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Abstract
Thermodynamics is a well-developed tool to study systems in equilibrium but
no such general framework is available for nonequilibrium processes. The only
hope for a quantitative description is to fall back upon the equilibrium language
as often done in biology. This gap is bridged by the work theorem. By using
this theorem, we show that the Barkhausen-type nonequilibrium noise in a
process, repeated many times, can be combined to construct a special matrix
S whose principal eigenvector provides the equilibrium distribution. For an
interacting system, S, the equilibrium distribution can be obtained from the
free case without any requirement of equilibrium.

PACS numbers: 05.70.Ln, 05.20.−y, 82.20.Wt, 87.10.−e

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A system in thermodynamic equilibrium has no memory of its past. Consequently, there is
no leading role for time in the ensemble-based statistical mechanics except the subservient
one to maintain equilibrium among the internal degrees of freedom and with external sources.
This wisdom gets exploited in the dynamics-based algorithms such as Monte Carlo, molecular
dynamics, stochastic quantization, to name a few, to attain equilibrium from any arbitrary
state albeit in infinite time. Even a thermodynamic process involving changes in parameters
is an infinite sequence of equilibrium states, and is therefore infinitely slow. A finite-duration
process, not destined to equilibrate at every instant of time, maintains a memory of the initial
conditions or a short time correlation of states. The biased sampling of the phase space
keeps these processes outside the realm of statistical mechanics and thermodynamics. In this
equilibrium–nonequilibrium dichotomy, a work theorem [1, 2, 4–6] attempts to bridge the
gap by providing a scheme for obtaining the thermodynamic free energy difference from a
properly weighted nonequilibrium path integral [4, 5].

We show in this paper that purely nonequilibrium measurements of work done give an
operator S, defined on the phase or configuration space, whose normalized principal right
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eigenvector is the equilibrium probability distribution. Our result is valid for any number
of parameters including temperature and interaction. With this extension, we can obtain the
equilibrium distribution by constructing a matrix S connecting any two allowed states of
the system without any reference to equilibrium anywhere, thereby completely blurring the
boundary between equilibrium and nonequilibrium. This finds direct application in out-of-
equilibrium phenomena such as hysteresis.

Barkhausen noise is an example of nonequilibrium response of a ferromagnet as the
magnetic field is changed at a given rate [8, 9]. By measuring the voltage induced in a
secondary coil as the current in the primary coil wound around a ferromagnet is changed,
one obtains the time variation of the magnetization. The noisy signal one obtains is not
unique but stochastic in nature, reflecting the fluctuating microscopic response to the external
field. Such signals have been analyzed in the past to extract information such as avalanche
statistics, material characteristics, etc. Our results find a different use of the Barkhausen
noise to construct the S matrix. Similar constructions for other cases such as protein or DNA
dynamics in vivo, pulling of polymers in single-molecule experiments etc, call for a new class
of experiments to monitor the noise signals during these events.

This paper is organized as follows. In section 2, we recapitulate the work theorem,
introduce the paths and discuss the connection between the work theorem and the histogram
transformation of equilibrium statistical mechanics. In section 3, we give a simple and general
dynamics-independent proof of the relation between the equilibrium probability distribution
and the work done in nonequilibrium paths. This relation in some form is already known
[4, 5] but our derivation allows us in generalizing the result to other cases involving temperature,
interactions, etc. Section 4 deals with the main result of this paper. There we prove the
eigenvalue equation for S. A few examples are also given there. How to obtain the operator
S directly from the experimental measurements of Barkhausen noise is also discussed here.
Numerical verifications of some of the results are presented in section 5 by taking the 2D Ising
model as an example. We summarize in section 6.

2. Work theorem and path integral

2.1. Work theorem

Consider a classical system described by a Hamiltonian H(�, x) where � is an external field
that couples to its conjugate, a microscopically defined quantity, x. The thermodynamic state
is specified by temperature T and field �. Let us start with the system at � = 0 in thermal
equilibrium at temperature T. The external field � is changed in some given way from 0 to
a final value λ in a finite time τ or in a finite number of steps n, letting the system evolve in
contact with the heat reservoir. No attempt is made to ensure equilibrium during the process.
The variation of x along the nonequilibrium path (x(t) versus t) and the instantaneous final
(boundary of the path) value of x, xb, when the field reaches λ, are noted. The work done
along the nonequilibrium path by the external source (as in [2]) is

W =
∫ τ

0

∂H

∂�

d�

dt
dt, (1)

in time τ , and it varies from path to path. The difference between the two definitions of work
in the context of work theorem, one used in [1] and the other in [2], is discussed in [3]. For
the sake of notational simplicity, we choose

H = H0 + H1(�, x) = H0 − � x, (2)

where H0 is the energy for � = 0. There is not much loss of generality in choosing the form
of equation (2) because � and x refer to any pair of conjugate variables so that x itself need
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not be a linear function of the internal coordinates. As an example, in an interacting spin
problem in a magnetic field h (≡�), H = H0 − h

∑
k sk , where sk is the spin variable at a site

denoted by k, with x = ∑
k sk . Often � can be taken as the switching parameter to turn on a

perturbation or interaction in a Hamiltonian H = H0 − H ′ with H� = H0 − �H ′.
The work theorem [1, 2] provides the equilibrium free energy difference �F between

the two states with � = 0 and � = λ, both at inverse temperature β = 1/kBT (kB is the
Boltzmann constant), from the nonequilibrium work done as

�F = − 1

β
ln〈e−βW 〉, (3)

where 〈· · ·〉 denotes the average over all possible paths.

2.2. Paths: equilibrium and nonequilibrium

We are using here a description of a state by the intensive parameters which actually
characterize the surroundings. In equilibrium, any system is expected to have the values of
the intensive parameters same as that of the environment. A change in any of the parameters,
say �, from λ0 to λ, would require heat and/or energy transfer. The work done on or by the
system is determined by the change in the free energies, independent of the path of variation
of the intensive parameters. This is expressed as

�F = Weq = −
∫ λ

λ0

xeq(�) d�, (4)

where �F = F(β, λ) − F(β, λ0). Here, xeq(�) = ∫
x P�(x) dx is the equilibrium average

at the instantaneous values of the intensive parameters, and P�(x) is the corresponding
equilibrium probability distribution of x. This follows from the identification of the equilibrium
value of x as xeq = −∂F/∂�, in contrast to the conjugate ensemble definition � = ∂F/∂x

where F(β, x) is the fixed-x ensemble free energy.
For convenience, let us discretize the integrals. For example, for � ∈ [λ0, λ], we have a

sequence (�0,�1, . . . , �n = λ) and the continuum is recovered by taking the usual limit of
n → ∞ with max{��i = �i+1 − �i} → 0. The work done can be rewritten as

Weq = −
n−1∑
i=0

��i

{∑
x

P�i
(x)x

}
. (5)

By interchanging the sums over x and �, we define (i) a sequence {xi |i = 0, . . . , n} as
instantaneous values, and (ii) a sequence-dependent work done as W = ∑

i xi ��i , to
reinterpret equation (5) as an average over these xi’s. Therefore,

Weq = −
∑
{xi }

P{xi}
∑

i

xi ��i, (6)

where P{xi} = ∏
i P�i

(xi) is the joint probability of obtaining the particular sequence {xi}
because for a thermodynamic process, there is no memory. Going over to the continuum limit,
the thermodynamic process of varying � is now seen as equivalent to choosing a path in the
configuration space and re-weight the paths according to the probability of its occurrence in
the �-ensemble. The relation between the free energy change and work, equation (4), now
has a path integral meaning where the process takes the system over the microstates and one
averages the work over individual paths.
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This thermodynamic connection is valid only in equilibrium. The work theorem
generalizes this idea by replacing P{xi} by the nonequilibrium probability of obtaining a
path and asserting

e−β�F ≡ Zλ

Z0
=

∫
DX e−βW , (7)

where
∫
DX stands for the normalized sum over paths, i.e. sum over intermediate x’s with

appropriate probabilities.

2.3. Histogram transformation and infinitely fast process

There is a fundamental transformation rule obeyed by the partition function, often used
in numerical simulations as the histogram method [7]. This transformation connects the
equilibrium probability distributions at two parameter values, � = λ0 and � = λ, as

Pλ(x) = Pλ0(x) eβ(λ−λ0)x∑
x Pλ0(x) eβ(λ−λ0)x

, (8)

where the sum in the denominator is over the allowed values of x. The denominator on the
right-hand side of equation (8) is Zλ/Zλ0 where Zλ is the partition function at an inverse
temperature β,

Z� =
∑
states

e−βH0 eβ�x. (9)

From equation (1), (λ − λ0)x can be taken as the work done in an instantaneous process that
changes � from λ0 to λ without changing x. The probability of obtaining x for equilibrium at
λ0 is Pλ0(x), and therefore the sum in the denominator of equation (8) is the path integral of
equation (7) because x does not change. This gives the work theorem.

3. Equilibrium probability distribution

In this section, we use the discrete version of the process to re-derive the equilibrium probability
distribution from the work theorem in a general and dynamics-independent way. For the kind
of nonequilibrium processes mentioned in section 2.2, the equilibrium probability distribution
of x at a parameter value λ can be obtained from a weighted path integral [4, 5]

Pλ(x) =
∫
DX e−βWδ(xb − x)∫

DX e−βW
, (10)

where xb is the instantaneous boundary value at the end of the path, and the denominator is the
same as that of the rhs of equation (7). This is in the form of a path integral where the paths
are weighted by a Boltzmann-like factor exp(−βW). The same was established previously in
specific cases, such as the Master equation approach [2], the Feynman–Kac formula [5] and
Monte Carlo dynamics [4].

The equilibrium average xeq is defined as

xeq = 1

β

∂

∂�
ln Z� = lim

δ→0

(
β

Z�

Z0

)−1 1

δ

(
Z�

Z0
− Z�−δ

Z0

)
, (11)

where work theorem is to be used for the partition functions.
The system starts in equilibrium at temperature T and � = 0, and then � is built up at

constant T as a sequence of infinitely fast jump of �λ = λ/n, each jump followed by a finite
time evolution in contact with the heat bath. Consider now two n-step processes, one process

4
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x

i=1

i=0,

,

,

δ

Λ=0

Λ=Δλ

Λ=λ−Δλi=n−1

Λ

replica 1 replica 2

Figure 1. Schematic representation of two replicas of same paths, each starting from � = 0
and ending at � = λ in replica 1 and at � = λ − δ in replica 2. Label i denotes the step
number as � is changed in steps of λ/n. Lines of different styles (dashed, dotted, etc) represent
different realizations of paths starting from different values of x. The vertical portion of a path
is an instantaneous process (no change in x) and the horizontal part is under interaction with the
surrounding (x evolves at a constant �). Identically shaded lines in the two replicas have the same
evolution.

with a final field λ and another one with λ − δ (δ → 0 at the end). In fact, the second process
is just a copy (replica) of the first one in every respect except at the last stage (figure 1). For
the last jump, the change in � for replica 1 is �λ while for replica 2 it is �λ − δ.

A path is specified or defined by the sequence {xi | i = 0, . . . , n−1}. The changes in xi at
any step is because of internal dynamics or exchange of heat with the external reservoirs. We
do not need to let the system evolve once the field reaches the final desired value. Therefore,
the sequence {xi | i = 0, . . . , n − 1} is the same for both the replicas. The work done W1,W2

along an n-step nonequilibrium path for replicas 1, 2 is related via

W2 = W1 + δxn−1, (12)

where W 1 is of the form given above in equation (6). The work theorem of equation (7) when
used in equation (11) yields

xeq = lim
δ→0

1

β
∑

paths eβ
∑n−1

i=0 ��ixi

∑
paths eβ

∑n−1
i=0 ��ixi (1 − e−βδxn−1)

δ

=
∫
DXxb e−βW∫
DX e−βW

(xb ≡ xn−1). (13)

This shows that the equilibrium average can be expressed in terms of the boundary value with
proper weightage of the paths. The above proof can be generalized to any moments of x.

Now if P(x) is the distribution of xb that gives the average in equation (13),

xeq = 〈x〉 =
∫

xP(x) dx, (14)

then P(x) can be written as

P(x) =
∫
DX e−βWδ(xb − x)∫

DX e−βW
, (15)

as quoted in equation (10). We now invoke the moment theorem [12] which, in our case,
states that for a probability distribution without sufficiently long tails, the moments uniquely
specify the distribution. Since these conditions are satisfied by the equilibrium probability
distributions for any finite system, the moment theorem applies. Since the moments from the
nonequilibrium path integral are the equilibrium moments, P(x) is the equilibrium distribution:
P(x) = Pλ(x). This completes the proof.
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3.1. Generalization

In general, for a Hamiltonian of the form H = H({�α}, {Xα}), the equilibrium distribution
P(E, x1, x2, . . .), at some given parameter values {λα} and temperature β−1, can be obtained
in the same way provided the paths start from an equilibrium state for H = H0, where H0 gives
the energy for all �α = 0 and W is the total work done on the system along a nonequilibrium
path by each of the externally controlled parameters. Here E corresponds to the energy from
H0 only. Our starting H0 may be a free Hamiltonian for a mechanical system and can as well
be zero for interacting spin-like systems.

Consider the Hamiltonian H = γH0 for a spin-like system (i.e. without any kinetic
energy). In this case, one of the {�α} could be the strength of interaction. Let us start with
γ = 0, i.e. the starting point is any random configuration of the free system or a non-interacting
system, and then change γ in some given way from γ = 0 to γ = 1. We thus generate the
equilibrium distribution of H0 at a particular β, by doing a similar nonequilibrium path
averaging. Note that we need the product βW everywhere. So we can discretize temperature
instead of �, and the process can be reinterpreted as cooling down to a finite temperature
from an initial infinite temperature. In the usual formulation of work theorem, � refers to
mechanical parameters such as the pulling force in AFM, which are under direct control of
the experimentalists. In contrast, other intensive parameters such as temperature may not be
controlled with this level of precision in experiments. But this finds various applications in
numerical experiments. Such thermal quenches are quite common in numerical simulations
and our results show how these can be harnessed to extract equilibrium information as well.
The ensemble of states obtained in the above-discussed way at the end of the path is not a
representative sample of the equilibrium ensemble at the concerned temperature and field.
However, the history-averaged distribution is the equilibrium distribution. The boundary
states would relax to reach equilibrium via energy transfer to the reservoirs but that part of the
process is not required. This difference becomes important and visible in systems exhibiting
hysteresis as e.g. for a ferromagnet.

3.2. Application to a ferromagnet to obtain an equilibrium magnetization curve

The above-mentioned scheme can be used to obtain the equilibrium probability distribution
or thermodynamic quantity from a process which is arbitrarily away from equilibrium and
at all temperatures including phase transition points. Now we apply our result to the case
of hysteresis of a ferromagnet below the critical temperature (TC). Consider a Hamiltonian:
H = H0 − hM . The external magnetic field is varied from −h0 to +h0 in a fixed manner
and then reversed. 〈M〉 is calculated using equation (13). Below the critical temperature,
the magnetization (M) versus magnetic field (h) curve shows a discontinuity at h = 0 for
a system of infinite size. For a finite system, there is no discontinuity, the M–h curve is
continuous passing through the origin and the slope of the M–h curve at h = 0 increases
as the system size increases. But, in reality, when experiments or simulations are carried
out, instead of single retraceable curve passing through the origin, we obtain a loop called
hysteresis loop, no matter how slowly we vary the magnetic field. A common technique to
obtain the equilibrium curve is to connect the vertices of the sub-loops [9]. Here, the weighted
nonequilibrium path integral scheme is a way out to obtain the equilibrium magnetization
curve. We verify this for the Ising ferromagnet and discuss the observations about it in
section 5.

6
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4. Equilibrium probability distribution from an eigenvalue equation: operator S

In this section, we derive the main result of this paper: equilibrium probability distribution as
an eigenfunction of a nonequilibrium operator S.

Using the discrete notation, we can write equation (10) as

Pλ(x) = Zλ0

Zλ

∑
paths

e−βWδxb,x, (16)

by using the work theorem, equation (3), that∑
paths

e−βW = Zλ

Zλ0

. (17)

Again, writing
∑

paths = ∑
xi

Pλ0(xi)
∑′

paths, where the primed summation denotes the sum
for the fixed initial value of x = xi with appropriate probability and Pλ0(xi) denotes the
equilibrium distribution of xi for � = λ0, we obtain

Pλ(x) = Zλ0

Zλ

∑
xi

∑
paths

′
Pλ0(xi) e−βW δxb,x . (18)

By using the transformation rule for the partition function (section 2.3),

Zλ

Zλ0

=
∑

x

Pλ0(x) eβ(λ−λ0)x, (19)

to absorb Zλ0/Zλ into the probability distribution. This transforms Pλ0(xi) into Pλ(xi) in
equation (18) as

Pλ(x) =
∑
xi

∑
paths

′
e−βW−β(λ−λ0)xiδxb,xPλ(xi) (20)

=
∑
xi

Sx,xiPλ(xi). (21)

⇒ SPλ = Pλ, (22)

with Pλ as a column vector of {Pλ(x)} and the matrix elements of S as

Sxf ,xi =
∑
paths

′
e−βW−β(λ−λ0)xi . (23)

The summation in equation (23) is over all paths that start from an equilibrium distribution
of � = λ0 with the value of x as xi and end in a state with � = λ and x = xf , with proper
normalization (denoted by prime).

Although we use the simple Hamiltonian H = H0 − �x in the construction,
equation (23) can be generalized for a Hamiltonian H = H + H1(�, x) because
equation (19) has the general form

Zλ

Zλ0

=
∑

x

Pλ0(x) e−β[H(λ,x)−H(λ0,x)].

Now we address the remaining problem—the normalization of the primed summation
over paths in equation (23). This problem is inherited from equation (17). Note that the lhs of
equation (17) is equal to 1 for λ = λ0 with W = 0. So we choose the hidden factor a posteriori
by demanding proper normalization of the final probability distribution. This condition can

7
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be ensured in a process or in a system-independent way by choosing
∑

x Sx,xi = f (xi) = 1
(equation (21)), i.e. by making the column sum of S independent of xi. By this normalization
of the sum of each column to unity, it is also guaranteed that the principal eigenvalue is 1.
The corresponding right principal eigenvector has all the elements real and non-negative—a
necessary condition to be a probability distribution, and when normalized, such that the sum
of all elements is unity, this eigenvector gives the equilibrium probability distribution.

The number of rows and columns in S is determined by the number of allowed values
of x. For continuum of states, the matrix equation is to be replaced by an integral eigenvalue
equation.

Hence, in brief, the scheme to obtain the equilibrium distribution at some parameter value
λ and temperature β−1 is as follows: pre-fix some arbitrary or convenient-to-start-with initial
parameter value λ0 which will be the same for all paths/experiments. Choose a microstate from
the equilibrium distribution at the field λ0 and denote its value of x as xi. Change the parameter
value from λ0 to λ in some predetermined way and measure the work done by the external
parameter on the system according to equation (1). Repeat the experiments several times and
construct the matrix S using equation (23). Next, each column of the matrix is normalized to
unity. The normalized principal eigenvector is the equilibrium probability distribution, Pλ(x),
at the field λ.

Equation (22) is the main result of this paper, and it is not restricted to only one external
parameter and can be generalized to any parameter as mentioned above. The matrix S connects
any two allowed states of the system without any reference to equilibrium anywhere, and yet
its principal eigenvector determines the equilibrium distribution. Despite resemblance, there
is no similarity either with the stochastic matrix of a Markov process or the adiabatic switching
of interaction in a quantum system because S is constructed out of a finite process and needs
global information about the work done.

Another issue that occurs in this approach via S is the question of ergodicity
which connects the Gibbsian statistical mechanics with equilibrium thermodynamics. The
nonequilibrium dynamics used to construct S may not respect ergodicity but the starting
points for the paths in principle span the whole phase space, even in the case when one starts
with a free non-interacting system. It seems that ergodicity of the free non-interacting system
is sufficient to generate the equilibrium distribution.

4.1. Examples

4.1.1. Example 1: extreme cases. Consider an extreme case: a complete equilibrium
evolution of the system, where at each step the system reaches its equilibrium. Take a simple
system: a single-spin problem in the magnetic field h and temperature β−1: βH = −Ks,
where s = ±1 and K = βh. For an n-step process, K varies from 0 to nk in steps of k, and the
column-normalized S matrix can be calculated exactly, where at each step the spin reaches
the corresponding equilibrium state, as

S =
(

Pnk(+) Pnk(+)

Pnk(−) Pnk(−)

)
, (24)

where Pnk(±) is the equilibrium probability of finding ±1 spin at the nth step. Thus, for a
complete equilibrium evolution of the system, the elements of the matrix S are unique, and
therefore S has only one and unique eigenvector. In that case, the principal eigenvalue is 1,

and all other eigenvalues are 0. We may conclude that a complete reducibility of S is the
signature of a thermodynamic process.

8
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Equation (24) is to be compared with the extreme nonequilibrium process as embodied
in equation (8). For this instantaneous change in λ, S = I, the identity matrix with no zero
eigenvalues.

If at each of these n steps, the system evolves for a time �t in contact with the bath, then
Sn,�t → Seq as �t → ∞. The smallness of the rest of the eigenvalues would indicate how
close to equilibrium the system is.

The dynamics of a many-body system might be compartmentalized into slow modes
and fast modes, where the fast modes would equilibrate much more quickly than slow ones.
How many such fast modes have actually equilibrated can be gauged by the number of zero
eigenvalues. The S matrix is not necessarily symmetric, though real, and there is a possibility
of pairs of complex conjugate eigenvalues, with their magnitudes going to zero as equilibrium
is reached.

4.1.2. Example 2: Barkhausen noise and the matrix S. We now show the practical feasibility
of the operator method for a magnet by using the Barkhausen noise [8, 9] as recorded through
the output voltage across a secondary coil wound around a ferromagnetic material. Though
the Barkhausen noise has seen many applications, its use for equilibrium properties has not
been anticipated.

Consider the Hamiltonian

H = H0 − hM. (25)

Here the magnetic field h and magnetization M correspond to � and x respectively. The field
is varied from hi to hf in a time interval τ at a constant rate ḣ. The Barkhausen effect is a
noisy signal proportional to the change in magnetization, η(t) = dM(t)

dt
. So by integrating the

Barkhausen noise up to time t, one obtains the nonequilibrium instantaneous magnetization
of the material. Therefore, we can write the work-related exponent in equation (23) as

W + [h(τ) − h(0)] Mi = −ḣ

∫ τ

0
dt

∫ t

0
η(t ′) dt ′, (26)

which, in a discretized form, looks like

W + [hf − hi]Mi = −�h

n−1∑
j=1

j∑
k=1

ηk, (27)

where the Barkhausen noise at the kth step is ηk = Mk − Mk−1. Hence, the matrix elements
SMf ,Mi take the form

SMf ,Mi =
∑
expts

′
exp

⎡
⎣β�h

n−1∑
j=1

j∑
k=1

ηk

⎤
⎦ , (28)

expressed entirely in terms of the Barkhausen noise along the nonequilibrium paths. The
primed summation over paths that start with Mi and end at Mf includes proper normalization
as mentioned earlier.

For other cases, e.g. for the case of a polymer pulled at a constant rate of change of force,
one needs to monitor the time variation of the pulled point displacement dx/dt versus t. This
information can then be used in equation (28) to obtain the corresponding S.

9



J. Phys. A: Math. Theor. 43 (2010) 245001 P Sadhukhan and S M Bhattacharjee

5. Numerical verification of results

Our claims about the probability have been verified for the case of 2D Ising model on a square
lattice, L × L, where L is the size of the lattice with periodic boundary condition. Consider
the Hamiltonian

H = −J
∑
〈k,l〉

sksl − h
∑

k

sk, (29)

where J is the interaction strength, h is the external magnetic field and sk = ±1 is the spin at
the kth site of a square lattice. Here

∑
〈k,l〉 denotes the sum over nearest-neighbor spins. Here

J and h play the roles of the external parameter (�) and
∑

〈k,l〉 sksl and
∑

k sk are the internal
variables (x).

We find equilibrium probability distribution for given J and h using a weighted
nonequilibrium path integral, normalizing the eigenfunction of S, and compare those with
the equilibrium probability distribution obtained from a usual Monte Carlo procedure. The
overlap of the two distributions is determined by the Bhattacharyya coefficient [10] defined as

BC =
∑
E,M

√
Ph(E,M)Peq(E,M) = 1 − ε, (30)

with BC = 0 for no overlap and BC = 1 for complete overlap.

5.1. Numerical verification of the equilibrium probability distribution starting from a
uniform distribution

Let us take an 8 × 8 lattice and start from H = 0. Each time we start from a state chosen from
a uniform distribution and reach the final state with J = 1 and h = 1 in n steps. At each ith
step, J is switched from Ji to Ji+1 and the external magnetic field from hi to hi+1,

�J = Ji+1 − Ji = J/n and �hi = hi+1 − hi = h/n,

keeping the spin configuration unchanged, and the amount of work done on the system,

Wi = −�JiEi − �hiMi,

is calculated, where Mi is the magnetization and Ei is
∑

sksl at the ith step. Then we let the
system relax at that field hi, Ji and β for a while, but do not equilibrate. Thus, the work done
along a path consisting of n steps is

W = −
n−1∑
i=0

�JiEi + �hiMi,

which is different for different paths. We find the weighted distribution

PJ,h(E,M) =
∫
DX e−βWδ(Eb − E)δ(Mb − M)∫

DX e−βW
, (31)

and then

PJ,h(M) =
∑
E

P (E,M)

and

PJ,h(E) =
∑
M

P(E,M).

It is observed that these distributions merge well with the corresponding equilibrium
distributions, and for PJ,h(E) (figure 2(a)) and PJ,h(M) (figure 2(b)), we obtain ε ∼ 10−3

(equation (30)).
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Figure 2. Plot of the weighted distribution (a) PJ,h(E) versus E and (b) PJ,h(M) versus M (dotted
line with circles) for varying J and h with n = 20 and equilibrium distributions Peq(E) and Peq(M)

(crosses) with J =1, h = 1 and β = 0.2 for an 8 × 8 lattice, showing that PJ,h(E) = Peq(E) and
PJ,h(M) = Peq(M).
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Figure 3. Plot of the weighted average M(h) versus h (solid line) and hysteresis loop, simple
averaged M versus h (dashed line and dash-dotted line) for an 8 × 8 lattice. The magnetic field h
varies from −0.2 to +0.2 in 100 steps. The inset shows the hysteresis loop for the small (dashed
line and dash-dotted line) field with respect to the large field (double dash-dotted line) and the
weight-averaged magnetization (solid line) for the small field.

5.2. Equilibrium magnetization curve using the nonequilibrium path integral

For this case, the lattice size is 8 × 8 and the interaction strength is kept fixed at J = 1. Each
time we start from an equilibrium distribution of h = −h0. The field is varied from −h0 to
+h0 in n steps. W(n) versus n data are recorded and 〈M〉(h) is calculated using equation (13).

We plot the weight-averaged magnetization curve, 〈M〉(h), along with the hysteresis
loop, average magnetization over samples, against h for h0 = 0.2 in figure 3 and h0 = 2 in
figure 4.

A retraceable equilibrium curve is obtained as expected though the nominally averaged
magnetization neither changes sign nor makes a complete loop (figure 3) [11]. This reflects
the fact that though in majority the magnetization does not reach the correct value, there are
a few rare samples for which the spins do flip, and these rare configurations, which are close
to equilibrium, get more weight in the weighted path integral to give the correct equilibrium
curve.

For the larger field, we obtain a curve which is much narrower than the hysteresis curve
(figure 4). The equilibrium curve obtained this way is still not a single curve. The width of
the loop might be connected to the droplet time scale, and signals the need for a more careful
sum over paths to take care of droplet fluctuations.

11



J. Phys. A: Math. Theor. 43 (2010) 245001 P Sadhukhan and S M Bhattacharjee

-80
-60
-40
-20

 0
 20
 40
 60
 80

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

M

h

Figure 4. Plot of the weighted average M(h) versus h (dashed lines) and hysteresis loop, simple
averaged M versus the magnetic field h (solid line) for an 8 × 8 lattice. h varies from −2 to +2 in
100 steps.
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Figure 5. Plot of the equilibrium distribution Peq(M) versus M (boxes with dotted line) and
normalized principal eigenvector Ph(M) (dashed line with circles) with J = 1, h = 1, β = 0.2
and n = 1000 for (a) a 4 × 4 lattice and (b) an 8 × 8 lattice, showing that Ph(M) = Peq(M), i.e.
eigenfunction is indeed an equilibrium distribution.

5.3. Numerical verification of the eigenvalue equation

We start from an equilibrium ensemble at an inverse temperature β = 0.2 (kept fixed
throughout the experiment), J = 1 and h = 0. Each time we start from a state chosen
from its equilibrium distribution and reach the final state with J = 1 and h = 1 in n steps in
the same way as described above and calculate the amount of work done on the system at the
ith step: Wi = −�hiMi . We find the matrix elements

SMf ,Mi =
∑
paths

′
e−βW−β(h−h0)Mi δMb,Mf . (32)

After the matrix is constructed, we normalize the sum of each column to unity and find
the normalized principal eigenvector corresponding to the principal eigenvalue 1, which is
guaranteed. We compare the normalized eigenfunction with the actual equilibrium distribution
for L = 4 and 8. We see that these distributions merge with the corresponding equilibrium
distributions for L = 4 (figure 5(a)) and L = 8 (figure 5(b)) with ε ∼ 10−4 (equation (30)).

12



J. Phys. A: Math. Theor. 43 (2010) 245001 P Sadhukhan and S M Bhattacharjee

6. Summary

In this paper, we show and verify numerically that the repeated nonequilibrium measurements
of work done to connect any two microstates of a system can be used to construct a matrix
S whose principal eigenvector is the equilibrium distribution. The matrix elements of S
(equation (23)) for a Hamiltonian H(�, x) with (�, x) as a conjugate pair are

Sxf ,xi =
∑
paths

′
e−βW+β[H(λ,xi)−H(λ0,xi)], (33)

where the summation is over all paths that start from an equilibrium distribution of externally
controlled parameter � = λ0 with the value of the conjugate variable x as xi and end in a
state with � = λ and x = xf , with proper normalization. The work done W is defined
in equation (1). The values of the elements of S depend on the details of the process,
and therefore there can be many different S, but all will have the same invariant principal
eigenvector. In this way, the distribution of an interacting system can be obtained from a
free, non-interacting one without any reference to equilibrium anywhere. In the process,
we also provide a dynamics-independent proof of the result that the equilibrium probability
distribution can be obtained using the nonequilibrium path integral. Besides giving a new
perspective of thermodynamics and statistical mechanics, our result has direct implications
for new ways in numerical simulations and experiments.

References

[1] Bochkov G N and Kuzovlev Yu E 1977 Zh. Eksp. Teor. Fiz. 72 238
Bochkov G N and Kuzovlev Yu E 1977 Sov. Phys.—JETP 45 125 (Engl. Transl.)

[2] Jarzynski C 1997 Phys. Rev. E 56 5018
[3] Horowitz J and Jarzynski C 2007 J. Stat. Mech. P11002
[4] Crooks G E 2000 Phys. Rev. E 61 2361
[5] Hummer G and Szabo A 2001 Proc. Natl Acad. Sci. USA 98 3658
[6] Cohen E G D and Mauzerall D 2004 J. Stat. Mech. P07006
[7] Falcioni M et al 1982 Phys. Lett. B 108 331
[8] Barkhausen H 1919 Z. Phys. 20 401
[9] Bertotti G 1998 Hysteresis in Magnetism (San Diego: Academic)

[10] Bhattacharyya A 1943 Bull. Calcutta Math. Soc. 35 99
[11] Chakrabarti B K and Acharyya M 1999 Rev. Mod. Phys. 71 847
[12] Akhiezer N I 1965 The Classical Moment Problem (Edinburgh: Oliver and Boyd)

13

http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1088/1742-5468/2007/11/P11002
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1073/pnas.071034098
http://dx.doi.org/10.1088/1742-5468/2004/07/P07006
http://dx.doi.org/10.1016/0370-2693(82)91205-9
http://dx.doi.org/10.1103/RevModPhys.71.847

	1. Introduction
	2. Work theorem and path integral
	2.1. Work theorem
	2.2. Paths: equilibrium and nonequilibrium
	2.3. Histogram transformation and infinitely fast process

	3. Equilibrium probability distribution
	3.1. Generalization
	3.2. Application to a ferromagnet to obtain an equilibrium magnetization curve

	4. Equilibrium probability distribution from an
	4.1. Examples

	5. Numerical verification of results
	5.1. Numerical verification of the equilibrium probability distribution starting from a uniform distribution
	5.2. Equilibrium magnetization curve using the nonequilibrium path integral
	5.3. Numerical verification of the eigenvalue equation

	6. Summary
	References

