The purpose of these lectures is to show how one handles an interacting system in a mean field way. The same approximation
will be derived in various ways illuminating different aspects of the approximation. All will be based on the Ising model. Certain
generalizations will also be considered.
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I. MODEL AND DEFINITIONS

The model system is the Ising model described by the
Hamiltonian

H:—JZ SiSj_hZSi

<ij> i

(1.1)

where s; = +1 is a spin at the ith site of the lattice, and
< 1j > represent nearest neighbour pairs. For simplicity
we consider only ferromagnetic interaction (J > 0). The
range of interaction will be relaxed in certain cases.

The quantities of interest are (i) magnetization m =
(s) = (O_s;)/N, where N is the total number of spins,
(ii) susceptibility x = dm/0h |p—o, the response of the
system to a small external magnetic field, (iii) specific
heat ¢, = Ou/O0T, where u is the average internal energy
per spin, etc.

Convention: Total thermodynamic quantities to be de-
noted by capital letters and densities( i.e., per particle)
by corresponding small letters.

II. AGE-OLD MEAN FIELD THEORY

Start with the Hamiltonian, Eq 1.1, and focus on one
particular spin, say s;. There are two fields acting on it,
(i) the external one, h, and (ii) the field by the neigh-
bouring spins. We can write the hamiltonian for the ith
spin as

H; = —Si(JZSj + h) (2.1)

with the summation over the interacting spins only. The
field due to the interacting spins is a fluctuating object
- and is the source of difficulty. We replace this by the
average field produced by them, i.e., replace s; by (s),
and forget about fluctuations. The name of the game is
to decouple the spins to reduce the interacting system
to a noninteracting one (the whole system is a uniform
background, as in Hartree, Hartree-Fock, Thomas-Fermi
ete).

A. Single spin case

Take H = —hs for a single spin s = £1. The partition
function is Z = 2 cosh(h/kT), and (s) = tanh(h/kT).

Problem I1.1 Derive these.

Evaluate susceptibility for h = 0 and h # 0. Note the

drastic difference in behaviour as T — 0. Why? If you
don’t see why, try H = —A s — hs, with A # 0 fized.

B. Effective field case

The mean field hamiltonian for any spin is now

H;, = —(¢Jm + h)s; (2.2)
where ¢ is the coordination number of the lattice (i.e.
the number of nearest neighbors). Note that all detailed
structures of the lattice are lost - ¢ alone cannot describe
a lattice!

Now, selfconsistency requires that the average spin of
the ith particle (s;) evaluated with the meanfield hamil-
tonian of Eq. 2.2 be the same as (s) used there - after
all, the spins are all equivalent.

Using the results of the single spin case, we have

‘ m = tanh(qgJmg + hf) ‘ (2.3)

where 3 = (kT)~!. This is the famous meanfield equa-
tion.

C. Comments

(1) What is the approximation: s;’s are random vari-
ables, with more or less well behaved statistics. The ef-
fective field involves a sum of these random variables, and
so we expect the sum to approach its average (Central
Limit Theorem), if a large number of spins are involved.
In other words ¢ should be large (— oo0). MF approxi-
mation is exact in infinite dimensions.

(2) Is tanh sacred?: NO! We got tanh because of
Ising(i.e. two component) spins. For arbitrary spins, or
with arbitrary probability distribution, we may replace
tanh by an appropriate function f with f(0) = 0. The
analog of Eq. 2.3is m = f(¢JmpB+h3). The “universal”
features of the MF equation will turn out to be indepen-
dent of the detailed nature of f, but certain features do
matter. Incidentally, the most crucial property required
is the nonlinearity of f.

(3) Note that MF is just a feed back mechanism - and is
of much wider applicability than stat mech. For example:
Clausius-Mosotti, Lorentz-Lorenz equations in electrody-
namics etc. Think of amplifiers/oscillators in electronics.

ITII. VARIATIONAL PRINCIPLE

A general result: We want to estimate the free energy
of a system described by a Hamiltonian H, F = —kT'In Z
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where Z = Tr e #H, Tr being the trace taken over the
states of H. We are writing “Tr” for convenience. For
a classical case, it would mean a sum over all config-
urations. Now, choose another Hamiltonian Hy, with
free energy Fo = —kT'In Zy, where Zy = Trexp(—3H,).
Using the convexity relation (exp(z)) > exp(z), one can
show that

F < Fy+(H — Ho)o (3.1)
where the average on the right hand side is done with the
Boltzmann weight exp(—8Hy).

Problem III.1 Derive this. Guess why convexity is im-
portant.

As in any variational calculation, one generally chooses
H, with some adjustable parameter so that the right
hand side can be minimized to get the best estimate.

Let us now use this variational principle. Since, a non-
interacting hamiltonian is the one we can solve best, we
choose

(3.2)

Hy = —/\Zsi.

where A is the effective field we like to determine. Cal-
culating averages with this hamiltonian is simple. The
final answer is

F < —NkT'In(2cosh BX) — $NqJm* — Nhm + NAm
(3.3)

with m = tanh(SA). We now minimize the RHS of Eq.
3.3 with respect to A. Use Nm = —9F,/d\ to get

0 om
This identifies A = h + gJm, as in Eq. 2.2. As before,

one ends up with the MF equation of Eq. 2.3.

(3.4)

Problem II1.2 Derive Eqs. 3.3, 3.4.

IV. INFINITE RANGE MODEL

We have already said that the MF approximation
works best if the number of neighbours is large. What
we did was to replace the fluctuating spins by their av-
erages, (s) = >_; s;/(IN — 1), excluding the ith spin from
the sum. We now make the following replacement:

_12887

i#]

Js; Zs] — qJ(s)s; = 4.1)

where the first sum involves only nearest neighbours
while the last one involves all. The Ising Hamiltonian
of Eq. 1.1 can then be replaced by

(4.2)

J
H = —Ngsisj'.
L)

The summation now extends over all possible pairs of the
system. This is the infinite range (but infinitely weak(!)
as N goes to oo0) model. The folklore is that all weak long
range interactions lead to a mean field type description.

Question: Is 1/N necessary? Yes! Because, we have
to ensure a proper thermodynamic limit (N — o0).
Look at the ground state. For ferromagnetic interactions
(J > 0), the ground state has all parallel spins. There
are N(N — 1)/2 pairs. So the energy is proportional to
N(N —1). However, we want (or rather demand) that
the energy be proportional to N (extensivity of thermo-
dynamic quantities). This is ensured by the 1/N in the
coupling constant.

A. Solution I: Maximum term method

Since all pairs are interacting, we can write the inter-
action term, upto a trivial constant, as

H = —i(zs )2 = CYE

2N 2N (43)

where, as before, M is the total magnetization (no aver-
aging yet). Since the energy of a configuration is com-
pletely determined by M (NOT for Eq. 1.1), doing the
configurational sum is easy. We however need the degen-
eracy of a state of magnetization M. Suppose N, spins
are up. Then Ny = (M + N)/2. The degeneracy is then
given by N!/(N (N — N3)!).
The partition function is given by

M=+N N
—_— —BJM?/2N). (4.4
= Y Moy VAN, ()
M=—
An exact evaluation, for finite N is not possible. For

large N, we use the maximum term method where it
is assumed that the partition function is dominated by
the maximum term of the summand. To determine the
maximum term, use the Stirling approximation (In N! =
N(In N — 1), good even for small N), and extremize
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M? —[InN!—
IN [In

InL(M + N)l —In (N = M)!] (4.5)

treating M as a continuous variable. Do it and you will
get back the MF equation Eq. 2.3.

Problem IV.1 Do it. For practice, also keep the mag-
netic field term.

D=



1. Comments

(1) Have we made any approximation in keeping only
the maximum term? Of course not, but why not? Look,
we are interested in the free energy per particle, not the
partition function per se. So let’s consider a case Z =
szlv 2, for N particles. N is a measure of the number
of distinct states. Suppose z,, is maximum for m = mazx.
Note that z,, is not just the Boltzmann factor, it includes
“entropy”, AND it is strictly nonnegative. We have the
following trivial inequality,

NzZmaz > Z > Zmaa- (46)
which implies,
1 1 1 1
%—}— nj:;ax ZNIHZZNanmax- (4.7)

Now if the growth of A/ is some power of N, and NOT
EXPONENTIAL, then, in the limit N — oo, the two
bounds above become equal. Hence, in the thermody-
namic limit (i.e. N — o0) the free energy per particle
is given by the free energy of the maximum term. So,
Mean field is exact only in the thermodynamic limit, not
for finite V.

Question: Why doesn’t it work for the nearest neigh-
bour problem?

(2) Why is it solvable: Let’s think of it in a different
language, namely the lattice gas. The two states for each
site can be thought of as occupied (s = +1) or vacant
(s = —1) . Then the interaction depends only if parti-
cles are nearest neighbours (NN). One therefore needs to
know the short distance behaviour of the spins, i.e., for a
given configuration how many form NN pairs. This is a
complicated issue. At the simplest level one would argue
that the probability of getting two particles as NN is just
(density)?, density being the probability. What is needed
is the conditional probability - this is a product of two
unconditional ones only if there is no correlation. This
turns out to be the case for the infinite range model.

(3) The Stirling approximation gives the log of the
degeneracy factor as N[plnp + (1 — p)In(1 — p)] where
p = N4 /N is the particle density in the lattice gas pic-
ture. 1 — p is the density of vacant sites or of particles
of a second kind. This is the approximate form of en-
tropy that’s used everywhere from binary alloys (Bragg-
Williams) to polymer solutions (Flory/deGennes). Tt is
boring but useful!

(4) The “mod” approach is this: instead of approxi-
mating a realistic Hamiltonian, start with the crazy infi-
nite range model and solve it exactly - the answer is the
same in any case. (paraphrasing Mermin)

B. Solution II: Saddle point

We now solve the infinite range model in a different
way. This is a rather standard (sorry, sophisticated) pro-
cedure for any field theoretic approach. Use the Gaussian
identity

o

exp(as®) = const/

— 00

22
dz exp <—7 + 25:5) . (4.8)

Problem IV.2 Find const.

The Boltzmann factor for Eq 4.3 with a magnetic field
can be written as

exp[,@hz si + %(Z 5)?] =
const /00 dz exp <—2ﬂ—]§x2 + (2z + Bh) Z si> . (4.9

We change the integration variable to A = 22/(3.J), and
ignore the constant to write
7 =
o0
/ A\ o= NBIN?/2 H ( Z e(ﬁh-&-BJ)\)si) _
- i si==+1

/00 dX e_N’BJ)‘z/Q[Q cosh(Bh + BIN)N. (4.10)

It is convenient to define a function (a VERY important
one) A()) as

Z= /OO dX\ exp[—NBA(N)], (4.11)

where A(X) = $JA? — kT In[2 cosh(Bh + 3JN)]. For N —
00, the integral is just the right one for a saddle point
evaluation - in fact the saddle point approximation will
be exact in that limit. (The reason is the same as the
maximum term theorem).

The partition function is given by Z =exp[—8N A(Ao)],
where \q satisfies the saddle point equation:

DA(N)

S =0= X = tanh(BJ\ + Bh).

(4.12)

The free energy per particle is, of course, given by

f(T,h) = A(Xo). The magnetization follows from the
usual derivative rule
_Of  0A 0\ 0A
~ Oh  OX Oh  Oh
0A
=—on = tanh(B8J Ao + Bh) = Ag. (4.13)

where the last one follows from the saddle point condi-
tion. Once we identify Ag as m, we are done.

guess
why?



Why?

Why

1. Comments

(1) What we have done is really a Hubbard
Stratanovich transformation in a trivial way!

(2) It is difficult to go beyond the saddle point approx-
imation.

V. SOLUTION OF MEAN FIELD EQUATION

The mean field equation, Eq. 2.3, can be solved graph-
ically. Since it is easy to redraw a straight line, we recast
the MF equation as

kT

q—JCU = tanh z, or, ingeneral, Z—?az = f(z), (5.1)
in zero external field (z = fmgqJ). As mentioned already,
what is important is the nonlinearity of the function on
RHS, and we take f(x) to be concave. The straight line
y = (kT /qJ)z obviously intersects f(z) at the origin, so
that x = 0 is a solution. There can be another solution
provided kT'/qJ is smaller than the slope of f(z) at the
origin. For the Ising case, tanh z has a slope 1, so that a
nonzero solution is possible for

(5.2)

This identifies the critical temperature as kT, = q.J.
For any other function f(z), the corresponding condi-
tion is

kT < kT. = qJ £'(0) (5.3)

where prime denotes derivative. Remember that f(z)
gives the dependence of a single spin on the external field
in absence of any interaction. As a result, the derivative
is the zero field susceptibility of the free spin. This can
also be written as the fluctuation of the spin (s?). For
the Ising case, this average is identically 1. In general,
kT, = qJ<82>0-

Problem V.1 Derive the connection between suscepti-
bility and (s?).

A. Comments

(1) T, depends only on the number of nearest neigh-
bours and no other details of the lattice really matter.
This is definitely wrong. Most serious is that the 1-d
Ising model does not have any nonzero T.. T, is zero.
But MF gives a nonzero value.

(2) Tt is possible to get better estimate of T, by con-
centrating on a cluster of neighbouring spins, rather than
one. However, other properties discussed later on don’t
change much.

(3) It is possible to prove, quite generally that the
actual critical point is lower than the mean field criti-
cal temperature. In other words, for the Ising model,
kT.(actual) < ¢J. Try to prove this.

VI. MAGNETIZATION

We find that there is a critical point below which
(T < T.) there can be nonzero magnetization, even in the
absence of any external field. This is called spontaneous
symmetry breaking. The Hamiltonian has an up-down
symmetry but the ground state doesn’t. However, there
is no unique ground state - for the Ising case it is two
fold degenerate - that saves the problem! At any given
temperature, for any finite system, one also expects, as
one sums over all the configurations, to see no magnetiza-
tion. It is actually the thermodynamic limit that causes
the ground state behaviour to continue for some finite
T, energy dominating over entropy. This spontaneous
magnetization can be taken as a measure of order in the
system and is called the order parameter.

What happens to the order parameter as one ap-
proaches T,7

Take T — T, to be small, expand tanh z = 2 —2° /3, and

solve the quadratic equation. You get m ~ (T, — T)'/2.
Defining an exponent 3 by
m~|t|?, t=(T-T.)/T., (6.1)

we find the MF result 8 =

A. Comments

(1) This result is NOT dependent on tanh. By sym-
metry, we expect f(z) to be an odd function. Thus, for
small z, f(x) ~ a;z + a3z + ..., s0 it’s again a quadratic
equation, yielding 8 = %

(2) m = 0 is always a solution. For low temperatures,
the lower free energy solution corresponds to m # 0.
Show this.

(2) It is true most often that the mean field value of
m(T, h) is an upper bound for the actual magnetization
at h > 0.

Problem VI.1 Discuss what happens to m as T — 0.

Problem V1.2 Can something exotic happen in FEjq.
5.1, like say f(x) = a17 + azz® — asz® (a; > 0)? If
it does, what can you say about magnetization? Take a
simpler case f(x) = a1z — asx® + azx®. Where is the
transition? See what you can say about the nature of the
transition.

Problem VI.3 Keep T fized and study the variation of
magnetization with h, may be for small h. Discuss the
behaviour for T > T, and T < T..



VII. SUSCEPTIBILITY
A. Exponent vy

To study susceptibility, we introduce a small external
field h and consider T close to T,.. Keeping leading order
terms, we have from Eq. 2.3

T, h _0m 1

=T TR =on T T-T.

T T (7.1)

This is the Curie-Weiss law. Defining the exponent v as
X ~ (T —T.)” 7, we have v = 1. Also note that y !
would be negative below T,. This catastrophy is avoided
by the phase transition to a ferromagnetic state.

Note, again, that v = 1 is really a consequence of
f(z) ~ z for small x. Such a linear response for a free
spin is expected unless a spin couples strangely with the
field.

Frankly speaking, the Curie Weiss law follows as an
immediate consequence of the linear response. Take x°
as the susceptibility of a free spin. This means m = x° h
in a field h. This field h, in our case, is the actual field
seen by a spin; it is obviously h 4+ gJm. Ergo, m =
X°(h + gJm), which means y = x°/(1 — ¢Jx°). For an
Ising type system, x° ~ 1/T. Hence the Curie Weiss law.
Note this is how the amplification factor of a feedback
amplifier is calculated!

B. Exponent §

Let us now fix the temperature at 7.. We have to go
to the cubic term in the expansion of tanh. To leading
order, we have

h ~m? (7.2)

for m, h — 0. Define the exponent § via h ~ m?. We get
6 =3.

C. Comments

(1) The susceptibility diverges at T.. A divergent sus-
ceptibility means that the system has a large response to
a small change in the external parameter. The magneti-
zation is nonzero as one crosses T, from the high temper-
ature side. This tendency near T, for ordering is reflected
in the huge response to a small ordering field. Such di-
vergences are hallmark of most critical points.

(2) m and h are not related linearly at T.. Linear
relation would never give a divergent x! That’s why ¢ is
important.

(3) The critical temperature has already been defined
as the temperature at which spontaneous magnetization

(symmetry breaking - if you want to be sophisticated)
occurs. Let’s call it TSB. Another way, easier experi-
mentally, is the divergence of the susceptibility. If we
reduce the temperature from a high value, at what point
does x diverge ? Let’s call it THT (HT for high tempera-
ture). What guarantees that they are same? Sorry, there
is none!

(4) Tt is possible to prove that actual v > 1. Try to do
it.

VIII. SPECIFIC HEAT

You may wonder why the greek symbol «a is missing.
That’s what we do now.

In zero field, the free energy per particle is f =
—kT In[2 cosh(BgJm)]. For T > T., m = 0, and so
f = —kT'In2. The specific heat is zero! For T < T,
m ~ (T, — T)'/2. For small z, coshz ~ 14 2%/2.... A
straight forward expansion then gives a power series in
T.— T, showing that for T'— T,.—, specific heat remains
finite but nonzero. In short, sp heat has a discontinuity
at T,. A divergent specific heat is described by an expo-
nent ¢ ~| T — T |~®. In the mean field theory a = 0.

A. Comments

(1) Free energy for T > T, is —NkT In 2, coming solely
from the entropy of the completely disordered state. So,
in MF, the system is in the completely disordered state
(“entropic death”) as soon as T, is reached.

(2) There is a simple meaning to the transition tem-
perature. Ground state energy is —q.J/2 per particle.
The maximum energy possible (say on a hypercubic type
lattice) is +¢.J/2 when each neighbouring pair is antipar-
allel. kT, is just the total width of the energy spectrum.
In the MF approximation at 7T, all the states become
equally probable leading to the entropic death.

(3) So far we have obtained four exponents a = 0, 3 =
%,7 = 1,6 = 3. These are all mere consequences of the
linear and the cubic order terms of the expansion of tanh
whose origin is in the behaviour of an isolated spin in a
field. So where do the model, interaction etc come in?

IX. FLUCTUATION-DISSIPATION (RESPONSE)

So far we have focused on thermodynamic quantities.
Let us now consider other statistical quantities, e.g., cor-
relations etc. For this let us first see the connection be-
tween a response and microscopic correlations. To be
explicit, we consider susceptibility.

Suppose a system is described by the hamiltonian H =
Hine — b)Y s; where Hjy is the interacting piece - no
matter what it is. The magnetization is

why?
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M = kT
kah’

(9.1)

and y requires one more derivative of In Z with respedt
to h. Take these brute force derivatives:

Secont (5 si)e PMimtoh 2
Z ?
rx=2z1% (3 5;)2e BHim+Bh Y si _

config

M =

27050 (O sp)e PMmABh s | (9.2a)

config

with A = 0 in the last equation. A simple rearrangement
then produces

X = D)7 (s = () (si = ()} (93)

This is the famous fluctuation dissipation theorem. In
fact there is no dissipation in our case and a better name
would be fluctuation response theorem. We have already
seen this for a free spin. This formula connects x to the
correlation in spin fluctuations, and not to spin correla-
tions explicitly. In the high temperature phase, (s) = 0,
and both are equal. This is not the case in the low tem-
perature phase.

For a translationally invariant system, one can get rid
of one of the sums. Choose any arbitrary site as the
origin and define a pair correlation function

9(7) = ((s0 = (s))(sr = (s))),

in terms of which y can be written as

x = (kD) 'N'S (7).

(9.4)

(9.5)

N takes care of extensivity - we forget about it.

Problem IX.1 Any second derivative of the free energy
can be connected to a correlation function. Prove this
general statement.

Show, in particular, that the specific heat is related
to the energy energy correlation function. For the Ising
case, this requires four spin correlation function.

A. x and Long range order

For simplicity, let’s replace the sum by an integral so
that x = [ drg(F). For the Ising case, s is bounded and
so is g. We also know that x diverges at least at T..
Only way this can happen is from the divergence of the
integral or the sum - it is the large distance property of
g(r) that controls the behaviour. We can conclude that,
at least at T., g(r) cannot be a short ranged function,

but it has to decay because, for infinitely large distances
the correlations should go to zero. In d dimensions, di ~
r¢=1dr so that g(r), at T = T, has to decay as

g(F) ~ (42 (9.6)

with n > 0. For T # T, convergence requires that g(r)
should decay sufficiently faster than this - in almost all
cases it decays exponentially, with a characteristic length
scale £. The decay for any temperature can be written
as

efr/g
g(T_“) ~ pd—2+7"

(9.7)

To be consistent with the power law decay at T = T,
this length scale ¢ has to diverge as one approaches the
critical point

E~NT =T, |7V (9.8)

Two new exponents are required to describe the decay of
the two point correlations, v for T # T, and n for T = T..

Let’s first evaluate them in MF, and then we discuss
the physical picture.

1. Comments

(1) We have now defined a third way of characteriz-
ing the critical point. This is the temperature at which
long range order sets in. Let’s call it 7RO, At the spe-
cial point, there is no characteristic length scale in the
problem - the system looks similar at all length scales
(in the large distance limit of course, not at the lattice
spacing!). That’s why we get power law behaviour for
the correlation. Power laws do not have any length scale.

From a rigorous point of view, “long range order”
is defined as the case when the spin spin correlation
does not go to zero in the large distance limit, i.e.,
lim, o {(s08,) = const # 0. There is a subtle difference
between this and the spontaneous magnetization. How-
ever, the susceptibility is related to the fluctuation, which
acquires a long range character only at 7.. The fluctu-
ation decays sufficiently fast (like exponential) even in
the ordered state. So far, one can prove rigorously, that
TIRO < T5B < THT | The last inequality is known to be
true for the Kosterlitz Thouless transition. For simple
Ising type problems, they are known to be all equal.

(2) Tt is not guaranteed that all high temperature
phases or the low temperature phases will have exponen-
tial decays. Power law decay of correlation throughout
a range of temperature is not unheard of. These cases
require special attention.

(3) A simple consequence of immense experimental im-
portance is that if you freeze the structure of a critical
system like a binary mixture at its critical point, it will
have composition fluctuation at all length scales without
any characteristic length!
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B. v, and g

We utilize the simple minded picture used to derive
the Curie Weiss law at the end of Sec. VILA. Start with
a periodic field h, = hy exp(i k- 7). The response is also
expected to be sinusoidal, m, = my exp(i k- 7). The re-
sponse of magnetization need not be local. Think of an
elastic body if you press at one point, it is going to affect
other points also. Since the field is nonuniform, we define
a nonlocal susceptibility x (7 — ), so that the magneti-
zation can be written as m(7) = m"=°(7) + [ di"x(F —
#)h(i), where m"=0 is the zero field magnetization, and
x is really the pair correlation function as in Eq. 9.5.
Fourier transformation gives

my = mZ:O + Xxrh, (9.9)
where i is the Fourier transform (FT) of g(r). This x4
gives the response of the system to a sinusoidally varying
field of wave vector k. In this Fourier space, xx—g is the
zero field susceptibility that diverges. It really pays to
study the correlation functions in Fourier space!

Now use the simple feedback argument, taking care
that in a varying field, magnetization is not uniform.
The internal field is accordingly >, Jm(F), with m() =

>k Mk exp(ik - 7). For site 7, we then have

m(7) = X"[h(F) + Y Jm(7)], (9.10)
NN
so that after Fourier transformation,
0
myg = Xo[hk + aJk2mk], — Xk = m,
(9.11)

why? a being a constant. Using x° ~ 1/T, we rewrite this

equation for xj as
Xk~ 672+ R

with &€ ~| T — T, |~'/2. ¢ is the length scale that deter-
mines the decay of i, the FT of g(r). Hence,

(9.12)

v=1. (9.13)

Right at T,, £ 2 is zero. Thus, xx ~ k2. The power
law decay of Eq. 9.6 has a FT k—2*7. So,

n=0. (9.14)

C. Comments

(1) x& or the Fourier transform of g(r) is important
experimentally. This is related to the structure factor

or scattering. It is measured directly by light scattering,
x-ray, neutron scattering etc.

(2) The Lorentzian shape of yy is also known as the
Ornstein-Zernike formula.

(3) the width of the scattering function gives the cor-
relation length.

X. RELATIONS AMONG EXPONENTS

So far we have calculated five different quantities and
obtained five different exponents. How many do we need?
Are they all independent? In fact they are not - only two
are needed.

Let’s think of the pair correlation function. It decays
rapidly once we are on a scale greater than the correlation
length &. Close to T,, we can think of the system as blobs
of highly correlated regions - the blobs are of size ¢4 in
d dimensions. Inside a blob (r << £), the spins are
highly correlated and at a simple level can be thought
of as at T.. On a bigger length scale r >> £, the blobs
are independent. Basically, we are arguing that it is the
correlation length that matters - all other length scales
are unimportant.

We use this simple picture for the susceptibility, which
is an integral of g(r). We can cutoff the integral at r ~ &,
and inside this region g(r) ~ r~(?=2¥7)_ The integral
f£ dr =7 ~ €277, Using the temperature dependence
of £, we get the temperature dependence of x as | T' —
T.|~2=". The net result is

vy =v(2—-n). (10.1)
The MF exponents do obey this relation. There are many
such relations.

Problem X.1 Take free energy ~ hm to argue that 28+
v =2 —«a. MF exponents satisfy this.

Prove, from thermodynamics, that cp, — ¢y =
T (‘g—”T’)Zx}l, where ¢, 1is the specific heat with x con-
stant. Since sp.heat is positive definite, show that o +
28+ v > 2. Now, argue that equality is the general rule.
A special condition is required for the inequality. Find
out that condition.

We can push such arguments a bit further. Consider
the free energy density. This goes inversely as volume.
But in the thermodynamic limit, correlation length is the
only length available. No harm in expecting f ~ £~¢,
and using the temperature dependence of &, we get
f~|T—T.|™. Compare this with f ~| T — T, |>~*. As
a consequence, we must have 2 —a = dv (HYPERSCAL-
ING). Unfortunately, the mean field exponents have no d
dependence. Therefore, this hyperscaling can be obeyed
only in a special dimension, which turns out to be 4. This
is extremely important.

blob

how?



not?

Problem X.2 What’s wrong with hyperscaling? Ezxact
exponents below this special dimension obey hyperscaling
but not above. How can this be violated?

XI. LANDAU THEORY

We discussed MF theory in the context of the Ising
model but also pointed out that the detailed features of
the model are not really important. It would be natu-
ral, indeed, to have a theory that does not include un-
necessary details, and still be simple and rich enough to
describe criticality. Landau developed such a scheme.

There are various ways of introducing the Landau the-
ory. We take the sequel of the MF theory developed in
Sec. 4. In the infinite range model, we landed on an in-
tegral involving A which was easy to tackle. At the end
we ultimately didn’t do any computation and the free
energy was given by A at its minimum. For a given T'
and h, this A depends on A, that turns out to be the
magnetization. The Landau approach is based on this.
Anticipating the result, we define A(m, h,T'), to be called
the Landau function or Landau free energy, or extremely
loosely free energy, such that its minimum with respect
to m should describe the thermodynamic property. We
already assumed that m is homogeneous in space.

First a few technicality. The free energy we get from,
say, the Ising Hamiltonian is a function of T" and h - the
intensive quantities or the externally imposed variables,
f = f(T,h). As you understand, these are the variables
that couple to “operators” which depend on the internal
degrees of freedom. These operators, after the stat mech
averaging, are the thermodynamic quantities that should
be proportional to the size of the system. Free energy it-
self is such an example. The intensive variables do not
scale with size. The magnetization comes from a deriva-
tive of this free energy, m = —9f/0h. The extensivity of
the derivative is a result of the same of f. It is, therefore,
convenient to divide by the volume to get “densities”.

Since the free energy contains most of the information
about the critical singularity, it would be nice to have a
simple expansion around say the critical point (7., h =
0). Such an expansion has to be highly singular because,
as we now know, m (first derivative) is well behaved on
the high temperature side but is a multivalued function
for h = 0 when T < T,. This is hopeless! The situation is
slightly better if one chooses some other thermodynamic
potential.

Different thermodynamic potentials come through
Legendre transformation. ~We consider A(T,m) =
f(T,h) — hm (We are sloppy with the variables.) An
expansion in m may not be bad because h ~ —9A/dm
and Oh/Om ~ x ! — 0, as T — T.. So crudely speaking
the derivatives one would need for a Taylor expansion are
not that bad. But, see, below T., two phases coexist at
zero field. This means that any value of magnetization

(within a range) is possible by appropriate choice of the
volumes of the two phases, in zero field. This indicates
the existence of a flat region in the A(m,T) curve. That’s
again a source of difficulty.

The function we consider is not really the thermody-
namic potential, because the conjugate variables (h, m),
which are to be coupled by the equation of state, are
treated as independent. The equilibrium value of m
comes only after minimization. The gain is an ana-
lytic function. (Why not compare with the saddle point
method discussed earlier?)

What about the structure of this Landau function? We
want it to respect the symmetries of the problem. For the
Ising model, there is an up down symmetry that’s broken
in the low temperature phase. We expand A(T,m) in m,
and use this symmetry to throw away terms not allowed.
The T dependence will be handled separately. In short,
for the problem in hand, A(m) has to be an even function
of m. If there is no external magnetic field, there should
be no linear term. Hence,

A(m) = ao(T) + ax(T)m? + ag(T)m* + ... (11.1)

where the coefficients a; depend only on T. We have al-
ready observed that the second derivative of A goes to
zero at T.. Nothing special can be said about a4. As-
sume, and just assume, that these coefficients are ana-
lytic functions of ¢, amenable to Taylor series expansion.
Obviously we will have

ao(T) = ago + .. (11.2a)
as(T) = an (T — T.) + O(t?) (11.2b)
as(T) = ago + ... (11.2¢)

(11.2d)

Important observations for us are (i) as changes sign at
T., becoming negative for T' < T,, (ii) a4 is positive. a4
can be zero or negative. Those cases lead to multicriti-
cality and require special attention.

Problem XI.1 Ezpand A of Eq. 4.11 and get the Lan-
dau expansion.

Next, minimize A.

mlax(T) + 2a4(T)m?) = 0 = m = 0,m = (az/2a4)'/?
(11.3)

For T > T., only real solution is m = 0. Since as < 0 for
T < T., we have m ~| t |'/? - a result we already know.
The exponent 1/2 is really a consequence of linear ¢ in
Eq. 11.2b.

To get susceptibility, add —hm to Eq. 11.1, and then
minimize. The result is v = 1. This we could have
guessed. The coefficient of m?, after all, is related to the
inverse susceptibility. Also, recognize that taking such
successive derivatives and then h = 0, is equivalent to



look for the curvature of the Landau function - it’s inverse
gives the susceptibility.

Try to understand these from a plot of A(m) with m
for various 7T'.

We can even go beyond exponents. Let’s define am-
plitudes C1 as y+ = Cy | t |77 for t20. For T > T.,
X+ = 2a9(T), while for T' < T., using the value of m,
X— & 4a2(T). The exponents are the same on both sides
of T,., but the amplitudes are system specific because the
coefficients of the Landau function are. The surprising
feature is that, the amplitude ratio C;./C_ = 2 is a uni-
versal number independent of the details. As a matter
of fact, for each quantity that exists on both sides of T,
one can define these amplitudes, and, believe it or not,
the ratio is a universal number.

A. Comments

(1) Why is the Landau function not a thermodynamic
potential? For the low temperature phase, there is an
unstable region with a negative susceptibility. A ther-
modynamic potential cannot have this. This is a char-
acteristic of any mean field solution. For example, van
der Waal equation of state shows this in the isotherms.
The solution is to draw the convex envelope that gets
rid of the unstable branch. This is equivalent to drawing
the common tangent through the two minima. This, in
turn, corresponds to the famous equal area construction
of Maxwell.

(2) Taking Legendre transforms is quite common. This
is also done in all field theories purporting to discuss bro-
ken symmetries. The coefficients give the vertex func-
tions.

If you think a little bit, you will realize that, in a lattice

HOW?gas analogy, this transformation corresponds to a change

in the ensemble.

XII. POTTS MODEL - A CONTRAST

Just to show the power of the meanfield theory and
in the process learn about a very important model, we
study the Potts model.

The model involves a generalization of the Ising vari-
able. Suppose that at each site there is a spin s; that can
take ¢ possible values. We don’t care what the values
are or what the objects are. There is an interaction that
favours neighbors of equal spin values. The mean field
hamiltonian is

J
H = _N Z(SKr(SiaSj):

ij

(12.1)

where 0k, (8, s;) is the Kronecker delta being equal to 1
if s; = s, and zero otherwise. For ¢ = 2, this model can
be reduced to the Ising model.
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Suppose z, be the fraction of spins that are in spin
state p, p running from 1 to ¢. Sure, Yz, = 1.
For large N, the energy and entropy are just

S
= —%JZ:E%, and N —kap Inz,, (12.2)
p p
[remember pln p?], so that the free energy per spin is

J
— 17 .2
BA = Ep (xplnz)y 2378 ).

E
N

(12.3)

Compare this with the Ising case, Eq. 4.5. It looks like
just a sum of independent Ising cases, but it isn’t because
of, ah! well, think why.

Motivated by the Ising case, we like to define an or-
der parameter that would describe the ordered state.
Suppose, p = 1 is the preferred state. Let us define

m (0 < m < 1) through
2 = %[1 + (g = 1)m], (12.42)
Tp = é(l —m), forp=2,..4, (12.4b)
put them back in Eq. 12.3, and expand in m to get
BA(m) = BA(0) + w In[1 + (¢ — I)m]+
u(1 —m)In(l —m) — %kiTm2
= (g-1& —2me2 _1 ; 2 ¢ —132q 3t + ..

If you have already solved the problem of exotic f(x),
you know that the negative cubic term implies a first
order transition. The appearance of the cubic term is
not surprising because no inversion symmetry is expected
unless ¢ = 2. At that ¢ the coefficient of the cubic term
vanishes as for the Ising case. For all real ¢, the m* term
is positive.

The conclusion is that the Potts model, in the mean
field approximation, shows critical behaviour only for g <
2 but a first order transition for ¢ > 2.

Problem XII.1 Show that for q > 2, the transition
point is kT, = J(g—2) [(¢—1)In(g—1)]". The nonzero
“magnetization” at T. is m. = (¢ —2)/(qg — 1), and the
latent heat is L = J(q — 2)*/[2q(q — 1)].

A. Comments

(1) We see that the transition becomes first order for
g > 2 for all d. It is known exactly that for d = 2, the
transition is mot first order for ¢ < 4. This critical value
of ¢ is also d dependent. For d > 4, the critical value is 2
as in the mean field theory. Try to get the critical value
as a function of d.

(2)

(12.5)



be-

ware

XIII. VALIDITY OF MFT

We have derived the mean field theory, tried to un-
derstand the approximations made, but as yet haven’t
answered the question of its validity for a given hamilto-
nian. This is done through Ginzburg criterion.

We repeatedly said that we are ignoring fluctuations.
A quantitative statement would be this: Choose an ap-
propriate volume 2 - which is large compared to the
characteristic microscopic volume but less than the to-
tal volume - wait! T’ll specify) - and the fluctuation of
magnetization in this volume must be less than the mag-
netization Mgin that region itself, SM3 << MJ3. Let
the number of spin in that region be Nq. By definition,
the mean square fluctuation is

2

IM§ = < lZ(sz - (8))] > = Na Y [(s0si) — (5)°]-

(13.1)

If Q were the total volume, then it would have been the
total susceptibility X(E = 0) in the notation of Sec. 9.
Now near the critical region the correlation length be-
comes very large, and this is the only length that con-
trols the behaviour (that’s the origin of universality). So
it is natural to choose Q ~ ¢, as we did for hyperscal-
ing. As T — T, this volume becomes very large so that
its per spin susceptibility can very well be taken as the
susceptibility of the bulk. This enables us to write the
fluctuation as

SM3 = const Nox(k = 0,1) (13.2)

where the temperature dependence is shown explicitly.

Problem XIII.1 Using the expression for pair correla-
tion function, try to justify this formula.

The magnetization is Mg = Nqm, m being the bulk
magnetization per spin. The condition to be satisfied is

(13.3)

The number of spins in the volume is expected to go like
Ng ~ Q ~ &%, Use the exponents 3,7, and v, to write
the above inequality as

Nom? >> const x(k = 0,1).

const 177 <<t~ W+, (13.4)

Consequently, the condition for the validity of MFT can
be stated as dv > v+ 2. If you recall the exponent rela-
tions, then v+ 23 = 2 — a, so that the Ginzburg criterion
is similar to hyperscaling dv > 2 — a. In other words,
we can define a critical dimension d. = (y + 28)/v
(2 — a)/v above which the mean field theory is self con-
sistent in the sense that the fluctuation can really be
ignored. If necessary, they can be treated perturbatively.
Use the mean field exponents to get d. = 4. This spe-
cial dimension is called the UPPER CRITICAL DIMEN-
SION.
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A. Comments

(1) One should be careful about the connection be-
tween 2 and £. It is better to call  the correlation
volume. This may have some other dependence on &, as
for example in dipolar magnets. Such an extra factor of
& changes the UCD.

(2) Loosely speaking, if we are at a very high temper-
ature, then we do not expect fluctuations to dominate.
One can always trust MFT in a very high temperature
regime. The question one can then ask, if we start from
such a region how close should we be to T, to observe de-
viations? This can be estimated. A crude way to do this
would be to compare the different length scales. The
universal criticality is observed in a regime where the
basic microscopic length scales are not important. We
demand that in the critical region the correlation length
& = &t” should be greater than, say, the range of inter-
action, or the lattice spacing etc. Quite often, the micro-
scopic length turns out to be pretty large requiring very
small ¢, and one ends up seeing the conventional MF be-
haviour. This happens for old fashioned superconductors
- but that’s a different, and not so simple, story.

XIV. GOING BEYOND MFT

How do we go beyond MFT? We have seen that MFT
gives universal quantities but they are too universal to be
true! No doubt, its a failure of the Landau expansion but
in what sense. We will see later on that any attempt to
modify this function fails miserably. We have also seen,
through Ginzburg criterion, that fluctuations are impor-
tant. The right step evidently would be to incorporate
fluctuation.

If fluctuations are important then uniform m is not a
good approximation. Let’s go back to Eq. 4.11. A saddle
point evaluation was possible because of N (or equiva-
lently volume) in the exponent. If A(7) has space depen-
dence then one expects this to be changed to [ di A[A(7)],
and the final integral (a functional integral) over all A(7).
But this as such is not sufficient to handle fluctuation as
we have seen in Sec 9 — a k? term is needed.

Since A is a scalar, we take,

Alm(7)] = (Vm)? + aam? + um* — hm. (14.1)
This is called the Landau-Ginzburg hamiltonian (or a ¢*
field theory. The partition function is given by

Z = /Dm exp[— /A[m(f')]] (14.2)
If we now want to do a saddle point approximation with

uniform m, we recover the Landau function of Eq. ?77.
Any thing better is hard!



A. Gaussian Model

To have a feeling for fluctuation, we ignore the m*
term, and set b = 0. The partition function then involves
gaussian integrals, and is doable. The mm correlation
function is easily seen to be given by Eq. 9.12, with
¢72 = @y. The exponents v,n are the same as there. In
fact there is no change in most of the exponents except
for a. For this we need the free energy.

Problem XIV.1 Go to Fourier space, use equipartition
theorem and get the correlation function.

It is easy to show that the specific heat is given by the
integral

A
cw/ d*k[as + K272, (14.3)

where A is a cutoff that may come from lattice spacing

etc. Rescale k by kagl/Q, so that for T'— T., and d < 4,

¢ ~ay“"D/2 This gives a DIVERGENT specific heat
with @ = (4 — d)/2, for d < 4. For d > 4, the integral
in the limit 7' — T, diverges in a way that cancels out
the scaling factor, leaving behind a finite answer. That
means, for d > 4 the specific heat has a discontinuity at
the critical point as in MFT. Fluctuations have no effect
as predicted by the Ginzburg criterion.

The model we solved is called the Gaussian model and
is the starting point to understand the full model. It is
however ill defined for T < T.,.

Also note that, with this a, the exponents do satisfy
the hyperscaling for d < 4. 4 again turns out to be the
border line dimension.

XV. O(N) MODELS

The Landau theory can be generalized to any symme-
try group. A case that occurs quite often is the O(n)
symmetry, where m, the magnetization, is an n dimen-
sional vector, and the system has full rotational invari-
ance with respect to m. For example, n = 3 corresponds
to the Heisenberg model with three component spins,
H=-J%5-5;.

The Landau Ginzburg model can be written as

Alm(7)] = (Vm)? + agm? + um? — hm,,, (15.1)

where (V)2 = Y7 (Vm,)?, and the magnetic field is
in the a direction.

In MFT, we take uniform magnetization. No need for
repetition to show that the magnetization shows identical
behaviour as for the Ising case.

For susceptibility etc one has to worry about the com-
ponents. Similarly, the pair correlation function depends
on the spin component index. You must have recognized
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by this time that this correlation function comes form
double derivatives with m. In the Fourier space, we have,
in zero field,

l9a5(F)]~

The magnetization direction is called the longitudinal
uniform m is not a good approximation. Let’s go back
to Eq. 4.11. A saddle point evaluation was possible be-
cause of N (or equivalently volume) in the exponent. If
A(7) has space dependence then one expects this to be
changed to [ di A[A(7)], and the final integral (a func-
tional integral) over all A(¥). But this as such is not
sufficient to handle fluctuation as we have seen in Sec 9
— a k? term is needed.
Since A is a scalar, we take,

L= 6a5[k2 +as + 4a4m2] + 8asmomp. (15.2)

Alm(7)] = (Vm)? + aam? + um?* — hm. (15.3)
This is called the Landau-Ginzburg hamiltonian (or a ¢*
field theory. The partition function is given by

Z = /Dm exp[— /A[m(f')]] (15.4)
If we now want to do a saddle point approximation with

uniform m, we recover the Landau function of Eq. ?7?.
Any thing better is hard!

A. Gaussian Model

To have a feeling for fluctuation, we ignore the m?
term, and set h = 0. The partition function then involves
gaussian integrals, and is doable. The mm correlation
function is easily seen to be given by Eq. 9.12, with
¢72 = ay. The exponents v, are the same as there. In
fact there is no change in most of the exponents except
for a. For this we need the free energy.

Problem XV.1 Go to Fourier space, use equipartition
theorem and get the correlation function.

It is easy to show that the specific heat is given by the
integral

A
c~/ dk[ag + k]2, (15.5)

where A is a cutoff that may come from lattice spacing

etc. Rescale k by ka;1/2, so that for T — T, and d < 4,

c~ a;(4_d)/2. This gives a DIVERGENT specific heat
with a = (4 — d)/2, for d < 4. For d > 4, the integral
in the limit 7' — T, diverges in a way that cancels out
the scaling factor, leaving behind a finite answer. That
means, for d > 4 the specific heat has a discontinuity at
the critical point as in MFT. Fluctuations have no effect

as predicted by the Ginzburg criterion.



The model we solved is called the Gaussian model and
is the starting point to understand the full model. It is
however ill defined for T' < T,.

Also note that, with this a, the exponents do satisfy
the hyperscaling for d < 4. 4 again turns out to be the
border line dimension.

XVI. O(N) MODELS

The Landau theory can be generalized to any symme-
try group. A case that occurs quite often is the O(n)
symmetry, where 1, the magnetization, is an n dimen-
sional vector, and the system has full rotational invari-
ance with respect to . For example, n = 3 corresponds
to the Heisenberg model with three component spins,
H=-J%5-5;.

The Landau Ginzburg model can be written as

Alm(7)] = (Vm)? + agm? + um? — hm,,, (16.1)
where (Vi) = 3" (Vveck)})]. In the limit N — oo,
the sum in the integral can be replaced by an integral,
and the whole thing can be evaluated by a saddle point
method (stationary phase method). I leave the details
for you to work out and get the exponents. It is straight
forward but needs some work.

The point of the exercise is to observe the introduc-
tion of the delta function to represent a constraint. With
the Fourier representation, one can even think of a modi-
fied hamiltonian (with complex parameters - but rest as-
sured every thing is real!). Note the similarity with the
Lagrange undetermined multiplier method to tackle con-
straints. The sermon here is that, given a Hamiltonian,
if I can identify the order parameter as a function of the
microscopic variables, I can introduce it as a § function
and obtain Z(m) as a function of the order parameter
m. The effective Hamiltonian is expressed in terms of m
- and that’s the Landau-Ginzburg hamiltonian.

A. Comments

(1) The exponents of the spherical model are related
to the exponents of the Gaussian model (GM). Any ex-
ponent z for the gaussian model and the correspond-
ing one x, for the spherical model are related by x4
x/(1 — @), where a = (4 — d)/2, the specific heat expo-
nent for GM. The specific heat exponents are related by
as = —a/(1 —a). This is called Fisher renormalization.
This occurs whenever there is a constraint in the system,
and original & > 0. The specific heat turns out to be
non-divergent.

(2) The spherical model is also the n — oo limit of the
O(n) model.
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(3) Study the low temperature behaviour of the spher-
ical model and you will find exact similarity with Bose-
Einstein condensation. Any speculation on what hap-
pened to quantum features?

XVII. PROBLEMS

Problem XVIIL.1 Start with the Ising Hamiltonian and
define the order parameter as M =Y s;. Using this as a
constraint, with necessary approximations or expansions,
obtain Eq. 15.4.

Problem XVII.2 Test your expertise of MFT by deriv-
ing the van der Waal equation of state for n particles with
pairwise interaction as given by the hamiltonian

H:i:212m

Take U(F) = oo if r < rg.

+5Y UF - 7). (17.1)
ij

Problem XVIIL.3 Cubic systems. Spins on a cubic
crystal are expected to have terms of cubic symmetry.
Consider n component spins. The L-G form is

H = ay(T)m* + um* +v2mi.

a=1

(17.2)

Discuss the mean field behaviour for positive and negative
U, v.

Problem XVII.4 Fluctuation driven first order tran-
sition: Consider superconductivity (or scalar electrody-
namics). It requires a complex order parameter ¢ and a
vector potential A. The L-G form is

-

Fw,A:/dF[a2|¢\2+u\w\4+

Y (V = igo Ay [* +p Z(Vin — Vi4;)?].

i>j

(17.3)

It is quadratic in A, DO the averaging over A to define
an effective L-G form for 1. Show that the free energy,
in the process, acquires a cubic term that makes the tran-
sition first order. Are you surprised?
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