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Rigidity of melting DNA
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The temperature dependence of DNA flexibility is studied in the presence of stretching and unzipping forces.
Two classes of models are considered. In one case the origin of elasticity is entropic due to the polymeric
correlations, and in the other the double-stranded DNA is taken to have an intrinsic rigidity for bending. In
both cases single strands are completely flexible. The change in the elastic constant for the flexible case due to
thermally generated bubbles is obtained exactly. For the case of intrinsic rigidity, the elastic constant is found to
be proportional to the square root of the bubble number fluctuation.

DOI: 10.1103/PhysRevE.93.052102

I. INTRODUCTION

To facilitate different fundamental biological processes,
like replication, gene expression, assembly of functional
nucleoprotein structures, and packaging of viral DNA, DNA
has to go through a lot of twisting, stretching, and bending
[1–7]. Generally different proteins induce these conforma-
tional changes in DNA, but not without facing any resistance.
This is because, when subjected to an external mechanical
force, DNA responds elastically. Single-stranded DNA may be
flexible and easy to bend, but double-stranded DNA (dsDNA)
is known to be more rigid. However, the flexibility of short
DNA fragments is important for different in vivo mechanisms,
like those already mentioned, where loops or bends as short
as 100 base pairs in length are involved [8,9], and also in
in vitro experiments, where fragments are used in open or
hairpin geometries. It is therefore important to probe the
elastic response of dsDNA not only in the thermodynamic
limit of long length—dsDNA is long—but also for finite-size
systems.

Topological arguments, à la the Călugăreneau theorem [10],
indicate the necessity of two major elastic constants of dsDNA,
namely, the twist and the bending elastic constants. The
former is tied to the helical nature of the double-helix and the
latter is determined by both entropy and angular interactions
between neighboring tangent vectors. These elastic moduli are
characteristics of the bound phase and they disappear on DNAs
melting into the denatured phase. It is quite analogous to the
disappearance of the shear elastic modulus of a crystalline
solid upon melting into the liquid phase. If dsDNA is treated
as a free Gaussian polymer with noninteracting monomers,
even then it exhibits an entropic elasticity originating from the
correlations of a random walk. On the other hand, an intrinsic
rigidity against bending at short scales (a semiflexible chain)
produces a temperature-dependent persistence length (∼150
base pairs), within which a dsDNA acts more or less like a rigid
rod. Thus, it seems, a larger force is required to bend DNA
of a length shorter than its persistence length than DNA of a
longer length [11,12]. Recent debates [13–25] on the behavior
of short segments brought into focus the importance of broken
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base pairs on its eventual or effective rigidity. As the base-pair
energy is comparable to the thermal energy at physiological
temperatures (∼2–3 kcal/mol), bubbles form spontaneously
or are produced by external forces (see, e.g., [26] for an
earlier study). Consequently, the issue of the elastic response
of dsDNA cannot be studied in isolation as its intrinsic
property but rather needs to be coupled to the inner degrees
of freedom, namely, base pairings responsible for the bound
state.

Breaking the base pairings can separate dsDNA into two
independent single strands and this melting happens at a
particular temperature. The thermal melting of DNA is by itself
an interesting problem and important for different in vivo or
in vitro processes. A notable example is the polymer chain
reaction, which is used extensively in DNA amplification.
Other than that it has been proposed [27–29] that at the
dsDNA melting point the addition of a third strand may
support a three-stranded DNA bound state where no two
pairs of strands are expected to be bound. This novel three-
stranded DNA bound state is called Efimov DNA and has
been shown to support a renormalization-group limit cycle
[30,31]. In the temperature region below the melting point
there can be local melting at different positions, creating
denaturation bubbles, which are nothing but single-stranded
loops preceded and succeeded by double-stranded segments.
As single-stranded DNA is far more flexible than paired
ones, these thermally generated bubbles can provide flexible
hinges which can make dsDNA significantly flexible [15–17].
Generally the average length of these bubbles increases as the
critical point is approached and equals the system length at
the melting temperature. The importance of bubbles for the
melting transition is well understood in the Poland-Scheraga
framework [32]. The entropic contributions of the bubbles
in different models, originating from long-range polymeric
correlations of the individual strands, lead to different types
of melting behavior, from weakly first order to infinite order
[27–41]. The simpler coarse-gain-level models show critical
behavior [30–35,39,42–44]. Close to melting, the bubbles are
therefore expected to contribute significantly to the flexibility,
beyond just acting as hinges. Different from thermal melting
is the unzipping transition, where the two strands of dsDNA
are pulled apart at temperatures below the melting point. The
unzipping transition is generally first order [42,45], even in
models with a first-order melting transition [37,38]. Since the
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unzipping force does not penetrate the bound state [42,46],
the nature of the bubble distribution does not change in the
presence of an unzipping force. As a result, the bubbles are
going to have their signatures on the flexibility of a DNA near
the unzipping transition too. From a phase transition point
of view, the bending elastic constant, despite its importance
for DNA activity, is not a primary response function that
characterizes a critical point. For example, one may compare
it with the magnetic susceptibility of a ferro-para magnetic
transition or the elastic modulus in a liquid-gas transition,
whose divergence is associated with an exponent γ . But as it
is not the primary response function, no such general results
of critical phenomena are applicable here. Hence the necessity
for a detailed study of the rigidity of melting DNA. In this
paper we want to explore the elastic properties of DNA near
its melting point. DNA melting is a genuine phase transition
for which the DNA length has to satisfy the thermodynamic
limit. But still, the existence of a transition point is sufficient
to affect a finite-size system even when it is away from the
critical point. One of our aims is to obtain a few exact results
on the elastic behavior for a class of models of DNA melting
and unzipping.

Different statistical mechanical models have been applied
with varying success to study the DNA elasticity problem.
The classical semiflexible chain model with no denaturation
bubbles has been employed by a number of investigators
[47,48]. Segments made of single strands can be introduced
in discretized semiflexible DNA, by considering models
comprised of two-state internal coordinates and, also, by
coupling these internal coordinates to the external rotational
degrees of freedom of its tangent vectors [49–51]. Bubbles
appear naturally in our models without utilizing any other
secondary variables.

The modulus of interest comes from the response to a
force applied at one end of each of the two strands, keeping
the other end fixed at the origin. We use models of DNA
where the strands are represented as polymers with native
base pairing; namely, two monomers of the two strands interact
only when they have the same contour length on the polymer.
To probe the elastic behavior, we use a stretching force that
would act on both strands in the same direction, while the
phase can be changed by an unzipping force that acts on
the strands in opposite directions. Here we quantitatively
relate DNA flexibility to bubble-related quantities such as the
bubble length, the bubble number etc.

The organization of this paper is as follows. In Sec. II,
we qualitatively describe the models, the flexible model and
the rigid model, considered in this paper. Section III is
devoted to the flexible model. In Sec. III A, we introduce the
corresponding recursion relations and define the observables
necessary for analysis of both models. The elastic properties of
the flexible model are explored in Sec. III B, where we show a
finite discontinuity in the elastic modulus at the melting point.
We obtain the phase diagram in the presence of an unzipping
force and a stretching force in Sec. III D. The transition is
now first order and the elastic modulus shows a δ-function
peak at the transition point. We introduce the rigid model in
Sec. IV. After listing its governing recursion relations and
defining the required observables specific to this model, we
obtain its thermal melting (a continuous transition) point in
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FIG. 1. Schematic of dsDNA as two directed walks in the (1 + 1)
dimension. The direction in which the forces act are indicated by
arrows. (a) Flexible model: The polymers cannot cross each other.
The bound segments can bend left or right freely. This freedom can
be restricted by introducing a statistical weight b. Here, b is associated
with the left degree of freedom. (b) Rigid model: The polymers can
cross here. The bound segments cannot bend to the right and they are
at least two bonds long. v is the weight associated with the bubble
opening or closure.

Sec. IV A. In Sec. IV B, we show that the corresponding
elastic modulus becomes anomalous around the melting point
as it surpasses the unbound-state elastic modulus. The roles
played by the bubbles are shown quantitatively in Sec. IV C.
Only the stretching force is considered for the rigid model.
After a brief discussion of the relevance of our results in
Sec. V, we summarize and conclude in Sec. VI. A few
important Supplementary Materials are listed in Appendices A
and B.

II. QUALITATIVE DESCRIPTION

To isolate the entropic and the intrinsic elastic behavior,
two types of models are considered, viz., a flexible model, the
standard model used for melting and unzipping [39,40,52–54],
and a rigid model, built from the flexible model. See Fig. 1.
Both models show a zero-force melting point, generically
denoted yc. The common features of these models are as
follows: we consider each single strand as a directed polymer in
a two-dimensional square lattice. We represent the base pairing
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by contact interactions between the monomers which can only
occur at the same space and length coordinates. Correct base-
pair bonding is ensured by the directedness of the polymers.
The chains are inextensible [58], of the same length, and
attached to each other at the origin. We mimic DNA melting
by the binding-unbinding phase transition in the system. The
statistical weight of a contact interaction is the Boltzmann
factor y = exp(βε), −ε being the energy per contact and β

the inverse temperature with the Boltzmann constant set to
kB = 1. Such models in the past have been instrumental in
studies of the melting and the unzipping transition of dsDNA
and are known to show the relevant features of the higher
dimensional models [39,45,52,53]. These models are also
useful for studies of the dynamics of DNA. The flexible model
[Fig. 1(a)] has a hard-core repulsion that forbids the two chains
to cross. The perfectly bound DNA remains as flexible as the
single-stranded DNA so that at any nonzero temperature there
is only the emergent entropic elasticity. In contrast, the rigid
model [Fig. 1(b)] has a bound state which has an intrinsic
rigidity towards or against bending. In fact we consider the
dsDNA to be absolutely rigid in the bound state. The only way
it can show any flexibility is via denaturation bubbles. Thus,
the elastic response in this model is purely due to the flexible
hinges made accessible by the bubbles. It is possible to allow
some controlled semiflexibility, instead of absolute rigidity, via
the introduction of a parameter b, which penalizes the bound
DNA taking an unfavorable turn. This model is discussed in
Appendix B. This imposed rigidity is enough to give a melting
transition even in the absence of any hard-core constraint.
To incorporate this rigidity unambiguously, a constraint is
required that a bound base pair can form only if its previous
monomers are in the bound state.

We apply an external space-independent mechanical
stretching force independently at the end of each strand. If the
two forces are in the same direction, the dsDNA is said to be
under a stretching force gs . On the other hand, it will be under
an unzipping force gu if the forces are in opposite directions.
The average extension and the elastic modulus can be obtained
from the free energy simply by taking derivatives with respect
to the stretching force once and twice, respectively.

We use the transfer matrix method through recursion
relations to find the partition function of the system. For
the analytical solution, the generating function for the grand
partition function is used, from whose singularities the free
energy can be determined [40]. For numerical calculations we
iterate the recursion relations for finite lengths and find the
exact partition function. The numerical calculations reflect the
finite-size behavior of the concerning quantities. The effect
of the unzipping force in the elasticity is also explored. The
general case of two unequal forces can always be transformed
into a case of unzipping and stretching forces. Since unzipping
and stretching of dsDNA are independent of each other, we are
able to generate a general phase diagram for three variables:
the temperature, the stretching force, and the unzipping force.

III. FLEXIBLE MODEL

We use the model from Ref. [54] introduced to study
the unzipping transition of dsDNA discussed in the last
section. First, we solve the model analytically through the

generating function technique, and then we study numerically
the behavior of finite-length systems.

A. Recursion relation and observables

In the absence of any force the recursion relation followed
by this system is given by [54]

Zn+1(x1,x2) =
∑

(i,j )=±1

Zn(x1 + i,x2 + j )[1 − (1 − y)δx1,x2 ],

(1)

where Zn(x1,x2) is the canonical partition function of the
system of two polymers, each of length n, and the spatial
positions of the nth monomers of polymer 1 and polymer 2
are x1 and x2, respectively. For a given monomer number if
x1 becomes equal to x2, then there is a contact. We set the
initial condition as Z0(0,0) = y such that two strands start
from the origin. The noncrossing constraint is implemented
by not letting x1 becoming greater than x2 (x1 � x2).

We apply a constant stretching force gs at the open end
point of each strand. The partition function of n-length DNA
in the presence of this stretching force is given by

Z(gs) =
∑
x1,x2

Zn(x1,x2)egsX, where X = x1 + x2, (2)

and the sum is over all the allowed values of x1 and x2.
The elastic response of the system under a stretching force

can be quantified through the average extension (x) and the
elastic modulus (κ). We define them in the following way:

x = ∂f

∂gs

= 1

N

∂ ln Z(gs)

∂gs

and κ = ∂x

∂gs

, (3)

where f = βF = − ln Z(gs) is the free energy of the system
scaled by β, and N is the length of the strands (N → ∞).
Using Eq. (2) we can rewrite them as

x = 〈X〉
N

=
∑

x1,x2
ZN (x1,x2)egsXX

N
∑

x1,x2
ZN (x1,x2)egsX

, (4a)

κ = 1

N
(〈X2〉 − 〈X〉2), (4b)

where 〈. . . 〉 denotes the thermal average as indicated in
Eq. (4a). An inspection of Eqs. (4a) and (4b) shows that x is
related to the average vectorial position of the center of mass of
the end points of the two strands of length n under a stretching
force gs , and as expected, κ is related to the fluctuation of x. If
x1 and x2 are uncorrelated, then κ is the sum of the individual
elastic constants. This will be the case in the unbound phase.
According to this definition for a given force the larger the
value of κ , the greater is the flexibility of the dsDNA. Two
other important quantities are the average number of contacts
between two strands (nc) and its fluctuation (Cc). Two extreme
values of nc, 0 and 1, represent the unbound and the bound
states, respectively. As y is a temperature-like variable one can
derive the specific heat of the system from Cc. We call it the
specific heat for brevity. These are defined as

nc = y

N

∂f

∂y
and Cc = y

∂nc

∂y
. (5)

We follow these definitions in the rest of this paper.
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The recursion relations defined above can be solved exactly
in the infinite-chain limit (i.e., the thermodynamic limit) with
the help of generating functions. Based on the closed-form
expressions, the physical quantities are obtained by taking
appropriate derivatives as in Eq. (3). The results obtained
in this way are called “analytical results.” These recursion
relations can also be evaluated exactly, but numerically, by
using the transfer matrix technique, for finite-length chains.
The physical quantities like the average extension and elastic
modulus are then obtained by using Eqs. (4a) and (4b). To
evaluate nc and Cc numerically we need to find out the first and
the second numerical derivatives of the partition function with
respect to y. We evaluate the recursion relations for the first and
the second derivatives of the zero-force partition function by
taking the first and second derivatives of Eq. (1) with respect
to y, respectively, and iterate them numerically to evaluate
them. Then, using Eq. (5) we calculate nc and Cc for zero
applied force. For a constant nonzero applied force, we follow
the same procedure but evaluate the partition function and its
y derivatives by using Eq. (2) and taking derivatives of Eq. (2)
with respect to y. Such exact numerical results below are called
“numerical results.’

B. Elastic response under a stretching force

1. Generating function and the free energy

By employing the generating function technique the recur-
sion relation Eq. (1) can be exactly solved. We define

G(z,x1,x2) =
∞∑

n=0

znZn(x1,x2). (6)

By doing this we are going to the grand-canonical ensemble
from the canonical ensemble. By multiplying both sides of
Eq. (1) by zn and then summing over n we get two independent
equations: one for nonzero unequal values of x1 and x2, and
another for x1 = x2 = 0. These are given by

1

z
G(z,x1,x2) =

∑
(i,j )=±1

G(z,x1 + i,x2 + j ), (7a)

1

yz
G(z,0,0) = 1

z
+

∑
(i,j )=±1

G(z,i,j ). (7b)

The free energy per unit length of the DNA is determined
by the singularity of G(z,x1,x2) closest to the origin in the
complex z plane.

Assuming a power-law form for G(z,x1,x2) with respect to
the relative position coordinate we make the ansatz

G(z,x1,x2) = A(gs,z)λ(gs,z)(x1−x2)/2egs (x1+x2), (8)

where A and λ are functions of z and independent of
position coordinates. Equation (8) generalizes the ansatz in
Ref. [54]. Using the ansatz, Eq. (8), in Eq. (7a) and Eq. (7b),
two unknowns, A(gs,z) and λ(gs,z), can easily be solved.
Their forms are given in Appendix A. The free energies
of the different phases of the system are obtained from
the singularities of G(gs,z). The singularity zb of A(gs,z)
corresponds to the bound-state free energy and the branch

point singularity zf of λ(gs,z) gives the free energy of the
unbound state. They are calculated as

zb(y,gs) = y − 1

y sech(2gs)

⎡
⎣

√
sech2(2gs)

y − 1
+ 1 − 1

⎤
⎦, (9a)

zf (y,gs) = sech2(gs)

4
. (9b)

The difference in the force term can be understood by look-
ing at the low-energy excitations. In the case of the free chains a
force gs flips a bond interchanging the energies ±gs . This gives
the sech2(gs) term. In the bound state, with coincident end
points, a bound bond gets flipped under a force 2gs , yielding
the sech2(2gs) term. From here onwards we suppress y and
gs as arguments for notational simplification and show them
whenever necessary. The corresponding dimensionless free
energies per unit length are given by

fb = ln zb, (10a)

ff = ln zf . (10b)

There are two parameters in this formulation, y and gs . The
singularities move when these two parameters are changed.
Consider a situation where the system is in the bound state with
the free energy given by fb. Now, we can vary the parameters in
such a way that the unbound-state singularity zf crosses zb and
becomes closest to the origin. In this situation the free energy
of the system becomes ff . The crossing of the singularities
defines the transition point from bound to unbound by the
force at

gsc = 1

2
cosh−1

(
2 − y

2(y − 1)

)
. (11)

The phase diagram in the y-gsc plane is shown in
Fig. 2. The phase boundary has the following limiting
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FIG. 2. Flexible model: Phase diagram of the system under a
stretching force. The phase boundary separates the bound phase from
the unbound phase. In the region 4/3 > y > 1 there exists a critical
gsc for every value of y. Above y = 4/3 the system is, by default, in
the bound state. The solid blue line is the analytical curve, Eq. (11),
and the red squares represent the numerically obtained critical points
[see discussion following Eq. (17)].
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gs

y=1.20-gu=0.0
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FIG. 3. Flexible model: Variation of nc with gs for different values
of gu and y. A nonzero nc indicates a bound state. For gu = 0, there is
no unbound state for y � 4/3. The gu = 0 curves are from Eqs. (5),
(10a), and (10b). The cyan line with triangles is for the melting
point y = yc and shows the quadratic dependence on gs . The black
curve with filled diamonds represents y = 1.4 > yc. The red curve,
for gu = 0, shows a continuous transition, while the blue curve, for
nonzero gu, Eq. (21), shows a discontinuity. The symbols on these
analytically obtained curves, in the infinite-chain limit, are to make
them distinct.

forms:

gsc ∼ √
yc − y for y → yc − and (12a)

gsc ∼ − ln(y − 1)

ln y
for y → 1 + . (12b)

2. Results and discussion

a. Long-chain limit. When the two strands are in the
unbound state, they come closer and form contacts in the
influence of the stretching force. In this way an unbound
state becomes a bound state above the critical stretching force.
Figure 3 shows how nc, calculated using Eq. (5), becomes
nonzero before saturating at 1 as the stretching force crosses
a critical value for a y < yc. This shows that the transition is
continuous. It is already known that at the point (4/3,0) in the
phase diagram the system goes through a second-order phase
transition. Beyond this critical point the system always remains
in the bound state, thus excluding any other possibilities of
phase transition. The only effect of the stretching force there
is to influence the bubble statistics. The asymptotic behavior
of nc is given by

nc ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

9
2 (g − gsc)

√
y − yc for y→yc+,

gs→gsc+,

3
2 g2

s for y = yc, gs → 0,

n0 + g2
s√

y(y−1)
for y > yc, gs → 0,

27
8 (y − yc) for y → yc + , gs = 0,

(13)

where

n0 = nc(y > yc,gs = 0) = y − 2 + √
y(y − 1)

2(y − 1)
. (14)
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x
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FIG. 4. Flexible model: Plot of the average extension as a function
of the stretching force with a fixed y = 1.20. These are obtained from
Eqs. (3), (10a), and (10b). The average extension varies continuously
around the critical point. The symbols on these analytically obtained
curves are to make them distinct.

That this is a second-order phase transition can be corroborated
by examining the average extension of the center of mass due to
the application of the stretching force and the elastic modulus.
They are calculated using the definitions of Eq. (3). Figure 4
shows how the average extension changes continuously as the
system crosses the critical stretching force. For a zero force
x is 0, consistent with the Gaussian chain behavior, while
the fully stretched state under a large force has x = 2. The
slope discontinuity at the transition point gsc of Eq. (11) gives
rise to a jump in the elastic constant as shown in Fig. 5. To
be noted here is that there is no pretransitional signature on
either side of the transition. However, for a finite-size system
the scenario is different. All other curves in Fig. 5 except the
analytical curve are for different finite sizes of the system. In
the unbound phase each strand has the equation of state x =
tanh(gs) so that the total x = 2 tanh(gs). This is the gs < gsc

0 0.5 1 1.5 2gs
0

0.5

1

1.5

2

2.5

3

κ

0500
2000
Analytical
κb

FIG. 5. Flexible model: Elastic modulus curve for y = 1.20. The
solid brown line is the analytically obtained curve (see text). The
dashed cyan line is for κb = 4 sech2(2gs), Eq. (18a), for the case with
no bubbles. Other curves are plots of κ for different system lengths.
Solid lines through the data points are guides for the eye.
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FIG. 6. Flexible model: A magnified version of Fig. 5 around the
same crossing point of all the curves. The chain length for each curve
is given in the legend. Solid lines through the data points are guides
for the eye.

branch. The corresponding entropic elastic constant is κ =
2 sech2(gs). The completely bound state, in the absence of any
bubbles, should have a similar equation of state, with an elastic
constant of purely entropic origin given by κ = 4 sech2(2gs).
But the bubbles give an extra contribution. The exact form of
the elastic constant can be determined for a few special cases.
The y dependence of the zero force κ is given by (see Fig. 7)

κ(gs = 0) =
{

2 for y < yc,

4
√

y−1
y

for y > yc.
(15)

The elastic constant as a function of force at the melting point
y = yc is

κ(y = yc) = 64w(w + 1)

(w2 + 14w + 1)3/2
, with w = e4gs . (16)

The behavior of κ for y = yc and y > yc is shown in Fig. 8.
b. Finite-length DNA. The contribution of the bubbles

becomes significant in finite-length DNA as shown in Fig. 6.
The finite-size effects become significant when the length
is comparable to or shorter than the length of the bubble
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 1  1.5  2  2.5  3  3.5  4

κ(
g s

=
0)

y

κ(gs=0)

FIG. 7. Flexible model: The elastic modulus, Eq. (15), as a
function of y for zero stretching force.
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FIG. 8. Flexible model: The elastic modulus as a function of gs

at y = 4/3 = yc [Eq. (16)] and y = 1.40 > yc [from Eqs. (9a) and
(9b)].

fluctuations. The elastic constant for a finite-length DNA
is necessarily continuous, devoid of any singularity, but it
should evolve into a discontinuous function as the length is
increased. This indicates that shorter chains will show a larger
deviation from the thermodynamic limit over a range of forces.
A finite-size scaling form is

κ = f((gs − gsc)N1/ν), (17)

so that κ = f(0) at gs = gsc for all finite N . Therefore all the
finite-size curves pass through a common point as shown in
Fig. 6, which is the critical point. By identifying the common
points for other y values we can now determine the phase dia-
gram numerically. This is shown in Fig. 2. The consistency be-
tween this numerical method of finding the critical points with
the analytical results helps us when the model under consid-
eration is not solvable analytically. All the points in this phase
boundary including the thermal melting point (y = 4/3, gsc =
0) are second-order critical points. The behavior of κ shows
that the system is most flexible when it is in the unbound state
and under no external force, as it has the highest value of κ .

C. Role of the bubbles

To highlight the importance of the bubbles we compare our
results with the Y-model which is similar to the flexible model
except that bubble formation is not allowed there [40]. The
bound state of this model is the same as the completely bound
state of the flexible model and it has a zero-force melting point
(a first-order transition) at yc = 2. In the presence of gs the
corresponding singularities and elastic constants are given by

zb = 1

2y cosh 2gs

, κb = 4 sech2(2gs) and (18a)

zf = 1

2 cosh2 gs

, κf = 2 sech2(gs), (18b)

where κb and κf are the bound-state and the unbound-state
elastic constants, respectively. We obtain the phase boundary
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by equating zb with zf as

gsc = 1

2
cosh−1

(
1

y − 1

)
. (19)

The phase boundary has similar asymptotics for y → yc(= 2)
and y → 1 as in Eqs. (12a) and (12b). In Fig. 5 we compare
κb with the flexible model results. It shows that the flexibility
of the bound state of the flexible model is mostly due to the
bubbles.

D. Elastic response in the presence of an unzipping force

It is well known that this model undergoes an unzipping
transition under the influence of an unzipping force in the
absence of a stretching force. This unzipping transition is
known to be a first-order phase transition. The unzipped
state consists of two completely separated independent single
strands. When DNA is in the double-stranded form the
unzipping force tries to unzip it into two single strands. On the
other hand, when DNA is in the unzipped state the stretching
force tries to make them bound. Now, if we apply both
the forces simultaneously we expect a competition between
the opposing effects. In this section we study this problem,
again, analytically for the infinite system and numerically for
finite systems. We use the same definitions of quantities as in
Eqs. (4a), (4b), and (5).

Let us apply a spatially independent unzipping force
gu at the rear end of the DNA, i.e., the forces act ex-
actly in opposite directions. In the presence of a stretching
force gs the generating function is given by G(gs,z) =
A(gs,z)λ(gs,z)(x1−x2)/2egs (x1+x2), where A(gs,z) and λ(gs,z) are
given by Eq. (A1a) and Eq. (A1b). The generating function in
the presence of both forces is given by

G(gs,gu,z) =
∑
x1,x2

G(gs,z)egu(x1−x2). (20)

So, the bound-state singularity remains the same as zb, Eq. (9a),
consistent with the hypothesis of nonpenetration of forces
in the bound state [42], but the unbound-state singularity is
now given by the solution of the equation e2gu = λ(gs,z). This
equation is easily obtained by performing the summation over
x1 and x2 in Eq. (20). Solving this equation for z we find that
the unbound-state singularity zf u is given by

zf u = 1

2[cosh(2gs) + cosh(2gu)]
, (21)

which corresponds to the partition function of the two
chains under forces gs + gu and gs − gu, namely, 4 cosh(gs +
gu) cosh(gs − gu). For gu = 0, the corresponding singularity
matches Eq. (9b). The transition, as before, is given by the
crossing of the singularities at

guc = 1

2
cosh−1

(
1

2zb

− cosh (2gs)

)
. (22)

This expression reduces to the known unzipping line [40] for
gs = 0 and Eq. (11) for gu = 0.

1. Complete phase diagram with an unzipping force

After the introduction of an unzipping force we now have
three control parameters. By changing any one of them while

FIG. 9. Flexible model: Three-dimensional phase diagram of the
system, Eq. (22), in the presence of both stretching and unzipping
forces. All points on the surface except the curve for guc = 0 represent
first-order phase transition points. The unzipping line for gs = 0 is
shown by the thick black line.

keeping the other two fixed, one can induce a phase transition
in the system. The transition points are distributed on a surface
in the y-gs-gu space given by Eq. (22). In Fig. 9 we plot this
function. The critical curve for guc = 0 in the surface is a
second-order line. Around gs = 0, guc(gs) = guc(0) + ag2

s +
. . . , so that the unzipping line for gs = 0 lies along the locus
of the local minima on the surface. The first-order surface ends
on the gu = 0 plane in a critical line that contains the usual
melting point at yc(gs = gu = 0). Except for the critical line
all the other possible lines on the surface are first-order lines.
To show that there is indeed a first-order transition we plot nc

as a function of gs in Fig. 3 with gu > 0 and y kept fixed.

0 0.5 1 1.5 2gs
0

0.5

1

1.5

2

x
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1000
1500
2000
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1 1.1 1.2 1.3 1.4 1.5
1.5

1.6

1.7

1.8

1.9

FIG. 10. Flexible model: x vs gs plot, with gu = 0.4 and y =
1.20. Inset: Magnification of the critical region. The dotted magenta
line is the analytical curve. See Sec. III D 2. All other curves are
for finite system sizes shown in the legend. The discontinuity at gsc

indicates a first-order transition. Solid lines through the data points
are guides for the eye.
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FIG. 11. Flexible model: κ vs gs plot with gu = 0.4 and y = 1.20.
Inset: Magnification of the critical region. The dotted magenta lines
are the analytical curves. See Sec. III D 2. All other curves are for
finite system sizes shown in the legend. The peak height increases
proportionally with N , signaling a δ-function peak which is not shown
in the analytical curve. Solid lines through the data points are guides
for the eye.

2. Elastic constant

We plot x vs gs in Fig. 10 and κ vs gs in Fig. 11, keeping
gu and y at fixed values. The dotted magenta curves are the
analytical ones for an infinite system length, obtained by using
Eqs. (3), (9a), and (21), while all the other curves are for finite
system sizes which gradually match the analytical curve as
N becomes larger. x shows a finite discontinuity at a critical
gsc = 1.18. The analytical curve for κ has a δ-function peak
at gsc, which is not shown in Fig. 11. The uniform increase in
the peak height with increasing system size in κ at the critical
point is the signature of the delta peak. Below we list various
useful limiting values of x and κ .

(i) For gs → 0, gu > guc(y):

x ≈ 2 sech2(gu)gs, (23a)

κ ≈ 2 sech2(gu) + 2
cosh(gu) − 2

cosh4(gu)
g2

s . (23b)

(ii) For gs → 0, gu < guc(y):

x ≈ 4

√
y − 1

y
gs, (24a)

κ ≈ 4

√
y − 1

y
+ 8(3 − 2y)

√
y − 1

y3/2
g2

s . (24b)

(iii) For gs → gsc − , y = 1.2,gu = 0.4:

x ≈ 1.57107 + 0.73049(gs − gsc), (25a)

κ ≈ 0.73049 − 1.03646(gs − gsc). (25b)

(iv) For gs → gsc + , y = 1.2, gu = 0.4:

x ≈ 1.81211 + 0.66067(gs − gsc), (26a)
κ ≈ 0.66067 − 2.01486(gs − gsc). (26b)

For an infinite system the transition occurs suddenly at a
single point. On the other hand, for a finite-size system the
effect of the transition remains relevant for a domain of gs

values containing gsc beyond the scaling regime.

IV. RIGID MODEL

Here we customize the previous model to incorporate
explicit weights for bubble formation. Doing that in the transfer
matrix format is a bit involved. To identify a bubble we need to
ensure that an unbound region is attached between two bound
segments. A bound segment is defined as a DNA patch where
every base pair is in the bound state and the minimum length
it can have is 2. We implement this by applying the constraint
that a bound base pair can form only if another bound base
pair precedes it. So, for every step in the generation of the
polymers we need to keep track of the previous step. We
introduce a built-in rigidity to the dsDNA by instituting a bias
against the bending towards the right of bound segments. For
computational simplicity here we completely switch off the
rightward option. By doing this we are introducing a bias in
the propagation of DNA in favor of one direction. Other than
the usual contact weight y we introduce another Boltzmann
weight v if a bound segment opens to form two single strands
or two single strands recombine to form a bound segment. The
recursion relation which obeys these rules is given by

zn(x1,x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y[vzn−1(i,l) + vzn−1(j,k) + zn−1(j,l)] if x1 = x2 and n > 0,

vzn−1(i,l) + zn−1(i,k) + zn−1(j,k) + zn−1(j,l) if x1 − x2 = 2 and n = 1,

vzn−1(j,k) + zn−1(i,k) + zn−1(i,l) + zn−1(j,l) if x1 − x2 = −2 and n = 1,

vyzn−2(i + 1,l + 1) + zn−1(i,k) + zn−1(j,k) + zn−1(j,l) if x1 − x2 = 2 and n � 2,

vyzn−2(j + 1,k + 1) + zn−1(i,l) + zn−1(i,k) + zn−1(j,l) if x1 − x2 = −2 and n � 2,

zn−1(i,k) + zn−1(i,l) + zn−1(j,k) + zn−1(j,l) if |x1 − x2| > 2 and n > 0,

(27)

with i = x1 − 1, j = x1 + 1, k = x2 − 1, and l = x2 + 1.
The first two steps fix the initial configurations. To fix the
configuration at the nth step we need to keep the information
on not only the (n − 1)th step but also the (n − 2)th step.

We evaluate the recursion relation, Eq. (27), exactly for finite
system sizes by iterating it numerically. Once Z(x1,x2) is
known, the force-dependent partition function can be obtained
with the help of Eq. (2), and the corresponding elastic constant
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FIG. 12. Rigid model: nc increases from zero to nonzero values
continuously at y > 1 before approaching the saturation value, 1.
This indicates a binding-unbinding transition. Solid lines through the
data points are guides for the eye.

from Eq. (3). Only the stretching force gs is considered here.
Using the bubble weight v we can now count the average
number of bubbles (nb) and calculate the average bubble length
(lb). They are formally given by the formulas

nb = v2

N

∂f

∂v2
, Cb = v2 ∂nb

∂v2
, and lb = (1 − nc)

nb

, (28)

where Cb describes the fluctuations in nb. To evaluate them
numerically, first we take the first and second derivatives of
Eq. (27) with respect to v and iterate them numerically by
setting v = 1 to obtain the first and the second derivatives of the
zero-force partition function respectively. Once the derivatives
of the partition function are known, nb, Cb, and lb can be
determined by using Eq. (28) for a zero applied force. To find
out the corresponding quantities for nonzero constant forces
and to find out nc and Cc, we follow the method described in
Sec. III A.

A. Thermal melting: gs = 0

First, let us show that this model goes through a binding-
unbinding transition as y is varied in the absence of any
external forces. For the analysis in this section we set v = 1.
Here we use the exact numerical transfer matrix method for
finite-size systems.

In Fig. 12 we show how the average number of contacts
varies with y. As the system size is increased one part of the
curve gradually touches the y axis. And it is also evident that nc

will saturate at nc = 1 for appropriately high y values. These
indicate a binding-unbinding transition. To find out the order of
the transition and the corresponding critical value of y, yc, we
plot Cc vs y in Fig. 13. Cc obeys a finite-size scaling relation
similar to Eq. (17), which indicates a finite discontinuity. At
y = 1.18 all the curves pass through a common point, implying
yc = 1.18. The finite discontinuity at yc establishes that this is a
second-order phase transition. Note that we have not imposed
the noncrossing constraint here. The restriction imposed on the
bound state is sufficient to induce a bound-unbound transition.
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c
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1000
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FIG. 13. Rigid model: Cc vs y plots for different N ’s. The peak
height increases with increasing N but eventually saturates, creating
a finite discontinuity. The discontinuity occurs at y = 1.18, where all
the curves meet. Solid lines through the data points are guides for the
eye.

In one spatial dimension the entropy of a system dominates
over the binding energy, which implies that there is no ordering
here. Imposition of special restrictions to limit the entropy may
result in an energy-dominated ordered state. The noncrossing
constraint in the previous model did exactly that by decreasing
the total number of configurations. The restriction imposed
here on the degrees of freedom of the bound segment plays a
similar role, decreasing the total number of configurations of
the DNA. We elaborate on this in Appendix B.

B. Elastic response: gs �= 0

Let us now discuss the elastic properties of this system. As
discussed earlier the inherent asymmetry in this model favors
extension of DNA in one direction and opposes it in the other
direction. So under the influence of a spatially independent
stretching force the DNA is more flexible in one direction
compared to the other direction.

As the system is no longer symmetric under gs ↔ −gs

we need to focus attention on the negative values of gs too.
Figure 14 shows that x varies continuously with gs , reaching
±2 for a large positive or negative gs . In Fig. 15 we plot κ vs gs

keeping y fixed. Every curve shows a peak around gs = 0.02
which increases in height as N increases. The maximum of κ ,
κmax, goes to a finite value in the N → ∞ limit as shown in
the inset in Fig. 15. The inset in Fig. 16 shows how nc changes
as we increase gs for y = 1.20. This indicates a continuous
binding-unbinding phase transition. Figure 16 shows that Cc

has a finite jump at gsc = 0.02 which can be identified as the
common point in the peak region through which every finite-
size curve passes. For gs < gsc, κ shows anomalous behavior,
as close to the transition point it can reach values which are
much greater than the entropic elastic modulus of the unbound
state given by 2 sech2(gs), shown in Fig. 15 as the dashed black
line.

By collecting similar common points for different y values
we draw the numerical phase diagram of the system, which is
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FIG. 14. Rigid model: Continuous stretching of the DNA to its
full extent by both positive and negative forces. The y value is fixed
at 1.20. Solid lines through the data points are guides for the eye.

shown in Fig. 17. Noticeable there is that the stretching force
actually unbinds the bound state for gs > gsc. The reason for
this is the following. Due to the bias the bound-state formation
on the positive x axis is unfavorable and the DNA prefers to
go in the negative x direction. As gs is increased it wins over
the bias eventually and pulls the DNA towards the positive x

direction. Because the bound state is forbidden in that direction
the bound DNA unzips as a result.

C. Role of the bubbles

The flexibility of the bound state comes solely from the
bubbles, as the bound segments are absolutely rigid in this
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FIG. 15. Rigid model: κ shows an increasing peak around gs =
0.02 with increasing system length N and a fixed y = 1.20. Inset:
Maximum values of κ , κmax, are plotted vs 1/N . A linear fit with
the first four points (solid blue line) gives the estimate for N → ∞,
κmax = 4.95. This indicates that there is a finite discontinuity in κ .
The dashed black line is a plot of the function κ = 2 sech2(gs),
the unbound-state elastic constant. For gs > 0.02, κ matches the
unbound-state modulus. Solid lines through the data points are guides
for the eye.
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FIG. 16. Rigid model: Cc vs gs curves for finite lengths as
indicated. The y value is fixed at 1.20. Inset: nc decreases continuously
from a finite value to 0, indicating a continuous phase transition. Peak
heights in Cc vs gs curves saturate, indicating a finite discontinuity.
Around gs = 0.02 all curves meet at the critical point. Solid lines
through the data points are guides for the eye.

model. Figure 18 shows that nb becomes very small while lb
increases to almost equal N as we approach the transition point.
Here lb ≈ (N or 0) means that the DNA is in the unzipped state.
The peaks in the nb curves indicate a large number of bubbles
but, at the same time, of a very small average length. From these
two observations we can say that as we approach the transition
point many small bubbles coalesce to form large bubbles with
decreasing numbers, and eventually nb becomes 0 when the
two strands get completely separated. The fluctuation in nb,
Cb, also becomes large around the critical point as shown in
Fig. 19. Earlier we have shown that κ in this model behaves
anomalously and the anomalous behavior occurs in the same
region where lb and Cb are the largest. In our model, κ is the
fluctuation of extension x by definition and it depends on nb.
For example, near the transition point nb is very small and x

is also very small, although lb is large. This is because in the

-0.18
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FIG. 17. Rigid model: Numerical phase diagram for the binding-
unbinding transition. The solid line through the data points is a guide
for the eye.
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FIG. 18. Rigid model: nb vs gs and lb vs gs plot for y = 1.20.
As the critical point is approached, nb becomes very small but lb
becomes as large as N . Solid lines through the data points are guides
for the eye.

(1 + 1) dimension x for a single strand is 0 due to its Gaussian
nature. But for a bound DNA, x ∝ √

nb as shown in Fig. 20. It
is then expected that κ will be determined by the fluctuations
in nb, Cb. In Fig. 21 we plot 1

κ

√
Cb vs y for different system

sizes in the absence of any external force. For the bound region
(y > 1.18) the curves collapse into a single master curve which
is almost y independent, inferring that

κ ≈ 7.7
√

Cb. (29)

We therefore conclude that Cb is the important factor in
determining the elastic behavior of the system.

V. DISCUSSION AND SUMMARY

There are a few points which we feel need to be clarified
in more detail. (a) As the free ends of the two strands are
stretched more and more with increasing forces in the same
direction, they are bound to come closer due to their equal
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FIG. 19. Rigid model: nb vs gs and Cb vs gs plot for y = 1.20.
Around the critical point nb is very small but its fluctuation Cb is very
large. Solid lines through the data points are guides for the eye.
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FIG. 20. Rigid model: 1
x

√
nb vs y curves for different system

lengths collapse to a single master curve in the bound region. gu =
gs = 0. yc = 1.18. Solid lines through the data points are guides for
the eye.

lengths and the starting ends’ being attached to each other.
This coming closer together increases the possibility of the
strands’ forming a bound base pair by gaining energy. (b) The
transition in the presence of the unzipping force is definitely an
unzipping transition. This is true even if gu is very small. (c) κ

in the flexible model is sensitive to the changes in gu, gs , and y.
Elasticity is entropic in nature, which emerges from collective
behavior. The rigid model, on the other hand, has its own
intrinsic elasticity. This is reflected in the anomalous behavior
of κ for this model. (d) The single-molecule DNA experimental
setup in which stretching force is achieved by placing the
DNA in a directional flow can be a testing platform of our
models. (e) In the nanopore sequencing technique, dsDNA is
unzipped and a single strand is passed through a nanopore [59].
Other than that, during bacterial conjugation or infection of a
cell with a virus the DNA assumes a similar geometry. Our
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lengths collapse to a single master curve in the bound region. gu =
gs = 0. yc = 1.18. Solid lines through the data points are guides for
the eye.
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study may be relevant in these cases. (f) Single-molecule DNA
unzipping experiments are normally done at room temperature.
In Eq. (22) we provided a phase boundary which depends not
only on the temperature and the unzipping force, but also on
the stretching force. Its remains a challenge to generate this
phase boundary experimentally with temperature as a variable
in single-molecule experiments.

We summarize the basic results on rigidity as defined by
Eq. (3) for the two models. For the entropic rigidity as seen in
the flexible-chain model of DNA, we obtained the following
exact results.

(i) For gs = gu = 0,

κ(gs = 0) =
⎧⎨
⎩

2 for y < yc,

4
√

y−1
y

for y > yc.

(ii) For y = yc, i.e., at the critical point,

κ(y = yc) = 64w(w + 1)

(w2 + 14w + 1)3/2
, with w = e4gs .

In the presence of the two opposing forces, gs as the
stretching force and gu as the unzipping force, the transition
surface in the y-gs-gu space is given by Eq. (22).

For the model with intrinsic rigidity, the main result we
obtained is

κ ≈ 7.7
√

Cb.

VI. CONCLUSION

We have studied the effect of melting of DNA on its
elasticity using (1 + 1)-dimensional models by employing
exact numerical and analytical methods. Under a stretching
force DNA goes through a second-order binding-unbinding
phase transition. The dependence of DNA flexibility on the
stretching force, the unzipping force, and the temperature
has also been discussed. In the presence of both forces
the system goes through a first-order unzipping transition.
The complete phase diagram in the y-gs-gu space is obtained.
The average bubble length and the average bubble number for
our model for different parameter values are also studied. We
have shown that the DNA flexibility is related to the bubble
number fluctuations. For zero external forces, the extension of
the DNA is temperature independent and varies with the square
root of the bubble numbers proportionally, while the elastic
modulus is also proportional to the square root of the bubble
number fluctuation. Though the binding-unbinding transition
is very sharp for an infinite-length system, the transition
point can influence the elastic behavior of DNA for a broad
region of parameter values when the system length is finite.
Consequently, the elastic response of short-length DNA, as
used extensively in experiments, has to be widely different
from that of long-chain DNA. Furthermore, though DNA is a
very long molecule, it can melt locally, depending on the envi-
ronment it is in. Thus our study will help us to understand the
importance of these locally melted regions of shorter lengths
in determining the elastic properties of the DNA as a whole.

APPENDIX A: A(gs,z) AND λ(gs,z)

The forms of A(gs,z) and λ(gs,z) needed for zb and zf

[Eqs. (9a) and (9b)] are given by

A(gs,z) = −1/(2z)

cosh(2gs) −
√(

cosh(2gs) − 1
2z

)2 − 1 + (y−2)
2yz

,

(A1a)

λ(gs,z) =
√(

cosh(2gs) − 1

2z

)2

− 1 + 1

2z
− cosh(2gs).

(A1b)

APPENDIX B: BIAS-INDUCED MELTING

In the rigid model we have completely switched off one
degree of freedom for the bound segments. We can do the
entropy limiting job in a more general way by introducing a
control parameter b instead, such that for b = 0 we block a
degree of freedom of the bound state completely, for b = 1 we
get back the good old free Gaussian chain, and for intermediate
values of b we obtain a partially biased scenario. The recursion
relation followed by the system is now given by

Zn+1(x1,x1) = y[Zn(x1 + 1,x1 + 1) + Zn(x1 + 1,x1 − 1)

+ Zn(x1 − 1,x1 + 1) + bZn(x1 − 1,x1 − 1)],

Zn+1(x1,x2) = [Zn(x1 + 1,x2 + 1) + Zn(x1 + 1,x2 − 1)

+ Zn(x1 − 1,x2 + 1) + Zn(x1 − 1,x2 − 1)]

for x1 �= x2, (B1)

where Zn(x1,x2) is the partition function for the system length
n. We set the initial condition as Z0(0,0) = y such that two
strands start from the origin. The microscopic parameter b

is a Boltzmann weight which controls the possibility of the
two polymers’ both going to the right-hand side while being
in the bound state. All the notations and definitions of the
observables which are used in this model are the same as for
the flexible model. By z-transforming Eq. (B1) using the initial
condition we get two independent equations for x1 �= x2 �= 0
and x1 = x2 = 0:

1

z
G(z,x1,x2) = G(z,x1 + 1,x2 + 1) + G(z,x1 − 1,x2 + 1)

+ G(z,x1 + 1,x2 − 1)

+ G(z,x1 − 1,x2 − 1), (B2a)

1

yz
G(z,0,0) = 1

z
+ G(z,1,1) + G(z, − 1,1)

+ G(z,1, − 1) + bG(z, − 1, − 1). (B2b)

To solve these independent equations we make an ansatz for
the generating function, G(z,x1,x2) = A(z)λ(z)Abs[(x1−x2)/2].
Substituting this ansatz in Eq. (B2a) and Eq. (B2b) and solving
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FIG. 22. nc vs y plot for b = 0.5. nc becomes finite at y = 1.142.
Numerical data are also consistent with the analytical result. Solid
lines through the data points are guides for the eye.

for A and λ we get

A = 1

−bz + 1
y

+ z + √
1 − 4z − 1

, (B3a)

λ = −2z + √
1 − 4z − 1

2z
. (B3b)

The bound-state and unbound-state singularities are given by

zb = b − 1 − y(b + 1) + √
y
√

(b + 1)2y − 4b + 4

(b − 1)2y
, (B4a)

zf = 1

4
. (B4b)

From these singularities all the other relevant quantities can
be derived. Figure 22 shows how nc varies with y. At a high
enough y, nc saturates to its maximum value, 1. In Fig. 23 we
plot Cc vs y. In both Fig. 22 and Fig. 23 we also show the
corresponding numerical data for different finite system sizes.
Cc obeys a finite-size scaling form Cc = g((y − yc)N1/δ) such
that at y = yc = 1.142, Cc(yc) = g(0). The numerical data
are consistent with the analytical results. From these two
figures we conclude that the system is going through the usual
second-order binding-unbinding phase transition. We obtain
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FIG. 23. Cc vs y plot for b = 0.5 showing a finite discontinuity
at y = 1.142. Numerical data also show very similar behavior. Solid
lines through the data points are guides for the eye.

the critical point of this transition analytically by matching
zb with zf . The critical value of y is now b dependent and
varies with b as yc = 4/(3 + b). For b = 1 we have the same
recursion relation as that of a system with two Gaussian chains
which can freely cross each other and in which there is no
phase transition. In our case also we get yc = 1, which means
that there is no phase transition at finite temperature. Another
interesting limit is when b = 0, yc = 4/3, the critical point
for two Gaussian chains with noncrossing constraint, although
the recursion relations for these two cases are not the same.
Moreover, the b dependence of yc in our model adds extra
flexibility in that we can now tune the critical point by tuning
b for a wide range of values.

From the recursion relation it is clear that the parameter
b just modulates one of the four possible contributions
to the partition function of the nth generation from the
(n − 1)th generation. b may be associated with any of the
four possible contributions. The case when b is attached to
the z(x1 − 1,x2 + 1) term is of special interest because the
b → 0 limit is exactly the flexible noncrossing case now. This
current case also is exactly solvable through the generating
function technique and gives exactly the same b-dependent
critical melting point, yc = 4/(3 + b). So, we can now
actually modulate the noncrossing constraint through b and
the corresponding critical point as well.
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