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Theory of Tricriticality for Miscut Surfaces
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We propose a theory for the observed tricriticality in the orientational phase diagram of Si(113)
misoriented towards [001]. The systems seem to be at or close to a very special point for long range
interactions. [S0031-9007(96)00378-X]

PACS numbers: 68.35.Rh, 05.70.Jk, 64.60.Kw

A basic question to all surface studies is the stability Fu,T;p) = —up + F(p,T), @
of a surface against various processes, e.g., thermal fluc-
tuations, defects, step formation, etc. This question agvhereu is the chemical potential for steps. The thermo-
sumes importance especially if the surface is cut, not ifflynamic value ofp comes fromd F/dp = 0, or equiva-
a perfect crystallographic direction, but with a slight mis-lently dF/dp = . Taking f, as the free energy of an
cut angle (called misorientation). So far, miscut surfaceésolated step, Eq. (1) can be expressed as
have been found to be stable with steps or to reorganize
to more complex surface structures [1,2]. An exception Fu.T;:p) = (fo — wp + Finlp,T), ()

to this general rule is the recent observation dfieriti- where Fi(p,T) is the free energy contribution from

cal point for a Si(113) surface with a small miscut angle'interactions among the steps. For noninteracting steps,

0, towards [001], point at a temperatufe = 1223 K. A o e . o
phase coexistence of a stepped surface with a (113) fac{;‘“‘ — 0. Therefore, a first-order transition at = fo

for T < T, was observed in Refs. [3,4]. F@r> T;, the dkes a facet(p = 0) to a fu“IIy st_epp(?,d surface for
; L > fo. For purely repulsive (“fermionic”) step$;,, ~

surface goes continuously to the facet as the misorienta-; : ;

o leading to the continuous Pokrovsky-Talapov (or

tion is decreased. In other words, the crystal can be cut /2" order) [2,11—13] transition with ~ | fo — u|1/2

any small angle as one wishes so longlas T but, for ' 0~ HI° -

anvT < T, there is a minimum miscut anale below which This has been the rule for almost all systems until the
y r 9 tricriticality in Si(113) was discovered.

the crystal surface cannot be cut (in thermal equilibrium). The occurrence of a phase separation, as noted in
This changefrom_ acontinuous to aﬁrst-ordertransmor_l, aRef. [4], suggests the existence of attractive interactions
the temperature is varied, takes place at a special point mmong the steps. The steps are generally taken to be
the? vs phase_d|agrqm. Th_e special point s also fou_n nonintersecting. In addition, they are expected to have
to be the end point (critical point) of the first-order coeX|s—dipolar or elastic long range—2 interaction. A long

tence curve. This is therefore a tricritical point [5]. The e . . ; >
; . range(r~°) attraction for the nonintersecting steps, in a
phase coexistence of a reorganized facet and steps can be

: mean field (“Hartree-Fock”) analysis, givég, ~ (T —
understood on the basis of two separate free energy CUVES) 3 + ap?, predicting a tricritical point with a linear
[1]3 bu'gatrlcrltlcal pomtde_:mand_s amore subtl_e treai[ment'phase bounéary [10]. With an attractive? interaction
This discovery of a tricritical point in a two dimensional this mean field form. ofF,,, agrees, in the domain ,of

nt ’

system is extremely important because it can serve as a . .
) - . overlap of parameters, with the exact Bethe ansatz solution
fertile ground for recently developed statistical mechani-

cal theories [6—9]. Our aim is to describe the universal[14]' This rules out the p055|p|l|ty_of quctuau_ons causing
S ) a zero slope phase boundary in this model with long range
aspects of this tricritical point.

The steps run in one direction Z* axis) without attraction.
backtracking (no overhang), so that the surface can be

characterized by the density of steps, (number of - " |7_ i |
stepgtransverse length) [2]. The misorientation is relatedp,"' e d w D070 36 Lok

to p (see Fig. 1). In the experiment of Refs. [3,4], the ' _—+— P E ] r ™
coexistence curvgp ~ (T, — T)#]was found to have a — T _ _ /(N )

zero slope at the tricritical point, witp = 1/2, showing d 8 P
utter disrespect to the extent that mean field theory [4,10 {a) ib) (c)
predictsg = 1.

- . FIG. 1. (a) Schematic diagram of the steps of equal height
The phenomenology of the transition can be discusseg) ~ 1o rgligorientatiorv is re%ated to the dengity, as ?aw — g

in terms of the Legendre transform of the free energy pep/; = pp. (b) The steps viewed from above. (c) Schematic
unit transverse lengtt (o, T), phase diagram.
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We therefore consider a completely different scenariotions [17—19]. Treating the steps as structureless wander-
Our proposal is that tricriticality occurs when the stepsing lines, the Hamiltonian in a continuum formulation is
have a short range attraction. The physical picture weéaken as
have in mind has strong resemblance to a phase separating | 5 2
polymer solution. In fact taking the steps as directed ,; _ [ 1 or; 3 :
polymers (DP), the stepped face can be thought of as e{{ dz|: 2 Z( az> " ”2;5("”@)} + Hie,

DP solution. Our proposal is that in the high temperature (4a)
phase the steps are repulsive and the phase is dominated . _ . N

by the entropic interaction. As the tricritical point is wherer;(z) is thed dimensional transverse position of the
approached, the attractive part begins to play a role. Thiéh step at a coordinate measured along the step from
steps start colliding and the average separation betwed€ endr;;(z) = r;(z) — r;(z) is the separation between
collisions determines the correlation length. When thigwo stepsi and j, andvs = vy(T — T:) is the effective
length becomes comparable to the separation of the steg¥/0 Step contact (short range) interactiodi, is the
the tricritical domain is reached. The phase separatiofdditional interaction, and two possible choices are
takes place in this regime before any bound state can form.

To study the phase separation and the coexistence Hin = v3 ] Za(rij(Z))S(rik(Z)) dz, (4b)
curve, we use a canonical ensemble approach, and use
the analogy with a polymer solution [15]. The phase
boundary is identified by equating the “osmotic” pressure

of the two coexisting phases. The osmotic pressure in 5
this context would mean the excess pressure generated Hiy = h Zf |rij ()|~ dz. (4c)
by the addition of one more step and is obtained from i<j

IT = p*3/ap(F/p), whereF(p) is the free energy as a The first form represents a three step contact repulsion
function of densityp. Since one phase is a flat surfaceyhijle the last form represents a two step long range re-
with zero density, its osmotic pressure is zero. Thepylsive interaction. Fofl > T,, v» > 0 and the non-

coexistence curve is therefore obtained from crossing condition is ensured by taking the limit— .
. This, however, is not required because it is known from
dp~ F)/ap = 0. (3)  RG that the repulsive case is described dox 2 by a

_ _ . _ stable fixed point (FP) (see below).
It is the interaction that determines the shape of the |n a3 mean field treatmen} 8(r;j) in Eq. (4a) can
coexistence curve. We, therefore, consider two differenpe replaced by?2. Similarly the three body interaction
pOSSibiIitieS: trlcrltlcallty with (|) short range interactions would generate a3 term [6_8], and also an72 repulsive

and (ii) long range interactions. It seems that the lattefnteraction [10,14] so that the mean field free energy is
holds the key.

The general approach is to start from a mean field Fi(p, T) = fop + vao(T — T))p* + cp>, (5)
or effective free energy. The renormalization group
(RG) approach is then used to incorporate the effects oiherec depends o or v; as the case may be. This
fluctuations. The RGB functions tell us the effective again givesg = 1, when Eq. (3) is used, though the
couplings as the length scales are changed. Integratingnhysics behind this is completely different from that
the RG equations, one can then obtain the renormalizeoroposed in Refs. [3,4,10].
interactions or coupling constants for the relevant length Let us first consider the short range case, Eq. (4b). A
scale~p~!. These renormalized coupling constants carsimple dimensional analysis shows that is marginal
then be used in the mean field free energy to Bdor in d = 1. We introduce the dimensionless parameters
Eq. (3). This is justified because we are interested not im> = v2L>~¢ andu; = v3L'"¢ whereL is an arbitrary
the details of the tricritical behavior but rather in the phasdength scale in the transverse direction. A renormalization
boundary where all length scales remain finite [15,16]procedure would take into account the effects of interac-
Furthermore, since we will be using a RG approach, wdions at scales<L along the steps, changing the effective
consider the case of general transverse dimensionality interaction felt at length scale (“coarse graining”). The
which we ultimately set to 1. details can be found in Refs. [6,7,17]. The running cou-

To write the Hamiltonian, we note that short range at-pling constant for the two step interaction is known ex-
tractions in DP’s lead to bound states for two isolatedactly [6,7,17] and is given by
steps. So far as the binding transition is concerned in low iy
dimensions, the universal critical behavior is independent L 3L - 2 — dyuy — u3/2m7. (6)
of any further details such as the noncrossing condition
of the steps. This is known from exact renormalizationThe flow of u, is controlled, ford < 2, by the two fixed
group analysis and simple quantum mechanical calculgoints x> = 0 (unstable) ands, = 27 (2 — d) (stable).
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The unstable FP corresponds to the transition point fowhereA = 2¢~174/2T'(d/2), K, is the surface area of a
two chains and the tricritical point in the many chain casepnit d-dimensional sphere, andis a (system dependent)
while the stable FP describes the repulsive steps actingpnstant, the recursion relations from Ref. [9] are

like fermions ind = 1. Foru, = 0, the RG equation for

usz is given by [6,8] Ldu/dL = —(u — u;)(u — u;) and dg/dL =0,
9 9)
L % = —cw%, (7 _
whereu?, = {2 — d * [(d — 2)* + 4g]'/?}, with d be-

with only the fluctuation contribution in the higher order ing absorbed in the fixed points. Singgs marginal, and
of u3 atd = 1 [20]. Around the unstable fixed point for the FP's foru depend on the long range coupligg we
u», for small deviations, the effective coupling is given find a nonuniversal behavior. The stable fixed point de-
by u»(L) ~ u,L for d = 1, so that the renormalized but scribes the high temperature phase which is different from
not rescaled coupling constant is just. In contrast, the free fermion [or the shortrange (SR)] case. We discuss
the renormalized three step interactionlat- p ! gives this case later on. The unstable FPdescribes the tricriti-
v3(L) ~ v3/Inp. Substitution of these changes tpé  cal point, so that linearizing around it, we can determine
term of the free energy of Eq. (5) i@’/ Inp. The shape the effective coupling that goes in the free energy, pro-

of the coexistence curve is then videdg = 3/4. Fortwo chains wittg > 3/4, the binding
transition is first order [9]. We assume that the tricritical
v, ~p/lnp, e, p~|T —T,|In|T —T,]. (8)  point, as an end point of the coexistence curve, has some

critical nature [25]. Thereforeg = 3/4. A straightfor-
We see that fluctuations produce a zero slope coexistenegard analysis then giveSu(L ~ p~') ~ |T — T;|p' %,
curve, though the coexistence expongnis still 1, the wherex = u* — u* = [(d — 2)*> + 4g]"/%2. The use of
mean field value [23]. For the high temperature phasethis renormalized coupling in Eq. (5) changes tHeterm
the system is described by the stableisP= 2 — d, and  to p3~* with a coefficient proportional t¢7 — 7,|. This
vo(L) ~ u5p yielding the famousp?® term that produces gives a coexistence curye ~ |T — T,|'/*, where, to re-
the Kasteleyn-Pokrovsky-Talapov transition [13,21]. peat,x is a nonuniversal number. In order to achieve con-

We can also predict the behavior right at the tricriti- sistency with experiment, one requires= 2, which in
cal point. With v, = 0, the analog of the Pokrovsky- turn requiresg = 3/4. The RG analysis of Ref. [9], as
Talapov transition would involve only the three body already mentioned, also shows= 3/4 is a very special
repulsive interaction. The relevant behavior comes fronpoint, corresponding to an “upper critical dimension” case.
the minimization of the free energf = (fo — w)p + Furthermore, forg = 3/4, with hard core repulsion, log
v3p3/Inp. Therefore, the step density at tricriticality corrections are expected, which are not captured in the sim-
behaves likep ~ | — fol/2(In|uw — fol)'/? with fo <  ple RG analysis [9,26]. We conclude thatibf Eq. (4c)

0. The exponent is the same Pokrovsky-Talapov one butappens to be close &4, then the coexistence expo-
with an additional logarithmic correction (which may be nent 8 will be close to1/2, and ifh = 3/47, 8 = 1/2
hard to detect). with additional logarithmic corrections.

It is possible to have higher order multicritical points In both the SR and LR cases, since the free energy is
with just v, and v,, > 0 involving anm step repulsive known, the surface stiffness, an experimentally measurable
interaction(m > 3). Anexponent of3 = 1/2 can be re- quantity [4], can also be calculated. We omit the details
covered [6] form = 4 in a mean field way becauge= 1  that can be found in Refs. [4,27]. The steps, with the
is above the upper critical dimension®f,. Such a mul- inherent anisotropy, produce resistance to bending in the
ticritical point requiresv; = 0 and with nonintersecting step orz direction and to compression in the transverse di-
steps, it seems very unlikely that this will happen. rection [27]. These elastic constants can be expressed in

Let us now come to the long range repulsion caseterms of the surface tension(@) which is related to the
Eqg. (4c). Long range (LR) interactions are special byfree energyF(p,T) of Eq. (1) viay(8) ~ co¥9F(p,T),
virtue of their singular nature. A renormalization group with pD = tar¥ (Fig. 1). In the DP picture, the stiff-
transformation is analytic in nature and, therefore, cameses arey, ~ 1/tard, andy. = y + d*>y/d6>. The
never generate a singular potential. A corollary of thisscattering experiments measure the geometric mean of
is that the two body LR interaction does not get renorthese two stiffnesses. We find that at a giver- T,, for
malized but affects the renormalization of the short rangehe short range case, the surface stiffness approaches the
(nonsingular) pair potential. Such a renormalization isfree fermion value in a singular fashienl /| In6/D| with
going to change the exponent of in the v, term of the misorientation while for the long range case, the free
Eq. (5), and, therefore, the nature of the coexistencéermion value is reached from above indaindependent
curve. The RG approach for this case is also availablevay. The result for the LR case can be derived from the
in the literature, and we quote the results [9,24]. Defin-exact results of Sutherland [14]. The basic point to note
ing u(L) = a[vo(L)L?>~¢ + h(L)A], g(L) = 2K Ah(L), is that ford = 1, both the SR and the LR contribute in
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