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Theory of Tricriticality for Miscut Surfaces

Somendra M. Bhattacharjee*
Institute of Physics, Bhubaneswar 751 005, India

(Received 14 February 1996)

We propose a theory for the observed tricriticality in the orientational phase diagram of S
misoriented towards [001]. The systems seem to be at or close to a very special point for long
interactions. [S0031-9007(96)00378-X]
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A basic question to all surface studies is the stabi
of a surface against various processes, e.g., thermal
tuations, defects, step formation, etc. This question
sumes importance especially if the surface is cut, no
a perfect crystallographic direction, but with a slight m
cut angle (called misorientation). So far, miscut surfa
have been found to be stable with steps or to reorga
to more complex surface structures [1,2]. An except
to this general rule is the recent observation of atricriti-
cal point for a Si(113) surface with a small miscut ang
u, towards [001], point at a temperatureTt ­ 1223 K. A
phase coexistence of a stepped surface with a (113) f
for T , Tt was observed in Refs. [3,4]. ForT . Tt, the
surface goes continuously to the facet as the misorie
tion is decreased. In other words, the crystal can be c
any small angle as one wishes so long asT . Tt but, for
anyT , Tt , there is a minimum miscut angle below whic
the crystal surface cannot be cut (in thermal equilibriu
This change from a continuous to a first-order transition
the temperature is varied, takes place at a special poi
theT vs u phase diagram. The special point is also fou
to be the end point (critical point) of the first-order coex
tence curve. This is therefore a tricritical point [5]. T
phase coexistence of a reorganized facet and steps c
understood on the basis of two separate free energy cu
[1], but a tricritical point demands a more subtle treatme
This discovery of a tricritical point in a two dimension
system is extremely important because it can serve
fertile ground for recently developed statistical mecha
cal theories [6–9]. Our aim is to describe the univer
aspects of this tricritical point.

The steps run in one direction (“z” axis) without
backtracking (no overhang), so that the surface can
characterized by the density of steps,r (number of
stepsytransverse length) [2]. The misorientation is rela
to r (see Fig. 1). In the experiment of Refs. [3,4], t
coexistence curvefr , sTt 2 T dbg was found to have a
zero slope at the tricritical point, withb ­ 1y2, showing
utter disrespect to the extent that mean field theory [4
predictsb ­ 1.

The phenomenology of the transition can be discus
in terms of the Legendre transform of the free energy
unit transverse length,Fsr, T d,
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F sm, T ; rd ­ 2mr 1 Fsr, Td , (1)

wherem is the chemical potential for steps. The therm
dynamic value ofr comes from≠F y≠r ­ 0, or equiva-
lently ≠Fy≠r ­ m. Taking f0 as the free energy of an
isolated step, Eq. (1) can be expressed as

F sm, T ; rd ­ s f0 2 mdr 1 Fintsr, T d , (2)

where Fintsr, T d is the free energy contribution from
interactions among the steps. For noninteracting ste
Fint ­ 0. Therefore, a first-order transition atm ­ f0

takes a facetsr ­ 0d to a fully stepped surface fo
m . f0. For purely repulsive (“fermionic”) steps,Fint ,
r3 leading to the continuous Pokrovsky-Talapov (
“3y2” order) [2,11–13] transition withr , j f0 2 mj1y2.
This has been the rule for almost all systems until t
tricriticality in Si(113) was discovered.

The occurrence of a phase separation, as noted
Ref. [4], suggests the existence of attractive interactio
among the steps. The steps are generally taken to
nonintersecting. In addition, they are expected to ha
dipolar or elastic long ranger22 interaction. A long
rangesr22d attraction for the nonintersecting steps, in
mean field (“Hartree-Fock”) analysis, givesFint , sT 2

Ttdr3 1 ar4, predicting a tricritical point with a linear
phase boundary [10]. With an attractiver22 interaction,
this mean field form ofFint agrees, in the domain o
overlap of parameters, with the exact Bethe ansatz solu
[14]. This rules out the possibility of fluctuations causin
a zero slope phase boundary in this model with long ran
attraction.
be

d
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FIG. 1. (a) Schematic diagram of the steps of equal hei
D. The misorientationu is related to the densityr, as tanu ­
Dyl ­ rD. (b) The steps viewed from above. (c) Schema
phase diagram.
© 1996 The American Physical Society
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We therefore consider a completely different scena
Our proposal is that tricriticality occurs when the ste
have a short range attraction. The physical picture
have in mind has strong resemblance to a phase separ
polymer solution. In fact taking the steps as direc
polymers (DP), the stepped face can be thought of a
DP solution. Our proposal is that in the high temperat
phase the steps are repulsive and the phase is domi
by the entropic interaction. As the tricritical point
approached, the attractive part begins to play a role.
steps start colliding and the average separation betw
collisions determines the correlation length. When t
length becomes comparable to the separation of the s
the tricritical domain is reached. The phase separa
takes place in this regime before any bound state can fo

To study the phase separation and the coexiste
curve, we use a canonical ensemble approach, and
the analogy with a polymer solution [15]. The pha
boundary is identified by equating the “osmotic” press
of the two coexisting phases. The osmotic pressure
this context would mean the excess pressure gene
by the addition of one more step and is obtained fr
P ­ r2≠y≠rsFyrd, whereFsrd is the free energy as
function of densityr. Since one phase is a flat surfa
with zero density, its osmotic pressure is zero. T
coexistence curve is therefore obtained from

≠sr21Fdy≠r ­ 0 . (3)

It is the interaction that determines the shape of
coexistence curve. We, therefore, consider two differ
possibilities: tricriticality with (i) short range interaction
and (ii) long range interactions. It seems that the la
holds the key.

The general approach is to start from a mean fi
or effective free energy. The renormalization gro
(RG) approach is then used to incorporate the effect
fluctuations. The RGb functions tell us the effective
couplings as the length scales are changed. Integra
the RG equations, one can then obtain the renormal
interactions or coupling constants for the relevant len
scale,r21. These renormalized coupling constants c
then be used in the mean field free energy to getF for
Eq. (3). This is justified because we are interested no
the details of the tricritical behavior but rather in the pha
boundary where all length scales remain finite [15,1
Furthermore, since we will be using a RG approach,
consider the case of general transverse dimensionalid
which we ultimately set to 1.

To write the Hamiltonian, we note that short range
tractions in DP’s lead to bound states for two isola
steps. So far as the binding transition is concerned in
dimensions, the universal critical behavior is independ
of any further details such as the noncrossing condi
of the steps. This is known from exact renormalizat
group analysis and simple quantum mechanical calc
o.
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tions [17–19]. Treating the steps as structureless wan
ing lines, the Hamiltonian in a continuum formulation
taken as

H ­
Z

dz

"
1
2

X
i

√
≠ri

≠z

!2

1 y2

X
i.j

dsssrijszdddd

#
1 Hint ,

(4a)

whereriszd is thed dimensional transverse position of th
ith step at a coordinatez measured along the step fro
one end,rijszd ­ rjszd 2 riszd is the separation betwee
two stepsi andj, andy2 ­ y20sT 2 Ttd is the effective
two step contact (short range) interaction.Hint is the
additional interaction, and two possible choices are

Hint ­ y3

Z X
dsssrijszdddddsssrikszdddd dz , (4b)

or

Hint ­ h
X
i,j

Z
jrijszdj22 dz . (4c)

The first form represents a three step contact repul
while the last form represents a two step long range
pulsive interaction. ForT . Tt, y2 . 0 and the non-
crossing condition is ensured by taking the limity2 ! `.
This, however, is not required because it is known fr
RG that the repulsive case is described ford , 2 by a
stable fixed point (FP) (see below).

In a mean field treatment
P

dsrijd in Eq. (4a) can
be replaced byr2. Similarly the three body interactio
would generate ar3 term [6–8], and also anr22 repulsive
interaction [10,14] so that the mean field free energy is

Fintsr, T d ­ f0r 1 y20sT 2 Ttdr2 1 cr3, (5)

where c depends onh or y3 as the case may be. Th
again givesb ­ 1, when Eq. (3) is used, though th
physics behind this is completely different from th
proposed in Refs. [3,4,10].

Let us first consider the short range case, Eq. (4b).
simple dimensional analysis shows thaty3 is marginal
in d ­ 1. We introduce the dimensionless paramet
u2 ­ y2L22d and u3 ­ y3L12d whereL is an arbitrary
length scale in the transverse direction. A renormaliza
procedure would take into account the effects of inter
tions at scales,L along the steps, changing the effecti
interaction felt at length scaleL (“coarse graining”). The
details can be found in Refs. [6,7,17]. The running c
pling constant for the two step interaction is known e
actly [6,7,17] and is given by

L
≠u2

≠L
­ s2 2 ddu2 2 u2

2y2p . (6)

The flow of u2 is controlled, ford , 2, by the two fixed
points up

2 ­ 0 (unstable) andup
2 ­ 2ps2 2 dd (stable).
4569
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The unstable FP corresponds to the transition point
two chains and the tricritical point in the many chain ca
while the stable FP describes the repulsive steps ac
like fermions ind ­ 1. For up

2 ­ 0, the RG equation fo
u3 is given by [6,8]

L
≠u3

≠L
­ 2c3u2

3 , (7)

with only the fluctuation contribution in the higher ord
of u3 at d ­ 1 [20]. Around the unstable fixed point fo
u2, for small deviations, the effective coupling is giv
by u2sLd , u2L for d ­ 1, so that the renormalized b
not rescaled coupling constant is justy2. In contrast,
the renormalized three step interaction atL , r21 gives
y3sLd , y3y lnr. Substitution of these changes ther3

term of the free energy of Eq. (5) tor3y lnr. The shape
of the coexistence curve is then

y2 , ry lnr, i.e., r , jT 2 Ttj ln jT 2 Ttj . (8)

We see that fluctuations produce a zero slope coexist
curve, though the coexistence exponentb is still 1, the
mean field value [23]. For the high temperature pha
the system is described by the stable FPup

2 ­ 2 2 d, and
y2sLd , up

2r yielding the famousr3 term that produce
the Kasteleyn-Pokrovsky-Talapov transition [13,21].

We can also predict the behavior right at the tricr
cal point. With y2 ­ 0, the analog of the Pokrovsky
Talapov transition would involve only the three bo
repulsive interaction. The relevant behavior comes fr
the minimization of the free energyF ­ s f0 2 mdr 1

y3r3y lnr. Therefore, the step density at tricriticali
behaves liker , jm 2 f0j

1y2sln jm 2 f0jd1y2 with f0 ,

0. The exponent is the same Pokrovsky-Talapov one
with an additional logarithmic correction (which may
hard to detect).

It is possible to have higher order multicritical poin
with just y2 and ym . 0 involving an m step repulsive
interactionsm . 3d. An exponent ofb ­ 1y2 can be re-
covered [6] form ­ 4 in a mean field way becaused ­ 1
is above the upper critical dimension ofym. Such a mul-
ticritical point requiresy3 ­ 0 and with nonintersecting
steps, it seems very unlikely that this will happen.

Let us now come to the long range repulsion ca
Eq. (4c). Long range (LR) interactions are special
virtue of their singular nature. A renormalization gro
transformation is analytic in nature and, therefore,
never generate a singular potential. A corollary of t
is that the two body LR interaction does not get ren
malized but affects the renormalization of the short ra
(nonsingular) pair potential. Such a renormalization
going to change the exponent ofr in the y2 term of
Eq. (5), and, therefore, the nature of the coexiste
curve. The RG approach for this case is also availa
in the literature, and we quote the results [9,24]. De
ing usLd ­ afy2sLdL22d 1 hsLdAg, gsLd ­ 2KdAhsLd,
4570
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whereA ­ 2d21pdy2Gsdy2d, Kd is the surface area of a
unit d-dimensional sphere, anda is a (system dependent
constant, the recursion relations from Ref. [9] are

L duydL ­ 2su 2 up
sd su 2 up

ud and dgydL ­ 0 ,
(9)

whereup
s,u ­ h2 2 d 6 fsd 2 2d2 1 4gg1y2j, with d be-

ing absorbed in the fixed points. Sinceg is marginal, and
the FP’s foru depend on the long range couplingg, we
find a nonuniversal behavior. The stable fixed point d
scribes the high temperature phase which is different fr
the free fermion [or the short range (SR)] case. We disc
this case later on. The unstable FPup

u describes the tricriti-
cal point, so that linearizing around it, we can determi
the effective coupling that goes in the free energy, p
videdg # 3y4. For two chains withg . 3y4, the binding
transition is first order [9]. We assume that the tricritic
point, as an end point of the coexistence curve, has so
critical nature [25]. Therefore,g # 3y4. A straightfor-
ward analysis then givesDusL , r21d , jT 2 Tt jr

12x ,
wherex ­ up

s 2 up
u ­ fsd 2 2d2 1 4gg1y2. The use of

this renormalized coupling in Eq. (5) changes ther2 term
to r32x with a coefficient proportional tojT 2 Tt j. This
gives a coexistence curver , jT 2 Tt j

1yx, where, to re-
peat,x is a nonuniversal number. In order to achieve co
sistency with experiment, one requiresx ø 2, which in
turn requiresg ø 3y4. The RG analysis of Ref. [9], as
already mentioned, also showsg ­ 3y4 is a very special
point, corresponding to an “upper critical dimension” cas
Furthermore, forg ­ 3y4, with hard core repulsion, log
corrections are expected, which are not captured in the s
ple RG analysis [9,26]. We conclude that ifh of Eq. (4c)
happens to be close to3y4p , then the coexistence expo
nentb will be close to1y2, and if h ­ 3y4p, b ­ 1y2
with additional logarithmic corrections.

In both the SR and LR cases, since the free energ
known, the surface stiffness, an experimentally measura
quantity [4], can also be calculated. We omit the deta
that can be found in Refs. [4,27]. The steps, with t
inherent anisotropy, produce resistance to bending in
step orz direction and to compression in the transverse
rection [27]. These elastic constants can be expresse
terms of the surface tensiongsud which is related to the
free energyFsr, T d of Eq. (1) via gsud , cosuFsr, T d,
with rD ­ tanu (Fig. 1). In the DP picture, the stiff-
neses arẽgr , 1y tanu, and g̃z ­ g 1 d2gydu2. The
scattering experiments measure the geometric mean
these two stiffnesses. We find that at a givenT . Tt, for
the short range case, the surface stiffness approache
free fermion value in a singular fashion,1yj lnuyDj with
the misorientation while for the long range case, the f
fermion value is reached from above in au independent
way. The result for the LR case can be derived from
exact results of Sutherland [14]. The basic point to n
is that for d ­ 1, both the SR and the LR contribute i
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the r3 term, leading to an enhancement of the coeffici
of this term over and above the free fermion value. T
experiments of Ref. [4] seem to conform to this—thou
this aspect needs to be studied more thoroughly.

To summarize, we considered two different scena
both of which give a zero curvature coexistence cur
The purely short range interaction, however, gives on
logarithmic correction to the mean field exponent wh
seems to be far off from the experiment. The long ran
case predicts a nonuniversal value and the observed
ponent seems to suggest that the Si(113) surface w
miscut towards [001] is at or close to a very special po
for the long range interaction. It is rather striking that t
very first system that showed the tricritical point also c
responds to the very special point for the long range
teraction. We are not sure whether it is just an accid
or a general rule. If an accident, then other orientatio
phase diagrams should be studied experimentally to ve
the claim of nonuniversality (and may be a simple ver
cation of RG in statistical mechanics). If not an accide
we wonder why nature chooses to be at the threshold.
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