आवेश वाहक गतिकी की जांच की गई है।

नैनो-क्रिस्टालीन NiO में चुंबकीय कोटि उत्प्रेरित प्रभाव की जांच रमन स्पेक्ट्रा में पाये गये फोनन एवं मैग्ननों के जिरये की गई है । प्रमुख अवलोकन मैग्नन चोटियों के चिह्नित आकार और उत्तेजना की तरंगदैर्घ्य भिन्नता के साथ प्रथम कोटि के अनुप्रस्थ और अनुदैर्घ्य प्रकाशिय फोनोनों की विषमदैशिकता को दिखाते हैं । इन परिणामों की व्याख्या अंतक्रिया और मजबूत इलेक्ट्रॉन-सुसंबंध के बदलाव के संदर्भ में की गई है। चुंबकीयकरण परिमापन लौहचुंबकत्व में जबरदस्त और चुंबकीयकरण में घटते आकार सहित क्रॉसओवर दिखाते हैं,जिसे थर्मो-प्रेरित योगदान के कारण दिखाया गया है।

(एस. वर्मा)

2. कोण विभेदित फोटोइलेक्ट्रॉन सूक्ष्मदर्शिकी (एआरपीइएस) का उपयोग करके आकारिकी विद्युत-रोधियों का अध्ययन :

सारे प्रतिरोधन सामग्नियों में स्पीन ध्रुविकृत नॉन-दिविएल पृष्ठीय अवस्थाओं (एसएसएस) की खोज संघिनत पदार्थ भौतिकी के क्षेत्र में एक बड़ी सफलता थी। इन यौगिकों की विभिन्न असामान्य अवस्थाओं को व्यापक रूप से टोपोलोजिकॉल इनसुलेटरर्स (टीआईएस) के रुप में जाना जाता है, जिसे दोनों प्रायोगिक और सैद्धांतिक उपकरणों के रूप में उपयोग किया जा रहा है। इस अद्वितीय टोपोलोजिकॉल इनसुलेटर्स की उत्पत्ति मजबूत प्रचक्रण कक्ष युग्मन होता है और इन सामग्रियों में निम्न ऊर्जा बैंड गैप होता है, दोनों मिलकर विपरीत समता वाले बैंड के व्युत्क्रम को जन्म देते हैं । ये टोपोलोजिकॉल इनसुलेटरर्स आकारिकी में नॉन-ट्रिविएल हैं और इसलिए किसी भी क्षोभ में स्थिर है, जैसे कि अव्यवस्था और अशुद्धियाँ । स्पीन कक्ष अंतक्रिया (एसओआई) और निकट फेर्मी लेबल (E) इलेक्ट्रोनिक संरचना के बीच सुक्ष्म पारस्परिक क्रिया वेल अर्धधातु, टोपोलोजिकॉल क्रिस्टालीन इनसुलेटरर्स, टोपोलोजिकॉल डिराक अर्धधातु आदि जैसे अन्य विशिष्ट प्रणालियों को आगे बढाती है। कई यौगिकों को सैद्धांतिक रूप से मजबूत टोपोलोजिकॉल इनसुलेटर विशेषताओं को बढ़ाने का अनुमान किया गया है और उनमें से कई प्रायोगिक रूप से प्रमाणित किया गया है, जहां अब तक केवल बहुत कम दुर्बल टोपोलोजिकॉल इनसुलेटरर्स की पहचान हुई है । विभिन्न परीक्षण और बैंड संरचना परिकलनों से अतीत में हम ने BiSe को एक अत्यंत दुर्बल टोपोलोजिकॉल इनसुलेटर के रूप में दिखाया है।

हमने आईओपी स्थित एआरपीइएस प्रणाली और सांइक्राटॉन विकिरण सुविधा, एलेट्रा, इटली का दोनों प्रयोगशालाओं का उपयोग करते हुए आदि BiSe, Bi_{2"x}Cu_xSe, Bi_{1"x}Sb_xSe और WTe₂, ZrTe₂ जैसे वेल अर्धधातुओं जैसे यौगिकों के एआरपीइएस अध्ययन किया है। हमारे परिणाम BiSe का एकल क्रिस्टल और ${\rm Bi}_{0.92}{\rm Sb}_{0.08}{\rm Se}$ फर्मूला सहित ${\rm Sb}$ अपने मांदित रुप पर एआरपीइएस का उपयोग करते हुए दिखाता है कि यह Bi,I, के विपरीत हैं, के शीर्षस्थ सतह (001) पर रैखिय विखराव एसएसबी की तरह वे डिराक हैं। इसके अलावा, थोक संयोजकता आवंध (बीवीबी) में डिराक बिंदु (डीपी) का स्थान बहुत गहरा है। Sb अपिमश्रण न केवल एसएसबीएस और बीवीबी के बीच इस अधिव्यापन को बढाता है बल्कि इसके साथ साथ एसएसबीएस परिक्षेपण की खैखिकता को भी प्रभावित करता है। यह व्यवहार Bi परिवार Bi,Se, का जानेमाने टोपोलोजिकॉल इनसुलेटरों द्वारा दिखाये गये व्यवहार

से बिल्कुल भिन्न है। यह भिन्नता Bi द्विस्तर और Bi Se QL के बीच युग्मन इंटरलेयर के कारण है । दिलचस्प की बात है कि हमने एसएसबीएस में स्थानित सकारात्मक और नकारात्मक 🖫 दिशाओं में असंतुलन तीव्रता की एक प्रशंसनीय मात्रा पर ध्यान दिया है और यह भी उत्तेजन ऊर्जा में भिन्नता के प्रति संवेदनशील है। यह संभावना एसएसबीएस में स्पीन एवं अक्षीय टेक्चर के बीच मिश्रण का संकेत देता है। इनके परिणाम भी इस सामग्री में निकटस्थ Bi,Se, QLs के बीच में मौजूदा द्विस्तरीय Bi की भूमिका का उजागर करता है जो एसएसबीएस पर उत्पादित फोटो-होल की विश्रांति प्रक्रिया को बढाती है। इसके अलावा, हमने एआरपीइएस परिमापन का उपयोग करते हुए BiTe के फर्मी सतह का मानचित्रण बनाया है। ये सामग्रियाँ BiSe पर उनसे काफी अंतर दिखाती हैं, यद्यपि BiTe एक दुर्बल टोपोलोजिकॉल इनसुलेटर हैं । यहाँ हमने भी स्पीन एवं अक्षीय बनावट के बीच मिश्रण चिह्नों को देखा है।

(बी.आर. शेखर)

3. वस्तुओं के आयन-बीम द्वारा नैनोस्केल के स्वत :संगठित सोपानीकरण और उनके प्रकार्यशीलन, पतली फिल्म फोटोवोल्टिक, प्रतिरोध स्वीचन और न्यूरोमॉर्फिक उपकरण :

यह परियोजना स्वतः संगठित सोपानित अर्धचालक अवस्तरों के निर्माण पर जोर देता है जिसमें निम्न-से-मध्यम ऊर्जा (0.5-100 keV)का उपयोग किया गया है। आयन की कम ऊर्जा पर, सिलिकॉन के सतह पर लहरें बनाई गई है जो आकस्मिक आयन बीम के एक छोटे कोणीय विंडो पर पहलुओं से हो कर संक्रमण होता है। इस तरह के अलग-अलग सोपानित सतहों का निर्माण उनके नैनोस्केल प्रकार्यशील अर्थात् थंडा कैथोड इलेक्ट्रॉन उत्सर्जन, प्लाज्मोनिक्स और नैनोस्केल चुंबकत्व जहां यूएचवी ई-बीम वाष्पीकरण अथवा आरएफ कणक्षेपण द्वारा पतली फिल्मों के विकास के लिए टेम्पलैट के रूप में सोपानित अवस्तरों को नियोजित किया गया है।

अनुसंधान

मल्टी-जंकशन होल-ब्लॉकिंग फोटोवोल्टिक कोशिकाओं के निर्माण के लिए आवश्यक पारदर्शी संवाहक अक्साइड की पतली फिल्में, कैरियर-सिलेक्टिव कंटाक्टस और अन्य सिक्रय स्तरों के विकास और लक्षणन का अध्ययन किया गया है।इनमें दोनों सामूहिक और स्थानीय जांच आधारित अध्ययन शामिल हैं, एक फोटोवोल्टिक सेल की इष्टतम विद्युत ऊर्जा रुपांतरण दक्षता प्राप्त करने के लिए अलग अलग स्तरों की विकास को समयबद्ध करने के लिए है।वर्तमान मुख्य क्षेत्र है कैरियर चयानात्मक संपर्क-आधारित Sb,Se, फोटोवोल्टिक सेल बनाने पर है।

न्यूरोमरिक कंप्यूटिंग (अथवा मस्तिष्क से प्रेसि कंप्युटिंग) में स्व-शिक्षा, संज्ञानात्मक अनुकूलन और वार्तालाप, हावभाव और वस्तुओं को पहचानने की क्षमता के साथ साथ कम-शक्ति पर भी अधिक जानकारी को प्रसंस्करण के लिए एक आशाजनक अवधारणा है । इन मानव मस्तिष्क जैसी विशेषताओं को कृत्रित सिनैप्स नेटवर्क का उपयोग करके महसूस किया जा सकता है। यह ध्यान रखना दिलचस्प की बात है कि जैव-मस्तिष्क का एक मूलभूत तत्व है सिन्पैस और एक है टर्मिनॉल मेमिरिस्टर जिसे "कृत्रिम सिनैप्स" के रूप में जाना जाता है, जिसे डिवाइस स्तर पर जैव-मस्तिष्क विशेषताओं को ईमानदारी से अनुकरण किया जा सकता है। एक मेरिमस्टर अथवा प्रतिरोधी स्वीचन (आरएस) उपकरण में, एक सक्रिय सामग्री दोनों इलेक्ट्रोडस के बीच रखा गया है। मूलत: आने वाली पल्स की बढ़ती संख्या के साथ पूरे जैव-सिनैप्स की संचार शक्ति बढ़ती है। उसी प्रकार, एक आरएस उपकरण के पूरे चालकत्व प्रायोगिक इलेक्ट्रिक पल्सों द्वारा धीरे धीरे बढ़ सकती है । वास्तव में, बायो-सिनैप्स और आरएस उपकरणों में बढ़ती इन्पुट पल्स के साथ संचार शक्ति में क्रमिक परिवर्तन बहुत समानता दिखाते हैं । इस प्रकार, आरएस उपकरण इलेक्ट्रोनिक स्तर पर जैव-सिनैप्स कार्यों की नकल करने का एक अनुठा अवसर प्रदान करता है । इसके अलावा आरएस उपकरणों में तेजी से संचालन. मापनीयता के फायदे हैं और उच्च घनत्व पर पैक किया जा

सकता है, जो इसे न्यूरोमॉर्फिक उपकरणों की अभिकल्पना के लिए उत्कृष्ट बनाते हैं । हम जैब मस्तिष्क की विशेषताओं का अनुकरण करने के लिए परमाणु बल सूक्ष्मदर्शिकी का उपयोग करते हुए नैनोस्केल पर कृत्रिम सिनैप्स का अध्ययन करने के लिए TiO_x और CZO जैसे ऑक्साइड पतली फिल्म-आधारित मेमिस्टर्स पर काम कर रहे हैं ।

(टी. सोम)

4. क्वांटम सामग्रियाँ और संकर पेरोब्काइटस

हम संघितत पदार्थ विज्ञान के अंतः विषय अनुसंधान क्षेत्रों में काम करते हैं, जिसका नाम है क्वांटम सामग्री और संकर पेराव्स्काइटस। अत्याधुनिक प्रायोगिक तकनीकी और सैद्धांतिक उपकरणों का एक सरणी का संयोजन, हमारी अनुसंधान गतिविधियों का लक्ष्य है संक्रमण धातु के यौगिकों के विभिन्न वर्गों की संरचनात्मक, इलेक्ट्रोनिक और चुंबकीय गुणधर्मों, पतली फिल्मों और स्वतः संगठित नैनोस्केल प्रणालियों को समझना है। हमारी शोध रुचि संकर पेरोव्स्काइट्स और अर्धचालक नैनोकणिका जैसी विभिन्न उन्नत कार्यात्मक सामग्रियों तक फैली हुई है, जिनमें संभावित तकनीकी अनुप्रयोग हैं जैसे कि अगली पीढ़ी की फोटोवोल्टिक सामग्रियाँ।

हमने कार्बनिक-अकार्बनिक संकर पेरोक्काइट्स में सब-बैंडगैप क्षेत्र में स्वत :फंसाहुआ एक्साइटनों से संबंधित ब्रोड-बैंड उत्सर्जन के गठन को दिखाया है जिसे उपयुक्त नमूने संश्लेषण प्रक्रिया का उपयोग करके नियंत्रित किया जा सकता है और इसकी ऑप्टोइलेक्ट्रोनिक उपकरण में अनुप्रयोग की क्षमता है।

MAPbCl,का कोण संकल्प प्रकाशउत्सर्जन स्पेवट्रा किया गया और प्रयोगात्मक आंकड़ें की तुलना दो सैद्धांतिक नमूनें से की गयी एक नमूना है MA+ जो उन्मुख रुप से अव्यवस्थित (MA+ आयन है जिसका प्रतिस्थापन गोलाकार सममिति Cs+आयन द्वारा होता है) और दूसरा है जो <100> दिशा की ओर उन्मुख है । हमारे परिणाम संकेत करता है

कि मॉडल-1 MA+आयनों की ओरिएंट रुप से अव्यवस्थित प्रकृति की एक बेहतर तस्वीर प्रदान करता है ।

 $GdMn_{1-x}Cr_xO_3$ में की जेटी विस्थापन विशेषताओं का परिणाम बंड एनीसोट्रोपी और $x \ge 0.35$ के प्रभावी अक्षीय क्रम में मिलता है । इलेक्ट्रोनिक अवस्थाओं की क्रमिक भिन्नता पाई जाती है डोपिंग और चुंबकीकरण (एफसी विधि) $x \ge 0.35$ के विपरीत प्रभाव को दिखाता है । क्रांतिक सांद्रता पर चुंबकीय धुवता में परिवर्तन जेटी क्रॉसओवर के साथ मेल खाकर चुंबकीय अंतक्रिया और संरचनात्मक विकृति के जटिल पारस्परिक क्रिया का संकेत देता है और समितिक चुंबकीय अंतक्रियाओं (FM/AFM टाइप) के डोपिंग उत्प्रेरित परिवर्तन के संबंध में समझा जाता है।

(डी. तोपवाल)

5. परमाणु रुप से स्तरित सामग्रियाँ और अक्साइड धातु की पतली फिल्में

इलेक्ट्रोनिक घटकों के अंतिम लघुकरण के लिए भविष्य में परमाणु रुप से पतले अर्धचालकों की सूचना और प्रौद्योगिकी के क्षेत्र में बहुमुखी अनुप्रयोग रहे हैं। विशेष रुप से, चल रहे शोध में न केवल प्राचीन गुणवत्ता मोनोलेयर का बड़े पैमाने पर संश्लेषण की मांग है बल्कि आंतरिक उपकरण निष्पादनों की जांच के लिए उन्नत नैनोसंरचना और लक्षणन विधियों की मांग भी है। इस रिपोर्ट में, हम एक सल्ट-ड्रिवेन पद्धति से विकसित उच्च-गुणवत्ता सीवीडी बहुस्तरों के क्षेत्र-प्रभावी ट्रांजिस्टरों (एफईटीएस) में अति प्राचीन चार्ज ट्रापिंग विधि की जांच सावधानीपूर्वक करते हैं। आंतरिक ट्रांजिस्टर व्यवहार को प्रकट करने के लिए. एक आयाम स्वीप पल्स I~V क्रियाविधि को अपनाया गया है जिसकी पल्स चौड़ाई अलग अलग है । क्षेत्र प्रभाव मोबिलीटी में एक उल्लेखनीय वृद्धि ~100% तक पायी गयी है इसके साथ सबसे छोटी पल्स लगाकर हिस्टेरसिस मुक्त अंतरण लक्षण मिला है। इसके अलावा, इन परिणामों को सहसंबंधित करने के लिए, एक एकल पल्स टाइम-डोमेन ड्रेन विद्युतधारा का विश्लेषण किया गया जिससे तेज और धीमी क्षणिक चार्ज ट्रैपिंग परिघटना

का खुलासा हो सकें। इसके अलावा, बेहतर वाहक के लिए निकास/स्रोत इलेक्ट्रोड एवं MoS_2 के बीच शोट्की बाधक और धातु प्रेरित गेप प्रावस्थाओं के प्रभाव की जांच के लिए कठोर घनत्व कार्यात्मक सिद्धांत (डीएफटी) गणना की गई है।

अंतिम अवलोकन एनाटेस प्रतिरोधक रैंडम एक्सेस मेमोरी उपकरणों (ReRAM) में स्थिर परिमाणित चालकन है जो मस्तिष्क से प्रेरित न्यूरोमॉर्फिक कंप्यूटिंग उपकरणों की प्राप्ति की दिशा में एक नया मार्ग खोलता है । यहाँ पहली बार. आनाटेस TiO, में प्रतिरोधी स्वीचन परिघटना को समझने के लिए प्रारंभिक गणना की गई है। उपकरणों के चालू एवं बंद अवस्था की अंतदृष्टि प्राप्त करने के लिए विभिन्न आवेश क्षेत्रों के साथ साथ ऑक्सिजन रिक्ति विन्यास का अध्ययन किया गया है । तीन-निर्वात विन्यासों में से, Vo+1 अवस्था में आवेश घनत्व चैनल बनाने वाले बैंडगैप के भीतर अत्यधिक विखरे हुए दोषपूर्ण अवस्थाओं को प्रेरित करना पाया गया है जहां वाहक एक मुक्त इलेक्ट्रोन के रूप में व्यवहार करता है जो चालकन फिलामेंट (सीएफ) के गठन को आगे बढ़ाता है। दूसरी ओर, ब्रि-रिक्ति विन्यास से ऑक्सिजन रिक्ति को हटाने सीएफ अचल होना भी देखा गया है । बंद की स्थिति में दोषयुक्त अवस्था वाहकों में अत्यधिक स्थानीयकृत पाए जाते हैं। हमने सीएफ के क्रिस्टल समरुपता क्षेत्र पर आवेश क्षेपण के प्रभाव की जांच भी की है। त्रि-रिक्तिस विन्यास के कारण समरुपता में कमी जैसे बहु गुना ऊर्जा e, कम हो जाती है जबिक दि-रिक्ति विन्यास में बहु ऊर्जा t_{2g} कम कर देती है।

(एस. साहु)

अक्साइड मिश्रित पतली फिल्में/अंतरापृष्ठ के चुंबकीय
 और इलेक्ट्रोनिक गुणधर्म और धातव चालकोजेनिडस
 का संक्रमण

आणविकी रुप से अभियांत्रिकी अक्साइड मिश्रित अवस्तरों और अभिकल्पित अंतरापृष्ठ थोक में प्राप्य न होने

अनुसंधान

वाली आकस्मिक विद्युतचुंबकीय परिघटना का पता लगाने के लिए एक संभाव्य परीक्षण क्षेत्र होना पाया गया है । विशेष रुप से, परत मोटाई को बढाकर इलेक्ट्रॉनों की कृत्रिम परिबद्ध को एक शक्तिशाली उपकरण बनाया गया है। जटिल ऑक्साइड की नैनो-परतों में प्रतिस्पर्धा चरणों पर नियंत्रण का उपयोग करने के लिए है । समिश्र अक्साइड फिल्में/अंतराप्छों के निर्माण के लिए और मुख्य इलेक्ट्रोनिक /चुंबकीय गुणधर्मों की जांच करने के लिए हम पीएलडी तकनीकी का उपयोग करते हैं । समिश्र अक्साइड पतली फिल्में/अंतरापृष्ठों के अध्ययन के अंश के रूप में, हम (111)-अभिविन्यस्त Gd, Ga, O12 (जीजीजी) क्रिस्टल पर एपीटैक्सी रूप से मोनालिथिक Y,Fe,O,, फिल्मों में हिस्टैरिसिस विपरीत लूप और एक अभूतपूर्व कक्ष तापमान सकारात्मक विनिमय पूर्वाग्रह (ईबी) का सबूत प्रदर्शन करते हैं जो स्पिंट्रोनिक्स उपकरण के अनुप्रयोग के लिए एक मजबूत प्रभाव हो सकता है। दूसरा, हम डी-इलेक्ट्रॉन-आधारित भारी-फेर्मियान धातु CaCu, Ru, O1, के परिवहन गुणधर्मों पर आयामिता के प्रभाव की जांच करते हैं। मोटाई को कम करने पर धात्विक से स्थानीकृत तक क्षेत्र में परिवहन व्यवहार विकसित होता है और दुर्बल एंटी-लोकालाइजेशन की उत्पत्ति होती है- दुर्बल लोकालाइजेशन क्रॉसओवर धात्विक विद्युतरोधी संक्रमण के पास देखने को मिलता है। चुंबकीय परिवहन अध्ययन से मोटाई घटाने पर इनइलास्टिक और स्पिन-अरबिट प्रकीर्णन लंबाई के बीच एक मजबूत पारस्परिक क्रिया का पता चला है, जिसका परिणाम चुंबकचालकता में दुर्बल एंटीलोकालाइजेशन (डब्ल्यूएएल) से दुर्बल लोकालाइजेशन (डब्ल्यूएल) क्रॉसओवर में देखा जाता है ।

थोक चालकोजेनीडेस में अनुसंधान गतिविधियों की दृष्टि से थोक $2H-Mg_xNbSe_2$ में अतिचालकता पर Mg अंत :निवेश के असाधारण प्रभाव को हम निरीक्षण करते हैं । $2H-Mg_xNbSe_2$ एक फोनोन माध्यस्थित, बहुबैंड अतिचालक है । आवेश घनत्व तरंग और $2H-NbSe_2$ में अतिचालकता के बीच अंतक्रिया जटिल है । साधारणत :

2H-NbSe $_2$ में अंत ःनिवेश सीडीडब्ल्यू को समृद्ध बनाता है, c-अक्ष जालक मापदंड को बढ़ता है और फेर्मी पृष्ठों को विकृत कर देता है जिसका परिणाम अतिचालकन संक्रमण तापमान (T_c) में घटता है । T_c की घटती दर इलेक्ट्रोनिक संरचनय, आकार, तीव्रता, चुंबकीय प्रकृति और अंत ःनिवेशन प्रजातियों की इलेक्ट्रोनग्राविटी पर निर्भर करता है । जैसे कि अन्य s और p ब्लॉक तत्वों/प्रजातियाँ इंटरकालांटस (Rb, Sn, Ga, Al) जिनके 1-5% अंत ःनिवेशन के भीतर 2H-NbSe $_2$ में T_c अतिचालकन पर तीव्र हानिकारक प्रभाव होते हैं, Mg अपवाद के रूप में पाया गया है और अतिचालकता पर एक सामान्य प्रभाव डालता है।

संक्रमण धातु डाइक्लोजेनाइडस (MX₂: M = Ni, Pd, Pt; X= S, Se, Te) समूह पर एक समीक्षा लेख लिखने के प्रयास में, हॉल ही के दिनों में इसके प्रति हमारा ध्यान अधिक आकर्षित हुआ है, हम क्रिस्टल और इलेक्ट्रोनिक संरचना, अतिचालकता, टोपोलोजिकॉल प्रावस्थायें, स्पिन टेक्चर और रासबा प्रभाव और थोक के साथ साथ परमाणु रुप से पतली संक्रमण धातु डाइक्लोजेनाइडस सामग्रियों में ऊष्मवैद्युतिकी गुणधर्म और चुंबकीय गुणधर्मों का सर्वेक्षण किया है।

(डी. सामल)

2.6. सैव्हांतिक संघनिम पदार्थ भौतिकी

आईओपी में संघनित पदार्थ सैद्धांतिक समूह संघनित पदार्थ भौतिकी (सीएमपी) की निम्नलिखित शाखाओं में अत्याधुनिक अनुसंधान में सक्रिय रुप से शामिल हैं

क्वांटम संघनित पदार्थ भौतिकी

इस क्षेत्र में, हम टोपोलॉजिकल पहलुओं की खोज, मजबूती सहसंबंध प्रभाव, विभिन्न चुंबकीय कोटी और विभिन्न क्वांटम सामग्रियों की क्वांटम परिवहन गुणधर्मों की खोज में सक्रिय रूप से शामिल हैं।

विशेष रूप से, हम प्रथम कोटी टोपोलोजिकॉल इनसुलेटर अथवा डिराक अर्धधातु से आरंभ करके विभिन्न संचालित प्रोटोकॉल्स के माध्यम से उच्चतर-कोटी टोपोलोजिकॉल प्रणालियों के फ्लोक्वेट उत्पादन, आवधिक रूप से संचालित अंतक्रियाकरने वाले व्रिकोणीय जालक में धातव-हनसुलटेर संक्रमण और बैंड टोपोलोजी, हल्डेन मॉडल के साथ काने-मेले मॉडल अतिआरोपित के पेचीदा चरण आरेख पर जोर दिया है, एक फिशर जालक पर हैसेजबर्ज मॉडल की जांच कर रहे हैं और नये चुबिकीय प्रावस्था, स्पीन वेब स्पेक्ट्रम आदि का पता लगा रहे हैं।

जैविकी और कोमल पदार्थ भौतिकी

इस क्षेत्र में वर्तमान की गतिविधि मुख्य रुप से विभिन्न जैविक घटनाओं और सक्रिय पदार्थों की भौतिकी समझ विकसित करने पर केंद्रित है।

विशेष रूप से, हमने सक्रिय ब्राऊनियत कणों (एबीपीएस) के प्रक्षेप पथों का साम्य अर्ध-लचीले पॅालिमर के एिल एक उल्लेखनीय मानचित्रण को दिखाया है और बढ़ती ट्राप कठोरता के साथ एबीपीएस की स्थिति के गॉसियन से गैर-गॉसियन वितरण तक क्रॉसओवर का प्रत्यक्ष समझ को विकसित किया है । इसके अलावा, जैविकी प्रणाली में, हमारा वर्तमान का ध्यान मोटर प्रोटीनों और अर्ध-लचीले फिलामेंट मिश्रित साइटोस्केलेटल के गुणधर्मों को समझना,विसरित मेम्ब्रान बाउंड सक्रियक प्रोटिनों और एक्टोमायोसीन साइटोस्केलेटन से जुड़े एक गोलाकार मेम्ब्रान के उतार-चढाव आकार के युग्मित गतिकी का पता लगाने पर दिया गया है।

(जी. त्रिपाठी, एस. मंडल, ए. साहा, डी. चौधूरी)

उच्चतर को अी के टोपोलोजिकॉल प्रणालियो में फ्लोकेट का उत्पादन

टोपोलोजिकॉल प्रावस्थाओं के असाम्य पहलुओं ने समूह में बहुत ध्यान आकर्षित किया है चूंकि संचालित टोपोलोजिकॉल प्रणाली नॉन-ट्राइवायल गुणधर्मों को प्रदर्शित करता है, जो संबंधित स्थिर प्रावस्था में नहीं रहता है। दिलचस्पी बात यह है कि उपयुक्त परिवर्तनशील उचित क्षोभ द्वारा अभिकल्पित फूलोक्वेट एक निम्न कोटी अथवा नॉन-टोपोलोजिकॉल प्रावस्था से प्रारंभ होकर फ्लोक्वेट उच्चतर कोटी टोपालोजिकॉल अतिचालकन (एचओटीएससी) प्रावस्थाओं को आगे ले जा सकता है। इस दिशा में हम एक क्वांटम स्पिन हॉल इनसुलेटर (क्यूएसएचआई) सहित सैद्धांतिक रूप से सामीप्यता प्रेरित अतिचालकन एस-तरंग युग्मन पर विचार करके दूसरी-कोटी टोपोलोजिकॉल अतिचालकन (एसओटीएससी)प्रावस्था, के फूलोक्वेट उत्पादन, माजरोना कोण विधाओं (एमएसीएमएस) होस्टिंग की जांच सैद्धांतिक रूप से करते हैं। हमारे गतिकीय प्रेस्किप्सन में समतल चुंबकीय क्षेत्र में टाइम-खिरसल सममिति ब्रेकिंग में आवधिक किक और चौगुना घूणीं समस्थलीय ब्रेकिंग द्रव्यमान टर्म समाहित है। इसके अलावा, डी-तरंग अतिचालकन युग्मन गैप से आरंभ करते हैं, हम ड्राइव की ऊर्जा की एक विशिष्ट सीमा के भीतर आवधिक रूप से गतिकीय एसओटीएससी प्रावस्था (दोनों 2D और 3D में) की यांत्रिकी में द्रव्यमान टर्म को ठोकर देते हौ एसओटीएससी प्रावस्था 2D और 3D में क्रमानुसार एमसीएमएस और माजोरना हिंग विधियों को एकत्रित करता है। हम फ़्लोक्वेट क्वाड्रोपोल संवेग और फुलोक्वेट स्पेक्ट्रम जैसी उपयुक्त टोपोलोजिकॉल विभिन्नता द्वारा इन प्रावस्थआों की टोपोलोजिकॉल प्रकृति का अभिलक्षण बताते हैं। हाल ही में, हम चरण-वार-चरण आवधिक ड्राइविंग और उस पर अव्यवस्था के प्रभाव के माध्यम से विषम गतिकीय उच्च कोटी मेजराना विधि की अभिकल्पना पर काम कर रहे हैं।

टोपोलोजिकॉल प्रणालियों में मजबूत सहसंबंध का प्रभाव

इस दिशा में हमारे शोध कार्य में, हम लिब जालक पर एक प्रथम अर्डर बैंड टोपोलोजिकॉल इनसुलेटर पर मजबूत सहसंबंध (हबर्ड इंटरसेक्सन) के प्रभाव की जांच करते हैं। हम दिखाते हें कि एक क्रांतिक मजबूत सहसंबंध U के परे हैं,मोट विद्युतरोधी अवस्था में अचानक संक्रमण होता है, जहां सपाट बैंड से ऊपर एवं निम्न बैंड को वर्णक्रमीय भारत के पूर्ण स्थानातंरण के कारण समतल बैंउ (एफबी) पूरी तरह से नष्ट हो जाता है। हम यह भी दिखाते हें कि डीराक बिंदु से गुजरते हुए एक एफबी सहित रैखिक रूप से फैलाने वाले बैंड के साथ इनसुलेटिंग प्रावस्था होस्ट एज विधियाँ इन सभी सहसंबंध द्वारा प्रिन्चालित हैं, जिससे यह प्रदर्शित होता है कि मजबूती सहसंबंध के कारण एक थोक बैंड संरचना की टोपोलॉजिकल प्रकृति बरकारर रहती है।

हमारे अंतिम कार्य में, हम एक सब-लाटाइस पर मौजूद ऑनसाइट कोलम्ब अंतक्रिया सिह एक त्रिकोणीय जालक U पर विचार करते हैं, जो आवधिक रूप से विद्युतचुंबकीय क्षेत्र से परिचालित है, इसके साथ आधा भरने पर इसकी आवृत्ति W >> (t; U) रहती है । इस उच्च आवृत्ति सीमा में और U = 0. एक आकस्मिक आंतरिक स्पिन-अरबिट दोनों में परिचालन गति स्थिर हो जाता है और निम्न और ऊपर बैंड सहित तीन फैलाब बैंड को स्थिर बनाता है, नॉन-जिरो चेर्न संख्याओं के साथ टोपोलॉजिकल चरित्र को प्रदिशत करता है । साइट पर हबार्ड अंतक्रिया की मौजूदगी में, जब जम जाता है तब अंतक्रिया करने वाले उप-जालक पर आवेश में उतार-चढ़ाव होता है। बाहरी ड्राइव के बिना आवेश गैप को यह खुलता नहीं है। झइव और छोटे U की उपस्थिति में, यह प्रणाली ड्राइव आयाम ए के एक कार्य के रूप में बार बार धातु-इनुसलेटर संक्रमण को प्रदर्शित करता है। बड़े U के लिए हम यह प्रमाणित करते हैं कि अंत :क्रियात्मक उप-जालक पर उतार-चढ़ाव आवेश का जमजाना एक

आकस्मिकता है, निम्न-ऊर्जा आधा भरा हुआ गैर-अंतक्रियावाले "काने-मेलेमॉडल " है, जिसका बैंड गैप A को अलग करके बढ़ाया जा सकता है । यह बैंड चेर्न संख्याओं के अदल-बदल द्वारा बताये गये इंजीनियर आवधिक टोपोलोजिकॉल प्रावस्था संक्रमण में एक सहायता प्रदान करता है ।

(ए. साहा)

हम काल उत्क्रमण समरुपता (टीआरएस) ब्रोकन काने-मेले मॉडल जो हल्डेन मॉडल पर आरोपित है उस पर विचार करते हैं और क्वांटम विसंगति हॉल विद्युतरोधी (क्यूएएचआई) और क्वांटम स्पीन हॉल विद्युतरोधी (क्यूएसएचआई) प्रावस्थाओं के भाग्य की जांच के लिए स्पिन चेर्न नंबर का उपयोग करके चरण आरेख का चार्ट बनाते हैं। रुचि की बात यह है कि क्युएसएचआई और क्यु एचआई प्रावस्था के अलावा, प्रावस्था आरेख क्वांटम विसंगति स्पिन हॉल विद्युतरोधी (क्यूएएसएचआई) प्रावस्था का खुलासा करता है जहां केवल एक स्पिन सेक्टर टोपोलोजिकॉल है। हमें बहुत महत्वपूर्ण बिंदु भी मिलते हैं जहां तीन/चार टोपोलोजिकॉल चरण सीमाएं मिलती हैं। ये टोपोलोजिकॉल चरण एक प्रभावी टीआरएस और समग्र एंटी-यूनिटरी पार्टिकल होल समरुपता द्वारा सुरक्षित है जिससे कोर मोड की उल्लेखनीय गुणों को आगे बढ़ाता है। हम क्रमानुसार क्युएएसएचआई, क्युएसएचआई और क्युएएचआई में स्पिन सिलेक्टिव, स्पिन पोलाराइज्ड और स्पीन न्यूट्रॉल कोर परिवहन को पाते हैं । हमारा अध्ययन बताता है कि टोपोलॉजिकल चरण की मजबूती मुख्य रूप से स्पिन गैप पर निर्भर करती है यह जरूरी नहीं कि टोपोलॉजिकल चरण संक्रमण के दौरान डिराक बिंदुओं पर गायब हो जाए । हम मानते हैं कि ठोस अवस्था और थंडा परमाणु प्रणालियों में अंतिम प्रायोगिक प्रगति का उपयोग करके निकट भविष्य में हमारे प्रस्ताव का परीक्षण किया जा सकता है।

दूसरे कार्य में, हम प्रतिलौहचुंबकीय J, के साथ युग्मन बदलाव करके प्रथम पडासी J_1 , दूसरे-पड़ोसी J_2 और तीसरे पड़ोसी J में एक सुसज्जित वर्ग (फिशर) पर हाइजेनबर्ग मॉडल की जांच करते हैं। पुराने आद्यावस्था प्रावस्था आरेख को लुटिंगर-टिस्जा ढांचे के भीतर पाते हैं जो दो प्रतिलौहचुंबकीय रूप से क्रमित प्रावस्था और एक असीम रूप से उत्पन्न प्रतिलौहचुंबकीय श्रृंखला प्रावस्था द्वारा फैला हुआ है। पुराने मोंटे कार्ली सिमुलेशन को नियोजित करके, हम दिखाते हैं कि तापीय उतार-चढ़ाव प्रतिलौहचुंबकीय श्रृंखला चरण की गिरावट को उठाने में विफल रहता है । दिलचस्पी बात यह है कि नील अवस्था स्पिन-वेव स्पेक्ट्रम तीन डिराक नोडल लूप को प्रदर्शित करता है जिनमें से दो समरुपता द्वारा सुरक्षित है और अन्य एक प्रतिलौहचुंबकीय श्रृंखला प्रावस्था द्वारा सुरक्षित है जिसमें हम सममिति सुरक्षित डिराक रेखाओं को पाते हैं । इसके अलावा. हम एक बंड संचालित फर्मालिज्म को नियोजित करके स्पीन S=12 सीमा की जांच करते हैं जो सिंगलेट-ट्रिपलेट गतिकी को पकड लेता है और पता चला कि प्रतिलौहचुंबकीय रूप से बताये गये प्रावस्थाओं के अलावा विभिन्न प्रकार के संयोजकता आबंध ठोस क्रमों में एक पूर्ण निम्नतम ऊर्जा अवस्था का डायग्राम बढ़ता है।

(एस. मंडल)

हमारे समूह का ध्यान सिक्रय पदार्थ और जैविक भौतिकी पर है

मेरे पीएचडी छात्र अमीर शी और सहयोगियों के साथ, हमने हाल ही में एक अभिन्न सूत्रीकरण का उपयोग करते हुए, संतुलित अर्ध-लचीले पालिमरों में सिक्रय ब्रोनिऑन कणिकाओं के प्रक्षेपवक्र का एक उल्लेखनीय मानिचत्रण दिखाया है।यह बहुलक भौतिकी और सिक्रय पदार्थ के दो समुदायों के बीच विचारों के आदान-प्रदान की जबरदस्त संभावना मार्ग खोल देता है, और सामान्य डी-आयामों में

एबीपी गतिकी के मनमाने संवेगों को सटीक रूप से निर्धारित करने के लिए हमें बहुलक भौतिकी में पहले से विकसित एक लाप्लास परिवर्तन विधि का उपयोग करने के लिए अनुदति दी है। एबीपी का विस्थापन वितरण बहुलक के श्रृंखला मॉडल जैसी कृमि के द्विमोडल वितरण में गाऊसी से एक संक्रमण को दर्शाता है।

इन प्रयोगों में, हार्मोनिक ट्रैप में एबीपी ट्रैप कठोरता बढ़ने के साथ गॉसियन से गैर-गॉसियन वितरण की स्थिति क्रॉसओवर होना पाया गया है । हमने गण गति का वर्णन करने वाले फोकर-प्लैंक समीकरण के आधार पर एक सटीक गणना विकसित किया है और उसका उपयोग किया है जो न केवल इस तरह के अवलोकनों से प्रत्यक्ष जानकारी प्रदान करता है बल्कि गतिविधि और ट्राप कठोरता के आधार पर एक पुन:प्रवेश संक्रमण की अधिक संभावना को बताता है ।

हमारी विश्लेषणात्मक गणना स्पष्ट रुप से ट्रैप केंद्र से दूर एक मजबूत स्थानीकरण के लिए कणिका स्थितियों के वितरण जैसे निष्क्रिय गाऊसी से, बढ़ती ट्राफ कठोरता सूर्ति गाऊसी रूप के पीछे तापीय ट्रांसलेशनल विसरण की प्रणाली में पुन :प्रवेश संक्रमण को प्रदर्शित करती है।

जैविकी प्रणालियों में, हमारा वर्तमान का ध्यान मोटर प्रोटीनों और अर्ध-लचीले फिलामेंटस से जुड़े साइटोस्केलेटल समिश्र के गुणधमों को समझने पर दिया गया है। हमने मोटर प्रोटीन के एक सक्रिय प्रसारणीय स्प्रिंग का उपयोग करते हुए एक आयाम में बाहरी लोडिंग के तहत एक मोटर प्रोटीन परख में एक कठोर फिलामेंट की गतिशीलता का अध्ययन किया है। इसके लिए हमने संख्यात्मक अनुकार, एक फोक्कर प्लांक आधारित माध्य क्षेत्र सिद्धांत का उपयोग किया है और विभिन्न गतिकीय चरणों और चरण संक्रमणों को प्राप्त करने के लिए रैखिक स्थिरता विश्लेषण किया है। निरंतर लोडिंग के तहत, यह प्रणाली स्थिर विन्यास से अस्थिरता तक मोटर प्रोटीनों से फिलामेंट के दुकड़े की ओर एक संक्रमण को दिखाता है। लोचदार लोडिंग के तहत, अपनी गतिविधि और मोटर प्रोटिनों की संख्या में परिवर्तन सहित एक सुपरिक्रिटिकॉल हॉफ द्विभाजन के माध्यम से स्थिर सीमा चक्र दोलनों के उद्भभव हमें देखने को मिलता है। लोचदार लोडिंग में कठोरता बढ़ने के साथ सीमा चक्र दोलनों की शुरुआत में मोटर प्रोटीनों की संख्या आवश्यकतानुसार बढ़ती है। हम आगे खुली श्रृंखला और सर्पीला अनुरूपताओं के बीच प्रावस्था संक्रमण को खोजने के लिए आणविक मोटरों के ग्लाइडिंग परख में एक अर्धवृत्ताकार फिलामेंट की गतिशीलता पर विचार करते हैं। विस्तृत प्रावस्था आरेख और गतिकी का वर्णन एक प्रभावी कार्यात्मक एंट्रापी का उपयोग करते हुए माध्य क्षेत्र में किया गया है।

अंत में, हमारे सबसे अंतिम पत्राचार में हमने विसरणीय मेम्ब्रान-बाउंड उत्प्रेरक प्रोटीन और एक्टोमीसिन साइटोस्केलेटन से जुड़े गोलाकार झिल्ली के आकार में परिवर्तन का युग्मित गतिकी का एक अध्ययन प्रस्तुत किया है।

हमारे क्षेत्र सैद्धांतिक जांच से दीर्घ तरंग दैर्घ्य गठन, स्थानीकृत स्पंदन और धृवीय दिशा में चलने वाली लहर में अस्थिरता स्पष्ट होता है । हमने विस्तृत गतिकीय प्रावस्था व्यवहार को दिखाने के लिए रैखिक स्थिरता विश्लेषण और संख्यात्मक एकीकरण का उपयोग किया है । हमारे परिणाम कोशिका विभाजन और कृतिम कोशिका निर्माण के निकट पश्न कोशिकाओं के लिए निहितार्थ है ।

(डी. चौधूरी)

3.1	संदर्भित जर्नलों में प्रकाशित शोधपत्र	:	37
3.2	सम्मेलन कार्यवृत्त	:	44
3.3	पुस्तकें	:	44
3.4	परस्कार/सम्मान/मान्यता		45

3.1. संदर्भित जर्नल में प्रकाशित शोधपत्र

- पल्सरों के जिरये गुरुत्वाकर्षणीय तरंगों का पुर्नलोकन
 एम. बिश्वाल, एस.एस. दावे और ए.एम. श्रीवास्तव, फिजिक्स लैटर बी 811, 135887 (2020)
- 2. एकल चरण सहइलेक्ट्रोडिपोजिशन तकनीकी से बनाई गई हाईब्रिड नैनोसंरचित Cu2O-ZnO के गैर-एंजाइम ग्लुकोज सेसिंग

ए.के. मान्ना, पी. गुहा, वी.जे. सोलांकी, एस.के. श्रीवास्तव, और एस. वर्मा, जर्नल सलिड स्टेट इलेक्ट्रोकेम 24, 1647 (2020)

- 3. **डायमंड प्रकाशसंसूचक की यूवी प्रतिक्रिया पर नाईट्रोजन से द्विटिपर्ण गतिकी के प्रभाव** एस. महापात्र, पी.के. साहु, एस. रथ, पी.के. साहु, एस. वर्मा और एन.वी.एल. नरिसम्हा मूर्ति, सुपरलाटाइस माईक्रोस्ट्रक्चर 142, 106504 (2020)
- 4. Ti आयन रोपण द्वारा TiO, पतली फिल्मों पर गतिक पृष्ठीय उत्पति और सोपानी अध्ययन ए.के. मान्ना, ए.कांजिलाल, डी.कांजीलाल, और एस. वर्मा, न्यूक्लियर इंस्ट्रुमेंटस मेथडस फिजिक्स रिसर्च सेक्सन बी बीम इंटरआक्ट विथ मैटर एटमस 474, 68 (2020)
- 5. रमण स्पेक्ट्रोस्कोपी द्वारा प्रमाणित NiO नैनोक्रिस्टलीय में चुंबकीय-क्रम प्रभाव एन. बाला, एच.के. सिंह, एस. वर्मा और एस. रथ, फिजिक्स ख्यू बी. 102, 024423 (2020)
- 6. **बहु-क्विविट प्रणालियों के लिए क्वांटम म्युचुऑल सूचना और क्वांटमहीन सादिश** एस. साजिम और पी. अग्रवाल, क्वांटम इनफरमेशन प्रोसेस 19,216 (2020)
- 7. **नियंत्रित क्वांटम मुख्य वितरण की संसाधन संरचना अवस्था** ए. दास, एस. नंदी, एस. साजिम और पी. अग्रवाल, यूरोपियन फिजिक्स 74:91(2020)
- 8. **भावी कोलाइडरों पर संभाव्य हिग्गस के आकार** पी. अग्रवाल, डी. साहा, एल-एक्स सु, जे.एच. यू और सी. पी. युआन, फिजिक्स ख्यू डी. 101, 075023 (2020)
- 9. **आपेक्षिकीय माध्य क्षेत्र वैधिकता के भीतर ³⁰²122 की á-क्षय श्रृंखला की खोज करना** एम. पाणिग्राही, आर.एन. पंडा, एम. भूयाँ और एस.के. पात्र, कैनेडियन जर्नल ऑफ फिजिक्स 99 6 (2021)
- 10. **आपेक्षिकीय माध्य क्षेत्र वैधिकता का उपयोग करते हुए परिमित नाभिक के ऊ**र्जा **सममिति और न्यूट्रिनो दबाव** एन. बिस्वाल, एम.के. अबुल एल शैक, डी. बेहेरा, एस.के. बिस्वाल, एस.के. पात्र, एन. युसूफ, एच.ए.कासिम, बी.वी. कार्लसन, एम. भूयाँ, आस्ट्रन नाचर. 342, 462-468(2021)
- 11. न्यूट्रॉन तारक गुणधर्मों पर EoS के भीतरी क्रस्ट के प्रभाव आई.ए. रादर, ए.ए. उसमानी, और एस.के. पात्र, न्यूक्लियर फिजिक्स ए 1010, 122189 (2021)
- 12. **न्यूट्रॉन तारक की वक्रता पर अदीप्त वस्तु के प्रभाव** एच. सी. दास, ए.कुमार, बी.कुमार, एस.के. बिस्वाल, और एस.के. पात्र, जेसीएपी 01 007(2021)
- 13. आपेक्षिकीय माध्य क्षेत्र वैधिकता में परिमित नाभिक के नाभिकीय गुणधर्म के अध्ययन के लिए संसक्त घनत्व उतार-चढ़ाव नमूने के अनुप्रयोग

ए.कुमार, एच.सी. दास, एम. कौर, एम. भूयाँ और एस.के. पात्र, फिजिक्स रिव्यू सी 103, 024305 (2021)

एक प्रभावी आपेक्षिकीय माध्य क्षेत्र वैधिकता का उपयोग करते हुए कम-घनत्व क्षेत्र में समिमितिक नाभिकीय
 पदार्थ के क्रांकित गुणधर्म

वी. परमार, एम.के. शर्मा और एस.के पात्र, जर्नल फिजिक्स जी : न्यूविलयर पार्टिकल फिजिक्स 48, 025108 (2021)

- 15. अतिभारी नाभिक Z=124, 126 के संरचनात्मक, पृष्ठीय और क्षय गुणधर्मों के सूक्ष्म विवरण
 टी. ए. सिद्क्की, ए. क्यूदुस, एस. अहमद और एस.के पात्र , न्यूक्लियर फिजिक्स ए 1006, 122080 (2021)
- 16. **परिमित और अपरिमित नाभिकीय पदार्थ के बीच संबंध**एस.के. बिस्वाल, एस.के. सिंह, एम. भूयाँ, आर. एन. पंडा और एस.के. पात्र, कैनेडियन जर्नल ऑफ फिजिक्स 99, 5 (2021)
- 17. **हाईब्रिड न्यूट्रॉन तारकों के लिए बहुत बड़ा स्थिरांक ात विवश होना** ए. रादर, ए.कुमार, एच.सी. दास, एम. इम्रान, ए.ए. उस्मानी और एस.के. पात्र, इंटरनेशनॉल जर्नल ऑफ मर्डन फिजिक्स, इ 29, 2050044 (2020)
- 18. **हाईब्रिड EoS के नाभिकीय गुणधर्मों के अध्ययन** ए. रादर, ए.ए. उसमानी और एस.के. पात्र, जर्नल ऑपु फिजिक्स , जी: न्यूक्लियर पार्टिकल फिजिक्स 47, 105104 (2020)
- 19. ऊष्म घना पदार्थ और शीतल सुपरनोभा अविशष्ट ए. कुमार, एच.सी. दास, एस.के. बिस्वाल बी.कुमार और एस.के. पात्र, यूरोपियन फिजिक्स जर्नल सी 80, 775 (2020)
- 20. **डब्ल्यूआईएमपी अदीप्त वस्तु में एक न्यूट्रॉन तारक के गुणधर्मों पर GW170817 का प्रतिबंध** ए. क्यूदूस, जी. पानोटपोल्स, बी. कुमार, एस.अहमद और एस.के. पात्र, जर्नल ऑफ फिजिक्स जी : न्यूक्ल्यर पार्टिकल फिजिक्स 47, 095202 (2020)
- 21. आपेक्षिकीय माध्य क्षेत्र नमूने का उपयोग करते हुए Z=119 और 121 अतिभारी तत्वों के लिए स्थिर आइसोटोपों की खोज
 - टी. साहु और एस.के. पात्र, फिजिक्स स्क्रिप्टा,95, 085302 (2020)
- 22. **समितिक ऊर्जा और विरल मृत्तिका नाभिक में N = 100 पर विरूपित मेजिक संख्या** एम. कौर, ए. क्युदुस, ए.कुमार, एम. भूयाँ और एस.के पात्र, जर्नल फिजिक्स जी : न्यूक्लियर पार्टिकल फिजिक्स 47, 105102 (2020)
- 23. विरल मृत्तिका नाभिक की समिनिति ऊर्जा की मात्रा और सतह पर तापमाव्रा के प्रभाव एम.कौर, ए. क्युदुस, ए.कुमार, एम. भूयाँ और एस.के.पात्र, न्यूक्लियर फिजिक्स ए 1000, 121871(2020)
- 24. **भारी नाभिक Z= 122, 128 की आईसोटोपिक श्रृंखला में न्यूट्रॉन जादुगरी की खोज**टी. ए. सिद्दकी, ए. क्यूदिस, एस.अहमद, और एस.के. पात्र, जर्नल ऑफ फिजिक्स जी : न्यूक्लियर फिजिक्स 47, 115103(2020)

- 25. आपेक्षिकीय माध्य क्षेत्र वैधिकता में संलयन अनुप्रस्थ-काट पर घनत्व और न्यूक्लिऑन-न्यूक्लिऑन क्षमता के प्रभाव
 - एम. भूयाँ, आर. कुमार, एस. राणा, डी. जैन, एस.के पात्र और बी.वी. कार्लसन, फिजिक्स रिव्यू सी 101,044603 (2020)
- 26. **आपेक्षिकीय माध्य क्षेत्र वैधिकता का उपयोग करते हुए परिमित नाभिक की नाभिकीय पदार्थ गुणधर्म** एस.के. बिस्वाल, एम.के.ए. शेख, एन.बिस्वाल, एन. युसूफ, एच.ए.कासिम, एस.के. पात्र और एम. भूयाँ, न्यूक्लियर फिजिक्स ए, 1004, 122042(2020)
- 27. CdTe-आधारित सौर कौशिकाओं के विकसित फोटोवोल्टिक कार्यक्षमता : एक छेद-अवरोधक परत का उपयोग की भूमिका और अंतरापृष्ठों पर उच्च अवरोधक का प्रतिबिंबन
 - आर. सिंह, ए. दत्ता, एन. बासु, जे. लाहिरी और टी. सोम, सोलर एनर्जी 215, 1-11 (2021)
- 28. सौर कोशिकाओं के लिए फोटॉन अवशोषक परतों के रूप में क्रिस्टलीय Si पतली फिल्म सतहों की गीलापन और परावर्तन पर फ्रेक्टल और मल्टीफ्रेक्टल आकारिकी के प्रभाव
 - जी. मैती, आर.पी. यादव, आर.सिंहल, पी.के. कुलिरया, ए. मिश्रा, टी. सोम, एस.धर, डी. कांजीलाल और एस.पी. पटेल, जर्नल ऑफ आप्लाइड फिजिक्स 129, 045301 (2021)
- 29. Au नैनोकणिका से सज्जित स्वत :संगठित Si नैनोफैसट्स से अल्ट्राफ्लो टर्न-ऑन फिल्उस सहित थंडा कैथोड़ इलैक्ट्रॉन का उत्सर्जन
 - एम. सैनी, आर. सिंह, के.पी. सुरज, टी. बसु, ए. रॉय, बी. सतपथी, एस.के. श्रीवास्तव, एम. रंजन और टी. सोम, जर्नल ऑफ मेटरिएल्स केमेस्ट्री सी 8, 16880 (2020)
- 30. स्थैंतिक चुंबकीय क्षेत्र में खंडित सममित की वर्गाकार कृत्रिम स्पिन बर्फ कोने में निम्न-ऊर्जा चुंबकीय सूक्ष्म-अवस्थाओं का अभिगमन
 - एन.केशवानी, आर. सिंह, वाई. नाकाजिमा, टी. सोम और पी. दास, फिजिकॉल ख्यू बी 102, 224436 (2020)
- 31. **एसएनआईसीएस स्रांत से बृहत कार्बन गुच्छों के रोपण द्वारा सैफायर पर नैनोक्रिस्टलीय ग्राफाइट की वृद्धि** डब्ल्यू.जे. लाकशांता, एम.कुमार, टी. सोम, एफ. डी. मैकडानियल और बी. राउत, न्यूक्लियर इंस्ट्रुमेंटस और मेथडस इन फिजिक्स रिसर्च 488, 64-69 (2020)
- 32. स्पंदित लेजर डिपोजिशन द्वारा एकत्रित SrTiO 3 फिल्मों के आकारिकी, इलेक्ट्रोनिक संरचना और ऊष्मवैद्युतिकी विशेषताओं पर अवस्तर तापमात्रा की महत्वपूर्ण भूमिका
 - ए. भोगरा, ए. मसरत, डी. हैसिना, आर.मीना, जी. आर. उमापति, ए.कुमार, टी. सोम, सी. एल. डोंग, सी. एल. चेन और ए. कंडासामी, सरफेस एंड कोटिंग्स टेक्नोलोजी 407, 126740 (2020)
- 33. Ar आयन किरणित TiO2/SrTiO3 द्विपरत की द्विटियुक्त संरचनात्मक और वैद्युतिकी विशेषताएं भोगरा ए, मसरत डी, हैसिना, आर.मीना, ए.कुमार, टी.सोम, सी.एल. डोंग, सी.एल. चेन और ए. कंडासामी, मेटिएिल्स लैटर्स 282, 128880 (2020)

34. ZnO ग्रेन परिसीमाओं में बैंड-बेडिंग का प्रत्यक्ष प्रमाण : SnO 2 फिल्में : स्थानीय परीक्षण माईक्रोस्कोपिक अध्ययन

आर. सिंह और टी. सोम, सोलर एनर्जी 208, 275-281 (2020)

- 35. **आकारिकी आश्रित प्रकाशिकी और GLAD PTFE पतली फिल्मों के वेटिंग व्यवहार** आर. दे, एस.एम. हक, आर. सिंह, सी.बी. बसक, एस.जेना, जे.एस.मिसाल, डी. डी. सिंधे, टी. सोम और के. डी. राव, जर्नल ऑफ कोटिंगस टेक्नोलोजी एंड रिसर्च 1-10 (2020)
- 36. स्पंदित लेजर से निक्षिप्त ZnO: Cu पतली फिल्मों की प्रकाशप्रतिकिया एम. सैनी, आर. सिंह, ए. मित्रा और टी. सोम, सोलर एनर्जी 207, 228-234 (2020)
- 37. O+ आयन किरणन द्वारा द्विटिपूर्ण यांत्रिकी के माध्यम से ZnO नैनोरडस के समस्वरण क्षेत्रक उत्सर्जन अभिलक्षणन ए. सिंह, के. सेनापित, आर. सिंह, पी. राजपुत, टी. सोम और पी.के. साहु, जर्नल ऑफ आपलाइड फिजिक्स 128, 054304 (2020)
- 38. पृष्ठसर्पी कोण पर एकत्रित अति पतली सिल्वर फिल्मों में स्थानगत पृष्ठीय प्लॉज्मन अनुनाद के लिए ताप सीमा आर. दे, एस.एम. हक, एम.के. सिकदर, पी.के. साहु, टी. सोम और के. डी. राव, जर्नल ऑफ फिजिक्स ः कंडेनसड मैटर 32, 395701 (2020)
- 39. COVID-19 में रक्त विकरों की चुनौतियाँ;
 पी. साहु, एच. दास और पि.के. साहु, इंटरनेशनॉल जर्नल ऑफ मेडिकॉल साइस एंड इनोवेटिव रिसर्च आईजेएमएसआईआर: 5, 6572(2020)
- 40. वायुमंडलीय न्यूट्रिनो प्रयोग में दोलन नित से दोल घाटी तक ए.कुमार, ए. खातुन , एस.के. अगरवाला और ए. दिघे, यूरोपियन फिजिक्स जर्नल सी 81: 190(2021)
- 41. क्या गहरी भूमिकत न्यूट्रिनो प्रयोग की संवेदनशीलता को लोरेंत्ज इनवेरिएंस प्रभावित कर सकता है ? एस.के. अगरवाला और एम. मासुद, यूरोपियन फिजिक्स जर्नल सी 80: 716(2020)
- 42. म्युऑन और हैड्रॉन सूचना को मिलाकर आईएनओ में अमानक न्यूट्रिनो अंतक्रियाओं की संवेदनशीलता को बढ़ाना
 - ए. खातुन, एस.एस. चटर्जी, टी. ठाकुर और एस.के. अगरवाला, यूरोपियन फिजिक्स जर्नल सी 80: 533(2020)
- 43. CH,NH,PbBr, में ब्रोड बैंड उत्सर्जन की उत्पत्ति को समझना पी. नंदी, सी.गिरि और डी. तोपवाल, जर्नल मैटर केमेस्ट्रि सी 9, 2793(2021)
- 44. जैविक परिवर्तन के लिए एक अत्यधिक कुशल और पुन :प्रयोज्य उत्प्रेरक के रुप में 3D पोरस पॉलिमेरिट फोम समर्थित Pd नैनोक्रिस्टल

एल. साहु, एस.मंडल, एन.बीना, ए. ग्लोस्कोवस्की, एम. यूनिकृष्णन, डी. तोपवाल और यू.के. गौतम, एसीएस आप्लाइड मैटर, इंटरफेस, 13(8), 10120(2021)

- 45. **GdMnO₃ में क्षेत्र-समस्थापन : संरचनात्मक, इलेक्ट्रोनिक और चुंबकीय विशेषताओं पर प्रभाव** एस. माहना, बी. रखित, पी. नंदी, आर. बसु,एस. धारा, यू मंजू, एस. डी.महांति और डी. तोपवाल , फिजिक्स ख्यू बी 102, 245120 (2020)
- 46. पेरोक्काइट सौर कोशिकाओं में अवशोषक के रूप में जैविक-अजैविक हाईब्रीड लेड हैलइडेस : फेराइलेक्ट्रिसटी पर एक वाद-विवाद

पी. नंदी, एन.जी. पार्क, डी. तोपवाल और एच.शिन, जर्नल फिजिक्स डी : आप्लाइड फिजिक्स 53, 493002 (2020)

- 47. **Bi और Fe अपिमिश्रित BaTiO, में कक्ष-तापमात्रा बहुलौहिकता की यांत्रिकी** पी. पाल, टी. परमाणिक, के.रुद्रपाल, एस.मजूमदार, एस.यादव, एस.महाना, डी. तोपवाल, आर.जे. चौधूरी, के. सिंह, ए. आर. चौधूरी और डी. चौधूरी , आप्लाइड फिजिक्स लैटर्स, 117, 012901(2020)
- 48. **ओरिएंटशनली विरुपित क्यूबिक फेज में हाईब्रिड पेराब्स्काइट की इेलेक्ट्रोनिक संरचना की जांच करना** पी. नंदी, एस.के. पांडे, सी. गिरि, वी. सिंह, एल. पेटासिया, यू. मंजू, एस.डी. महांति और डी. तोपवाल, जर्नल ऑफ फिजिक्स केमेस्ट्री लैटर्स 11, 5719(2020)
- 49. **गैरपारंपरिक जोड़ पर आधारित फ्लोक्यूएट दूसरी कोटी के आकारिकी अतिचालक** ए.के. घोष, टी. नाग, ए. साहा, फिजिक्स रिव्यू बी 103, 085413 (2021)
- 50. दूसरी कोटी आकारिकी अतिचालक की फ्लोक्यूएट पीढ़ी ए.के. घोष, टी. नाग, ए. साहा, फिजिक्स रिव्यू बी 103, 045424 (2021)
- 51. डिराक एवं वेल प्रणालियों में आरकेकेवाई अंतक्रिया के माध्यम से अंतरापृष्ठीय आकारिकी काइराल विधियों के चिह्न

जी. सी. पाउल, एस.के. एफ. इसलाम, पी. दत्ता और ए. साहा, फिजिक्स ख्यू बी 103, 115306 (2021)

- 52. फिसर जालकों पर एक निराश हाईजेनबर्ग मॉडल में प्रतिस्पर्धी क्रम, ए. मैती, वाई.इकबाल, एस. मंडल, फिजिक्स ख्यूि बी 102, 224404(2020)
- 53. अति कुशल सौर और ऊष्म ऊर्जा पाने के लिए दो विमीय हाईब्रिड पेरोब्स्काइट सामग्रियों में रासबा विपाटन, एच.एल. कागड़ा, एस.के गुप्ता, एस. साहु और डी. के. सिंह, जर्नल ऑफ फिजिक्स केमेस्ट्री लैटर्स 11,7679-7686 (2020)
- 54. वालेंस परिवर्तन आनाटेज TiO, प्रतिरोधी रेंडम आसेस मेमोरी उपकरण के फिल्मों संचालन पर आवेश अंत :क्षेपण के प्रभाव

एम. सी. साहु, एस.के. मिल्लिक, एस. साहु, एस. साहु, एस.के. गुप्ता, आर. आहुजा और एस. साहु, जर्नल ऑफ फिजिक्स केमेस्ट्री लैटर्स 12, 1876–1884 (2021)

55. **रमन स्पेक्ट्रोस्कोपी का उपयोग करते हुए फ्री-स्टान्डिंग सिलिकॉन नैनोवायर की ऊष्मीय चालकता,** एस. साहु, एस.के. मिल्लिक, एम.सी. साहु, ए.जोशेफ, एस. सिंह, एस.के. गुप्ता, बी. राउत, जी.क. प्रधान और एस. साहु, नैनोटेक्टनोलोजीgy. 31, 505701 (2020)

- 56. फ्रोसार्ट बाउंड, हैड्रॉन का प्रकीर्णन विवर्तन और वायुमंडलीय ऊर्जाओं में स्केलिंग, ए.के. नायक और जे. महारना , फिजिक्स रिव्यू, डी 102, 034018 (2020)
- 57. **सादिशं बोसोन संलयन के माध्यम से अदृश्य हिग्स की खोज : एक गहन शिक्षण दृष्टिकोण से,** वि. एस. नौंरबाम, ए. भरद्वाज, पी. कोनर और ए.के. नायक, यूरोपियन फिजिक्स जर्नल सी 80, 11(2020)
- 58. **एलएचसी में जेट सबस्ट्रक्चर का उपयोग करते हुए भारी डाईजेट अनुनादों को विकसित करना,** ए.के. नायक, एस.के. राय और टी. सामुई, यूरोपियन फिजिक्स जर्नल सी 81,2 (2021)
- 59. √sqrt(s) = 13TeV पर प्रोटॉन-प्रोटॉन टकराव में H → cs चैनल में एक कम आवेशित हिग्गस बोसॉन की खोज, ए. एम. सिरून्यान ए.के. नायक और अन्य (सीएमस सहयोग), फिजिक्स ख्यि डी 102, 072001(2020)
- 60. **लोडिंग :अस्थिरता और चक्रीय देलन सीमा के तहत फिलामेंट मोटर प्रोटीन प**द्धति ए.शी, एस. घोष और डी. चौधूरी , सॉफ्ट मैटर.00, 1-11 (2021)
- 61. **हार्मोनिक ट्राप में सिक्रए बोनिएन किणका** : संवेगों सटीक गणना और संक्रमण का पुन :प्रवेश डी. चौधूरी और ए. धर, जर्नल स्टेटिकॉल मेकानिकल थियोरी एक्सपेरिमेट 2021, 013207 (2021)
- 62. एक ग्लाइडिंग परख में एक अर्ध-लचीला बहुलक : संक्रमण का पुन :प्रवेश, टर्नओवर और गतिविधि की भूमिका
 - ए. शी, एन.गुप्ता, ए. चौधूरी और डी. चौधूरी, सॉफ्ट मैटर 17, 2120-2131 (2021)
- 63. दो वीमाओं में वीकस-चांडलर-एंडरसन प्रणाली के दो चरणीय मेल्टिंग एस. एस. खिल, डी. चक्रवर्ती और डी. चौधूरी, सॉफ्ट मैटर 17, 3473–3485 (2021)
- 64. सक्रिय बोनिऑन कणिकायें : साम्य पॉलिमर्स के मानचित्रण और संवेगों की सटीक गणना ए. शी, ए. धर और डी. चौधूरी, सॉफ्ट मैटर 16, 4776–4787 (2020)
- 65. **एमएचवी गुरुत्वकर्षण आवृत्ति और खगोलीय आकार पर वर्तमान का बीजगणित,** एन. बनर्जी, एस. घोष और पी. पाउल, जेएचईपी 02, 176 (2021)
- 66. खगोलीय ओपीई की बीएमएस समिति एस. बनर्जी, एस. घोष और आर. गोंजो, जेएचइपी 04, 130 (2020)
- 67. **2H-NbSe2 के अतिचालनक गुणधर्मों पर Mg अंत :निवेश के सामान्य प्रभाव** एस. नायक, एस.कालियारासन, आर.सी. नाथ, एस.एन. सरंगी, ए.के. साहु, डी. सामल, एच.एस. बिस्वाल और एस.एल. सामल, इनअर्गानिक केमेस्ट्री 60, 7, 4588-4598 (2021)
- 68. CaCu, Ru, O, पतली फिल्मों में धातव विद्युतरोधी संक्रमण के पास दुर्बल एंटीलोकालाइजेशन-दुर्बल लोकालाइजेशन क्रॉसओवर का प्रमाण एस. जाना, एस.जी. भट्ट, बी.सी. बेहेरा, पी. एस. ए. अनिल कुमार, बी.आर.के. नंद और डी. सामल , इपीएल 133, 17005 (2021)
- 69. **Y**₃Fe₅O₁₂/ Gd₃Ga₅O₁₂ में सकारात्मक पक्षपात बदलाव और विपरीत हिस्टेरिसीस लूप आर.कुमार, एस. एन. सरंगी, डी. सामल और जेड हुसैन, फिजिक्स खियू बी 103, 064421 (2021)

(2020)

- 70. समूह-10 के संक्रमण धातव इडीक्लोजेनाइडस की इलेक्ट्रोनिक और आकारिकी विशेषताएं , एम.के. हुडा, सी.एस. यादव और डी. सामल, जर्नल फिजिक्स : कंडेनसड मैटर (ट्रापिकॉल ख्यि) 33, 103001 (2021)
- 71. अमांदित और Li-मादित Cu(OH)2-CuO के चुंबकीय गुणधर्मों का एक तुलनात्मक अध्ययन बी. सी. बेहेरा, एस. एन. सरंगी, डी. सामल और एस.के. त्रिपाठी, जर्नल ऑफ मैग्नेटिज्म एंड मैग्नेटिक मेटरिएल्स 513, 167263 (2020)
- 72. प्रतिस्थापित प्रतिलोहचुंबकीय Mn2SnS4 में मिश्रित वालेंट एंटीमनी प्रेरित अव्यवस्था, टी. एस. दाश, एस.डी. कौशिक, एस. एन. सरंगी, डी. सामल, एस. म्युऑन, सी. एस. यादव और एस. एल. सामल, डॉल्टन ट्रांजाक्सन 49, 6425 (2020)
- 73. **एलएचसी में लेप्टोक्चार्कों के मान उत्पादन में वृद्धि** ए. भाष्कर, डी. दास, बी. दे, और एम. मित्रा, जर्नल रेफ : फिजिक्स ख्य्रि : डी 102 3, 035002(2020)
- 74. डार्क मैअर-न्यूक्लियन अंतक्रियाओं का निरश्त : युकवा कपिलंग की तरह नॉन-स्टांडाड- मॉडल की भूमिका डी. दास, बी. दे, और एम. मित्रा, जर्नल रेफ : फिजिक्स लैटर बी 815,136159(2021)
- 75. **टाइप III विपरीत सी सॉ सिंहत आईडीएम में निर्वात स्थिरता की जाँच करना** पी. बंदोपाद्यालय, एस. जांगिड, एम. मित्रा, जेएचइपी 02, 075(2021)
- 76. **आगामी इपी कोलाइडरों में लेप्टोक्वार्कस के R**ृवर्ग के चिह्न. आर. पधान, एस. मंडल, एम. मित्रा और एन. सिन्हा, फिजिक्स ख्यि डी 101 7, 075037 (2020)
- 77. **लार्ज हेड्रॉन कोलाइडर और आगामी पीपी कोलाइडर में टेट्रालेप्टॉन के समान चिह्न.** इ. जे. चून, एस. खान, एस. मंडल, एम. मित्रा और एस. शिल, फिजिक्स ख्यि डी 101 7, 075008 (2020)
- 78. **एचइ-एलएचसी स्थित पीपी कोलाइडर में दोहरी और एकल हिग्गस बोसॉनों की जांच करना** आर. पधान, डी. दास, एम. मित्रा और ए.के. नायक, फिजिक्स ख्यू डी 101 7, 075050 (2020)
- 79. **बीएसटी संशोधित बीएलएफओ द्वारा संचालित मुक्त सेरामिक की परावैद्युत, वैद्युतिकी और चुंबकीय विशेषताएं** ए. मोहांति, एस. भट्टाचारजी, एस.एन. सरंगी, एन.सी. नायक, आर.के. परिड़ा और बी.एन. परिडा, जर्नल ऑफ आलयज एंड कंपाउडस 863, 158060 (2020)
- 80. एमडब्ल्यूसीएनटी मादित क्रांतिक विद्युत धारा घनत्व आश्रित वर्खित चुंबकीय क्षेत्र, मैग्नेसियम डाइबोराइड अतिचालक आई. अहमद, जे.एस. हांसदा, एस. एन. सरंगी, पी. एम. सरुण, जर्नल ऑफ आलएज एंड कंपाउडस 834, 155033
- 81. **पीवीडीएक्स मैट्रिक्स में अंत :स्थापित CuO-नैनोकिस्टलों में लौहचुंबकीय विशेषताएं** एस. दोलाई, आर. दे, एस.एन. सरंगी, एस. हुसैन, आर. बर, ए.के. पाल, जर्नल ऑफ मैग्नेटिज्म एंड मैग्नेटिक मैटिएल्स 495, 165903 (2020)

- 82. **कार्बन नैनोट्यूब आधारित पतली फिल्मों कोटिंग के कम परावर्तन : एक विशेष अध्ययन** एस. सैनी, एस. रोशमी, जी. एम. गौड, ए.कुमार, एस. श्रीराम, के.वी, और के. भट्टाचारजी, नैनोस्केल एडवांसड 3, 3184 (2021)
- 83. **कक्ष तापमाद्रा में मशीनी से फोड़े गये WS2सतह पर Sn का परमाणवीय अवशेषण,** एम. मोहन, वी.के. सिंह, एस. रेशमी, एस.आर. बर्मन, के. भट्टाचारजी : सरफेस साइंस 701, 121685 (2020)
- अनुरूप क्षेत्र सिद्धांत में विश्लेषणात्मकता और कारणताजे. महरणा, मर्डन फिजिक्स लैटर ए 35, 2050186 (2020)
- 85. सित अंतराकाशी विमा के सिद्धांत में आयाम के लिए परिक्षेपण संबंध का प्रमाण, जे. महारणा, जेएचइपी 06, 139 (2020)
- 86. आरआरएएम अनुप्रयोग के लिए $\mathbf{Bi_{0.97}Y_{0.03}Fe_{0.95}Sc_{0.05}O_3}$ लौहवैद्युत फिल्मों में मुक्त प्रतिरोधक स्वीचन का गठन ,
 - ए.के. जेना, एच.एन.. मोहांति, जे. मोहांति, फिजिका स्क्रिप्टा 96,045808 (2021)
- 87. वर्तमान चल रही लंबी बेसलाइन और न्यूट्रिनविहीन दोहरी-बीटा क्षय प्रयोग पर हल्के स्टेराइल न्यूट्रिनो के संबंध, आर. माझी, सी. सौम्या और आर. मोहंता, जर्नल फिजिक्स जी : न्यूक्लियर पार्टिकल फिजिक्स 47, 095002 (2020)
- 88. वर्तमान चल रे दीर्ध बेसलाइन प्रयोग में लोरेंज इनवेरिएंस उल्लंघन के प्रभाव की जांच करना, आर. माझी, सी. सौम्या और आर. मोहंत, यूरोपियन फिजिक्स जर्नल सी 80 5, 364 (2020)
 - ALICE सहयोग प्रकाशन : एस. आचार्य. . . . पी.के. साहु और अन्य आईओपी आलिस सहयोग (प्रो. पी.के. साहु) का एक अंश है और वर्ष 2020-2021 के दौरान कुल 34 शोधपत्र प्रकाशित हुआ है.
 - सीएमएस सहयोग प्रकाशन : ए. एम. सुरिन्यान. . ए.के. नाय और अन्य आईओपी सीएमएस सहयोग (डॉ. ए.के. नायक) का एक अंश है और वर्ष 2020-2021 के दौरान कुल 75 शोधपत्र प्रकाशित हुआ है.

3.2 सम्मेलन कार्यवृत्त

- लोरेंत्ज इनवेरिएं उल्लंघन और दीर्घ बेसलाइन प्रयोग
 रुद्र माझी, सी. सौम्या और रुकम्णी मोहंत, स्प्रिंगर प्रोसि.फिजिक्स 248, 349-353(2020)
- 3.3 पुस्तक /पुस्तक में अध्याय
- न्यूक्लियर स्ट्रक्चर फिजिक्स (पुस्तक)
 ए. शुक्ला, और एस.के. पात्र, सीआरसी प्रेस, 2020
- 2. **अजैविक नैनोसामग्रियों के जैवअनुप्रयोग (पुस्तक में एक अध्याय)**एस.एन. सरंगी और एस. नोजाकी : हैंडबुक :वायोइनस्पायर्ड सिस्मस एंड मेथडस (खंड-सात) प्रथम प्रकाशन क्लाउस डी.साटलेर, प्रकाशक : टेलर एंड फ्रांसिसि ग्रुप, सीआरसी- प्रेस, पृष्ठ संख्या 7-14, (2020)

3.4 अन्य प्रकाशन (पुस्तकालय कर्मचारी द्वारा)

- बी. मोहांति , जे. साहु, और एन.के. दाश (2020) साइंटोमेट्रिक संकेतकों का उपयोग करके विद्यार्थी संचार के अनुसंधान प्रभाव का आकलन : सूचना प्रणाली प्रबंधन जर्नल पर एक अध्ययन , लाईब्रेरी फिलोशोफी एंड प्राविटस (ई-जर्नल) 2020 (4207), 1-22.
- संतोसिनी एम, साहुख् जे., दाश, एन.के.ख् और मोहांति, बी. (2020). पुस्तकालय एवं सूचना विज्ञान के क्षेत्र
 में भारतीय डॉक्टरॉल शोध : एक अनुभवजन्य विश्लेषण. इंटरनेशनॉल इनफरमेशन एंड लाईब्रेरी ख्यू,
 52(4), 1-16; doi:10.1080/10572317.2020.1849914.
- पात्र, एस., साहु, जे., और मोहांति, बी. और मुंधीलाल, एस. (2021). डिजिटॉल सरंक्षण पर शोध : एक अनुभवजन्य विश्लेषण, लाईब्रेरी फिलोशोफी एंड प्राक्टिस (ई-जर्नल) 2021 (5428), 1-17.
- मुंधीलाल, एस., साहु, जे.,दाश, एन.के., और मोहांति, बी.(202). भारत में पुस्तकालय और सूचना विज्ञान में शोध प्रवृत्ति एक अध्ययन (पुस्तक का अध्याय) असरफ टी., नाकवी, एस.एच., एस एंड खान, एच.आर. (संपा.), पुस्तकलाय सेवा में उभरते रुझान और प्रौद्योगिकियां : एक अन्वेषण, सिनर्जी बुकस, आईएसबीएन-9788194843061, पृ.सं 143-152.

3.5. (क) संकायों को मिले पुरस्कार/सम्मान और मान्यताएं

प्रो. सीखा वर्मा

- आईओपी-पब्लिशिंग ब्रिस्टल, यूके की इंटरनेशनॉल जर्नल ऑफ फिजिक्स : कंडेनस्ड मैटर की संपादकीय मंडल में सदस्या
- अंतरराष्ट्रीय जर्नल ' फ्रंटियर' की समीक्षा संपादकीय मंडल में सदस्या

प्रो. टी. सोम

- सदस्य, समीक्षा सिमति, डीएसटी सोलॉर पीवी हब, आईआईइएसटी, शिवपुर ।
- "इंटरनेशनॉल वॉर्कशॉप ऑन नैनोपैटर्निंग" पर द्विवर्षीय अंतरराष्ट्रीय वैज्ञानिक समिति का सदस्य

प्रो. संजीव कुमार अगरवाला

- 🕨 विज्ञान एवं प्रौद्योगिकी विभाग (डीएसटी) का स्वर्णजयंती फेलोशिप 2019-2020
- ≽ इंडियन फिजिक्स एसोसीएशन (आईपीए) द्वारा एस.एन. सत्यमूर्ति स्मारक पुरस्कार-2020
- 🕨 आईएनएसए से तीन वर्षों (2018 से 2021 तक) युवा वैज्ञानिक अनुसंधान अनुदान

डा. सप्तर्षि मण्डल

आइसिटिपि एसोसिएट 2020 से 2020 पुरस्कृत

डॉ. अरुण कुमार नायक

सीएमएस सहयोग द्वारा स्ट्राटेजी फॉर द्विगर इवोल्यूशन एंड मॉनिटरिंग (एसटीइएएम) पर समूह संयोजक के रूप में दो वर्षों के लिए नियुक्त (सितम्बर 2020 से अगस्त 2022 तक) । यह सीएमएस ट्रिगर समन्वयन के तहत संयोजक स्तर-2 का पद है ।

डॉ. देवाशिष चौधूरी

डॉ. देवाशिष चौधूरी जनवरी-2020 से दिसम्बर 2020 की अविध के लिए सैद्धांतिक अध्ययन अंतरराष्ट्रीय केंद्र
 (आईसीटीएस)-टीएफआईआर, बेंगालूर का एसोसीएट बनें ।

डॉ. कीर्तिमान घोष

🕨 आईएएससी एसोसिएट के रूप में चयनित (2020-2023)

डॉ. मणिमाला मित्रा

जून 2020 में प्रगत अनुसंधान के प्रोन्नित के लिए भारत-फ्रेंच केंद्र से प्रतिष्ठित भारत-फ्रेंच द्विपक्षीय अनुसंधान अनुदान प्राप्त किया । इस पिरयोजना में आईआईएससी के प्रो. रोहिणी एम.गोडबोले भारत के अंशीदार संस्थान की ओर से सह-पिरयोजना अन्वेषक हैं । फ्रेंच की ओर से पीआई प्रो. जेनेविव बेंलागेंर, एल.आप्थ और एनेसी, फ्रांस है ।

3.5. (ख) शोधार्थियों के मिले पुरस्कार/सम्मान और मान्यताएं

🕨 श्री विभाबसु दे को " डीएई-एचईपा-2020" परिसंवाद में सर्वश्रेष्ठ पोस्टर पुरस्कार प्राप्त हुआ है ।

वार्षिक प्रतिवेदन और लेखापरीक्षित लेखा विवरण 2020-21

अन्य गतिविधियाँ

4.1	स्थापना दिवस	:	49
4.2	आउटरीच कार्यक्रम	•	49
4.3	राजभाषा गतिविधियाँ	:	50
4.4	स्वच्छ भारत अभियान गतिविधियाँ	•	51
4.5	खेलकूद एवं सांस्कृतिक गतिविधियाँ	:	52
4.6	अन्य गतिविधियाँ	:	53

4.1 स्थापना दिवस

संस्थान अपना स्थापना दिवस 4 सितम्बर 2020 मनाया था। महामारी और भारत के पूर्व राष्ट्रपित के दुखद निधन के कारण स्थापना दिवस को कम महत्वपूर्ण के रूप में माना गया था। महामारी की स्थिति के कारण केवल लगभग 20 व्यक्तियों को प्रत्यक्ष उपस्थिति के लिए आमंत्रित किया गया था। परंतु हर कोई गुगल मीट या यू द्यूब के माध्यम से लिंक पर शामिल हो।

कार्यक्रम के दौरान, निदेशक का संदेश पढ़ा गया था और संस्थान की गतिविधियों की रिपोर्ट पेश की गयी । सेवानिवृत्त कर्मचारियों को भी सम्मानित किया गया । कार्यक्रम का शैक्षणिक भाग में, डॉ. राजीव स्वांई, जीव विज्ञान संस्थान, भुवनेश्वर ने कोविड-19 महामारी : ये कैसे शुरु हुआ और यह कैसे समाप्त हो सकता है विषय पर वार्ता रखी। कार्यक्रम का समापन रजिस्ट्रार के धन्यवाद ज्ञापन के साथ हुआ ।

स्थापना दिवस समारोह का चित्र

डॉ. राजिव स्वांई, आइएलएस, भुवेनश्वर वार्ता प्रस्तुत कर रहे हैं

4.2 आउटरीच कार्यक्रम

प्रो. ए.एम. श्रीवास्तव

- 27 सितम्बर 2020 को स्कूली छात्रों के लिए विज्ञान चेना मंच, भुवनेश्वर द्वारा आयोजितक फिजिक्स ओपन डिस्कशन (पीओडी) सत्र में "गति" शीर्षक पर ऑनलाइन चर्चा की थी ।
- 2. 21 दिसम्बर 2020 को आईओपी भुवनेश्वर में बृहस्पित-शिन के महासंयोग के अवसर पर रात्रिकालीन आकाश दर्शन सत्र आयोजित किया था । यह कार्यक्रम आईओपी के सदस्यों और उनके पिरजनों के लिए 8 " श्मिड-कैसग्रेन 2 मीटर फोकल लेंथ टेलीस्कोप (कंप्यूटर नियंत्रित एक जीपीएस प्रणाली) से यह आयोजित किया गया था । इस कार्यक्रम के दौरान कोविड-19 सुरक्षा शर्तों को संख्ती से पालन किया गया था
- 3 जनवरी 2021 को कोहेन अंतरराष्ट्रीय स्कूल में भौतिक शास्त्र खुली चर्चा (पीओडी) सत्र आयोजित किया
 था ।
- 30 जनवरी 2021 को स्कूली छात्रों के लिए भौतिक शास्त्र खुली चर्चा (पीओडी) सत्र आयोजित किया था ।

4.3 राजभाषा गतिविधियाँ

राजभाषा कार्यान्वयन

भारत सरकार की राजभाषा नीति के अनुसरण में, संस्थान के राजभाषा एकक आईओपी, भुवनेश्वर में हिंदी के प्रगतिशील उपयोग को बढ़ावा दे रहा है। संस्थान पूरी तरह से अपने कर्मचारियों ओर अधिकारियों को भारत सरकार के राजभाषा हिंदी से संबंधित नियमों और विनियमों का पालन करने की कोशिश कर रही है।

चल रही गतिविधियाँ

राजभाषा अधिनियम 1963, की धारा 3 (3) के तहत आने वाले संस्थान की वार्षिक रिपोर्ट, वार्षिक लेखा परीक्षा रिपोर्ट, और विभिन्न अन्य दस्तावेजों का हिंदी अनुवाद किया जाता है। इसके अलावा विभिन्न पत्र और पत्राचार का उत्तर आदि हिंदी में तैयार किया जाता है। राजभाषा अनुभाग सरकारी की राजभाषा नीति के प्रभावी कार्यान्वयन को सुनिश्चित करने का भी प्रयास करती है। संस्थान में द्विभाषी डिसप्ले बोर्ड को सुनिश्चित किया जाता है और विभिन्न नामपट्ट, नोटिस बोर्ड, रबर स्टैंप, नियिमित प्रकार के फॉर्म का द्विभाषी उपयोग सुनिश्चित करता है और संस्थान द्वारा प्रदान किए गए डिग्री प्रमाण पत्र द्विभाषी में तैयार किया जाता है।

हिन्दी कार्यशाला

राजभाषा अनुभाग समय समय पर संस्थान के उन कर्मचारियों को जिनका कार्यसाधक ज्ञान है उन्हें हिंदी प्रशिक्षण और हिंदी कार्यशाला के माध्यम से प्रशिक्षण दिलाता है। राजभाषा के उपयोग में कर्मचारियों की समस्या का समाधान करने के लिए राजभाषा अनुभाग ने संस्थान के कर्मचारियों के लिए हिंदी कार्यशाला/प्रशिक्षणों का आयोजन किया था। रिपोर्ट अविध के दौरान 26.03.2021 को राजभाषा कार्यान्वयन में तकनीशियनों की भूमिका, 30.12.2020 को राजभाषा के कार्यान्वयन में प्रौद्योगिकियों के उपयोग और 29.06.2020 को परमाणु ऊर्जा विभाग एक परिचय पर कार्यशाला आयोजित की गयी थीं।

हिंदी पखवाड़ा-2020

संस्थान ने "हिंदी पखवाड़ा" आयोजन 14-28 सितम्बर 2020 के दौरान किया था । इस 15 दिनों के लंबे पखवाड़ा कार्यक्रम में दौरान संस्थान के कर्मचारियों और शोघछात्रों के साथ साथ आसपास के विद्यार्थियों के लिए विभिन्न कार्यक्रम और प्रतियोगितायें आयोजित किये गए। 14 सितम्बर 2020 को हिंदी दिवस जीवन विज्ञान संस्थान, भुवनेश्वर के साथ मिलकर मनाया गया। आदरणीय निदेशक (प्रभारी) प्रो. पंकज अग्रवाल ने इस आयोजन का शुभारंभ किया। उनकी वार्ता में उन्होंने विभिन्न प्रतियोगिताओं की प्रशंसा की और कहा कि संस्थान भारत सरकार की राजभाषा नीति के कार्यान्वयन के लिए समर्पित है। श्री ऋषि कुमार रथ, रजिस्ट्रार भी उपस्थित थे। उन्होंने बताया कि सरकार की राजभाषा नीतियों के कार्यान्वयन पर संस्थान अधिक जोर देगा। हिंदी दिवस के उपलक्ष्य में मान्यवर गृहमंत्री, भारत सरकार और अध्यक्ष, परमाणु ऊर्जा आयोग द्वारा प्रेषित संदेश का पाठ किया गया। हिंदी पखवाड़ा के दौरान कई लोकप्रिय वार्ताओं का आयोजन किया गया।

हिन्दी पखवाडा समारोह का चित्र

4.4 स्वच्छ भारत अभियान गतिविधियाँ

भारत सरकार द्वारा शुरू किया गया स्वच्छता पखवाड़ा के दौरान स्वच्छता गतिविधियों में नागरिकों की सामूहिक भागीदारी सुनिश्चित करने और स्वच्छ भारत को सही मायने में एक नागरिक आंदोलन में बदलने के लिए मानये जाने वाला पखवाड़ा एक लंबा कार्यक्रम है।

ई-शपथ

इस वर्ष स्वच्छ भारत पखवाड़ा-2021 एक बार फिर से भौतिकी संस्थान, भुवनेश्वर द्वारा 16 से 28 फरवरी 2021 तक उत्साह और जोश के साथ मनाया गया था। स्वच्छता पर ई-प्रतिज्ञा लेकर संस्थान में पखवाड़ा को हरी झंडी दिखाया गया। स्वच्छता शपथ द्विभाषी (हिंदी और अंग्रेजी) का प्रारुप संस्थान के पोर्टल पर उपलब्ध कराया गया। संस्थान के विभिन्न प्रमुखों स्थानों पर स्वच्छता जागरुकता बैनर भी लगाए ग।

इस वैश्विक महामारी के वर्तमान समय में, यह सुनिश्चित किया गया है कि प्रतिज्ञा का इलेक्ट्रोनिक संस्करण संस्थान के आंतरिक पोर्टल पर उपलब्ध कराया जाए ताकि सभी कर्मचारी अपने आवासों/कार्यस्थलों से ही प्रतिज्ञा को पढ सकें और लेने के लिए दूर तक पहुंचाया जा सकें । इस अभिनव उपाय ने आईओपी के सदस्यों को कोविड-१९ प्रोटोकॉल का पालन करते हुए स्वच्छता प्रतिज्ञा लेने में सक्षम बनाया है।

स्वच्छता गतिविधियाँ

स्वच्छता पखवाड़ा के अंश के रूप में 17.02.2020 से 28.02.2021 तक संस्थान के आस-पास इलाके में और सार्वजनिक सभा स्थलों, जल नकासी चैनलों और परिसर के अन्य क्षेत्रों को साफ करने के लिए श्रमदान कार्यक्रम आयोजित किया गया ।

स्वच्छता जागरुकता अभियान

जागरुकता सह श्रमदान अभियान दिनांक 19.02,2021 को आईसीई फाउंडेशन के साथ मिलकर दुर्गामाधवपुर ग्राम, जिला-पुरी, ओड़िशा में आयोजित किया गया था।

स्वच्छता गतिविधियों के दौरान संस्थान के कर्मचारियों के साथ प्रो.सीखा वर्मा, प्रमारी निवेशक, श्री आर.के.रथ, रजिस्ट्रार, श्री एम.वी. वांजीश्वरन, प्रशासनिक अधिकारी आदि ब्रारा संस्थान चिकित्सालय परिसर की सफाई हो रही है ।

दुर्गामाधवपुर ग्रामवासियों को भारत सरकार के स्वच्छता कार्यक्रम के बारे में बताया जा रहा है ।

4.5 खेलकूद गतिविधियौ

वैज्ञानिक गतिविधियों के साथ साथ आईओपी ने सभी सदस्यों को शारीरिक रूप से स्वस्थ रखने के विभिन्न खेल-कूद और सांस्कृतिक कार्यक्रमों को बढ़ावा देने के लिए खेल गतिविधियों को जारी रखा है । आईओपी कर्मचारी कल्याण सोसाइटी ने आईओपी में विभिन्न खेल-कूद और सांस्कृतिक गतिविधियों का संचालन किया है ।

कल्याण सोसाइटी के सदस्यगण थे प्रो. (डॉ.) सुरेश कुमार पात्र (अध्यक्ष), डॉ. अरिजित साहा, श्री भगबान बेहेरा (सिचव), बालकृष्ण दास (खेलकूद संयोजक), श्रीमित अजिता कुमारी कुजूर, श्री प्रियब्रत पात्र, श्री राजेश महापात्र, श्री बृंदाबन मोहांति (सांस्कृतिक संयोजक)।

आईओपी वार्षिक खेलकूद का पुरस्कार वितरण समारोह का एक दृश्य

कोविड-19 महामारी के कारण, आईओपी वार्षिक खेलकूद और सांस्कृतिक समारोह 2019 के पुरस्कार वितरण समारोह के साथ साथ वार्षिक खेलकूद और सांस्कृतिक समारोह 2020, अगस्त 15, 2020 के दोस्ताना फुटबॉल मैच और कई गतिविधियाँ वर्ष 2020 में आयोजित नहीं हो सकीं।

परंतु, कोविड-19 सुरक्षा प्रोटोकॉलों का अनुपालन करते हुए वार्षिक खेलकूद और सांस्कृतिक समारोह 2019 पुरस्कार वितरण समारोह 26 जनवरी 2021 में आयोजित किया गया । इस वार्षिक खेलकूदों में कुल 17 प्रतियोगितायें आयोजित की गयी थीं । लगभग 55 कर्मचारियों ने पुरुष प्रतियोगिताओं में भाग लिया था और 30 परिजनों ने महिला प्रतियोगिताओं में भाग लिया था और बच्चों के लिए आयोजित प्रतियोगिता में 40 बच्चें भाग लिये थे । कर्मचारियों में से इस प्रतियोगिताओं को सफल करने के लिए 20 स्वेच्छासेवी संचालन कर रहे थे । कुछ कर्मचारियों को भी सम्मानित किया गया जिन्होंने आईओपी में 25 साल की सेवा पूरी की है ।

(आईओपी वार्षिक खेलकूद का पुरस्कार वितरण समारोह का एक दृश्य)

4.6. संस्थान में की गई अन्य गतिविधियाँ

4.6.1. गणतंत्र दिवस समारोह

हमारे संस्थान ने भारत का 72 वें गणतंत्र दिवस बडे हर्षोल्लास से मनाया। सदस्यों ने एकता की भावना का महिमामंडन और जश्न मनाने में गर्व महसूस किया । यह कार्यक्रम सुबह 9.15 बजे शुरु हुआ । निदेशक प्रभारी प्रो.सीखा वर्मा ने राष्ट्रीय ध्वजा फहराया, सदस्यों ने राष्ट्रीय ध्वज को सलामी दी और सम्मान और अंखडता बनाए रखने का संकल्य किया । बच्चों के समूह ने राष्ट्रगान के बाद ओडिया में देशभिक्त गीत प्रस्तुत किया ।

6.6.2. वृक्षरोपण कार्यक्रम

संस्थान ने दिनांक 16.07.2020 को वृक्षरोपण कार्यक्रम आयोजित किया था । लगभग 40 पौधें इस कार्यक्रम में दौरान लगाये गये ।

संस्थान में गणतंत्र दिवस 2021 समारोह का चित्र

संस्थान के सदस्यों द्वारा वृक्षरोपण हो रहा है

4.6.3 आईओपीइडब्ल्यूएस स्थापना विवस समारोह

भौतिकी संस्थान कर्मचारी कल्याण सोसाइटी ने अपना 5वें स्थापना दिवस 01.01.2021 को मनाया था । श्री आर.के.रथ, रिजस्ट्रार इस समारोह में मुख्य अतिथि थे। सोसाइटी के सभी सदस्यों ने इस कार्यक्रम में भाग लिया था।

(भौतिकी संस्थान कर्मचारी कल्याण समिति का 5वां स्थापना दिवस समारोह का एक दृश्य)

4.6.4 74 वां स्वतंत्रता दिवस समारोह

आईओपी, भुवनेश्वर ने अपने परिसर में सरकार के कोविड-19 महामारी सुरक्षा प्रोटोकॉलों सामाजिक दूरी और अन्य मानदंडों का पालन करते हुए 74वें स्वतंत्रता दिवस मनाया । प्रो. पंकज अग्रवाल, निदेशक प्रभारी ने राष्ट्रीय ध्वज फहराया, भारत माता के प्रति पुष्पांजिल अर्पित की गर्यी और उनके स्वतंत्रता दिवस के भाषण के बाद प्रत्येक उपस्थित सदस्य द्वारा राष्ट्रीय गीत गाया गया ।

4.6.5. महिला प्रकोष्ठ की गतिविधियाँ

इस वर्ष अंतरराष्ट्रीय महिला दिवस (8 मार्च) का विषय "नेतृत्व में महिलाएं: कोविड-

भौतिकी संस्थान कर्मचारी कल्याण समिति का 5 वां स्थापना दिवस समारोह का एक दृश्य

स्वतंत्रता दिवस के अवसर पर प्रो. पंकज अग्रवाल

19 दुनिया में एक समान भविष्य प्राप्त करना" था । यह एक समान भविष्य को आकार देने और महामारी से उबरने में दुनिया भर की महिलाओं और लड़िकयों के जबरदस्त प्रयासों का जश्न मनाने के लिए था ।

अंतरराष्ट्रीय महिला दिवस के अवसर पर, 8 मार्च 2021 को महिला कक्ष, आईओपी ने ऑनलाइन वार्ताओं का आयोजन किया था । प्रो. एस.एम. युसूफ, निदेशक, आईओपी, सुश्री सुषमा ताईशेटे, संयुक्त सचिव (अ एवं वि) परमाणु ऊर्जा विभाग, मुंबई और प्रो. सुलभ कुलकर्णी, वरिष्ठ वैज्ञानिक, एनएएसआई, सीएमइटी, पुणे ने अपनी अपनी वार्ता रखी । महामारी के कारण, बैठक ऑनलाइन के माध्यम से आयोजित की गई थी, जिसमें वक्ता और कई आईओपी के सदस्य ऑनलाइन पर मौजूद थे और कुछ सदस्य आईओपी के व्याख्यान भवन (ब्लॉक-बी) में उपस्थित थे, सामाजिक दूरी और अन्य कोविड-19 से संबंधित प्रोटोकॉल का पालन किया गया था ।

यह फटोग्राफ 8 मार्च 2021 का है (ऊपर बायं से) व्याख्यान भवन में कई सदस्यों के साथ प्रो. सुलभ कुलकर्णी, प्रो. एस.एम. युसूफ, सुश्री सुषमा ताईशेटे और आईओपी सदस्यगण

अंतरराष्ट्रीय महिला दिवस कार्यक्रम का फटोग्राफ है: 8 मार्च 2021 को आईओपी के व्याख्यान भवन में कई सदस्यगण (जिसमें प्रो.शिखा वर्मा और रजिस्ट्रार शामिल हैं)

प्रारंभ में, महिला प्रकोष्ठ, आईओपी की अध्यक्षा प्रो. शिखा वर्मा ने सभी का स्वागत किया और इस अवसर पर भाषण देने के लिए उत्साहपूर्वक समहत होने के लिए सभी विशिष्ट अतिथि वक्ताओं को धन्यवाद दिया । उन्होंने आईओपी के निदेशक, रिजस्ट्रार, प्रशासन और कंप्यूटर केंद्र को कार्यक्रम सुविधाजनक बनाने के लिए और आईओपी के अन्य सदस्यों को उनके उत्साह के लिए धन्यवाद दिया ।

प्रो. एस.एम.युसूफ ने टिप्पणी की कि भारतीय भौतिकी संघ (आईपीए) के उपाध्यक्ष के रूप में, उन्होंने आईपीए की लेंगिक समानता गतिविधियों में शामिल रहा है और उन्होंने हैदराबाद विश्वविद्यालय में भौतिक शास्त्र में लेंगिक समानता की प्रगति के लिए दबाव पर आयोजित सम्मेलन का उद्घाटन किया था। प्रो. युसूफ ने अपने भाषण में आईओपी की महिला प्रकोष्ठ और आंतरिक शिकायत समिति ("आईसीसी") की कुछ मुख्य विशेषताएं प्रस्तुत की। उन्होंने विज्ञान में लेंगिक समानता के संदेश को बढ़ावा देने में महिला प्रकोष्ठ, आईओपी द्वारा की गई विभिन्न गतिविधियों का भी उल्लेख किया। उन्होंने आग्र आईओपी वैज्ञानिकों और सदस्यों द्वारा लड़िकयों और महिलाओं को विज्ञान में कैरियर बनाने के लिए प्रोत्साहित करने के प्रयासों पर प्रकाश डाला। उन्होंने आईओपी में अधिक महिलाओं को संकाय और कर्मचारियों के रूप में लाने की आवश्यकता पर प्रकाश उाला।

सुश्री सुषमा ताईशेट, संयुक्त सचिव (अ एवं वि), पऊवि ने सबसे पहले प्रो. युसूफ को निमत्रंण के लिए धन्यवाद दिया और संतोष व्यक्त किया कि निदेशक, आईओपी ने इस तरह के आयोजन में प्रत्यक्ष रूचि ली है और इस अवसर पर बात की है।

फिर उन्होंने महिलाओं को अपने कई प्रयासों में आने वाली किठनाइयों और इन किठनाइयों को दूर करने के लिए जिन रास्तों का उपयोग किया जा सकता है उस पर एक बहुत ही प्रेरक प्रस्तुति दी। उन्होंने अपने अनुभवों से कई लड़िकयों और महिलाओं के कई उदाहरण प्रस्तुत किए जो समस्याओं के बावजूद भेदभाव को पार कर सके । इस दिशा में उन्होंने

अपनी सफल उपलब्धियों में अपनी प्रभावशाली यात्रा और अपने आसपास के कई लोगों द्वारा निभाई गई भूमिका को भी प्रस्तुत किया और लड़िकयों में उच्च लक्ष्यों की इच्छा के महत्व पर जोर दिया ।

प्रो. सुलमा कुलकर्णी ने विज्ञान एवं प्रौद्योगिकी में महिलाओं का योगदान शीर्षक पर एक वार्ता रखी। 16वीं और 19वी शताब्दी के दौरान महिलाओं के सामने आने वाली चुनौतियों पर चर्चा करने के बाद, उन्होंने कई महिला वैज्ञानिकों, गणितज्ञों, कलाकारों के योगदान पर एक स्पष्ट ऐतिहासिक परिप्रेक्ष्य दिया। शिक्षाविद, डॉक्अर जिन्होंने बहुत अधिक समर्थन होने के बावजूद महत्वपूर्ण योगदान दिया। उन्होंने कई महिलाओं की उदाहरण यात्रा भी प्रस्तुत की जिन्होंने विज्ञान में महत्वपूर्ण योगदान दिया है लेकिन उन्हें उचित मान्यता नहीं मिली है। उन्होंने लड़िकयों और महिला वैज्ञानिकों को प्रोत्साहित करने में भारत सरकार द्वारा चलाई जा रही विभिन्न योजनाओं का उल्लेख किया।

वार्ता के लिए दर्शकों की प्रतिक्रिया बहुत उत्साही और सकारात्म्क थी । आईओपी की महिला प्रकोष्ठ ने इस तरह की अधिक चर्चा और प्रस्तुतियाँ के आयोजन करने की योजना बनाई है। इस अवसर पर प्रो. शिखा वर्मा, अध्यक्षा, आईओपी महिला प्रकोष्ठ के व्यक्त विचारों से कार्यक्रम का समापन हुआ ।

वार्षिक प्रतिवेदन और लेखापरीक्षित लेखा विवरण 2020-21

सुविधाएँ

5.1	प्रमुख प्रायोगिक सुविधाएँ	:	59
5.2	संगणक केंद्र	:	6 0
5.3	अणुनेट सुविधा	:	60
5.4	पुस्तकालय	:	61
5.5	अडिटोरियम	•	61

5.1 प्रमुख प्रायोगिक सुविधाएं

आयन किरणपुंज सुविधा

संस्थान की प्रमुख सुविधाओं में से आयन किरणपुंज प्रयोगशाल में अधिस्थापित एनईसी द्वारा निर्मित तीन एमवी वाले पैलेट्रॉन त्वरक एक महत्वपूर्ण सुविधा है, जिसका प्रयोग देश के सभी प्रांत के शोधकर्ताओं द्वारा होता है। यह त्वरक प्रोटॉन तथा अल्फा से लेकर भारी आयन तक के 1-15 MeV ऊर्जा आयन किरणपुंज प्रदान करता है। आम तौर पर प्रयुक्त किरणपुंज H, He, C, N, Si, Mn, Ag और Au होते हैं। MeV ऊर्जा सकारात्मक आयन किरणपुंजों के लिए विविध आवेश अवस्थायें संभव है। सकारात्मक गैस उत्पादन करने हेतु आर्गन गैस को विपट्टक गैस के रूप में प्रयोग किया जाता है। दो एमवी से अधिक टर्मिनॉल विभव के भारी आयनों (कार्बन अथवा इससे अधिक) के लिए सर्विधिक संभावित आवेश स्थित 3+ है।

बीम कक्ष में छ: बीम लाइनें हैं । रदरफोर्ड पश्चप्रकीर्णन (RBS) इलास्टिक रिकएल संसूचन विश्लेषण (ERDA) प्रोटन उत्प्रेरित एक्स-किरण उत्सर्जन (PIXE), अल्ट्रा हाई वेक्युम (UHV) एवं आयन प्रणालीकरण के लिए बीम लाइन का इस्तेमाल -45 डिग्री पर किया जाता है। एएमएस रेडियोकार्बन -15 डिग्री लाइन में किया जाता है। बहुगुणी संसूचक का प्रयोग करके नाभिकीय भौतिकी परीक्षण के लिए साधारण उद्देश्य से एक उपयुक्त प्रकीर्णन चेम्बर 0 डिग्री बीम लाइन में उपलब्ध है। इस बीम लाइन में भी वायुमण्डल की बाहरी पीआईएक्सआई के लिए संभावनाएं उपलब्ध है। 15 डिग्री बीम लाइन के साथ एक रास्टेर स्कैनर रखा गया है, जिसका प्रयोग आयन रोपण के लिए किया जाता है। 30 डिग्री बीम लाइन में पृष्ठीय विज्ञान के परीक्षण के लिए एक यूएचवी चैम्बर रखा गया है । 45 डिग्री बीम लाइन में सूक्ष्म किरण पुंज सुविधा उपलब्ध है।

आयन रोपण, नैनोस्केल सोपानीकरण, आयन-बीम प्रेरित दीर्घवृत्तीय क्रिस्टलाईजेशन, आयन-बीम मिश्रण, आयन-बीम गठन और समाहित नैनोसंरचना का संश्लेषण और आदि के लिए इलेक्ट्रॉन साइक्लोट्रॉन अनुनाद (ईसीआर) आयन स्रांत उपलब्ध है। पृष्ठीय नैनोसंरचना और संवृद्धि प्रयोगशाला (एसयूएनएजी) में कम ऊर्जा वाली (50 eV – 2 keV) ब्रॉड बीम (I डायमीटर)है जो इलेक्ट्रॉन साइक्लोट्रॉन अनुनाद (ईसीआर)

स्रोत पर आधारित, आयन बीम उत्कीर्णन सुविधा उपलब्ध करायी गयी है। जिससे स्वतः संगठित सतह पर नैनोसंरचना की जा सकती है। यह स्रोत विभिन्न पिम्पंग यूनिटों से जुड़ा हुआ है, जो आयन उत्कीर्णन प्रक्रिया के दौरान अच्छी तरह से निर्वात् कक्ष में परीक्षण करने के लिए उपयोगी है। आयन स्रोत में एक यूवीएच संगत नमूने प्रक्रियाकरण कक्ष है, जिसके साथ एक लोड़ लॉक कक्ष और एक पाँच अक्षों वाल नमूना परिचालक लगा हुआ है। विभिन्न तापमात्राओं में नमूना पर नैनोसंरचना के लिए नमूनों का कम तापमात्रा (LN2) और उच्च तापमात्रा (1000 डिग्री सेलिसयस) में रखा जाता है। किसी भी नमूने की स्थिति से अपना आवश्यक तापमात्रा में रखा जाता है। किसी भी नमूने की स्थिति से अपना आवश्यक तापमात्रा को मापा जा सकता है। जबिक आयन धारा को बीम पथ के सामने शटर रखकर मापा जाता है।

सूक्ष्मदर्शी सुविधायें

एचआरटीईएम साधन दो अवयवों से बना है: एक है जेओएल 1 2010 (UHR) TEM और दूसरा सहचारी नमूना विरचन प्रणाली। उच्च विभेदन संचरण इलेक्ट्रॉन माईक्रोस्कोपी (HRTEM) 200 keV पर एक परा-उच्च विभेदन धुव खंड (URP22) के साथ काम कर रहा है, LaB6 तंतु के इलेक्ट्रॉन से 0.19 nm विभेदन के प्रत्येक स्थान को उच्च गुणों के जालक से प्रतिबंबित करने का आश्वासन मिलता है।

कोण वियोजित पराबैंगनी फोटो इलैक्ट्रॉन स्पैक्ट्रमिकी (ARUPS) सुविधा

कोण वियोजित पराबैगनी फोटो इलैक्टॉन स्पेक्ट्रोमिकी (एआरयूपीएस) दोनों कोण समाकलित संयोजकता बैंड परिमापन और कोण वियोजित संयोजक बैंड परिमापन के लिए सुविधाओं से सुसज्जित हैं। यह कोण वियोजित अध्ययन एकल क्रिस्टलों पर संभव है।

स्पंदित लेसर निक्षेपण (पीएलडी) तंत्र

यह एक नयी सुविधा है, विभिन्न द्रव्यों के ऐपीटेक्सीय वृद्धि के लिए पीएलडी तंत्र मदद करती है, यद्यपि सबसे अधिक पसंदीदा सामग्री है ऑक्साइड। विभिन्न स्रोतों से अनेक मॉड्यूलों की प्राप्ति करके हाल ही में अधिष्ठापित तंत्र का विकास एक भाग-वार-तरीके से किया गया । हम उपयुक्त अवस्तरों पर

अतिचालक (यथा YBCO) और कोलोसॉल चुंबकीय प्रतिरोध (यथा LSMO) के ऐपीटेक्सी द्वि-एवं बहु-स्तरीय पतली फिल्मों का निक्षेपण कर रहे हैं।

चुंबकीय गुणधर्म मापन सुविधा

अतिचालक क्वांटम व्यतिकरण उपकरण और कम्पनशील प्रतिदर्श चुंबकत्वमापी, (SQUID-VSM) प्रयोगशाला में एमपीएमएस, एसक्यूयूआईडी-वीएसएम इवरकुल सिस्टम समाहित है। अतिचालक क्वांटम व्यतिकरण उपकरण कंपमान नमूने चुंबकत्वमापी प्रयोगशाला क्वांटम डिजाइन एमपीएमएस-एसक्यूयूआईडी-वीएसएम इवरकूल पद्धित से बना है। चुंबकीय गुण परिमापन पद्धित (एमपीएमएस) विश्लेषणात्मक उपकरणों में से एक है जिसका उपयोग नमूने के तापमावा और चुंबकीय क्षेत्र जैसे व्यापक क्षेत्र के चुंबकीय गुणों का अध्ययन के लिए किया जाता है। अत्यधिक रूप से, अतिचालक क्वांटम व्यतिकरण उपकरण (एसक्यूयूआईडी) से अतिचालक छोटी छोटी कुंण्डिलयों के संवेदी चुंबकीय परिमापन किया जाता है।

प्रकाशिक गुणधर्म परिमापन सुविधा

प्रकाश संदीप्ति और रमण स्पेक्ट्रोस्कोपी गुणघर्मों की जांच के लिए यंत्र : सूक्ष्म रमण सुविधा का परिचालन पश्चउत्सर्जन ज्यामिती, संनाभि मानचित्रण क्षमताओं के साथ सब-माइक्रॉन स्थानिक वियोजन संभव है। लेजर उपयोग करके व्यापक रूप से उत्तेजन संभव है और वस्तु में गहराई से निक्षेपण नियंत्रित संभव है और इस प्रकार, नम्नें की मात्रा नियंत्रण संभव है।

5.2 संगणक केंद्र

संगणक केंद्र वैज्ञानिक गणना और इन-हाउस आईटी सुविधाओं के बारे में वैज्ञानिक समुदाय को समर्पित रूप से सुविधा प्रदान करता है । यह केंद्र संस्थान में सूचना एवं संचार तकनीकी संरचना के प्रबंधन के लिए जिम्मेदार है। इस केंद्र की गतिविधि प्रशासन (सर्वर, नेटवर्क आदि) लॉपटप्/डेस्कटॉप में विभिन्न सेवाओं का होस्टिंग करना से लेकर उपयोगकर्ताओं को सहयोग प्रदान करने तक व्याप्त है। यह केंद्र एक अतिविकसित वातावरण में विभिन्न ऑपरेटिंग सिस्टमस में सहायता प्रदान करता है जैसे कि

यूनिक्स आधारित (सेंट ओएस, रेडहाट,फेडोरा, यूबुंट,), एमएस विंडोज और एमएसी ऑपरटिंग सिस्टम्स) । हमारे डाटा केंद्र की कार्यविधियों में सिस्टम प्रशसन को संभालने के लिए एक अत्याधुनिक तंत्र उपलब्ध है, जिसमें मेल सर्विस, केंद्रिकृत भंडारण समाधान के साथ साथ बेकऑप-स्विधा और इन-हाउस वेबसाइट का विकास और इंट्रानेट और गिगाबिट नेटवर्क कनेक्टिविटी आदि शामिल हैं। हमारे डाटा केंद्र की कार्यविधियों के निष्पादन के लिए, हमने उच्च स्तरीय सर्वर, कोर, वितरण, अभिगम लेयर नेटवर्क स्वीचें, फायरवाल (यूटीएम) और भार संतुलक आदि के अघिष्ठापित किया है । परिसर के सभी भवनों में वायरलेस नेटवर्क उपलब्ध है। इंटरनेट सुविधा एसिंक्रोनस डाटा सबस्क्राइवर लाइन (एडीएसएल) के माध्यम से आवासिक क्षेत्र तक प्रदान किया गया है। यह केंद्र समय समय पर संबंधित विषयों पर प्रशिक्षण, कार्यशाला और जागरूकता कार्यक्रम आयोजित करता है।

एचपीसी सुविधा

सांख्य: उच्च निष्पादन कंप्यूटिंग सुविधा

संस्थान में उच्च निष्पादन कंप्यूटिंग (एचपीसी) सुविधा का वातावरण बहुत उन्नत है जिसमें साठ (60) कंप्यूट नोडस, दो (2) मास्टर नोडस, चार (4) आई/ओ नोडस (ओएसएस तथा एमडीएस) और 50 टीबी अबजेक्ट स्टोरेज, क्यूडीआर इनिफिनिबैंड इंटरकनेक्ट और 1 जीबीपीएस लोकल एरिया नेटवर्क से समाहित है । इस आधारिक संरचना में दो (2) प्रीसिसन एसी (10 टन रेफरीजेरेटर) होते हैं और यह तीन (3) 40KVA तथा एक (1) 60 KVA यूपीएस के माध्यम से इस सिस्टम को बिजली प्रदान की जाती है। इस सुविधा में 1440 CPU कोरस, 40 NVIDIA Tesla K80 कार्डस और 40 Intel Xeon Phi 7120P समाहित है।

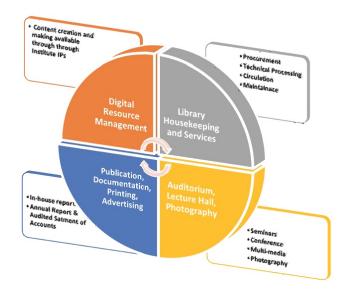
इस सुविधा को सीडीएएसी, बेंगालूर द्वारा भारत के शीर्ष सुपरकंप्यूटरों की सूची में स्थान दिया गया है। (जुलाई 2018 रिपोर्ट http://topsc.in)।

5.3. अणुनेट सुविधा

भौतिकी संस्थान में अणुनेट पर एक आसंधि है, ध्वनि और डाटा संचार के लिए वीएसएटी लिंक द्वारा सीधे

सुविधाएँ

पऊवि के अन्य यूनिटों से संपर्क करने का प्रावधान है। मूकंपीय निगरानी उपकरण की अधिष्ठापना संस्थान में हुई है और अणुनेट का इस्तेमाल करते हुए भूकंपीय आंकड़े के विश्लेषण के लिए भाभा परमाणु अनुसंधान केंद्र (बीएआरसी) को लगातार भेजा जाता है। इस लिंक का उपयोग परमाणु ऊर्जा विभाग और अन्य संस्थानों से आभासी सेटअप के माध्यम से अणुनेट पर संपर्क करने के लिए किया जाता है।


संस्थान के सदस्यों के अलावा, कंप्यूटर सुविधा का उपयोग अपने शैक्षणिक कार्य के लिए ओडिशा के कई अन्य विश्वविद्यालयों और महाविद्यालयों के शोधकर्ताओं द्वारा उपयोग किया जा रहा है।

5.4. पुस्तकालय

आईओपी संसाधन केंद्र का जनादेश है अनुसंधान समुदाय और उनसे जुड़े सदस्यों आवश्यकता को समय पर पुरा करने के लिए दोनों प्रिंट और इलेक्ट्रोनिक/डिजिटॉल वैज्ञानिक तथा तकनीकी संसाधनों का चयन करना. आपूर्ति करना, प्रोसेस करना और प्रसार करना है। दूसरी ओर, आईओपी का सार्वजनिक पुस्तकालय का लक्ष्य है पूरे परिसर में पढ़ने की संस्कृति और आदत को बढ़ाना और समुदाय की आवश्यकताओं को पूरा करना है। दिन-प्रतिदिन की पुस्तकालय सेवा के अलावा, आईओपी पुस्तकालय अन्य सभी सुविधायें प्रदान करता है जैसे रेप्रोग्राफी. प्रिंटिंग. प्रकाशन, विज्ञापन, फटोग्राफी, विडिओग्राफी, दस्तावेज सुपूर्वगी, और अडिटोरियम तथा व्याख्यान भवन सेवा आदि। इनके अलावा, अन्य संबंधित गतिविधियाँ जैसे सम्मेलन/ संगोष्ठी, आउटरीच कार्यक्रमों का आयोजन आईओपी पुस्तकालय द्वारा किया जा रहा है। इन संबंधित गतिविधियों के अलावा, सम्मेलनों /संगोष्ठियों का आयोजन कराता है। आईओपी पुस्तकालय आउटरीच कार्यक्रम का भी आयोजन करता है। आईओपी पुस्तकालय की गतिविधियों का चित्र के माध्यम से नीचे दिखाया गया है।

पुस्तकालय में 17035 पुस्तकें, 6000 से अधिक ई-पुस्तकें, 23,643 बाउंड पत्रिकायें उपलब्ध हैं जो अपना संग्रह है। पुस्तकालय के लिए 135 ई-जर्नल, कुछ मुद्रित जर्नल/ पित्रकायें मंगाये जाते हैं और वेब दूत्स जैसे आई-थेंटिकेट और ग्रामार्ली। पुस्तकालय की रखरखाव गतिविधियाँ केओएचए पुस्तकालय प्रबंधन प्रणाली (एलएमएस) के माध्यम से स्मार्ट लाईब्रेरी सल्युशन आधारित आरएफआईडी द्वारा होता है।

पुस्तकालय की विस्तृत जानकारी और उपलब्ध संबंधित सुविधाएं पुस्तकालय की पोर्टल http://www.iopb.res.in/~library.से प्राप्त की जा सकती है। सभी ई-संसाधनों/ प्रौद्योगिकी-सक्षम सेवाओं के सुचार रुप से संचालन और उपिचत उपयोग के लिए आईओपी के वैज्ञानिकों और अनुसंधान समुदाय के बीच जागरुकता फैलाने के लिए आवधिक अंतराल में प्रशिक्षण सह डेमो सत्र का भी आयोजन किया जा रहा है। यह पुस्तकालय अनेक अतिरिक्त सेवाएं भी प्रदान करती है जिसका नाम है पुस्तकालयविज्ञान के विद्यार्थियों के परियोजना कार्य /पुस्तकालय विज्ञान के विद्यार्थियों का शोध-निबंध कार्य आदि।

5.5 अडिटोरियम

आईओपी परिसर में एक सुंदर अडिटोरियम है, जहां हम नियमित रूप से परिसंवाद, संगोष्ठियाँ, कार्यशालायें, सम्मेलन, सांस्कृतिक और सामाजिक कार्यक्रमों का आयोजन होते हैं । इस अडिटोरियम में 330 से अधिक लोग बैठने की क्षमता है । इन कार्यक्रमों का आयोजन के लिए इसमें उच्च गुणवत्ता की सुविधायें उपलब्ध हैं ।

कामिक

6.1	संकाय सदस्यों की सूची और उनकी		
	अनुसंधान विशेषज्ञता	:	65
6.2	इनस्पायर/अभ्यागत संकाय	:	66
6.3	पोस्ट-डॉक्टरॉल फेलो	:	66
6.4	डॉक्टरॉल विद्यार्थीगण	:	66
6.5	प्रोजेक्ट डॉक्टरॉल फेलो	:	67
6.6	प्रशासनिक कार्मिक	:	67
6.7	सेवानिवृत्त सदस्यों की सूची	:	69

कार्मिक

निदेशक

1. प्रो. करुणाकर नन्द

निदेशक (16.06.2021 अप. से)

2. प्रो. एस.एम. युसूफ

निदेशक (16.06.2021 सुबह तक)

6.1. संकाय सदस्यों की सूची और उनकी अनुसंधान विशेषज्ञता

- प्रो. अरुण एम. जायण्णवर (31.07.2020 को सेवानिवृत्त हुए) वरिष्ठ प्रोफेसर संघनित पदार्थ भौतिकी (सैद्धांतिक)
- प्रो. अजित मोहन श्रीवास्तव प्रोफेसर उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- प्रो सीखा वर्मा प्रोफेसर संघनित पदार्थ भौतिकी (प्रायोगिक)
- प्रो. पंकज अग्रवाल प्रोफेसर उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- प्रो. बिजु राजा शेखर प्रोफेसर संघितत पदार्थ भौतिकी (प्रायोगिक)
- 6. प्रो. सुदिप्त मुखर्जी प्रोफेसर उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- प्रो. सुरेश कुमार पात्र
 प्रोफेसर
 नाभिकीय भौतिकी (सैद्धांतिक)
- प्रो. तपोब्रत सोम
 प्रोफेसर
 संघिनत पदार्थ भौतिकी (प्रायोगिक)
- 9. **डॉ. गौतम त्रिपाठी** एसोसीएट प्रोफेसर संघनित पदार्थ भौतिकी (सैद्धांतिक)
- 10. प्रो. प्रदीप कुमार साहु प्रोफेसर नाभिकीय भौतिकी (सैद्धांतिक)
- 11. डॉ. दिनेश तोपवाल रीडर-एफ संघिनत पदार्थ भौतिकी (प्रायोगिक)

- 12. डॉ. संजीव कुमार अगरवाला एसोसीएट प्रोफेसर उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- 13. **डॉ. अरिजित साहा** एसोसीएट प्रोफेसर-जी संघनित पदार्थ भौतिकी (सैद्धांतिक)
- 14. डॉ. सप्तर्षि मंडल रीडर-एफ संघनित पदार्थ भौतिकी (सैद्धांतिक)
- 15. **डॉ. सत्यप्रकाश साहु** रीडर-एफ संघनित पदार्थ भौतिकी (प्रायोगिक)
- 16. डॉ. अरुण कुमार नायक रीडर-एफ उच्च ऊर्जा भौतिकी (प्रायोगिक)
- 17. **डॉ.देवाशिष चौधूरी** एसोसीएट प्रोफेसर-जी संघनित पदार्थ भौतिकी (सैद्धांतिक)
- 18. **डॉ. शमिक बनर्जी** रीडर-एफ उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- 19. **डॉ. देवकांत सामल** रीडर-एफ संघनित पदार्थ भौतिकी (प्रायोगिक)
- 20. **डॉ. देबोत्तम दास** रीडर-एफ उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- 21. डॉ. मिणमाला मित्रा रीडर-एफ उच्च ऊर्जा भौतिकी (सैद्धांतिक)
- 22. डॉ. कीर्तिमान घोष रीडर-एफ उच्च ऊर्जा भौतिकी (सैद्धांतिक)

6.2. इनस्पायर/अभ्यागत संकाय

- 1. डॉ. कुंतला भट्टाचारजी
- 2. डॉ. अपराजिता मंडल

6.3. पोस्ट डॉक्टरॉल फेलो

- 1. डॉ. बिप्लब भट्टाचारजी
- 2. डॉ. सुधीर
- 3. डॉ. सीतेंद्र प्रताप कश्यप
- 4. डॉ. मनप्रीत कौर
- 5. डॉ. करन सिंह
- 6. डॉ. के. जी. पलसन
- 7. डॉ. दिव्यकृपा साहु
- 8. डॉ. अंजन कुमार जेना
- 9. डॉ. आर. भट्टाचार्या
- 10. डॉ. राकेश कुमार साहु
- 11. डॉ. एस. एस. खलि
- 12. डॉ. सिद्धार्थ द्विवेदी
- 13. डॉ. कृष्णानु साधुखांन
- 14. डॉ. मनदीप कु. हुड्डा
- 15. डॉ. देबश्री चौधूरी
- 16. डॉ.सौम्या सी (एपीडीएफ)

6.4. डॉक्टरॉल विद्यार्थीगण

- 1. अलपन दत्ता
- 2. अमीर शी
- 3. अतनु मैती
- दिलरुबा हसीना
- 5. इथीनेनी साइराम
- 6. रामेश्वर साहु
- 7. सानु भर्गीज

- 8. शैख मनसुन परवेज
- 9. शुभद्विप बिसाल
- 10. देवाशिष मंडल
- 11. दिपक मैती
- 12. दिगविजय पलाई
- 13. अभिषेक रॉय
- 14. आइशा खातुन
- 15. अंकित कुमार
- 16. अर्णव कुमार घोष
- 17. अर्पण सिन्हा
- 18. चित्रक करन
- 19. हरिश चंद्र दास
- 20. मौसम चरण साहु
- 21. प्रज्ञापरशु स्वांई
- 22. रितम कुंडु
- 23. समीर कुमार मल्लिक
- 24. संध्यारानी साहु
- 25. सिद्धार्थ प्रसाद मोहांति
- 26. सुदिप्ता दास
- 27. बिभाबसु दे
- 28. दिवाकर
- 29. प्रांजल पांडे
- 30. रुपम मंडल
- 31. सैयद आशानुजमन
- 32. रोजालिन पधान
- 33. गुप्तेश्वर साबत
- 34. अभिषेक बाग
- 35. अवनिश

कार्मिक

- 36. देबज्योति मजूमदार
- 37. सायन जाना
- 38. शुभद्विप जाना
- 39. विनायक एम.बी.
- 40. सुदर्शन साहा

6.5. प्रोजेक्ट डॉक्टरॉल फेलो

- 1. अनिल कुमार (आईएनओ परि. विद्यार्थी)
- 2. सदाशिव साहु (आईएनओ परि. विद्यार्थी)

6.6. प्रशासनिक कार्मिक

श्री आर.के. रथ, रजिस्ट्रार

(i) निदेशक का कार्यालय

- 1. बिर किशोर मिश्र
- 2. लिपिका साहु
- 3. राजन बिस्वाल
- 4. सुधाकर प्रधान

(ii) रजिस्ट्रार का कार्यालय

- 1. अभिषेक महारिक
- 2. अभिमन्यु बेहेरा

(iii) स्थापना अनुभाग

- 1. एम. वी. वांजिश्वरन
- 2. भगबान बेहेरा
- 3. बाउला दुडु
- 4. सौभाग्य लक्ष्मी दास
- 5. राज कुमार साहु
- 6. समरेंद्र दास
- 7. गंधर्ब बेहेरा
- 8. प्रदीप कुमार नायक

(iv) भंडार और परिवहन

- 1. सहदेब जेना (31.01.2021 तक)
- 2. प्रमोद कुमार सेनापति
- 3. सनातन जेना
- 4. शरत चंद्र प्रधान
- 5. जंहागिरि खान
- 6. केशब चंद्र डाकुआ
- 7. डी. गोविंद राव

(v) ईपीएबीएक्स अनुभाग

- 1. अरखित साहु
- 2. दैतारी दास

(vi) लेखा अनुभाग

- 1. देवेंद्रनाथ साहु
- 2. भाष्कर मिश्र
- 3. प्रतिभा चौधूरी
- 4. सहदेब जेना *(31.01.2021* तक)
- राजेश महापात्र
- 6. प्रियब्रत पात्र
- 7. ज्योति रंजन बेहेरा
- 8. विजय कुमार दास
- वंशीघर पाणिग्राही (30.04.2020 तक)

(vii) अनुरक्षण अनुभाग

- 1. अरुण कांत दाश
- 2. देबराज भूयाँ
- 3. वंशीघर बेहेरा
- 4. बूंदाबन मोहांति
- 5. देब प्रसाद नंद
- 6. नब किशोर झंकार

- 7. उमेश चंद्र प्रधान
- 8. बिस्व रंजन बेहेरा
- 9. कपिल प्रधान
- 10. मार्टिन प्रधान
- 11. चंद्र मोहन हांसदा

(viii)संपदा प्रबंधन अनुभाग

- 1. सरोज कुमार जेना
- 2. रमाकांत नायक
- गंगाधर हेम्ब्रम (30.04.2021 तक)
- 4. टिकन कुमार परिड़ा
- 5. बिस्वनाथ स्वांई
- 6. बिजय कुमार स्वांई
- 7. सनातन प्रधान
- 8. भाष्कर मल्लिक
- 9. कुलमणि ओझा
- 10. पितबास बारिक
- 11. धोब नायक
- 12. चरण भोई
- 13. जतिन्द्र कुमार बस्तिआ
- 14. बसंत कुमार नायक
- 15. रमेश कुमार पट्टनायक

(ix) पुस्तकालय

- 1. डॉ. बासुदेव मोहांति
- 2. अजिता कुमारी कुजुर
- 3. राम चंद्र हांसदा
- 4. किशन कुमार साहु
- 5. कैलाश चंद्र जेना

(x) संगणक केंद्र

- 1. एम. सिब्हभट्टी
- 2. नागेश्वरी माझी

(xi) प्रयोगशाला

- 1. संजीव कुमार साहु
- 2. सचिन्द्र नाथ सरंगी
- 3. खिरोद चंद्र पात्र
- 4. मधुसूदन माझी
- 5. रमाराणी दाश
- 6. संतोष कुमार चौधूरी
- 7. बिस्वजित मल्लिक
- 8. प्रताप कुमार बिस्वाल
- 9. बाल कृष्ण दाश
- 10. सौम्य रंजन मोहांति
- 11. पूर्ण चंद्र मारंडी
- 12. श्रीकांत मिश्र
- 13. रंजन कुमार साहु

(xii) वार्कशॉप

1. शुभन्नत त्रिपाठी

(xiii) खरीद अनुभाग

- 1. अभिराम साहु
- 2. घनश्याम प्रधान

6.7. सेवनिवृत्त सदस्यों की सूची

कार्मिक

श्री वंशीघर पाणिग्राही

पदनाम : एमटीएस-सी नियुक्ति तारीख : 08.04.1982 सेवानिवृत्ति तारीख : 30.04.2020

श्री. ए.एम. जायण्णवर

पदनाम : वरिष्ठ प्रोफेसर नियुक्ति तारीख : 15.04.1991 सेवानिवृत्ति तारीख : 31.07.2020

श्री सहदेब जेना

पदनाम : वरिष्ठ सहायक नियुक्ति तारीख : 08.04.1982 सेवानिवृत्ति तारीख : 31.01.2021

परीक्षित लेखा विवरण AUDITED STATEMENT OF ACCOUNTS 2020-21

भौतिकी संस्थान INSTITUTE OF PHYSICS

भुवनेश्वर, ओडिशा BHUBANESWAR, ODISHA

जीआरसी एंड एसोसिएट्स / GRC & Associates

सनदी लेखाकार / Chartered Accountants एन-6/432, पहली मंजिल, आईआरसी गांव, नयापल्ली, N-6/432, 1st Floor, IRC Village, Nayapalli, भुवनेश्वर, ओडिशा, पिन - 751015 Bhubaneswar, Odisha, Pin - 751015

विषय-सूची

क.	स्वतंत्र लेखापरीक्षक का रिपोर्ट	. 75
ख.	वित्तीय विवरण	. 78
ग्.	अनुवर्त्ती कार्रवाई रिपोर्ट	. 97

N-6/432, 1st Floor, IRC Village, Nayapalli, Bhubaneswar, Odisha, Pin - 751015 Ph : 674-2362263, 2362265 Cell : 9437064902, 9777999902, 9437113710

लेखा परीक्षक का निष्पक्ष प्रतिवेदन

सेवामें.

निदेशक, भौतिकी संस्थान, भुवनेश्वर।

वित्तीय विवरण की लेखापरीक्षा पर प्रतिवेदन

हम ने भौतिकी संस्थान (सोसाइटी), भुवनेश्वर के संलग्न वित्तीय विवरण की लेखा परीक्षा और उसमें संलग्न दिनांक 31 मार्च 2021 को समाप्त वर्ष के तुलन पत्न और उस तारीख को समाप्त वर्ष के लिए आय एवं व्यय लेखा और प्राप्तियां एवं भुगतान विवरण की लेखापरीक्षा की है ।

विलीय विवरण के लिए प्रबंधन की जिम्मेदारी

इन वित्तीय विवरणों को तैयार करने की जिम्मेदारी प्रबंधन की है, जिसमें वित्तीय स्थिति, वित्तीय निष्पादन, सामान्यतया भारत में स्वीकार्य लेखांकन सिद्धांत और सोसाइटी पंजीकरण अधिनियम 1860 के अनुरूप का सही एवं स्पष्ट चित्रण प्रस्तुत करता है। इस जिम्मेदारी में वित्तीय विवरणों को तैयार और प्रस्तुत करकने के संगत आंतरिक नियंवणों का डिजाइन, कार्यान्वयन और अनुरक्षण समाविष्ट है जो सत्य और स्पष्ट तथा तथ्यात्मक रूप से गलत विवरण से मुक्त, चाहे किसी घोटाले अथवा तुटि के कारण हो, वित्तीय विवरण प्रस्तुत करते हैं।

लेखा परीक्षकों की जिम्मेदारी

हमारी जिम्मेदारी अपनी लेखा परीक्षा पर आधारित इन वित्तीय विवरणों पर अपनी राय देना है। हमने इंस्टीच्यूट ऑफ चार्टड एकाउंटेट ऑफ इंडिया द्वारा जारी लेखा परीक्षा मानदंडों के अनुरूप लेखा परीक्षा संचालित की है। इन मानदंडों के तहत यह अपेक्षित है कि हम नीतिगत अपेक्षाओं का अनुपालन करें और इस संबंध में एक उपयुक्त आश्वासन प्राप्त करने के लिए लेखा परीक्षा की योजना बनाएं और संचालित करें कि ये वित्तीय विवरण तथ्यात्मक गड़बड़ी से मुक्त है।

लेखा परीक्षा में परीक्षण के आधार पर जांच और धनराशि के समर्थन में संलग्न प्रलेख और वित्तीय विवरण के प्रकटन समाविष्ठ होते हैं । चयनित प्रक्रियाएं लेखा परीक्षक के निर्णय पर निर्भर करती है जिनमें वित्तीय विवरणों की तथ्यात्मक गडबड़ी , चाहे घोटाले अथवा त्रुटिवश हुई है की जोखिम का मूल्यांकन समाविष्ट होता है। इन जोखिमों का मूल्यांकन करने में लेखा परीक्षक लेखा परीक्षा प्रक्रियाओं को डिजाइन करने के वास्ते वित्तीय विवरणों को तैयार करने और स्वतंत्र प्रस्तुतिकरण के संगठन के संगत आंतरिक नियंत्रण पर विचार करता है, जो स्थिति के अनुरूप उपयुक्त होते हैं। लेखा परीक्षा में प्रबंधन द्वारा प्रयुक्त लेखा सिद्धांतों का मूल्यांकन एवं महत्वपूर्ण आकलन तथा प्रस्तुत वित्तीय विवरणों का संपूर्ण मूल्यांकन भी शामिल है ।

हमारा विश्वास है कि हमारी लेखा परीक्षा अपनी राय को पर्याप्त तथा तर्कसंगत आधार प्रदान करेगी। उचित राय औचित्य का आधार

1.

- क) सोसाइटी ने अचल संपत्तियों के संबंध में आईएएस 10 और मूल्यहास के संबंध में एएस 6 का अनुपालन नहीं किया गया है। व्यक्तिगत संपत्ति के अविशिष्ट मूल्य का सत्यापन के लिए कोई निश्चित संपत्ति रिजस्टर नहीं था। तथ्य के बावजूद भी, व्यक्तिगत पुरानी संपत्तियों को पूरी तरह से कम किया जा सकता है, एसएलएम विधि पर वर्ष के अंत में सकल ब्लॉक पर मूल्यहास चार्ज किया गया है। वर्ष के दौरान, खरीदी गई पिरसंपत्तियों पर मूल्यहास उपयोग के आधार पर आनुपातिक आधार के बजाय पूरे वर्ष के लिए भी चार्ज किया गया था।
- ख. सोसाइटी की अचल परिसंपत्तियों का प्रत्यक्ष सत्यापन लेखापरीक्षा अवधि के दौरान पूरी तरह से नहीं हुआ है।
- ग.सोसाइटी की किसी भी अचल परिसंपत्ति को एएस 28 के अनुसार हानि के लिए परीक्षण नहीं किया गया था और हानि के लिए कोई प्रावधान नहीं किया गया है, यदि कोई हो तो ।
- 2. सरकारी अनुदानों की लेखांकन पर आईएएस 12 का अनुपालन नहीं हुआ है | अनुदान वसूली के आधार पर माना गया है | पूंजीगत अनुदानों को पूंजीगत निधि के रूप में माना गया है और देयताएं के रूप में दर्शाया गया है |
- 3. सोसाइटी के लाभ को चालू वर्ष के लेखापरीक्षा शुल्क की राशि को चालू वर्ष के लिए व्यय एवं आय खाते में रु.59000/- (रूपये उनसठ हजार) के रूप में कम करक दर्शाया गया है।

महत्व देने वाला मामले :

प्रबंधन का ध्यान निम्नलिखित विषय के प्रति आकर्षित भी किया जाता है

तृतीय पक्षों से प्राप्त अग्रिमों और देयताओं के शेष की पुष्टि होनी है।

ऊपर्युक्त के आधार पर, हमारी राय में और हमारी जानकारी के अनुसार एवं हमें दिये गये स्पष्टीकरण के अनुसार, उपर्युक्त वित्तीय विवरण के साथ संलग्न अनुलग्नक में दी गयी हमारी टिप्पणियों के तहत, उन लेखाओं पर टिप्पणियाँ यथा आवश्यक तरीक से इस अधिनियम द्वारा अपेक्षित सूचना प्रदान करती है और भारत में स्वीकृत साधारण लेखा नीतियों के अनुरूप एक सच्चे एवं निष्पक्ष विचार प्रदान करते हैं।

- (क) 31 मार्च 2021 की स्थिति के अनुसार संस्थान की क्रियाकलापों के तुलन प्रत के मामले में,
- (ख) आज की तारीख को समाप्त वर्ष के लिए आय तथा व्यय विवरण, संस्थान की घाटे के मामले में है।
- (ग) प्राप्तियां तथा भुगतान के मामले में, आज की तारीख को समाप्त वर्ष के लिए सोसाइटी के प्राप्तियां तथाभुगतान ।

कानूनी तथा नियामक आवश्यकतायें।

- (क) हमने उन सभी जानकारियाँ एवं स्पष्टीकरणों को ढूंढा और प्राप्त किया जो हमारे ज्ञान तथा विश्वास के अनुसार हमारी लेखा परीक्षा के उद्देश्य के लिए आवश्यक थे और वे संतोषजनक पाये गये।
- (ख) हमारी राय में,अब तक उन पुस्तकों की जांच से यह प्रतीत होता है कि कानून द्वारा अपेक्षित उचित लेखा पुस्तकों का उचित रख-रखाब संस्थान द्वारा किया गया है।
- (ग) इस रिपोर्ट से संबंधित तुलन पत्र,आय एवं व्यय का विवरण, और प्राप्ति एवं भुगतान विवरण लेखा पुस्तिकाओं से सहमत हैं।

जीआरसी एडं एसोसीएटस सनदी लेखाकारों फार्म पंजीकरण संख्या -02437एस

सले ए. महापात्र, अंशीदार यूडीआईएन-221055285एएएएइबी4732

स्थान : भुवनेश्वर

तारीख: 13/10/2021

भौतिकी संस्थान सचिवालय मार्ग, भुवनेश्वर

31 मार्च 2021 तक के तुलन पत्र

(राशि रुपये में)

निधियों का स्रात	आनुसूची	चालू वर्ष	पिछला वर्ष
समग्र/पूंजीगत निधि और देयताएं			
समग्र/पूंजीगत निधि	1	579,914,871	641,557,802
आराक्षत एवं अधिशेष	2	-	-
अभिहित/अक्षय निधि	3	22,845,629	11,365,499
प्रतिभूत ऋण और कर्ज	4	-	-
प्रतिभूत रहित ऋण और कर्ज	5	-	-
आस्थिगत क्रेडिट देयताएं	6	-	-
चालू देयताएं और प्रावधान	7	163,458,804	152,657,687
कुल		766,219,304	805,580,988

निधियों का उपयोग	आनुसूची	चालू वर्ष	पिछला वर्ष
परिसंपत्तियां			
परिसंपत्ति, संयंत्र और उपकरण	8	701,988,788	680,741,660
चिह्नित/अक्षय निधियों से निवेश	9	-	-
दूसरों में निवेश	10	-	-
चालू अस्तियां, ऋण अग्रिम आदि	11	64,230,516	124,839,328
	τ	766,219,304	805,580,988
महत्वपूर्ण लेखा नीतियां	24		
आकस्मिक देयातएं और लेखाओं पर टिप्पणियां	25		

आज तक के इसके साथ संलग्न हमारे रिपोर्ट के अनुसार

के लिए और की और से जीआरसी और एसोसीएटस सनदी लेखाकारों एफआरएन-००२४३७एस के लिए और की के लिए और की ओर से भौतिकी संस्थान, भुवनश्वर

सीए ए. महापात्र अंशीदार

सदस्यता संख्या 055285

युडी।आईएन:21055285AAAAEB4732

स्थान : भुवनेष्वर तारीख : 13.10.2021 (डी.एन. साहु) (आ्र.के. रथ्य) (प्रो. करुणाकर नन्द) लेखा अधिकारी रजिस्ट्रार निदेशक

भौतिकी संस्थान सचिवालय मार्ग, भुवनेश्वर

31 मार्च 2021 को समाप्त वर्ष के लिए आय एवं व्यय का विवरण

(राशि रुपये में)

विवरण	अनुसूची	चालू वर्ष (2020-21)	पिछला वर्ष
		·	(2019-20)
आय			
बिक्री और सेवाओं से आय	12		
अनुदान/परिदान	13	266,600,000	366,800,000
शुल्क और अंशदान	14	0	0
निवेश से आय	15	0	0
रयाल्टी, प्रकाशन आदि से आय	16	0	٥
अर्जित ब्याज	17	16,279	515,577
अन्य आय	18	1,350,149	2,954,329
तैयार सामानों के भंडार में कमी की वृद्धि/चालू कार्य पूंजी	19	0	0
	कुल (क)	267,966,428	370,269,906
व्यय			
स्थापन्। व्यय	20	224,108,091	209,577,244
अन्य प्रशासनिक व्यय आदि	21	91,312,562	95,521,229
अनुदानों/उपदानों आदि पर व्यय (योजना अनुदान सरेंडर कर दिया गया)	22	0	٥
ब्याज भुगतान किया गया	23	0	0
मूल्यह्रास (अनुसूची-8 के अनुसार)		54,790,802	88,157,211
	कुल (ख)	370,211,454	393,255,684
आय मे अधिक व्यय के शेष (क-ख)		(102,245,026)	(22,985,778)
 अधिक शेष (घाटा) के कारण समग्र/पूंजीगन निधि में लाया गया		(102,245,026)	(22,985,778)
महत्त्रपूर्ण लेखा नीतियाँ	24		
आकस्मिक देयताएं और लेखे पर टिप्पणियाँ	25		

आज तक के इसके साथ संलग्न हमारे रिपोर्ट के अनुसार

के लिए और की ओर से

जीआरसी और एसोसीएटस

सनदी लेखाकारों

एफआरएन-००२४३७एस

सीए ए. महापात्र

अंशीदार

सदस्यता संख्या 055285

युडी।आर्इएन:21055285AAAAEB4732

स्थान : भुवनेश्वर तारीख: 13.10.2021 के लिए और की के लिए और की ओर से

भौतिकी संस्थान, भुवनश्वर

(डी.एन. साहु) (आ्र.के. स्थ्) लेखा अधिकारी रजिस्ट्रार

(प्रो. करुणाकर नन्द)

निदेशक

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची-1-अक्षय/पूंजीगत तिधि

(यशि रूपये में)

विवरण	चालू वर्ष (2020-21)		पिछला वर्ष (2019	-20)
वर्ष के प्रारंभ में शेष जोडें : अक्षय/पूंजीगत निधि के लिए अंशदान	40,602,095	641,557,802	60,000,000	604,543,580
जोडें/(घटाएंत्र) झाय एदं व्यय लेखा से स्थानांतरित आय का शेष (व्यय)	-102,245,026	-61,642,931	-22,985,778	37,014,222
		579,914,871		641,557,802

भौतिकी संस्थान, भुवनेश्यर 31 मार्च 2021 तक के तुलनपत्र के अंग के रूप में अनुसूचियाँ

अनुसूची- 3 - उवदिष्ट /अक्षय निधि

(राशि रूपरे में)

	विवरण		चालु वर्ष (2	2020-21)		(शाश रूपय म) पिछला वर्ष
		ओबी	प्राप्तियां	भुगतान	सीवी	(2019-20)
1	एल के पंडा स्मारक छात्रवृत्ति	220,901	12,697	100,000	133,597.82	220,901
2	टीपीएससी लेखा	101,416.34	3,150	-	104,566.34	101,416
3	डॉ. एस.के. अग्रवाला को प्रोत्साहन अनुदान	2,792.00	91		2,883.00	2,792
4	डॉ. मणिमाला मित्रा को प्रोत्साहन अनुदान	211,497.00	45,463	43,085	213,875.00	211,497
5	डॉ. पी. वत्ता को एपीडीएफ	41,669.00	182,046	223,715	•	41,669
6	प्रो. ए. एम. जायण्णवर को जे सी बोस अनुदान	1,466,553.00	75,249	399,988	1,141,814.00	1,466,553
7	डॉ. एस.एम. भट्टाचारजी को जे सी बोस अनुदान	2,542.00	456	-	2,998.00	2,542
8	डॉ. ए.के. नायक को रामानुजन छाद्रवृत्ति	176,508.50	3,981	178,885	1,604.50	176,508
9	प्रो. जे महारणा को आइएनएसए अनुदान	10,157.00	91,927	79,900	22,184.00	10,157
10	डॉ. पी.के. साहु को बीआई आईएफसीसी अनुदान	665,942.83	31,995	17,935	680,002.83	665,943
11	यूजीसी-डीएई सीएसआर अनुवान	192,908.00	8,433	-	201,341.00	192,908
12	डॉ. एस. बंदोपाद्याय को महिला वैज्ञानिक अनुदान	9,481.59	702,266	697,529	14,218.59	9,482
13	प्रो. एस. वर्मा को डीएसटी अनुदान	369,127.00	518,050	422,028	465,149.00	369,127
14	डॉ. डी.चौधूरी को एसइआरबी अनुवान	1,269,854.00	53,849	468,612	855,091.00	1,269,854
15	डॉ डी सामल को मैक्स प्लांक अनुदान	1,799,488.62	3,292,039	330,894	4,760,633.62	1,799,489
16	ण्यिः इदवत् एम्पाहूरे इर्दुस्स	7,715.50	323	115	7,923.66	7,715
17	च्यें भ्दल्हु एमाहूरे - एर्ड्युर्त	241,069.00	509,198	332,559	417,708.00	241,069
18	च्यार देवरारू - इस पूर्वि	1,245,443.70	25,196	1,267,885	2,754.70	1,245,444
19	कुंतलाभट्टाचाराजी मोबिलीटी फेलोशिप	2,397,640.00	2,756,701	2,916,141	2,238,200.00	2,397,640
20	क्वांटम इनफरमेशन टेक्नोलोजि. प्रो. पी. अग्रवाला	490,356.00	1,648,940	270,180	1,869,116.00	490,356
21	पीएफएमएस	442,437.00	4,829,031	2,753,093	2,518,375.00	442,437
22	स्वर्णजंयती फेलोशिप- डॉ. एस.के. अगरवाला	-	300,251	67,742	232,509.00	-
23	बाईओपी-परि-एसइबारबी-फेलोशिप-डॉ. शौम्या सी	-	973,433	476,034	497,399.00	-
24	बाईओपी-परि-एसइआरबी-डॉ. शत्यप्रकाश साहु	-	792,100	-	792,100.00	-
25	परि-एसइआरबी-डॉ. देवाशिष चौधूरी	-	224,654	190,069	34,585.00	-
26	डॉ. अपरिजता मंडल को इनस्पायर संकाय छात्रवृत्ति		2,200,000	318,548	1,881,452.00	-
27	आईओपी-डीएसटी-परियोजना-डॉ. गमिक बनर्जी	-	224,277	134,659	89,618.00	-
28	एसइआरबी-परियोजना-डॉ. दिनेश टोपनाल	-	840,700	3,532	837,168.00	-
29	एसईआरबी परियोजना-डॉ. कीर्तिमान घोष	-	674,984	43,040	631,944.00	-
30	एसईआरबी परियोजना-डॉ. देबकांत सामल		2,275,818	81,000	2,194,818.00	<u> </u>
कुल		11,365,499	23,297,298	11,817,168	22,845,629	11,365,499

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 7 - चालू देयताएं और प्रावधान:

•	((000 000		6 (400-0	(राशि रुपये में)
विवरण	चालू वर्ष (2020-21)		पिछला वर्ष (2019-	20)
क चाल् देयताएं				
1 सांविधिक देयताएं:		643,694		1,555,417
देययोग्य वृत्तिगत कर	200		30,650	
टीर्डाएस वेतन देययोग्य	552,690		(2,240)	
टीर्डाएस गैर-वेतन देययोग्य	45,493		8,764	
योजना जीएसटी देययोग्य	-		(7,212)	
जीएसटी वसूली देययोग्य	45,161		35,916	
जीएसएलआई प्रिमियम देययोग्य	150		150	
पऊदि को देययोग्य ब्याज (एनपी)	-		405,287	
पऊदि (योजना) को देययोग्य ब्याज	-		1,063,227	
आईओपीइडब्ल्यूएस को वसूली देययोग्य	-		8,475	
आईपीईएस वसूली देययोग्य	-		12,400	
2 अन्य देयताएं :		26,198,600		17,529,449
बयाना राशि जमा	1,153,420		1,346,390	
विद्यार्थियों से जमानत राशि	15,000		13,600	
जीएसएलआई दावा देययोग्य	41,707		42,699	
परियोजना अनुदान देययोग्य	829,240		1,767,000	
व्यय के लिए प्रावधान	23,136,977		12,338,674	
एसएसबी छातनृत्ति देययोग्य	_		45,000	
देययोग्य ग्रेचयुटि	403,475		461,813	
देयथोग्य गैर-योजना वसूली	-		3,200	
प्रतिभूति जमा-ठेकेदारों से	618,781		1,511,073	
कुल (क)		26,842,294		19,084,866
ख. प्रावधान		136,616,510		133,572,821
1 ग्रेच्युटि	67,775,396		64,425,198	
2 संचित छुटी नगदीकरण	68,841,114		69,147,623	
3 अन्य (बतायें)	0		0	
कुत (ख)		136,616,510		133,572,821
कुल (क और ख)		163,458,804		152,657,687

भौतिकी संस्थान, भुवनेश्वर

31 मार्च 2021 तक के तुलनपत्र के अंग के रूप में अनुसूचियों

			सकल खंड	aje a				अवमूल्यन	E.		निष्त खंड	ais ais
विवरण	अवमूखन भी वर	01.04.2020 तक लागत/मूल्योकन	ओव	क्टीती	01.04.2021 तक लागत/मूत्यीकन	अवशिष्ट मूल्य	01.04.2020 तक जादि शेष	इस वर्ष के लिए	कटीती पर	31.03.2021 अंत शेप	31.03.2021 तक	01.04.2020 तक
क. संपत्ति, मंबंत एवं उपकरण (योजना)												
1 जमीन		٠		,	٠		,	•	•	,	•	•
क्, नीजहोल्ड		2,000,000		•	5,000,000		•	,	•	,	2,000,000	5,000,000
2 भवत :				•	ŀ		•	•	٠	•	,	
लीज होल्ड पमीन पर	1.63%	210,986,379		٠	210,986,379	10,549,319	53,680,613	3,439,078	•	57,119,691	153,866,688	157,305,766
3 सङके	1.90%	6,548,158		•	6,548,158	327,408	6,220,750	,	٠	6,220,750	327,408	327,408
4 संयंत्र, मशीनें और उपकरण	2.28%	898,849,782	1,491,981	٠	900,341,763	45,017,088	455,449,163	47,538,045	•	502,987,208	397,354,555	443,400,619
5 कंप्यूटर एवं जुड़नार	16.21%	149,688,074	1,490,239		151,178,313	7,558,916	142,203,670	241,568	,	142,445,238	8,733,075	7,484,404
6 धूंजीगत कार्य प्रगति पर है		ı	72,048,124	1	72,048,124	72,048,124	1	1	ı	•	72,048,124	1
7 पूंजीगत परिसपत्तियों के लिए अधिम			228,702		228,702	228,702	•			٠	228,702	4
कुल (क)		1,271,072,394	75,259,046		1,346,331,440	135,729,557	657,554,196	51,218,691		708,772,887	637,558,552	613,518,197
ष तेरस्ति, संबंध और उपकरण- (गैर-योजना)												
1 वाहन	%05'6	2,870,817	•		2,870,817	143,541	2,477,593	272,728	•	2,750,321	120,496	393,224
2 फर्नीचर, फिक्क्दर	9.50%	23,422,316	١		23,422,316	1,171,116	22,251,200		•	22,251,200	1,171,116	1,171,116
3 कार्यातय उपकरण	9.50%	129,454,865	631,265		130,086,130	6,504,307	122,982,122	59,970		123,042,092	7,044,038	6,472,743
4 বঁত্তুনিক পাথভবেন	6.33%	50,920,593			50,920,593	2,546,030	14,962,809	3,223,274	•	18,186,083	32,734,510	35,957,784
5 युस्तकातय युस्तकें	%05'6	464,571,913	169,880	24,598	464,717,195	23,235,860	441,343,317	16,139	2,337	441,357,119	23,360,076	23,228,596
कुल (ख)		671,240,504	801,145	24,598	150,710,051	33,600,854	604,017,041	3,572,111	2,337	607,586,815	64,430,236	67,223,463
बासू वर्ष का कुस (क और ख)		1,942,312,898	76,060,191	24,598	2,018,348,491	169,330,411	1,261,571,237	54,790,802	2,337	1,316,359,702	701,988,788	680,741,660
										,		
पिछसा भर्व		1,913,029,893	29,283,004		1,942,312,897	96,865,646	1,173,414,026	88,157,211		1,261,571,237	680,741,660	739,615,867

अनुसूषी-8- संपत्ति, संयंत्र और उपकरण

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची-11-चालु अस्तियां, ऋण अधिम आदि

(रूपये राशि में)

विवरण	चालु वर्ष (2020-21)		पिछला वर्ष (2019-	(रूपये गशि में 20)
क चालु अस्तियां :			(====	
1 मालसूची:		2,289,707		2,839,437
क्) इलेक्ट्रिकॉल फिटिंग्स स्टाक	1,365,212		1,343,264	. ,
च) कार्यालय लेखन सामग्री	135,998		272,932	
, ग् कंन्यूटर लेखन सामग्री	300,544		613,440	
घ) सफाई सामग्री स्टॉक	25,323			
ड) डीज्ल स्टॉक	108,752		99,631	
च) बढर्ड सामग्री स्टॉक	104,570		52,104	
छ) वार्कसाँप स्पेयर	182,986		337,443	
ज) पीएच सामग्री स्टॉक	66,322		120,623	
2 डाथ में शेय नगद (चेक, ड्राफट, अग्रदाय एशि सहित)				
3 र्वक में शेप		58,781,442		116,054,79
क) अनुसूचित वैंकों में				
i)एसवीआई चालू खाताओं में	16,911,601		57,120,097	
ख) बचत खाताओं में				
i) आईओवी सीएस पुर (वचत बाता-10917)	388,951		37,713,071	
ii) आईओबी सीएस पुर (बचत खाता संख्या-16916)	17,324,514		9,168,749	
iíi) यूबीआई सी एस पुर (बचत खाता-316)	684,944		664,385	
iv) यूबीआई सीएस पुर (वचत खात⊦14746)	23,709		22,995	
v) आईओपी समग्र निधि (बचत खाता:19339)	602,095		-	
vì) परियोजना वैाक स्राता (अनु 3)	22,845,629		11,365,499	
हत (क)		61,071,149		118,894,23
क ऋण, अग्रिम और अन्य परिसंपत्तियां				
1 ऋण (ब्याज संख्ति):		65,562		60,150
क) कंप्यूटर अग्रिम	65,562		60,150	
2 ऋण बाकी नहीं है परंतु व्याज अर्जन		33,221		102,940
क) मोटर कार अग्रिम	_	00,	55,714	
ख) भवन निर्माण अग्रिम	28,243		40,351	
ग) कंप्यूटर अग्रिम	4,978		6,875	
े 3 ऋण (व्याज हीन) ः		412,714		264,94
क) कर्मचारियों को अग्रिम	10,714	,,, _ ,	122,444	20 1,5 1
ख) त्योद्धार अग्रिम	336,000			
ग) यात्रा अग्रिम	66,000		142,500	
4 नगद अथवा किसी अन्य प्रकार में वसूलवोग्य अग्रिम और अन्य राशि	r			
मूल्य के लिए प्राप्त होना है:		2,647,870		5,517,06
क) पूंजीगत लेखाओं पर				
ख) पहले से भुगतान	-		96,061	
ग) सेस्को में प्रतिभूति जमा	2,621,944		2,621,944	
घ) फ्राकिंग मशीन जमा	2,976		46,273	
ड) वीएसएनएल में प्रतिभूति जमा	2,000		2,000	
च) गैस के लिए प्रतिभूति जमा	20,950		20,950	
छ) एलसी के लिए एसटीडीआर	-		2,729,833	
हत (क)		3,159,367		5,945,09
हुल (क और ख)		64,230,516		124,839,321

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 को समाप्त वर्ष के लिए आय एवं व्यय का विवरण के अंग के रूप में अनुसूचियाँ

<u>अनुसूची-13-अनुवान/उपवान</u>

(राशि रूपये में)

विवरण	चालु वर्ष (2020-21)	पिळला वर्ष (2019-20)
1 पऊवि-भारत सरकार	266,60	00,000 366,800,000
क) गैर-योजना (वेतन)	176,900,000	264,600,000
ष) गैर-योजना (सामान्य)	89,700,000	102,200,000
2 ओडिशा सरकार (गैर-योजना राजस्व)		
ु	266,60	00,000 366,800,000

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 को समाप्त वर्ष के लिए आय एवं व्यय विवरण के अंग के रूप में अनुसूचियाँ

<u>जनुसूची-17-अर्जित व्याज</u>

विवरण	चालू वर्ष (२०२०-२०२१)	पूर्व वर्ष (२०१९-२०२०)	
1 सावधि जमाओं पर :			344,007
क) अनुसूचित बैंकों में			
ष) दूसरे	•	344,007	
2 बचत खाताओं में		-	-
क) अनुसूचित बैंकों में			
3 ऋणों पर		16,279	171,570
क) कंप्यूटर अग्रिम	16,279	30,940	
ख) मोटर कार अग्रिम	•	139,288	
ग) संबित अग्रिम		1,342	
		16,279	515,577

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 को समाप्त दर्ष के लिए आय एवं व्यय विवरण के अंग के रूप में अनुसूचियाँ

अनुसुचि 18- ज्न्य आ्य

विवरण	चालू वर्ष (2020-21)		पिछला वर्ष (2019-	20)
अन्य आय				
1 विविघ आय		9,026		1,135,534
क्) परियोजना ऊपस्मिीर्प	•		1,053,980	
ष) पहचान पत्र प्रमार	66		454	
ग) आरटीआई शुल्क	10		100	
थ) अडिटोरियम प्रभार	•		73,000	
ड) विविध आय	8,950		8,000	
2 निविदा पत्रों की बिक्री		11,000		7,000
3 कियमा				1,811,795
क) बैंक कियया	360,000	1,330,123	360,000	
ख) अतिथि भवन किराया	126,370		717,875	
ग) नाइसेंस गुल्क	843,753		733,920	
कुल		1,350,149		2,954,329

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 को समाप्त वर्ष के लिए आय एवं व्यय विवरण के अंग के रूप में अनुसूचियाँ

<u>अनुसूची 20 - स्थापना व्यय</u>

विवरण	चालु वर्ष (2020-21)		पिळला वर्ष (2019-	-20)
4.25-15.15-0		4.4.000.000		
1 वेतन एवं मजदूरी		144,292,679		130,401,288
्क) कर्मचारियों का वेतन	118,064,615		104,186,862	
ष) एनपीएस अंशदान	5,308,199		4,224,839	
ग) मानदेय	287,096		877,729	
भ) छात्रवृत्ति	20,397,769		20,726,858	
🔊) चिकित्सा अधिकारी का मानदेय	235,000		385,000	
2 भत्ता एवं बोनस		11,183,284		9,075,286
क) पीआरआईएस	8,914,534		9,059,395	
ष) अपडेट एलाउंस	2,262,868		•	
ग) समयोपरि मत्ता	5,882		15,891	
3 कर्मचाचे कल्याण के लिए व्यय		4,713,584		4,463,059
क) चिकित्सा व्यय की प्रतिपूर्ति	3,047,588		3,959,291	
ष कैटीन व्यय	5,590		-	
ग) कत्याण एवं भनोरंजन व्यय	89,411		501,194	
प) बाल शिक्षा भत्ता	1,566,000		-	
चिकित्सा सहायता केंद्र व्यय	4,995		2,574	
4 सेवानिवृत्ति एवं सेवांत लाभ		62,503,807		63,800,694
क) छुट्टी वेतन	5,428,231		8,611,833	
ख) पेंशन	48,774,816		53,454,346	
ग) उपदान	8,300,760		1,734,515	
S अन्य		1,414,737		1,836,917
क) विद्यार्थियों को आकस्मिकता अनुदान	1,414,737		1,836,917	
कुल		224,108,091		209,577,244

भौतिकी संस्थान, भुवनेश्वर 31 मार्च 2021 को समाप्त वर्ष के लिए आय एवं व्यय विवरण के अंग के रूप में अनुसूचियाँ

अनुसूची 21 -जन्य प्रशासनिक व्यय आदि

	I		6	्र (राणि रुपये में)
विंदरण -	चालु वर्ष (२०२०-२०२१)		पिछला वर्ष (२०१९-२	(∘)
1 मरम्मत एवं अनुरक्षण		23,319,898		24,520,436
क) सिविल	6,491,706		10,165,656	
ख) वाहन	184,018		393,910	
ग) पुस्तकालय	776,131		599,376	
घ) वार्कसॉप	181,239		119,301	
ड) फर्नीचर	-		201,211	
च) इलेक्ट्रिकॉल	574,826		1,226,856	
छ) ए सी प्लांट	5,158,714		4,441,658	
ज) कंप्यूटर	4,984,795		3,622,786	
अ) प्रयोगशाला	4,479,486		3,223,259	
ट) बागवान	93,822		62,637	
ठ) टेलीफोन	70,328		78,682	
ड) कार्यालय उपकरण	324,833		385,104	
2 विद्युत एव ऊर्जा		20,860,455		21,498,926
3 जल प्रभार		398,753		319,388
4 सम्मेलन तथा परिसंवाद		1,169		536,263
5 विज्ञान आउटरीच गतिविधियाँ		6,163		430,571
6 डाक एवं तार		65,426		68,220
7 टेलीफोन एवं टेलेक्टस		519,799		558,178
8 भुद्रण एवं लेखनसामग्री		681,621		974,109
9 यात्रा व्यय		2,181,086		3,124,009
क) सम्मेलन टीए	121,458		354,171	
ख) विदेश याता	-		419,428	
ग) परिदर्शन वैज्ञानिक टीए	100,215		187,888	
घ) देश में याता	394,972		1,533,176	
ङ) याता छुट्टी रियायत	1,564,441		614,918	
च) किराया प्रभार	-		14,428	
10 लेखापरीक्षक का मानटेय		118,000		-
11 मनोरंजन व्यय		86,442		221,444
12 प्रतिभूति प्रभार		5,975,185		5,661,545
13 वृत्तिगत प्रभार		89,550		228,620
14 परियोजना राजस्व व्यथ		567,593		2,727,373
क) आलिस उपयोग एवं सीबीएम अंशीदार	140,152		508,035	
ख) कंप्यूटिंग एवं नेटवर्क सुविधाओं के विकास	88,115		797,840	
ग) निम्न ऊर्जा त्वरक का सशक्तिकरण	_		722	
घ) विज्ञान प्रतिभा	339,326		765,271	
छ) संरचना एवं आवास	-		655,505	
15 विज्ञापन एव प्रसार		607,342		693,758
16 पुस्तर्के एवं पद्रिका		35,656,551		33,807,501
क) पुस्तर्क	-		4,000	
ख) ऑनलाइन पत्निका अंगादान	35,656,551		33,803,501	
17 लिज किराया	3,676	3,676		150.000
10 yru		173,852		150,888
	73.446	, , , , , , , , , , , , , , , , , , ,	150 000	
क) विविध व्यय	73,416	ŕ	150,888	
 18 अन्य क) विविध व्यय ष) जेस्ट व्यय ग) पुस्तकों का बट्टे खाते में डाला गया 	73,416 78,175 22,261	Ŷ	150,888 -	

भौतिकी संस्थान, भुवनेश्वर वर्ष 2020-2021 वित्तीय वर्ष के लिए प्राप्तियां एवं भुगतान का विवरण

									(याश रुपय म)
	प्राप्तियां	अनुसूची	चालू वर्ष 2020-21	पिछला वर्ष 2019- 2020		भुगतान	अनुसूची	चालू वर्ष 2020-21	पिछला वर्ष 2019-2020
), आदिशेष				-	ज्वा			
	क) हाथ में नकद		•	1,976		क्) स्थापना व्यय (अनुसूची-20 के अनुसार)	౼	198,925,849	250,533,752
	ख) वैंक में शेष					ष्) प्रशासनिक व्यय (अनुसूची-21 के अनुसार)	ব	82,869,583	95,965,856
	i) एसक्रीआई चा लू खाता में		57,120,097	2,696,235	=	विदिध परियोजनाओं के लिए निधियों के तहत किये गर्ब भुगतान		11,817,168	11,394,429
	ii) बचत खाता में				≡	किये गये निवेश और जमा			
	इंडियन ओवरसिज बैंक (गर-योजना)		37,713,071	18,614,872		क) उदिषट /असय निष्यों में से			•
	इहियन ओवरसिज बैंग (योजना)		9,168,749	3,201,028		ख) निजी निधियों में ते (निवेश/अन्य)			•
	यूनियन बैंक (गैर-योजना)		664,385	62,618	≥	अचल संपत्तियों और धूंजीगत कार्य प्रगति पर स्यय			
	यूनियन बैंक (योजना)		22,995	22,229	-	क्) स्थिर मंपत्तियों की खरीद		662,791	10,014,844
	परियोजना बैंक लेखा		11,365,499	9,084,957		ख) कार्य प्रगति पर व्यय		72,276,826	•
_	, যাদ সনুবান				>	अधिहोब राहि।/ऋण की बाएती			
	क) मारत सरकार से-योजना		40,000,000	000'000'09	•	क) भारत सरकार को			•
	गैर-थोजना		266,600,000	366,800,000		म्) राज्य सरकार को			1
	ख) राज्य सरकार से			•		ग) अन्य निष्प्रियदाताओं को			•
	ग) समग्र निष्टि		602,095						
<u>=</u>	।।।, <u>प्रायोजित परियोजना से प्राप्ति</u>		23,297,298	13,674,971	5	VI. <u>वित्तीय प्र</u> भार (ब्याज)			
_	IV. ग्राज ब्याज				=	VII. <u>अन्य भ</u> ुगतान			
	क) बैंक जमा			,		परियोजना राजस्व व्यय	敝	426,607	2,727,373
	ख) ऋण, आग्रेम आदि	⋖	11,301	470,171		कर्मचारियों को अग्रिम	P	630,061	1
_	V. <u>अन्य आ</u> ष				\equiv	VIII. <u>अपित्र</u> रोष			
	विविध प्राप्तियां		318,290	1,135,534		क्) हाथ में नकद			•
	निविदा प्रपत्र की बिक्री		11,000	7,000		ख) दीत्र में शेष			
	मकान किराया/अतिथि किराया		245,482	1,808,195		ए. एसबीआई बैंक चालू बाता में		16,911,601	57,120,097
	परिसंपत्ति की बिक्री			•		ब. बचत खाताओं			
<u>></u>	VI. <u>डघार ऋण राशि</u>			,		इंडियन ओवरसिज बैंक (गैर-योजना)		388,951	37,713,071
<u>></u>	VII. <mark>बन्च प्राप्तियां</mark>					इंडियन ओवरिसज बैंक (योजना)		17,324,514	9,168,749
	बयाना राशि जमा		(192,970)	(884,140)		यूनियम बँक (गैर-योजना)		684,944	664,385
	प्रतिभूति जमा			(137,009)		यूनियन बैंक (योजना)		23,709	22,995
	जमानत राशि		1,400	1,600		आईओबी समग्र निधि बाता संख्या-19339		602,095	,
	<i>बसूली/चा</i> लू देय	ш	(20,558,366)	10,130,813		परियोजना र्वेफ जाता		22,845,629	11,365,499
	<u>क</u> ुल		426,390,326	486,691,050		कुल		426,390,326	486,691,050

भौतिकी संस्थान, भुवनेश्वर

31 मार्च 2021 को समाप्त वर्ष के लिए प्राप्तियां और भुगतान के विवरण के अंग के रूप में अनुसूचियाँ

		(राशि रुपय म)
	चालु वर्प	पिछला वर्ष
<u>अनुसूची-क-ऋण एवं अधिमों पर व्याज</u>		
आवास/भवनअग्रिम पर ब्याज	-	12,108
मोटर कार अग्रिम पर ब्याज	-	83,574
कंप्यूटर अग्रिम पर व्याज	11,301	29,140
लंबित अग्रिम पर ब्याज	-	1,342
जमानत जमा पर ब्याज	-	344,007
कुल	11,301	470,171
<u>अनुसूची-ध-वसूनी और चालू वेय</u>		
मोटर कार के लिए अग्रिम	_	2,000
कंप्यूटर के लिए अग्रिम	_	93,550
सीएचएसएस अंशदान बसूली	459,698	1,596,582
ै तैनात कर्मनारी वसूली देय	<i>'</i>	(32,090
परिदान देय	(641,715)	
जीएसएलआई प्रिमियम देय	(42,300)	-
पऊवि को ब्याज देय (गैर-योजना)	(405,287)	38,346
पऊवि को व्याज देय (योजना)	(1,063,227)	(543,112)
आईओपीईडक्र्यूएस वसूली देय	(75,813)	8,475
र्आपीइए वसूती देय	(24,400)	12,400
गैर-योजना वसुली देय		-
जीएसएलआई दावा देय	(992)	14,476
एनपीएस वसूली देय	(4,285,444)	(26,013
एसएसदी पुरस्कार फेलोशिप देव	10,269	-
योजना वृत्तिगत कर देय	(1,125)	325
योजना प्रतिभूति जमा देय	(584,280)	36,278
वृत्तिगत कर देय	(285,025)	30,650
परियोजना अनुदान देय	(937,760)	(3,233,000
व्यय के प्राथधान	(12,338,674)	12,338,674
जीएसटी वसूती देव	(199,901)	(115,999
योजना जीएसटी देय	(66,139)	(58,662
योजना टीडीएस देय		(43,190
टीडीएस-गैर वेतन देय	(199,939)	
टीडीएस-वेतन देय	416,260	(69,730
डब्ल्यूसीटी वसूली देय		(89,013
पीएम केयार अंशदान देय	(292,572)	
कु ल	(20,558,366)	10,130,813

भौतिकी संस्थान, भुवनेश्वर

31 मार्च 2021 को समाप्त वर्ष के लिए प्राप्तियां और भुगतान के विवरण के अंग के रूप में अनुसूचियाँ

		(साश रुपय म
	चालू वर्ष	पिछला वर्ष
अनुसूची-स्थापना व्यय		
र्वतन्	104,869,993	114,377,765
एनपीएस पीजारजाईएस	4,897,996	4,482,436
पाजारजाहएस अपडेट भत्ता	8,914,534 1,870,918	18,540,425 2,381,253
छुट्टी वेतन	4,765,178	9,783,969
पुस्तक अनुदान एवं आकस्मिकता	1,414,737	1,836,917
मतोरंजन	91,442	221,444
मानदेय	227,836	940,129
समयोपरि भत्ता	5,882	15,89
बाल शिक्षा भत्ता	1,566,000	1,694,250
पेंश न	42,496,634	56,194,06
प्री- डॉक्टरॉल फेलोशिप	1,564,617	4,418,720
डॉक्टरॉल फेलोशिप	13,880,235	12,861,87
पोस्ट डॉक्टरॉल फेलोशिप	2,780,235	4,879,530
एसएसबी पुरस्कार फेलोशिप	55,269	(30,000
मनोरंजन क्लब व्यय	83,181	507,424
चिकित्सा खर्च आपूर्ति	4,541,696	5,676,46
चिकित्सा अधिकारी का मानदेय	170,000	420,00
चिकित्सा सहायता केंद्र व्यय	14,885	2,57
परिदर्शन वैज्ञानिक यादा भत्ता	100,215	184,28
चुट्टी यात्रा रियायत	272,725	614,91
•		-
परिदान	4,341,641	10,529,413
कुल	198,925,849	250,533,752
<u>अनुसूची-ध- प्रशासिनक व्यय</u>		
प्रशासन		
विज्ञापन	593,415	937,59
लेखापरीक्षा शुल्क	54,000	59,00
सम्मेलन एवं परिसंवाद	1,169	536,26
विज्ञान आउटरीच कार्यक्रम	6,163	430,57
विद्युत प्रभार	19,634,690	23,487,05
पुस्तकें	169,880	4,00
पुस्तकालय एवं पत्रिका	35,656,551	33,803,50
न् दिनिध व्यय	73,416	150,88
डाक एवं तार	(2,551)	85,01
मुद्रण एवं लेखन सामग्री	534,083	928,23
सुरक्षा सेवा	5,482,283	6,114,41
वुरका तथा विदेश याता व्यय	3,702,203	299,42
	250.054	
देशज याता व्यय	359,951	1,563,67
सम्मेलन टीए	121,458	354,17
टेलीफोन एवं टेलैक्स	482,294	634,20
जल प्रभार	348,544	346,09
किराया प्रभार	-	14,42
जेस्ट व्यय	76,850	-
वृत्तिगत प्रभार	82,635	228,620

भौतिकी संस्थान, भुवनेश्वर

31 मार्च 2021 को समाप्त वर्ष के लिए प्राप्तियां और भुगतान के विवरण के अंग के रूप में अनुसूचियाँ

		(राशि रुपये में)
	चालू वर्ष	पिछला वर्ष
अनुसूची-घ-प्रशासनिक व्यय (जारी)		
<u>अनुरक्षण</u>		
कंप्यूटर अनुरक्षण	4,347,868	4,199,463
प्रयोगशाला अनुरक्षण	2,879,599	3,263,259
सिविल अनुरक्षण	5,580,033	10,650,628
कार्यात्य उपकरण अनुरक्षण	250,696	395,010
फर्नीचर अनुरक्षण	-	201,211
पुस्तकालय अनुरक्षण	731,704	623,376
ए सी संयंत्र अनुरक्षण	4,582,657	4,802,658
उद्यान अनुरक्षण	88,822	65,157
वैद्युतिकी अनुरक्षण	484,193	1,241,461
टेलीफोन अनुरक्षण	69,762	78,682
वर्कसॉप अनुरक्षण	21,782	59,142
बाहन अनुरक्षण	157,045	408,655
केंटीन एवं अतिथि भवन	590	-
कु ल	82,869,583	95,965,856
अनुसची-ङ-अचल परिसंपत्तियों की खरीद		
<u>गैर-पोजना</u>		
कार्यालय उपकरण	609,175	99,276
फर्नीचर एवं फिक्चर		27,854
टेलीफोन उपकरण		3,850
कंप्यूटर उपकरण	12,200	33,350
प्रयोगशाला उपकरण		1,354,736
योजना		
कंप्यूटिंग एवं नेटवर्किंग का विकास	1,313,668	1,519,754
निम्न ऊर्जा त्वरक का सुदृढिकरण	(1,272,252)	6,976,024
कुल	662,791	10,014,844
अनुसूची-च-परियोजना राजस्व व्यय		-
योजना		
आतिस उपयोगीकरण एवं सीवीएम सहयोग व्यय	28,152	508,035
कंप्यूटिंग एवं नेटवर्क सुविधाओं के विकास के लिए व्यय	85,129	797,840
निम्न ऊर्जा त्वरक व्यय के सुदृढिकरण	-	722
संरचना व्यय	-	655,505
विज्ञान प्रतिभा व्यय	313,326	765,271
कुल	426,607	2,727,373
<u>अनुसूची-छ- कर्मचारियों को अग्रिम</u>		
कंप्यूटर के लिए अग्रिम	84,540	-
देशज यादा के लिए अग्रिम	4,521	-
त्योहार अग्निम	420,000	-
एलटीसी के लिए अग्रिम	96,000	-
विज्ञान प्रतिभा के लिए अग्रिम	25,000	-
কু ল	630,061	-

भौतिकी संस्थान भुवनेश्वर

31.03.2021 को समाप्त अवधि के लिए लेखाओं के अंग के रूप में अनुसूचियाँ

अनुसूची-24 महत्वपूर्ण लेखा नीतियाँ और लेखाओं पर टिप्पणियाँ

लेखांकन प्रथा

वित्तीय विवरण, सरकारी अनुदान के अलावा भारत में साधारणत: स्वीकृत ऐतिहासिक लागत और लेखाकरण की प्रोद्भवन विधि को ध्यान में रखकर तैयार किए गए हैं।

2 संपत्ति, संयंत्र और उपकरण

- 2.1 पूर्ण स्वामित्व : संपत्ति, संयंत्र और उपकरण को संचित मूल्यहास से कम ऐतिहासिक लागत पर बताये गये हैं। अधिग्रहण लागत में इनवार्ड कैरिएन की लागत, शुल्क और कर और ऐसी विशेष अचल परिसंपत्तियों के संबंध में हुए अन्य आकस्मिक प्रत्यक्ष व्यय शामिल हैं।
- 2.2 पट्टाधृित: अधिकृत कुल 56.130 एकड.जमीन में से, संस्थान के स्वामित्व में 6.130 एकड़ पटटे की भूमि है। 31.03.2019 तक लीज रेंट भुगतान हुआ है और 31.03.2021 तक भुगतान करना है। शेष जमीन उच्च शिक्षा विभाग, ओडिशा सरकार के नाम में है और संस्थान के नाम में परिवर्तित होना है और यह भाग राज्य सरकार के नाम में होने के कारण कोई किराया देय नहीं है।

3. निवेश

गैर-वर्तमान निवेशों को कम करने के लिए व्यक्तिगत रूप से कम लागत पर प्रावधान किया जाता है । वर्तमान का निवेश उचित मूल्य की कम लागत पर किया जाता है ।

परंतु, संस्थान में किसी भी प्रकृति का कोई दीर्घकालिक निवेश नहीं है। इसके अलावा, लेटर ऑफ क्रेडिट के बदले बैंक के एसटीडीआर के आकार में अल्पकालिक निवेश हैं।

4. मालसूची मूल्यांकन

लेखन सामग्री, कंप्यूटर सामग्री, सफाई सामग्री, हार्डवेयार और इलेक्टिकॉल सामानों आदि का स्टॉक का लागत पर मूल्य निर्धारित किया गया है।

5. बैंक में शेष

चिह्नित ∕बंदोबस्ती निधि (अनुसूची-3 के अनुसार) कुल बैंक में शेष कुल राशि के तहत ₹ 2.28 करोड़ बैंक में शेष के रूप में दर्शाया गया है ।

मूल्यहास

- 6.1 मूल्यहास कंपनी अधिनियम 1956 में निर्धारित दरों के अनुसार सीधी रेखा विधि पर परिसंपत्तियों की कुल लागत तक प्रभार किया गया है। 2013 में हुए संशोधन को ध्यान में नहीं रखा गया है उन परिसंपत्तियों पर मूल्यहास लगाया गया है जिसका डब्ल्यूडीवी अचल परिसंपत्ति अनुसूची के अनुसार सकल ब्लॉक के पाँच प्रतिशत के अवशिष्ट मूल्य से अधिक है।
- 6.2 ₹ 5000/- अथवा उससे कम लागत वाली संपत्ति पूरी तरह से प्रदान की गयी है।

7. सरकारी अनुदान/परिदान

अनुदानों का हिसाब बसूली के आधार पर किया गया है

- 7.1. पूंजीगत व्यय के लिए उपयोग किए जाने वाले योजना अनुदान को पूंजीगत निधि के रूप में माना गया है ।
- 7.2. राजस्व व्यय के लिए उपयोग किए जाने वाले गैर-योजना अनुदान को आय एवं व्यय खाते में लिया गया है।

8. विदेशी मुद्रा कारोबार

विदेशी मुद्रा से जुड़े-लेन देन का हिसाब लेनदेन की तारीख को प्रचलित विनिमय दर पर किया गया है।

9. सेवानिवृत्ति लाभ

- 9.1 31.03.2021 को देय सेवानिवृत्ति पर ग्रेच्युटी से संबंधित देयता वास्तविक मूल्यांकन पर खाते में प्रदान की गई है। 31.03.2021 तक कर्मचारियों को संचित नकदीकरण लाभ की देयता के लिए प्रावधान वास्तविक मूल्यांकन पर खातों में प्रदान किया गया है।
- 9.2 कर्मचारियों को पेंशन के लिए देय देयताओं का प्रावधान लेखाओं में किया गया है।
- 9.3 संस्थान द्वारा अब तक कोई पेंशन निधि नहीं बनाई गई है।
- 9.4 नई परिभाषित पेंशन योजना का अंशदान नियमित रूप से संस्थान द्वारा उन कर्मचारियों के लिए दिया जा रहा है जो 01-01-2004 के बाद संस्थान में योगदान दिया है ।
- 9.5 संस्थान का अपनी भविष्य निधि ट्रस्ट है जो 31.12.2003 को अथवा उससे पहले संस्थान में कर्मचारियों के भविष्य निधि का प्रबंधन करता है । 31.03.2021 को समाप्त वर्ष के लिए ट्रस्ट के लेखे एक सनदी लेखकार फार्म द्वारा लेखा-परीक्षा की गई है ।

भौतिकी संस्थान भुवनेश्वर

31.03.2021 को समाप्त अवधि के लिए लेखाओं के अंग के रूप में अनुसूचियां

अनुसूची 25 - आकस्मिक देयताएं और लेखे पर टिप्पणियां

1. आकस्मिक देयताएं

नोट : आय कर विभाग द्वारा निर्धारण वर्ष 2017-18 के दौरान मांगी गई राशि रु.5,73,436.00 जिसके लिए संस्थान ने अपील की है । परंतु, सीआईटी (ए) के सामने अपील लंबित है, विभाग ने उपर्युक्त मांग के लिए निर्धारण वर्ष 2019-2020 की वापसी राशि रु. 201704.00 समायोजित कर दिया है । 1.2. वैंक गांरटी संस्थान द्वारा/की ओर से दिया जाता है 1.3. वैंक में छूट दी गई बिल 1.4. 110 प्रतिशत उपांत राशि के बदले 31.03.2021 तक बकाया राशि संस्थान की ओर से बैंक द्वारा खोली गई लेटर ऑफ क्रेडिट 1.5. निम्निलिखित के संबंध में विवादित मांग 31.03.2021 तक आय कर बिक्री कर (आईडीएस) महानगर कर			
च्.5,73,436.00 जिसके लिए संस्थान ने अपील की है । परंतु, सीआईटी (ए) के सामने अपील लंबित है, विभाग ने उपर्युक्त मांग के लिए निर्धारण वर्ष 2019-2020 की वापसी राशि रु. 201704.00 समायोजित कर दिया है ।	1.1.	संस्थान के सामने रखी गयी दावाओं को ऋण के रूप में स्वीकार नहीं किया गया	3,71,732
1.3. बैंक में छूट दी गई बिल 1.4. 110 प्रतिशत उपांत राशि के बदले 31.03.2021 तक बकाया रिश संस्थान की ओर से बैंक व्यारा खोली गई लेटर ऑफ क्रेडिट 1.5. निम्निलिखित के संबंध में विवादित मांग 31.03.2021 तक आय कर बिक्री कर (आईडीएस) महानगर कर		रु.5,73,436.00 जिसके लिए संस्थान ने अपील की है। परंतु, सीआईटी (ए) के सामने अपील लंबित है, विभाग ने उपर्युक्त मांग के लिए निर्धारण वर्ष 2019-2020 की वापसी राशि रु.	
1.4. 1.10 प्रतिशत उपांत राशि के बदले 31.03.2021 तक बकाया रिश संस्थान की ओर से बैंक द्वारा खोली गई लेटर ऑफ क्रेडिट 1.5. निम्निलिखित के संबंध में विवादित मांग 31.03.2021 तक आय कर बिक्री कर (आईडीएस) महानगर कर	1.2.	बैंक गांरटी संस्थान ब्रारा/की ओर से दिया जाता है	शून्य
द्वारा खोली गई लेटर ऑफ क्रेडिट 1.5. निम्निलिखित के संबंध में विवादित मांग 31.03.2021 तक आय कर बिक्री कर (आईडीएस) महानगर कर	1.3.	बैंक में छूट दी गई बिल	शून्य
31.03.2021 तक आय कर बिक्री कर (आईडीएस) महानगर कर	1.4.		720,48,124
बिक्री कर (आईडीएस) महानगर कर	1.5.	निम्नलिखित के संबंध में विवादित मांग	
महानगर कर		31.03.2021 तक आय कर	शून्य
		बिक्री कर (आईडीएस)	গ্ন্শ
		महानगर कर	शून्य
1.6. आदेश निष्पादन न करने के लिए पार्टियों के मांगों के संबंध में	1.6.	आदेश निष्पादन न करने के लिए पार्टियों के मांगों के संबंध में	शून्य

2. लेखाओं पर टिप्पणियां

2.1, चालु अस्तियां, ऋण और अग्रिम

चालू अस्तियां, ऋण और अग्रिमों का व्यवसाय सामान्य क्रम में वसूली पर मूल्य होता है, जो कम से कम तुलन पत्र में विखाई गई कुल राशि के बराबर होता है।

2.2. चालू वेयताएं और प्रावधान

सभी ज्ञात देयताओं को संस्थान की खाताओं में बताया गया है।

2.3. कराधान

यह संस्थान परमाणु ऊर्जा विभाग, भारत सरकार और ओड़िशा सरकार के संयुक्त रूप से स्थापित अनुसंघान अभिमुखित संगठन है। यह संस्थान आयकर अधिनियम 1961 के तहत किसी भी प्रकार की कर योग्य आय नहीं है और वर्ष के दौरान आय कर का कोई प्रावधान नहीं है।

- 2.4. विशिष्ट परियोजनाओं / फेलोशिप के लिए डीएसटी और अन्य निधिकरण एजेंसियों से प्राप्त बाह्य अनुवान राशि को संस्थान की लेखाओं में शामिल किया गया है।
- 2.5. तुलन पत्र और आय तथा व्यय खाते में दर्शाये गये आंकड़े के निकटतम रूपये में पूर्णांकित किया गया है 1

- 2.6. जहां आवश्यक है पिछले वर्ष की आंकड़ों को पुनःवर्गीकृत/व्यवस्थित किया गया है। कोष्ठकों में दिये गये आंकड़े कटौती का संकेत देता है।
- 2.7. रु. 720,48,124/- की एलसी के लिए एसटीडीआर में निम्नलिखित शामिल हैं :

भुगतान का तारीख	एनआईएल	पार्टी का नाम	मद का नाम	राशि (रु.)
22.01.2021	स्पीन स्ट्रक्चर की जांच करना	मेसर्स थर्माल टेक्नोलोजी, एलएलसी, यूएसए	डाइरेक्ट करेंट हिटिंग/स्पार्क प्लाज्मा सिंटेरिंग फर्नेस	199,92,920
यथा	यथा	मेसर्स शिमाजु एसिया पेसिफिक लि. सिंगापुर	एक्स-रे फोटोइलेक्ट्रॉन स्पेक्ट्रोमीटर (एक्सपीएस) सिस्टम	520,55,204

- 2.8. अपनाई गई प्रथा के अनुसार कर्मचारियों को दी गई ऋण के मूलधन के पुनर्भगतान के बाद ही ब्याज को आय के रूप में माना जाता है । बचत बैंक पर ब्याज प्राप्ति के आधार पर लेखा किया जाता है।
- 2.9. इसके साथ संलग्न 1 से 25 तक अनुसूची 31.03.2021 तक के तुलन पत्र और उस तारीख को समाप्त वर्ष के लिए आय एवं व्यय एक अभिन्न अंग है ।

3 विदेशी मुद्रा कारोबार

	सी.आई.एफ./ पूर्व कार्य और एफओबी आधार पर परिकलित आयात सामानों का मृल्य	<u>31.03.2021 (₹)</u>	31.03.2020 (₹)
	क) प्रयोगशाला उपकरण की खरीद ख) भंडार, पुर्जा और उपभोज्य सामान ग) पत्रिका अंशदान	16,24,500 1,54,074 3,21,87,370	2,41,06,916 6,61,483 2,52,42,903
	विदेश मुद्रा के लिए व्यय क) यात्रा ख) अन्य व्यय (मानदेय) उपार्जन	श ून्य शून्य	शून्य शून्य
4	एफओबी आधार पर निर्यात का मूल्य लेखापरीक्षकों का मानदेय	शून्य	शून्य
	लेखापरीक्षकों	59,000	59,000

वित्तीय वर्ष 2020-21 के लिए भौतिकी संस्थान, भुवनेश्वर के वार्षिक लेखे पर सांविधिक लेखापरीक्षकों की टिप्पणियों पर की गई अनुवर्त्ती कार्रवाई रिपोर्ट

क्रमां	लेखापरीक्षक का अवलोकन	संस्थान का उत्तर
क		
उचित		
औचि	त्य का आधार	
1	क) संस्थान ने अचल संपत्तियों के लेखांकन के लिए एएस 10 और मूल्यहास के प्रावधान के लिए एएस-6 का पालन नहीं किया है। संस्थान ने व्यक्तिगत संपत्ति के अविशष्ट मूल्य को सत्यापित करने के लिए अचल संपत्ति पंजी नहीं रखा है। पुरानी संपत्तियों का मूल्यहास पूर्ण रूप से होने के बावजूद भी एसएलएम पद्धित पर वर्ष के अंत तक सकल ब्लॉक पर मूल्यहास लगाया गया है। वर्ष के वौरान खरीदी गयी संपत्तियों पर मूल्यहास उपयोग तिथि से आनुपातिक आधार के बजाय पूरे वर्ष के लिए लगाया गया है। क) सोसाइटी की अचल संपत्तियों को लेखापरीक्षा वर्ष के वौरान पूरी तरह से प्रत्यक्ष रूप में सत्यापन नहीं किया गया था। ख) एएस- 28 के अनुसार सोसाइटी की किसी भी अचल संपत्तियों को हानि के लिए परीक्षण नहीं किया गया था और यदि कोई हानि हो तो उसके लिए कोई प्रावधान नहीं बनाया गया है।	सुधारात्मक उपायों के लिए नोट कर लिया गया। संस्थान ने वर्ष 2011-12 के बाद से संपत्ति रजिस्टर तैयार करने के लिए कायदिश संख्या 793 तारीख 25.06.2018 के माध्यम से मेसर्स लालादाश और कंपनी, सनदी लेखाकारों को लगाया है और उन्होंने अपनी रिपोर्ट वर्ष वार 2020-21 तक जमा कर दी है। संस्थान वर्षवार अचल संपत्तियों का प्रत्यक्ष सत्यापन कर रहा है। मेसर्स लालादाश एवं कंपनी, सीए द्वारा प्रत्यक्ष सत्यापन का कार्य जोर से चल रहा है इसके साथ आंतरिक टीम भी लगी है जो जल्द ही पूरा हो जाएगा। यह बिंदु भविष्य में अनुपालन के लिए नोट कर लिया गया।
2	सरकारी अनुदानों के लेखांकन पर आईएएस 12 का अनुपालन नहीं हुआ है। अनुदानों को वसूली के आधार पर मान्यता दी गई है। अनुदानों को वसूली के आधार पर मान्यता दी गई है। पूंजीगत अनुदानों को पूंजीनिधि के रूप में मान्यता दी गई है और देयता के रूप में दिखाया गया है।	संस्थान अनुदान राशि (सामान्य) और अनुदान राशि पूंजीगत संपत्तियों के सृजन) के तहत परमाणु ऊर्जा विभाग (भारत सरकार) से प्राप्त करता आ रहा है जिसे लेखांकन मानक 12 के प्रावधान के अनुसार पूंजी निधि के रूप में माना जाता है।
	देने का विषय	
1	तीसरे पक्ष को / से अग्रिम और देवताओं की शेष राशि पुष्टि के तहत है ।	सुझाव को भविष्य में अनुपालन के लिए नोट कर लिया गया है।
	<u> </u>	L

