
The purpose of these le
tures is to show how one handles an intera
ting system in a mean �eld way. The same approximationwill be derived in various ways illuminating di�erent aspe
ts of the approximation. All will be based on the Ising model. Certaingeneralizations will also be 
onsidered.
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MEAN FIELD THEORIESSomendra M. Bhatta
harjeeInstitute of Physi
s, Bhubaneswar 751 005I. MODEL AND DEFINITIONSThe model system is the Ising model des
ribed by theHamiltonianH = �J X<ij> sisj � hXi si (1.1)where si = �1 is a spin at the ith site of the latti
e, and< ij > represent nearest neighbour pairs. For simpli
itywe 
onsider only ferromagneti
 intera
tion (J > 0). Therange of intera
tion will be relaxed in 
ertain 
ases.The quantities of interest are (i) magnetization m =hsi = hP sii=N , where N is the total number of spins,(ii) sus
eptibility � = �m=�h jh=0, the response of thesystem to a small external magneti
 �eld, (iii) spe
i�
heat 
h = �u=�T , where u is the average internal energyper spin, et
.Convention: Total thermodynami
 quantities to be de-noted by 
apital letters and densities( i.e., per parti
le)by 
orresponding small letters.II. AGE-OLD MEAN FIELD THEORYStart with the Hamiltonian, Eq 1.1, and fo
us on oneparti
ular spin, say si. There are two �elds a
ting on it,(i) the external one, h, and (ii) the �eld by the neigh-bouring spins. We 
an write the hamiltonian for the ithspin as Hi = �si(JX sj + h) (2.1)with the summation over the intera
ting spins only. The�eld due to the intera
ting spins is a 
u
tuating obje
t- and is the sour
e of diÆ
ulty. We repla
e this by theaverage �eld produ
ed by them, i.e., repla
e sj by hsi,and forget about 
u
tuations. The name of the game isto de
ouple the spins to redu
e the intera
ting systemto a nonintera
ting one (the whole system is a uniformba
kground, as in Hartree, Hartree-Fo
k, Thomas-Fermiet
). A. Single spin 
aseTake H = �hs for a single spin s = �1. The partitionfun
tion is Z = 2 
osh(h=kT ), and hsi = tanh(h=kT ).Problem II.1 Derive these.Evaluate sus
eptibility for h = 0 and h 6= 0. Note thedrasti
 di�eren
e in behaviour as T ! 0. Why? If youdon't see why, try H = �� s� hs, with � 6= 0 �xed.

B. E�e
tive �eld 
aseThe mean �eld hamiltonian for any spin is nowHi = �(qJm+ h)si (2.2)where q is the 
oordination number of the latti
e (i.e.the number of nearest neighbors). Note that all detailedstru
tures of the latti
e are lost - q alone 
annot des
ribea latti
e!Now, self
onsisten
y requires that the average spin ofthe ith parti
le hsii evaluated with the mean�eld hamil-tonian of Eq. 2.2 be the same as hsi used there - afterall, the spins are all equivalent.Using the results of the single spin 
ase, we havem = tanh(qJm� + h�) (2.3)where � = (kT )�1. This is the famous mean�eld equa-tion. C. Comments(1) What is the approximation: si's are random vari-ables, with more or less well behaved statisti
s. The ef-fe
tive �eld involves a sum of these random variables, and whatisCLT?so we expe
t the sum to approa
h its average (CentralLimit Theorem), if a large number of spins are involved.In other words q should be large (! 1). MF approxi-mation is exa
t in in�nite dimensions.(2) Is tanh sa
red?: NO! We got tanh be
ause ofIsing(i.e. two 
omponent) spins. For arbitrary spins, orwith arbitrary probability distribution, we may repla
etanh by an appropriate fun
tion f with f(0) = 0. Theanalog of Eq. 2.3 is m = f(qJm�+h�). The \universal"features of the MF equation will turn out to be indepen-dent of the detailed nature of f , but 
ertain features domatter. In
identally, the most 
ru
ial property required Guesswhy?is the nonlinearity of f .(3) Note that MF is just a feed ba
k me
hanism - and isof mu
h wider appli
ability than stat me
h. For example:Clausius-Mosotti, Lorentz-Lorenz equations in ele
trody-nami
s et
. Think of ampli�ers/os
illators in ele
troni
s.III. VARIATIONAL PRINCIPLEA general result: We want to estimate the free energyof a system des
ribed by a HamiltonianH , F = �kT lnZ2



where Z = Tr e��H , Tr being the tra
e taken over thestates of H . We are writing \Tr" for 
onvenien
e. Fora 
lassi
al 
ase, it would mean a sum over all 
on�g-urations. Now, 
hoose another Hamiltonian H0, withfree energy F0 = �kT lnZ0, where Z0 = Tr exp(��H0).Using the 
onvexity relation hexp(x)i � exphxi, one 
an
on-vex-ity? show that F � F0 + hH �H0i0 (3.1)where the average on the right hand side is done with theBoltzmann weight exp(��H0).Problem III.1 Derive this. Guess why 
onvexity is im-portant.As in any variational 
al
ulation, one generally 
hoosesH0 with some adjustable parameter so that the righthand side 
an be minimized to get the best estimate.Let us now use this variational prin
iple. Sin
e, a non-intera
ting hamiltonian is the one we 
an solve best, we
hoose H0 = ��X si: (3.2)where � is the e�e
tive �eld we like to determine. Cal-
ulating averages with this hamiltonian is simple. The�nal answer isF � �NkT ln(2 
osh��) � 12NqJm2 �Nhm+N�m(3.3)with m = tanh(��). We now minimize the RHS of Eq.3.3 with respe
t to �. Use Nm = ��F0=�� to get���RHS = N �m�� (qJm+ h� �) = 0: (3.4)This identi�es � = h + qJm, as in Eq. 2.2. As before,one ends up with the MF equation of Eq. 2.3.Problem III.2 Derive Eqs. 3.3, 3.4.IV. INFINITE RANGE MODELWe have already said that the MF approximationworks best if the number of neighbours is large. Whatwe did was to repla
e the 
u
tuating spins by their av-erages, hsi =Pj sj=(N � 1), ex
luding the ith spin fromthe sum. We now make the following repla
ement:JsiX sj ! qJhsisi ! qJN � 1Xi6=j sisj (4.1)where the �rst sum involves only nearest neighbourswhile the last one involves all. The Ising Hamiltonianof Eq. 1.1 
an then be repla
ed by

H = � JN X(ij) sisj : (4.2)The summation now extends over all possible pairs of thesystem. This is the in�nite range (but in�nitely weak(!)asN goes to1) model. The folklore is that all weak longrange intera
tions lead to a mean �eld type des
ription.Question: Is 1=N ne
essary? Yes! Be
ause, we haveto ensure a proper thermodynami
 limit (N ! 1).Look at the ground state. For ferromagneti
 intera
tions(J > 0), the ground state has all parallel spins. Thereare N(N � 1)=2 pairs. So the energy is proportional toN(N � 1). However, we want (or rather demand) thatthe energy be proportional to N (extensivity of thermo-dynami
 quantities). This is ensured by the 1=N in the
oupling 
onstant.A. Solution I: Maximum term methodSin
e all pairs are intera
ting, we 
an write the inter-a
tion term, upto a trivial 
onstant, as why12H = � J2N (X si)2 = � J2NM2 (4.3)where, as before, M is the total magnetization (no aver-aging yet). Sin
e the energy of a 
on�guration is 
om-pletely determined by M (NOT for Eq. 1.1), doing the
on�gurational sum is easy. We however need the degen-era
y of a state of magnetization M . Suppose N+ spinsare up. Then N+ = (M +N)=2. The degenera
y is thengiven by N !=(N+!(N �N+)!).The partition fun
tion is given byZ = M=+NXM=�N N !N+!(N �N+)! exp(��JM2=2N): (4.4)An exa
t evaluation, for �nite N is not possible. Forlarge N , we use the maximum term method where itis assumed that the partition fun
tion is dominated bythe maximum term of the summand. To determine themaximum term, use the Stirling approximation (lnN ! =N(lnN � 1), good even for small N), and extremize�J2NM2 � [lnN !� ln 12 (M +N)!� ln 12 (N �M)!℄ (4.5)treating M as a 
ontinuous variable. Do it and you willget ba
k the MF equation Eq. 2.3.Problem IV.1 Do it. For pra
ti
e, also keep the mag-neti
 �eld term.
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1. Comments(1) Have we made any approximation in keeping onlythe maximum term? Of 
ourse not, but why not? Look,we are interested in the free energy per parti
le, not thepartition fun
tion per se. So let's 
onsider a 
ase Z =Pm=Nm=1 zm for N parti
les. N is a measure of the numberof distin
t states. Suppose zm is maximum form = max.Note that zm is not just the Boltzmann fa
tor, it in
ludes\entropy", AND it is stri
tly nonnegative. We have thefollowing trivial inequality,N zmax � Z � zmax: (4.6)whi
h implies,lnNN + ln zmaxN � 1N lnZ � 1N ln zmax: (4.7)Now if the growth of N is some power of N , and NOTEXPONENTIAL, then, in the limit N ! 1, the twobounds above be
ome equal. Hen
e, in the thermody-nami
 limit (i.e. N ! 1) the free energy per parti
leis given by the free energy of the maximum term. So,Mean �eld is exa
t only in the thermodynami
 limit, notfor �nite N .Question: Why doesn't it work for the nearest neigh-bour problem?(2) Why is it solvable: Let's think of it in a di�erentlanguage, namely the latti
e gas. The two states for ea
hsite 
an be thought of as o

upied (s = +1) or va
ant(s = �1) . Then the intera
tion depends only if parti-
les are nearest neighbours (NN). One therefore needs toknow the short distan
e behaviour of the spins, i.e., for agiven 
on�guration how many form NN pairs. This is a
ompli
ated issue. At the simplest level one would arguethat the probability of getting two parti
les as NN is just(density)2, density being the probability. What is neededis the 
onditional probability - this is a produ
t of twoun
onditional ones only if there is no 
orrelation. Thisturns out to be the 
ase for the in�nite range model.(3) The Stirling approximation gives the log of thedegenera
y fa
tor as N [� ln � + (1 � �) ln(1 � �)℄ where� = N+=N is the parti
le density in the latti
e gas pi
-ture. 1 � � is the density of va
ant sites or of parti
lesof a se
ond kind. This is the approximate form of en-tropy that's used everywhere from binary alloys (Bragg-Williams) to polymer solutions (Flory/deGennes). It isboring but useful!(4) The \mod" approa
h is this: instead of approxi-mating a realisti
 Hamiltonian, start with the 
razy in�-nite range model and solve it exa
tly - the answer is thesame in any 
ase. (paraphrasing Mermin)

B. Solution II: Saddle pointWe now solve the in�nite range model in a di�erentway. This is a rather standard (sorry, sophisti
ated) pro-
edure for any �eld theoreti
 approa
h. Use the Gaussianidentityexp(as2) = 
onstZ 1�1 dx exp�� x2a + 2sx� : (4.8)Problem IV.2 Find 
onst.The Boltzmann fa
tor for Eq 4.3 with a magneti
 �eld
an be written asexp[�hX si + �J2N (X si)2℄ =
onstZ 1�1 dx exp��2N�J x2 + (2x+ �h)X si� : (4.9)We 
hange the integration variable to � = 2x=(�J), and guesswhy?ignore the 
onstant to writeZ =Z 1�1 d� e�N�J�2=2Yi  Xsi=�1 e(�h+�J�)si! =Z 1�1 d� e�N�J�2=2[2 
osh(�h+ �J�)℄N : (4.10)It is 
onvenient to de�ne a fun
tion (a VERY importantone) A(�) asZ = Z 1�1 d� exp[�N�A(�)℄; (4.11)where A(�) = 12J�2�kT ln[2 
osh(�h+�J�)℄. For N !1, the integral is just the right one for a saddle pointevaluation - in fa
t the saddle point approximation willbe exa
t in that limit. (The reason is the same as themaximum term theorem).The partition fun
tion is given by Z =exp[��NA(�0)℄,where �0 satis�es the saddle point equation:�A(�)�� = 0 =) � = tanh(�J� + �h): (4.12)The free energy per parti
le is, of 
ourse, given byf(T; h) = A(�0): The magnetization follows from theusual derivative rulem = ��f�h = � �A��0 ��0�h � �A�h= ��A�h = tanh(�J�0 + �h) = �0: (4.13)where the last one follows from the saddle point 
ondi-tion. On
e we identify �0 as m, we are done.4



1. Comments(1) What we have done is really a HubbardStratanovi
h transformation in a trivial way!(2) It is diÆ
ult to go beyond the saddle point approx-imation.V. SOLUTION OF MEAN FIELD EQUATIONThe mean �eld equation, Eq. 2.3, 
an be solved graph-i
ally. Sin
e it is easy to redraw a straight line, we re
astthe MF equation askTqJ x = tanhx; or; ingeneral; kTqJ x = f(x); (5.1)in zero external �eld (x = �mqJ). As mentioned already,what is important is the nonlinearity of the fun
tion onRHS, and we take f(x) to be 
on
ave. The straight lineWhy? y = (kT=qJ)x obviously interse
ts f(x) at the origin, sothat x = 0 is a solution. There 
an be another solutionprovided kT=qJ is smaller than the slope of f(x) at theorigin. For the Ising 
ase, tanhx has a slope 1, so that anonzero solution is possible forkTqJ � 1: (5.2)This identi�es the 
riti
al temperature as kT
 = qJ .For any other fun
tion f(x), the 
orresponding 
ondi-tion is kT � kT
 = qJf 0(0) (5.3)where prime denotes derivative. Remember that f(x)gives the dependen
e of a single spin on the external �eldin absen
e of any intera
tion. As a result, the derivativeis the zero �eld sus
eptibility of the free spin. This 
analso be written as the 
u
tuation of the spin hs2i. Forthe Ising 
ase, this average is identi
ally 1. In general,kT
 = qJhs2i0.Problem V.1 Derive the 
onne
tion between sus
epti-bility and hs2i. A. Comments(1) T
 depends only on the number of nearest neigh-bours and no other details of the latti
e really matter.This is de�nitely wrong. Most serious is that the 1-dIsing model does not have any nonzero T
. T
 is zero.But MF gives a nonzero value.Why (2) It is possible to get better estimate of T
 by 
on-
entrating on a 
luster of neighbouring spins, rather thanone. However, other properties dis
ussed later on don't
hange mu
h.

(3) It is possible to prove, quite generally that thea
tual 
riti
al point is lower than the mean �eld 
riti-
al temperature. In other words, for the Ising model,kT
(a
tual) � qJ . Try to prove this.VI. MAGNETIZATIONWe �nd that there is a 
riti
al point below whi
h(T < T
) there 
an be nonzero magnetization, even in theabsen
e of any external �eld. This is 
alled spontaneoussymmetry breaking. The Hamiltonian has an up-downsymmetry but the ground state doesn't. However, thereis no unique ground state - for the Ising 
ase it is twofold degenerate - that saves the problem! At any giventemperature, for any �nite system, one also expe
ts, asone sums over all the 
on�gurations, to see no magnetiza-tion. It is a
tually the thermodynami
 limit that 
ausesthe ground state behaviour to 
ontinue for some �niteT , energy dominating over entropy. This spontaneousmagnetization 
an be taken as a measure of order in thesystem and is 
alled the order parameter.What happens to the order parameter as one ap-proa
hes T
?Take T�T
 to be small, expand tanhx = x�x3=3, andsolve the quadrati
 equation. You get m � (T
 � T )1=2.De�ning an exponent � bym �j t j� ; t � (T � T
)=T
; (6.1)we �nd the MF result � = 12 .A. Comments(1) This result is NOT dependent on tanh. By sym-metry, we expe
t f(x) to be an odd fun
tion. Thus, forsmall x, f(x) � a1x+a3x3+ :::, so it's again a quadrati
equation, yielding � = 12 .(2) m = 0 is always a solution. For low temperatures,the lower free energy solution 
orresponds to m 6= 0.Show this.(2) It is true most often that the mean �eld value ofm(T; h) is an upper bound for the a
tual magnetizationat h � 0.Problem VI.1 Dis
uss what happens to m as T ! 0.Problem VI.2 Can something exoti
 happen in Eq.5.1, like say f(x) = a1x + a3x3 � a5x5 (ai > 0)? Ifit does, what 
an you say about magnetization? Take asimpler 
ase f(x) = a1x � a2x2 + a3x3. Where is thetransition? See what you 
an say about the nature of thetransition.Problem VI.3 Keep T �xed and study the variation ofmagnetization with h, may be for small h. Dis
uss thebehaviour for T > T
 and T < T
.5



VII. SUSCEPTIBILITYA. Exponent 
To study sus
eptibility, we introdu
e a small external�eld h and 
onsider T 
lose to T
. Keeping leading orderterms, we have from Eq. 2.3m = T
T m+ hkT =) � � �m�h � 1T � T
 : (7.1)This is the Curie-Weiss law. De�ning the exponent 
 as� � (T � T
)�
 , we have 
 = 1. Also note that ��1would be negative below T
. This 
atastrophy is avoidedby the phase transition to a ferromagneti
 state.Note, again, that 
 = 1 is really a 
onsequen
e off(x) � x for small x. Su
h a linear response for a freespin is expe
ted unless a spin 
ouples strangely with the�eld.Frankly speaking, the Curie Weiss law follows as animmediate 
onsequen
e of the linear response. Take �0as the sus
eptibility of a free spin. This means m = �0 hin a �eld h. This �eld h, in our 
ase, is the a
tual �eldseen by a spin; it is obviously h + qJm. Ergo, m =�0(h + qJm), whi
h means � = �0=(1 � qJ�0). For anIsing type system, �0 � 1=T . Hen
e the Curie Weiss law.Note this is how the ampli�
ation fa
tor of a feedba
kampli�er is 
al
ulated!B. Exponent ÆLet us now �x the temperature at T
. We have to goto the 
ubi
 term in the expansion of tanh. To leadingorder, we have h � m3 (7.2)for m;h! 0. De�ne the exponent Æ via h � mÆ. We getÆ = 3. C. Comments(1) The sus
eptibility diverges at T
. A divergent sus-
eptibility means that the system has a large response toa small 
hange in the external parameter. The magneti-zation is nonzero as one 
rosses T
 from the high temper-ature side. This tenden
y near T
 for ordering is re
e
tedin the huge response to a small ordering �eld. Su
h di-vergen
es are hallmark of most 
riti
al points.(2) m and h are not related linearly at T
. Linearrelation would never give a divergent �! That's why Æ isimportant.(3) The 
riti
al temperature has already been de�nedas the temperature at whi
h spontaneous magnetization

(symmetry breaking - if you want to be sophisti
ated)o

urs. Let's 
all it T SB
 . Another way, easier experi-mentally, is the divergen
e of the sus
eptibility. If weredu
e the temperature from a high value, at what pointdoes � diverge ? Let's 
all it THT
 (HT for high tempera-ture). What guarantees that they are same? Sorry, thereis none!(4) It is possible to prove that a
tual 
 � 1. Try to doit. VIII. SPECIFIC HEATYou may wonder why the greek symbol � is missing.That's what we do now.In zero �eld, the free energy per parti
le is f =�kT ln[2 
osh(�qJm)℄. For T > T
, m = 0, and sof = �kT ln 2. The spe
i�
 heat is zero! For T < T
,m � (T
 � T )1=2. For small x, 
oshx � 1 + x2=2:::. Astraight forward expansion then gives a power series inT
� T , showing that for T ! T
�, spe
i�
 heat remains�nite but nonzero. In short, sp heat has a dis
ontinuityat T
. A divergent spe
i�
 heat is des
ribed by an expo-nent 
 �j T � T
 j��. In the mean �eld theory � = 0.A. Comments(1) Free energy for T > T
 is �NkT ln 2, 
oming solelyfrom the entropy of the 
ompletely disordered state. So, why?in MF, the system is in the 
ompletely disordered state(\entropi
 death") as soon as T
 is rea
hed.(2) There is a simple meaning to the transition tem-perature. Ground state energy is �qJ=2 per parti
le.The maximum energy possible (say on a hyper
ubi
 typelatti
e) is +qJ=2 when ea
h neighbouring pair is antipar-allel. kT
 is just the total width of the energy spe
trum.In the MF approximation at T
 all the states be
omeequally probable leading to the entropi
 death.(3) So far we have obtained four exponents � = 0; � =12 ; 
 = 1; Æ = 3. These are all mere 
onsequen
es of thelinear and the 
ubi
 order terms of the expansion of tanhwhose origin is in the behaviour of an isolated spin in a�eld. So where do the model, intera
tion et
 
ome in?IX. FLUCTUATION-DISSIPATION (RESPONSE)So far we have fo
used on thermodynami
 quantities.Let us now 
onsider other statisti
al quantities, e.g., 
or-relations et
. For this let us �rst see the 
onne
tion be-tween a response and mi
ros
opi
 
orrelations. To beexpli
it, we 
onsider sus
eptibility.Suppose a system is des
ribed by the hamiltonian H =Hint � hP si where Hint is the intera
ting pie
e - nomatter what it is. The magnetization is6



M = kT � lnZ�h ; (9.1)and � requires one more derivative of lnZ with respe
tto h. Take these brute for
e derivatives:M = P
on�g (P si)e��Hint+�hP siZ ;kT� = Z�1 X
on�g (X si)2e��Hint+�hP si �0�Z�1 X
on�g (X si)e��Hint+�hP si1A2 ; (9.2a)with h = 0 in the last equation. A simple rearrangementthen produ
es� = (kT )�1PiPjh(si � hsi)(sj � hsi)i : (9.3)This is the famous 
u
tuation dissipation theorem. Infa
t there is no dissipation in our 
ase and a better namewould be 
u
tuation response theorem. We have alreadyseen this for a free spin. This formula 
onne
ts � to the
orrelation in spin 
u
tuations, and not to spin 
orrela-tions expli
itly. In the high temperature phase, hsi = 0,and both are equal. This is not the 
ase in the low tem-perature phase.For a translationally invariant system, one 
an get ridof one of the sums. Choose any arbitrary site as theorigin and de�ne a pair 
orrelation fun
tiong(~r) = h(so � hsi)(sr � hsi)i; (9.4)in terms of whi
h � 
an be written as� = (kT )�1NXr g(~r): (9.5)N takes 
are of extensivity - we forget about it.Problem IX.1 Any se
ond derivative of the free energy
an be 
onne
ted to a 
orrelation fun
tion. Prove thisgeneral statement.Show, in parti
ular, that the spe
i�
 heat is relatedto the energy energy 
orrelation fun
tion. For the Ising
ase, this requires four spin 
orrelation fun
tion.A. � and Long range orderFor simpli
ity, let's repla
e the sum by an integral sothat � = R d~rg(~r). For the Ising 
ase, s is bounded andso is g. We also know that � diverges at least at T
.Only way this 
an happen is from the divergen
e of theintegral or the sum - it is the large distan
e property ofg(r) that 
ontrols the behaviour. We 
an 
on
lude that,at least at T
, g(r) 
annot be a short ranged fun
tion,

but it has to de
ay be
ause, for in�nitely large distan
esthe 
orrelations should go to zero. In d dimensions, d~r �rd�1dr so that g(r), at T = T
, has to de
ay as� g(~r) � r�(d�2+�) (9.6)with � � 0. For T 6= T
, 
onvergen
e requires that g(r)should de
ay suÆ
iently faster than this - in almost all
ases it de
ays exponentially, with a 
hara
teristi
 lengths
ale �. The de
ay for any temperature 
an be writtenas g(~r) � e�r=�rd�2+� : (9.7)To be 
onsistent with the power law de
ay at T = T
,this length s
ale � has to diverge as one approa
hes the
riti
al point � �j T � T
 j�� : (9.8)Two new exponents are required to des
ribe the de
ay ofthe two point 
orrelations, � for T 6= T
 and � for T = T
.Let's �rst evaluate them in MF, and then we dis
ussthe physi
al pi
ture. 1. Comments(1) We have now de�ned a third way of 
hara
teriz-ing the 
riti
al point. This is the temperature at whi
hlong range order sets in. Let's 
all it TLRO
 . At the spe-
ial point, there is no 
hara
teristi
 length s
ale in theproblem - the system looks similar at all length s
ales(in the large distan
e limit of 
ourse, not at the latti
espa
ing!). That's why we get power law behaviour forthe 
orrelation. Power laws do not have any length s
ale.From a rigorous point of view, \long range order"is de�ned as the 
ase when the spin spin 
orrelationdoes not go to zero in the large distan
e limit, i.e.,limr!1hs0sri = 
onst 6= 0. There is a subtle di�eren
ebetween this and the spontaneous magnetization. How-ever, the sus
eptibility is related to the 
u
tuation, whi
ha
quires a long range 
hara
ter only at T
. The 
u
tu-ation de
ays suÆ
iently fast (like exponential) even inthe ordered state. So far, one 
an prove rigorously, thatTLRO
 � T SB
 � THT
 . The last inequality is known to betrue for the Kosterlitz Thouless transition. For simpleIsing type problems, they are known to be all equal.(2) It is not guaranteed that all high temperaturephases or the low temperature phases will have exponen-tial de
ays. Power law de
ay of 
orrelation throughouta range of temperature is not unheard of. These 
asesrequire spe
ial attention.(3) A simple 
onsequen
e of immense experimental im-portan
e is that if you freeze the stru
ture of a 
riti
alsystem like a binary mixture at its 
riti
al point, it willhave 
omposition 
u
tuation at all length s
ales withoutany 
hara
teristi
 length!7



B. �, and �We utilize the simple minded pi
ture used to derivethe Curie Weiss law at the end of Se
. VII A. Start witha periodi
 �eld hr = hk exp(i ~k � ~r). The response is alsoexpe
ted to be sinusoidal, mr = mk exp(i ~k � ~r). The re-sponse of magnetization need not be lo
al. Think of anelasti
 body if you press at one point, it is going to a�e
tother points also. Sin
e the �eld is nonuniform, we de�nea nonlo
al sus
eptibility �(~r � ~r0), so that the magneti-zation 
an be written as m(~r) = mh=0(~r) + R d~r0�(~r �~r0)h(~r0), where mh=0 is the zero �eld magnetization, and� is really the pair 
orrelation fun
tion as in Eq. 9.5.Fourier transformation givesmk = mh=0k + �khk; (9.9)where �k is the Fourier transform (FT) of g(r). This �kgives the response of the system to a sinusoidally varying�eld of wave ve
tor ~k. In this Fourier spa
e, �k=0 is thezero �eld sus
eptibility that diverges. It really pays tostudy the 
orrelation fun
tions in Fourier spa
e!Now use the simple feedba
k argument, taking 
arethat in a varying �eld, magnetization is not uniform.The internal �eld is a

ordinglyPr Jm(~r), with m(~r) =Pkmk exp(i~k � ~r). For site ~r, we then havem(~r) = �0[h(~r) +XNN Jm(~r)℄; (9.10)so that after Fourier transformation,getk2 mk = �0[hk + aJk2mk℄; =) �k = �01� aJk2�0 ;(9.11)a being a 
onstant. Using �0 � 1=T , we rewrite thiswhy? equation for �k as�k � [��2 + k2℄�1; (9.12)with � �j T � T
 j�1=2. � is the length s
ale that deter-mines the de
ay of �k, the FT of g(r). Hen
e,� = 12 : (9.13)Right at T
, ��2 is zero. Thus, �k � k�2. The powerlaw de
ay of Eq. 9.6 has a FT k�2+�. So,� = 0: (9.14)C. Comments(1) �k or the Fourier transform of g(r) is importantexperimentally. This is related to the stru
ture fa
tor

or s
attering. It is measured dire
tly by light s
attering,x-ray, neutron s
attering et
.(2) The Lorentzian shape of �k is also known as theOrnstein-Zernike formula.(3) the width of the s
attering fun
tion gives the 
or-relation length.X. RELATIONS AMONG EXPONENTSSo far we have 
al
ulated �ve di�erent quantities andobtained �ve di�erent exponents. How many do we need?Are they all independent? In fa
t they are not - only twoare needed.Let's think of the pair 
orrelation fun
tion. It de
aysrapidly on
e we are on a s
ale greater than the 
orrelationlength �. Close to T
, we 
an think of the system as blobsof highly 
orrelated regions - the blobs are of size �d ind dimensions. Inside a blob (r << �), the spins are blobhighly 
orrelated and at a simple level 
an be thoughtof as at T
. On a bigger length s
ale r >> �, the blobsare independent. Basi
ally, we are arguing that it is the
orrelation length that matters - all other length s
alesare unimportant.We use this simple pi
ture for the sus
eptibility, whi
his an integral of g(r). We 
an 
uto� the integral at r � �,and inside this region g(r) � r�(d�2+�). The integralR � dr r1�� � �2�� . Using the temperature dependen
eof �, we get the temperature dependen
e of � as j T �T
 j��(2��). The net result is
 = �(2� �): (10.1)The MF exponents do obey this relation. There are manysu
h relations.Problem X.1 Take free energy � hm to argue that 2�+
 = 2� �. MF exponents satisfy this.Prove, from thermodynami
s, that 
h � 
m =T ��m�T �2h ��1T , where 
x is the spe
i�
 heat with x 
on-stant. Sin
e sp.heat is positive de�nite, show that � +2� + 
 � 2. Now, argue that equality is the general rule.A spe
ial 
ondition is required for the inequality. Findout that 
ondition.We 
an push su
h arguments a bit further. Considerthe free energy density. This goes inversely as volume.But in the thermodynami
 limit, 
orrelation length is theonly length available. No harm in expe
ting f � ��d,and using the temperature dependen
e of �, we getf �j T �T
 jd� . Compare this with f �j T �T
 j2��. As how?a 
onsequen
e, we must have 2�� = d� (HYPERSCAL-ING). Unfortunately, the mean �eld exponents have no ddependen
e. Therefore, this hypers
aling 
an be obeyedonly in a spe
ial dimension, whi
h turns out to be 4. Thisis extremely important.8



Problem X.2 What's wrong with hypers
aling? Exa
texponents below this spe
ial dimension obey hypers
alingbut not above. How 
an this be violated?XI. LANDAU THEORYWe dis
ussed MF theory in the 
ontext of the Isingmodel but also pointed out that the detailed features ofthe model are not really important. It would be natu-ral, indeed, to have a theory that does not in
lude un-ne
essary details, and still be simple and ri
h enough todes
ribe 
riti
ality. Landau developed su
h a s
heme.There are various ways of introdu
ing the Landau the-ory. We take the sequel of the MF theory developed inSe
. 4. In the in�nite range model, we landed on an in-tegral involving A whi
h was easy to ta
kle. At the endwe ultimately didn't do any 
omputation and the freeenergy was given by A at its minimum. For a given Tand h, this A depends on �, that turns out to be themagnetization. The Landau approa
h is based on this.Anti
ipating the result, we de�ne A(m;h; T ), to be 
alledthe Landau fun
tion or Landau free energy, or extremelyloosely free energy, su
h that its minimum with respe
tto m should des
ribe the thermodynami
 property. Wealready assumed that m is homogeneous in spa
e.Ifnot? First a few te
hni
ality. The free energy we get from,say, the Ising Hamiltonian is a fun
tion of T and h - theintensive quantities or the externally imposed variables,f = f(T; h). As you understand, these are the variablesthat 
ouple to \operators" whi
h depend on the internaldegrees of freedom. These operators, after the stat me
haveraging, are the thermodynami
 quantities that shouldbe proportional to the size of the system. Free energy it-self is su
h an example. The intensive variables do nots
ale with size. The magnetization 
omes from a deriva-tive of this free energy, m = ��f=�h. The extensivity ofthe derivative is a result of the same of f . It is, therefore,
onvenient to divide by the volume to get \densities".Sin
e the free energy 
ontains most of the informationabout the 
riti
al singularity, it would be ni
e to have asimple expansion around say the 
riti
al point (T
; h =0). Su
h an expansion has to be highly singular be
ause,as we now know, m (�rst derivative) is well behaved onthe high temperature side but is a multivalued fun
tionfor h = 0 when T < T
. This is hopeless! The situation isslightly better if one 
hooses some other thermodynami
potential.Di�erent thermodynami
 potentials 
ome throughLegendre transformation. We 
onsider A(T;m) =f(T; h) � hm (We are sloppy with the variables.) Anexpansion in m may not be bad be
ause h � ��A=�mand �h=�m � ��1 ! 0, as T ! T
. So 
rudely speakingthe derivatives one would need for a Taylor expansion arenot that bad. But, see, below T
, two phases 
oexist atzero �eld. This means that any value of magnetization

(within a range) is possible by appropriate 
hoi
e of thevolumes of the two phases, in zero �eld. This indi
atesthe existen
e of a 
at region in the A(m;T ) 
urve. That'sagain a sour
e of diÆ
ulty.The fun
tion we 
onsider is not really the thermody-nami
 potential, be
ause the 
onjugate variables (h;m),whi
h are to be 
oupled by the equation of state, aretreated as independent. The equilibrium value of m
omes only after minimization. The gain is an ana-lyti
 fun
tion. (Why not 
ompare with the saddle pointmethod dis
ussed earlier?)What about the stru
ture of this Landau fun
tion? Wewant it to respe
t the symmetries of the problem. For theIsing model, there is an up down symmetry that's brokenin the low temperature phase. We expand A(T;m) in m,and use this symmetry to throw away terms not allowed.The T dependen
e will be handled separately. In short,for the problem in hand, A(m) has to be an even fun
tionof m. If there is no external magneti
 �eld, there shouldbe no linear term. Hen
e,A(m) = a0(T ) + a2(T )m2 + a4(T )m4 + ::: (11.1)where the 
oeÆ
ients ai depend only on T . We have al-ready observed that the se
ond derivative of A goes tozero at T
. Nothing spe
ial 
an be said about a4. As-sume, and just assume, that these 
oeÆ
ients are ana-lyti
 fun
tions of t, amenable to Taylor series expansion.Obviously we will havea0(T ) = a00 + ::: (11.2a)a2(T ) = a21(T � T
) +O(t2) (11.2b)a4(T ) = a40 + ::: (11.2
)(11.2d)Important observations for us are (i) a2 
hanges sign atT
, be
oming negative for T < T
, (ii) a4 is positive. a4
an be zero or negative. Those 
ases lead to multi
riti-
ality and require spe
ial attention.Problem XI.1 Expand A of Eq. 4.11 and get the Lan-dau expansion.Next, minimize A.m[a2(T ) + 2a4(T )m2℄ = 0 =) m = 0;m = (a2=2a4)1=2(11.3)For T > T
, only real solution is m = 0. Sin
e a2 < 0 forT < T
, we have m �j t j1=2 - a result we already know.The exponent 1=2 is really a 
onsequen
e of linear t inEq. 11.2b.To get sus
eptibility, add �hm to Eq. 11.1, and thenminimize. The result is 
 = 1. This we 
ould haveguessed. The 
oeÆ
ient of m2, after all, is related to theinverse sus
eptibility. Also, re
ognize that taking su
hsu

essive derivatives and then h = 0, is equivalent to9



look for the 
urvature of the Landau fun
tion - it's inversegives the sus
eptibility.Try to understand these from a plot of A(m) with mfor various T .We 
an even go beyond exponents. Let's de�ne am-plitudes C� as �� � C� j t j�
 for t><0. For T > T
,�+ � 2a2(T ), while for T < T
, using the value of m,�� � 4a2(T ). The exponents are the same on both sidesof T
, but the amplitudes are system spe
i�
 be
ause the
oeÆ
ients of the Landau fun
tion are. The surprisingfeature is that, the amplitude ratio C+=C� = 2 is a uni-versal number independent of the details. As a matterof fa
t, for ea
h quantity that exists on both sides of T
,one 
an de�ne these amplitudes, and, believe it or not,the ratio is a universal number.A. Comments(1) Why is the Landau fun
tion not a thermodynami
potential? For the low temperature phase, there is anunstable region with a negative sus
eptibility. A ther-modynami
 potential 
annot have this. This is a 
har-a
teristi
 of any mean �eld solution. For example, vander Waal equation of state shows this in the isotherms.The solution is to draw the 
onvex envelope that getsrid of the unstable bran
h. This is equivalent to drawingthe 
ommon tangent through the two minima. This, inturn, 
orresponds to the famous equal area 
onstru
tionof Maxwell.(2) Taking Legendre transforms is quite 
ommon. Thisis also done in all �eld theories purporting to dis
uss bro-ken symmetries. The 
oeÆ
ients give the vertex fun
-tions.If you think a little bit, you will realize that, in a latti
egas analogy, this transformation 
orresponds to a 
hangeHOW?in the ensemble.XII. POTTS MODEL - A CONTRASTJust to show the power of the mean�eld theory andin the pro
ess learn about a very important model, westudy the Potts model.The model involves a generalization of the Ising vari-able. Suppose that at ea
h site there is a spin si that 
antake q possible values. We don't 
are what the valuesare or what the obje
ts are. There is an intera
tion thatfavours neighbors of equal spin values. The mean �eldhamiltonian isH = � JN Xij ÆKr(si; sj); (12.1)where ÆKr(si; sj) is the Krone
ker delta being equal to 1if si = sj , and zero otherwise. For q = 2, this model 
anbe redu
ed to the Ising model.

Suppose xp be the fra
tion of spins that are in spinstate p, p running from 1 to q. Sure, Pxp = 1.For large N , the energy and entropy are justEN = � 12JXp x2p; and SN = �kXp xp lnxp; (12.2)[remember � ln �?℄, so that the free energy per spin is�A =Xp (xp lnxp � 12 JkT x2p): (12.3)Compare this with the Ising 
ase, Eq. 4.5. It looks likejust a sum of independent Ising 
ases, but it isn't be
auseof, ah! well, think why.Motivated by the Ising 
ase, we like to de�ne an or-der parameter that would des
ribe the ordered state.Suppose, p = 1 is the preferred state. Let us de�nem (0 � m � 1) throughx1 = 1q [1 + (q � 1)m℄; (12.4a)xp = 1q (1�m); for p = 2; :::q; (12.4b)put them ba
k in Eq. 12.3, and expand in m to get�A(m) = �A(0) + 1 + (q � 1)mq ln[1 + (q � 1)m℄+q � 1q (1�m) ln(1�m)� q � 12q JkT m2= (q � 1)[q � �J2q m2 � q � 26 m3 + q2 � 3q + 312 m4 + :::: (12.5)If you have already solved the problem of exoti
 f(x),you know that the negative 
ubi
 term implies a �rstorder transition. The appearan
e of the 
ubi
 term isnot surprising be
ause no inversion symmetry is expe
tedunless q = 2. At that q the 
oeÆ
ient of the 
ubi
 termvanishes as for the Ising 
ase. For all real q, the m4 termis positive.The 
on
lusion is that the Potts model, in the mean�eld approximation, shows 
riti
al behaviour only for q �2 but a �rst order transition for q > 2.Problem XII.1 Show that for q > 2, the transitionpoint is kT
 = J(q�2) [(q�1) ln(q�1)℄�1. The nonzero\magnetization" at T
 is m
 = (q � 2)=(q � 1), and thelatent heat is L = J(q � 2)2=[2q(q � 1)℄.A. Comments(1) We see that the transition be
omes �rst order forq > 2 for all d. It is known exa
tly that for d = 2, thetransition is not �rst order for q � 4. This 
riti
al valueof q is also d dependent. For d > 4, the 
riti
al value is 2as in the mean �eld theory. Try to get the 
riti
al valueas a fun
tion of d.(2)10



XIII. VALIDITY OF MFTWe have derived the mean �eld theory, tried to un-derstand the approximations made, but as yet haven'tanswered the question of its validity for a given hamilto-nian. This is done through Ginzburg 
riterion.We repeatedly said that we are ignoring 
u
tuations.A quantitative statement would be this: Choose an ap-propriate volume 
 - whi
h is large 
ompared to the
hara
teristi
 mi
ros
opi
 volume but less than the to-tal volume - wait! I'll spe
ify) - and the 
u
tuation ofmagnetization in this volume must be less than the mag-netization M
in that region itself, ÆM2
 << M2
. Letthe number of spin in that region be N
. By de�nition,the mean square 
u
tuation isÆM2
 = *"Xi (si � hsi)#2+ = N
X
 [hs0sii � hsi2℄:(13.1)If 
 were the total volume, then it would have been thetotal sus
eptibility �(~k = 0) in the notation of Se
. 9.Now near the 
riti
al region the 
orrelation length be-
omes very large, and this is the only length that 
on-trols the behaviour (that's the origin of universality). Soit is natural to 
hoose 
 � �d, as we did for hypers
al-be-ware ing. As T ! T
, this volume be
omes very large so thatits per spin sus
eptibility 
an very well be taken as thesus
eptibility of the bulk. This enables us to write the
u
tuation asÆM2
 = 
onst N
�(~k = 0; t); (13.2)where the temperature dependen
e is shown expli
itly.Problem XIII.1 Using the expression for pair 
orrela-tion fun
tion, try to justify this formula.The magnetization is M
 = N
m, m being the bulkmagnetization per spin. The 
ondition to be satis�ed isN
m2 >> 
onst �(~k = 0; t): (13.3)The number of spins in the volume is expe
ted to go likeN
 � 
 � �d. Use the exponents �; 
, and �, to writethe above inequality as
onst t�
 << t�d�+2� : (13.4)Consequently, the 
ondition for the validity of MFT 
anbe stated as d� > 
+2�. If you re
all the exponent rela-tions, then 
+2� = 2��, so that the Ginzburg 
riterionis similar to hypers
aling d� > 2 � �. In other words,we 
an de�ne a 
riti
al dimension d
 = (
 + 2�)=� =(2� �)=� above whi
h the mean �eld theory is self 
on-sistent in the sense that the 
u
tuation 
an really beignored. If ne
essary, they 
an be treated perturbatively.Use the mean �eld exponents to get d
 = 4. This spe-
ial dimension is 
alled the UPPER CRITICAL DIMEN-SION.

A. Comments(1) One should be 
areful about the 
onne
tion be-tween 
 and �. It is better to 
all 
 the 
orrelationvolume. This may have some other dependen
e on �, asfor example in dipolar magnets. Su
h an extra fa
tor of� 
hanges the UCD.(2) Loosely speaking, if we are at a very high temper-ature, then we do not expe
t 
u
tuations to dominate.One 
an always trust MFT in a very high temperatureregime. The question one 
an then ask, if we start fromsu
h a region how 
lose should we be to T
 to observe de-viations? This 
an be estimated. A 
rude way to do thiswould be to 
ompare the di�erent length s
ales. Theuniversal 
riti
ality is observed in a regime where thebasi
 mi
ros
opi
 length s
ales are not important. Wedemand that in the 
riti
al region the 
orrelation length� = �0t� should be greater than, say, the range of inter-a
tion, or the latti
e spa
ing et
. Quite often, the mi
ro-s
opi
 length turns out to be pretty large requiring verysmall t, and one ends up seeing the 
onventional MF be-haviour. This happens for old fashioned super
ondu
tors- but that's a di�erent, and not so simple, story.XIV. GOING BEYOND MFTHow do we go beyond MFT? We have seen that MFTgives universal quantities but they are too universal to betrue! No doubt, its a failure of the Landau expansion butin what sense. We will see later on that any attempt tomodify this fun
tion fails miserably. We have also seen,through Ginzburg 
riterion, that 
u
tuations are impor-tant. The right step evidently would be to in
orporate
u
tuation.If 
u
tuations are important then uniform m is not agood approximation. Let's go ba
k to Eq. 4.11. A saddlepoint evaluation was possible be
ause of N (or equiva-lently volume) in the exponent. If �(~r) has spa
e depen-den
e then one expe
ts this to be 
hanged to R d~r A[�(~r)℄,and the �nal integral (a fun
tional integral) over all �(~r).But this as su
h is not suÆ
ient to handle 
u
tuation aswe have seen in Se
 9 � a k2 term is needed.Sin
e A is a s
alar, we take,A[m(~r)℄ = (rm)2 + a2m2 + um4 � hm: (14.1)This is 
alled the Landau-Ginzburg hamiltonian (or a �4�eld theory. The partition fun
tion is given byZ = Z Dm exp[� Z A[m(~r)℄℄: (14.2)If we now want to do a saddle point approximation withuniform m, we re
over the Landau fun
tion of Eq. ??.Any thing better is hard!11



A. Gaussian ModelTo have a feeling for 
u
tuation, we ignore the m4term, and set h = 0. The partition fun
tion then involvesgaussian integrals, and is doable. The mm 
orrelationfun
tion is easily seen to be given by Eq. 9.12, with��2 = a2. The exponents �; � are the same as there. Infa
t there is no 
hange in most of the exponents ex
eptfor �. For this we need the free energy.Problem XIV.1 Go to Fourier spa
e, use equipartitiontheorem and get the 
orrelation fun
tion.It is easy to show that the spe
i�
 heat is given by theintegral 
 � Z � ddk[a2 + k2℄�2; (14.3)where � is a 
uto� that may 
ome from latti
e spa
inget
. Res
ale k by ka�1=22 , so that for T ! T
, and d < 4,
 � a�(4�d)=22 . This gives a DIVERGENT spe
i�
 heatwith � = (4 � d)=2, for d < 4. For d > 4, the integralin the limit T ! T
 diverges in a way that 
an
els outthe s
aling fa
tor, leaving behind a �nite answer. Thatmeans, for d > 4 the spe
i�
 heat has a dis
ontinuity atthe 
riti
al point as in MFT. Flu
tuations have no e�e
tas predi
ted by the Ginzburg 
riterion.The model we solved is 
alled the Gaussian model andis the starting point to understand the full model. It ishowever ill de�ned for T < T
.Also note that, with this �, the exponents do satisfythe hypers
aling for d < 4. 4 again turns out to be theborder line dimension.XV. O(N) MODELSThe Landau theory 
an be generalized to any symme-try group. A 
ase that o

urs quite often is the O(n)symmetry, where ~m, the magnetization, is an n dimen-sional ve
tor, and the system has full rotational invari-an
e with respe
t to ~m. For example, n = 3 
orrespondsto the Heisenberg model with three 
omponent spins,H = �JP~si � ~sj .The Landau Ginzburg model 
an be written asA[~m(~r)℄ = (r~m)2 + a2m2 + um4 � hm�; (15.1)where (r~m)2 =Pn�=1(rm�)2, and the magneti
 �eld isin the � dire
tion.In MFT, we take uniform magnetization. No need forrepetition to show that the magnetization shows identi
albehaviour as for the Ising 
ase.For sus
eptibility et
 one has to worry about the 
om-ponents. Similarly, the pair 
orrelation fun
tion dependson the spin 
omponent index. You must have re
ognized

by this time that this 
orrelation fun
tion 
omes formdouble derivatives with m. In the Fourier spa
e, we have,in zero �eld,[g��(~k)℄�1 = Æ�� [k2 + a2 + 4a4m2℄ + 8a4m�m� : (15.2)The magnetization dire
tion is 
alled the longitudinaluniform m is not a good approximation. Let's go ba
kto Eq. 4.11. A saddle point evaluation was possible be-
ause of N (or equivalently volume) in the exponent. If�(~r) has spa
e dependen
e then one expe
ts this to be
hanged to R d~r A[�(~r)℄, and the �nal integral (a fun
-tional integral) over all �(~r). But this as su
h is notsuÆ
ient to handle 
u
tuation as we have seen in Se
 9� a k2 term is needed.Sin
e A is a s
alar, we take,A[m(~r)℄ = (rm)2 + a2m2 + um4 � hm: (15.3)This is 
alled the Landau-Ginzburg hamiltonian (or a �4�eld theory. The partition fun
tion is given byZ = Z Dm exp[� Z A[m(~r)℄℄: (15.4)If we now want to do a saddle point approximation withuniform m, we re
over the Landau fun
tion of Eq. ??.Any thing better is hard!A. Gaussian ModelTo have a feeling for 
u
tuation, we ignore the m4term, and set h = 0. The partition fun
tion then involvesgaussian integrals, and is doable. The mm 
orrelationfun
tion is easily seen to be given by Eq. 9.12, with��2 = a2. The exponents �; � are the same as there. Infa
t there is no 
hange in most of the exponents ex
eptfor �. For this we need the free energy.Problem XV.1 Go to Fourier spa
e, use equipartitiontheorem and get the 
orrelation fun
tion.It is easy to show that the spe
i�
 heat is given by theintegral 
 � Z � ddk[a2 + k2℄�2; (15.5)where � is a 
uto� that may 
ome from latti
e spa
inget
. Res
ale k by ka�1=22 , so that for T ! T
, and d < 4,
 � a�(4�d)=22 . This gives a DIVERGENT spe
i�
 heatwith � = (4 � d)=2, for d < 4. For d > 4, the integralin the limit T ! T
 diverges in a way that 
an
els outthe s
aling fa
tor, leaving behind a �nite answer. Thatmeans, for d > 4 the spe
i�
 heat has a dis
ontinuity atthe 
riti
al point as in MFT. Flu
tuations have no e�e
tas predi
ted by the Ginzburg 
riterion.12



The model we solved is 
alled the Gaussian model andis the starting point to understand the full model. It ishowever ill de�ned for T < T
.Also note that, with this �, the exponents do satisfythe hypers
aling for d < 4. 4 again turns out to be theborder line dimension.XVI. O(N) MODELSThe Landau theory 
an be generalized to any symme-try group. A 
ase that o

urs quite often is the O(n)symmetry, where ~m, the magnetization, is an n dimen-sional ve
tor, and the system has full rotational invari-an
e with respe
t to ~m. For example, n = 3 
orrespondsto the Heisenberg model with three 
omponent spins,H = �JP~si � ~sj .The Landau Ginzburg model 
an be written asA[~m(~r)℄ = (r~m)2 + a2m2 + um4 � hm�; (16.1)where (r~m)2 =Pn�=1(rve
k)g)℄. In the limit N ! 1,the sum in the integral 
an be repla
ed by an integral,and the whole thing 
an be evaluated by a saddle pointmethod (stationary phase method). I leave the detailsfor you to work out and get the exponents. It is straightforward but needs some work.The point of the exer
ise is to observe the introdu
-tion of the delta fun
tion to represent a 
onstraint. Withthe Fourier representation, one 
an even think of a modi-�ed hamiltonian (with 
omplex parameters - but rest as-sured every thing is real!). Note the similarity with theLagrange undetermined multiplier method to ta
kle 
on-straints. The sermon here is that, given a Hamiltonian,if I 
an identify the order parameter as a fun
tion of themi
ros
opi
 variables, I 
an introdu
e it as a Æ fun
tionand obtain Z(m) as a fun
tion of the order parameterm. The e�e
tive Hamiltonian is expressed in terms of m- and that's the Landau-Ginzburg hamiltonian.A. Comments(1) The exponents of the spheri
al model are relatedto the exponents of the Gaussian model (GM). Any ex-ponent x for the gaussian model and the 
orrespond-ing one xs for the spheri
al model are related by xs =x=(1 � �), where � = (4 � d)=2, the spe
i�
 heat expo-nent for GM. The spe
i�
 heat exponents are related by�s = ��=(1� �). This is 
alled Fisher renormalization.This o

urs whenever there is a 
onstraint in the system,and original � > 0. The spe
i�
 heat turns out to benon-divergent.(2) The spheri
al model is also the n!1 limit of theO(n) model.

(3) Study the low temperature behaviour of the spher-i
al model and you will �nd exa
t similarity with Bose-Einstein 
ondensation. Any spe
ulation on what hap-pened to quantum features?XVII. PROBLEMSProblem XVII.1 Start with the Ising Hamiltonian andde�ne the order parameter as M =P si. Using this as a
onstraint, with ne
essary approximations or expansions,obtain Eq. 15.4.Problem XVII.2 Test your expertise of MFT by deriv-ing the van der Waal equation of state for n parti
les withpairwise intera
tion as given by the hamiltonianH = nXi=1 p2i2m + 12Xij U(~ri � ~rj): (17.1)Take U(~r) =1 if r � r0.Problem XVII.3 Cubi
 systems. Spins on a 
ubi

rystal are expe
ted to have terms of 
ubi
 symmetry.Consider n 
omponent spins. The L-G form isH = a2(T )m2 + um4 + v nX�=1m4�: (17.2)Dis
uss the mean �eld behaviour for positive and negativeu; v.Problem XVII.4 Flu
tuation driven �rst order tran-sition: Consider super
ondu
tivity (or s
alar ele
trody-nami
s). It requires a 
omplex order parameter  and ave
tor potential ~A. The L-G form isF ; ~A = Z d~r [a2 j  j2 +u j  j4 +
 j (~r� iq0 ~A) j2 +�Xi>j (rjAi �riAj)2℄: (17.3)It is quadrati
 in A, DO the averaging over A to de�nean e�e
tive L-G form for  . Show that the free energy,in the pro
ess, a
quires a 
ubi
 term that makes the tran-sition �rst order. Are you surprised?
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