
The purpose of these letures is to show how one handles an interating system in a mean �eld way. The same approximationwill be derived in various ways illuminating di�erent aspets of the approximation. All will be based on the Ising model. Certaingeneralizations will also be onsidered.
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MEAN FIELD THEORIESSomendra M. BhattaharjeeInstitute of Physis, Bhubaneswar 751 005I. MODEL AND DEFINITIONSThe model system is the Ising model desribed by theHamiltonianH = �J X<ij> sisj � hXi si (1.1)where si = �1 is a spin at the ith site of the lattie, and< ij > represent nearest neighbour pairs. For simpliitywe onsider only ferromagneti interation (J > 0). Therange of interation will be relaxed in ertain ases.The quantities of interest are (i) magnetization m =hsi = hP sii=N , where N is the total number of spins,(ii) suseptibility � = �m=�h jh=0, the response of thesystem to a small external magneti �eld, (iii) spei�heat h = �u=�T , where u is the average internal energyper spin, et.Convention: Total thermodynami quantities to be de-noted by apital letters and densities( i.e., per partile)by orresponding small letters.II. AGE-OLD MEAN FIELD THEORYStart with the Hamiltonian, Eq 1.1, and fous on onepartiular spin, say si. There are two �elds ating on it,(i) the external one, h, and (ii) the �eld by the neigh-bouring spins. We an write the hamiltonian for the ithspin as Hi = �si(JX sj + h) (2.1)with the summation over the interating spins only. The�eld due to the interating spins is a utuating objet- and is the soure of diÆulty. We replae this by theaverage �eld produed by them, i.e., replae sj by hsi,and forget about utuations. The name of the game isto deouple the spins to redue the interating systemto a noninterating one (the whole system is a uniformbakground, as in Hartree, Hartree-Fok, Thomas-Fermiet). A. Single spin aseTake H = �hs for a single spin s = �1. The partitionfuntion is Z = 2 osh(h=kT ), and hsi = tanh(h=kT ).Problem II.1 Derive these.Evaluate suseptibility for h = 0 and h 6= 0. Note thedrasti di�erene in behaviour as T ! 0. Why? If youdon't see why, try H = �� s� hs, with � 6= 0 �xed.

B. E�etive �eld aseThe mean �eld hamiltonian for any spin is nowHi = �(qJm+ h)si (2.2)where q is the oordination number of the lattie (i.e.the number of nearest neighbors). Note that all detailedstrutures of the lattie are lost - q alone annot desribea lattie!Now, selfonsisteny requires that the average spin ofthe ith partile hsii evaluated with the mean�eld hamil-tonian of Eq. 2.2 be the same as hsi used there - afterall, the spins are all equivalent.Using the results of the single spin ase, we havem = tanh(qJm� + h�) (2.3)where � = (kT )�1. This is the famous mean�eld equa-tion. C. Comments(1) What is the approximation: si's are random vari-ables, with more or less well behaved statistis. The ef-fetive �eld involves a sum of these random variables, and whatisCLT?so we expet the sum to approah its average (CentralLimit Theorem), if a large number of spins are involved.In other words q should be large (! 1). MF approxi-mation is exat in in�nite dimensions.(2) Is tanh sared?: NO! We got tanh beause ofIsing(i.e. two omponent) spins. For arbitrary spins, orwith arbitrary probability distribution, we may replaetanh by an appropriate funtion f with f(0) = 0. Theanalog of Eq. 2.3 is m = f(qJm�+h�). The \universal"features of the MF equation will turn out to be indepen-dent of the detailed nature of f , but ertain features domatter. Inidentally, the most ruial property required Guesswhy?is the nonlinearity of f .(3) Note that MF is just a feed bak mehanism - and isof muh wider appliability than stat meh. For example:Clausius-Mosotti, Lorentz-Lorenz equations in eletrody-namis et. Think of ampli�ers/osillators in eletronis.III. VARIATIONAL PRINCIPLEA general result: We want to estimate the free energyof a system desribed by a HamiltonianH , F = �kT lnZ2



where Z = Tr e��H , Tr being the trae taken over thestates of H . We are writing \Tr" for onveniene. Fora lassial ase, it would mean a sum over all on�g-urations. Now, hoose another Hamiltonian H0, withfree energy F0 = �kT lnZ0, where Z0 = Tr exp(��H0).Using the onvexity relation hexp(x)i � exphxi, one anon-vex-ity? show that F � F0 + hH �H0i0 (3.1)where the average on the right hand side is done with theBoltzmann weight exp(��H0).Problem III.1 Derive this. Guess why onvexity is im-portant.As in any variational alulation, one generally hoosesH0 with some adjustable parameter so that the righthand side an be minimized to get the best estimate.Let us now use this variational priniple. Sine, a non-interating hamiltonian is the one we an solve best, wehoose H0 = ��X si: (3.2)where � is the e�etive �eld we like to determine. Cal-ulating averages with this hamiltonian is simple. The�nal answer isF � �NkT ln(2 osh��) � 12NqJm2 �Nhm+N�m(3.3)with m = tanh(��). We now minimize the RHS of Eq.3.3 with respet to �. Use Nm = ��F0=�� to get���RHS = N �m�� (qJm+ h� �) = 0: (3.4)This identi�es � = h + qJm, as in Eq. 2.2. As before,one ends up with the MF equation of Eq. 2.3.Problem III.2 Derive Eqs. 3.3, 3.4.IV. INFINITE RANGE MODELWe have already said that the MF approximationworks best if the number of neighbours is large. Whatwe did was to replae the utuating spins by their av-erages, hsi =Pj sj=(N � 1), exluding the ith spin fromthe sum. We now make the following replaement:JsiX sj ! qJhsisi ! qJN � 1Xi6=j sisj (4.1)where the �rst sum involves only nearest neighbourswhile the last one involves all. The Ising Hamiltonianof Eq. 1.1 an then be replaed by

H = � JN X(ij) sisj : (4.2)The summation now extends over all possible pairs of thesystem. This is the in�nite range (but in�nitely weak(!)asN goes to1) model. The folklore is that all weak longrange interations lead to a mean �eld type desription.Question: Is 1=N neessary? Yes! Beause, we haveto ensure a proper thermodynami limit (N ! 1).Look at the ground state. For ferromagneti interations(J > 0), the ground state has all parallel spins. Thereare N(N � 1)=2 pairs. So the energy is proportional toN(N � 1). However, we want (or rather demand) thatthe energy be proportional to N (extensivity of thermo-dynami quantities). This is ensured by the 1=N in theoupling onstant.A. Solution I: Maximum term methodSine all pairs are interating, we an write the inter-ation term, upto a trivial onstant, as why12H = � J2N (X si)2 = � J2NM2 (4.3)where, as before, M is the total magnetization (no aver-aging yet). Sine the energy of a on�guration is om-pletely determined by M (NOT for Eq. 1.1), doing theon�gurational sum is easy. We however need the degen-eray of a state of magnetization M . Suppose N+ spinsare up. Then N+ = (M +N)=2. The degeneray is thengiven by N !=(N+!(N �N+)!).The partition funtion is given byZ = M=+NXM=�N N !N+!(N �N+)! exp(��JM2=2N): (4.4)An exat evaluation, for �nite N is not possible. Forlarge N , we use the maximum term method where itis assumed that the partition funtion is dominated bythe maximum term of the summand. To determine themaximum term, use the Stirling approximation (lnN ! =N(lnN � 1), good even for small N), and extremize�J2NM2 � [lnN !� ln 12 (M +N)!� ln 12 (N �M)!℄ (4.5)treating M as a ontinuous variable. Do it and you willget bak the MF equation Eq. 2.3.Problem IV.1 Do it. For pratie, also keep the mag-neti �eld term.
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1. Comments(1) Have we made any approximation in keeping onlythe maximum term? Of ourse not, but why not? Look,we are interested in the free energy per partile, not thepartition funtion per se. So let's onsider a ase Z =Pm=Nm=1 zm for N partiles. N is a measure of the numberof distint states. Suppose zm is maximum form = max.Note that zm is not just the Boltzmann fator, it inludes\entropy", AND it is stritly nonnegative. We have thefollowing trivial inequality,N zmax � Z � zmax: (4.6)whih implies,lnNN + ln zmaxN � 1N lnZ � 1N ln zmax: (4.7)Now if the growth of N is some power of N , and NOTEXPONENTIAL, then, in the limit N ! 1, the twobounds above beome equal. Hene, in the thermody-nami limit (i.e. N ! 1) the free energy per partileis given by the free energy of the maximum term. So,Mean �eld is exat only in the thermodynami limit, notfor �nite N .Question: Why doesn't it work for the nearest neigh-bour problem?(2) Why is it solvable: Let's think of it in a di�erentlanguage, namely the lattie gas. The two states for eahsite an be thought of as oupied (s = +1) or vaant(s = �1) . Then the interation depends only if parti-les are nearest neighbours (NN). One therefore needs toknow the short distane behaviour of the spins, i.e., for agiven on�guration how many form NN pairs. This is aompliated issue. At the simplest level one would arguethat the probability of getting two partiles as NN is just(density)2, density being the probability. What is neededis the onditional probability - this is a produt of twounonditional ones only if there is no orrelation. Thisturns out to be the ase for the in�nite range model.(3) The Stirling approximation gives the log of thedegeneray fator as N [� ln � + (1 � �) ln(1 � �)℄ where� = N+=N is the partile density in the lattie gas pi-ture. 1 � � is the density of vaant sites or of partilesof a seond kind. This is the approximate form of en-tropy that's used everywhere from binary alloys (Bragg-Williams) to polymer solutions (Flory/deGennes). It isboring but useful!(4) The \mod" approah is this: instead of approxi-mating a realisti Hamiltonian, start with the razy in�-nite range model and solve it exatly - the answer is thesame in any ase. (paraphrasing Mermin)

B. Solution II: Saddle pointWe now solve the in�nite range model in a di�erentway. This is a rather standard (sorry, sophistiated) pro-edure for any �eld theoreti approah. Use the Gaussianidentityexp(as2) = onstZ 1�1 dx exp�� x2a + 2sx� : (4.8)Problem IV.2 Find onst.The Boltzmann fator for Eq 4.3 with a magneti �eldan be written asexp[�hX si + �J2N (X si)2℄ =onstZ 1�1 dx exp��2N�J x2 + (2x+ �h)X si� : (4.9)We hange the integration variable to � = 2x=(�J), and guesswhy?ignore the onstant to writeZ =Z 1�1 d� e�N�J�2=2Yi  Xsi=�1 e(�h+�J�)si! =Z 1�1 d� e�N�J�2=2[2 osh(�h+ �J�)℄N : (4.10)It is onvenient to de�ne a funtion (a VERY importantone) A(�) asZ = Z 1�1 d� exp[�N�A(�)℄; (4.11)where A(�) = 12J�2�kT ln[2 osh(�h+�J�)℄. For N !1, the integral is just the right one for a saddle pointevaluation - in fat the saddle point approximation willbe exat in that limit. (The reason is the same as themaximum term theorem).The partition funtion is given by Z =exp[��NA(�0)℄,where �0 satis�es the saddle point equation:�A(�)�� = 0 =) � = tanh(�J� + �h): (4.12)The free energy per partile is, of ourse, given byf(T; h) = A(�0): The magnetization follows from theusual derivative rulem = ��f�h = � �A��0 ��0�h � �A�h= ��A�h = tanh(�J�0 + �h) = �0: (4.13)where the last one follows from the saddle point ondi-tion. One we identify �0 as m, we are done.4



1. Comments(1) What we have done is really a HubbardStratanovih transformation in a trivial way!(2) It is diÆult to go beyond the saddle point approx-imation.V. SOLUTION OF MEAN FIELD EQUATIONThe mean �eld equation, Eq. 2.3, an be solved graph-ially. Sine it is easy to redraw a straight line, we reastthe MF equation askTqJ x = tanhx; or; ingeneral; kTqJ x = f(x); (5.1)in zero external �eld (x = �mqJ). As mentioned already,what is important is the nonlinearity of the funtion onRHS, and we take f(x) to be onave. The straight lineWhy? y = (kT=qJ)x obviously intersets f(x) at the origin, sothat x = 0 is a solution. There an be another solutionprovided kT=qJ is smaller than the slope of f(x) at theorigin. For the Ising ase, tanhx has a slope 1, so that anonzero solution is possible forkTqJ � 1: (5.2)This identi�es the ritial temperature as kT = qJ .For any other funtion f(x), the orresponding ondi-tion is kT � kT = qJf 0(0) (5.3)where prime denotes derivative. Remember that f(x)gives the dependene of a single spin on the external �eldin absene of any interation. As a result, the derivativeis the zero �eld suseptibility of the free spin. This analso be written as the utuation of the spin hs2i. Forthe Ising ase, this average is identially 1. In general,kT = qJhs2i0.Problem V.1 Derive the onnetion between susepti-bility and hs2i. A. Comments(1) T depends only on the number of nearest neigh-bours and no other details of the lattie really matter.This is de�nitely wrong. Most serious is that the 1-dIsing model does not have any nonzero T. T is zero.But MF gives a nonzero value.Why (2) It is possible to get better estimate of T by on-entrating on a luster of neighbouring spins, rather thanone. However, other properties disussed later on don'thange muh.

(3) It is possible to prove, quite generally that theatual ritial point is lower than the mean �eld riti-al temperature. In other words, for the Ising model,kT(atual) � qJ . Try to prove this.VI. MAGNETIZATIONWe �nd that there is a ritial point below whih(T < T) there an be nonzero magnetization, even in theabsene of any external �eld. This is alled spontaneoussymmetry breaking. The Hamiltonian has an up-downsymmetry but the ground state doesn't. However, thereis no unique ground state - for the Ising ase it is twofold degenerate - that saves the problem! At any giventemperature, for any �nite system, one also expets, asone sums over all the on�gurations, to see no magnetiza-tion. It is atually the thermodynami limit that ausesthe ground state behaviour to ontinue for some �niteT , energy dominating over entropy. This spontaneousmagnetization an be taken as a measure of order in thesystem and is alled the order parameter.What happens to the order parameter as one ap-proahes T?Take T�T to be small, expand tanhx = x�x3=3, andsolve the quadrati equation. You get m � (T � T )1=2.De�ning an exponent � bym �j t j� ; t � (T � T)=T; (6.1)we �nd the MF result � = 12 .A. Comments(1) This result is NOT dependent on tanh. By sym-metry, we expet f(x) to be an odd funtion. Thus, forsmall x, f(x) � a1x+a3x3+ :::, so it's again a quadratiequation, yielding � = 12 .(2) m = 0 is always a solution. For low temperatures,the lower free energy solution orresponds to m 6= 0.Show this.(2) It is true most often that the mean �eld value ofm(T; h) is an upper bound for the atual magnetizationat h � 0.Problem VI.1 Disuss what happens to m as T ! 0.Problem VI.2 Can something exoti happen in Eq.5.1, like say f(x) = a1x + a3x3 � a5x5 (ai > 0)? Ifit does, what an you say about magnetization? Take asimpler ase f(x) = a1x � a2x2 + a3x3. Where is thetransition? See what you an say about the nature of thetransition.Problem VI.3 Keep T �xed and study the variation ofmagnetization with h, may be for small h. Disuss thebehaviour for T > T and T < T.5



VII. SUSCEPTIBILITYA. Exponent To study suseptibility, we introdue a small external�eld h and onsider T lose to T. Keeping leading orderterms, we have from Eq. 2.3m = TT m+ hkT =) � � �m�h � 1T � T : (7.1)This is the Curie-Weiss law. De�ning the exponent  as� � (T � T)� , we have  = 1. Also note that ��1would be negative below T. This atastrophy is avoidedby the phase transition to a ferromagneti state.Note, again, that  = 1 is really a onsequene off(x) � x for small x. Suh a linear response for a freespin is expeted unless a spin ouples strangely with the�eld.Frankly speaking, the Curie Weiss law follows as animmediate onsequene of the linear response. Take �0as the suseptibility of a free spin. This means m = �0 hin a �eld h. This �eld h, in our ase, is the atual �eldseen by a spin; it is obviously h + qJm. Ergo, m =�0(h + qJm), whih means � = �0=(1 � qJ�0). For anIsing type system, �0 � 1=T . Hene the Curie Weiss law.Note this is how the ampli�ation fator of a feedbakampli�er is alulated!B. Exponent ÆLet us now �x the temperature at T. We have to goto the ubi term in the expansion of tanh. To leadingorder, we have h � m3 (7.2)for m;h! 0. De�ne the exponent Æ via h � mÆ. We getÆ = 3. C. Comments(1) The suseptibility diverges at T. A divergent sus-eptibility means that the system has a large response toa small hange in the external parameter. The magneti-zation is nonzero as one rosses T from the high temper-ature side. This tendeny near T for ordering is reetedin the huge response to a small ordering �eld. Suh di-vergenes are hallmark of most ritial points.(2) m and h are not related linearly at T. Linearrelation would never give a divergent �! That's why Æ isimportant.(3) The ritial temperature has already been de�nedas the temperature at whih spontaneous magnetization

(symmetry breaking - if you want to be sophistiated)ours. Let's all it T SB . Another way, easier experi-mentally, is the divergene of the suseptibility. If weredue the temperature from a high value, at what pointdoes � diverge ? Let's all it THT (HT for high tempera-ture). What guarantees that they are same? Sorry, thereis none!(4) It is possible to prove that atual  � 1. Try to doit. VIII. SPECIFIC HEATYou may wonder why the greek symbol � is missing.That's what we do now.In zero �eld, the free energy per partile is f =�kT ln[2 osh(�qJm)℄. For T > T, m = 0, and sof = �kT ln 2. The spei� heat is zero! For T < T,m � (T � T )1=2. For small x, oshx � 1 + x2=2:::. Astraight forward expansion then gives a power series inT� T , showing that for T ! T�, spei� heat remains�nite but nonzero. In short, sp heat has a disontinuityat T. A divergent spei� heat is desribed by an expo-nent  �j T � T j��. In the mean �eld theory � = 0.A. Comments(1) Free energy for T > T is �NkT ln 2, oming solelyfrom the entropy of the ompletely disordered state. So, why?in MF, the system is in the ompletely disordered state(\entropi death") as soon as T is reahed.(2) There is a simple meaning to the transition tem-perature. Ground state energy is �qJ=2 per partile.The maximum energy possible (say on a hyperubi typelattie) is +qJ=2 when eah neighbouring pair is antipar-allel. kT is just the total width of the energy spetrum.In the MF approximation at T all the states beomeequally probable leading to the entropi death.(3) So far we have obtained four exponents � = 0; � =12 ;  = 1; Æ = 3. These are all mere onsequenes of thelinear and the ubi order terms of the expansion of tanhwhose origin is in the behaviour of an isolated spin in a�eld. So where do the model, interation et ome in?IX. FLUCTUATION-DISSIPATION (RESPONSE)So far we have foused on thermodynami quantities.Let us now onsider other statistial quantities, e.g., or-relations et. For this let us �rst see the onnetion be-tween a response and mirosopi orrelations. To beexpliit, we onsider suseptibility.Suppose a system is desribed by the hamiltonian H =Hint � hP si where Hint is the interating piee - nomatter what it is. The magnetization is6



M = kT � lnZ�h ; (9.1)and � requires one more derivative of lnZ with respetto h. Take these brute fore derivatives:M = Pon�g (P si)e��Hint+�hP siZ ;kT� = Z�1 Xon�g (X si)2e��Hint+�hP si �0�Z�1 Xon�g (X si)e��Hint+�hP si1A2 ; (9.2a)with h = 0 in the last equation. A simple rearrangementthen produes� = (kT )�1PiPjh(si � hsi)(sj � hsi)i : (9.3)This is the famous utuation dissipation theorem. Infat there is no dissipation in our ase and a better namewould be utuation response theorem. We have alreadyseen this for a free spin. This formula onnets � to theorrelation in spin utuations, and not to spin orrela-tions expliitly. In the high temperature phase, hsi = 0,and both are equal. This is not the ase in the low tem-perature phase.For a translationally invariant system, one an get ridof one of the sums. Choose any arbitrary site as theorigin and de�ne a pair orrelation funtiong(~r) = h(so � hsi)(sr � hsi)i; (9.4)in terms of whih � an be written as� = (kT )�1NXr g(~r): (9.5)N takes are of extensivity - we forget about it.Problem IX.1 Any seond derivative of the free energyan be onneted to a orrelation funtion. Prove thisgeneral statement.Show, in partiular, that the spei� heat is relatedto the energy energy orrelation funtion. For the Isingase, this requires four spin orrelation funtion.A. � and Long range orderFor simpliity, let's replae the sum by an integral sothat � = R d~rg(~r). For the Ising ase, s is bounded andso is g. We also know that � diverges at least at T.Only way this an happen is from the divergene of theintegral or the sum - it is the large distane property ofg(r) that ontrols the behaviour. We an onlude that,at least at T, g(r) annot be a short ranged funtion,

but it has to deay beause, for in�nitely large distanesthe orrelations should go to zero. In d dimensions, d~r �rd�1dr so that g(r), at T = T, has to deay as� g(~r) � r�(d�2+�) (9.6)with � � 0. For T 6= T, onvergene requires that g(r)should deay suÆiently faster than this - in almost allases it deays exponentially, with a harateristi lengthsale �. The deay for any temperature an be writtenas g(~r) � e�r=�rd�2+� : (9.7)To be onsistent with the power law deay at T = T,this length sale � has to diverge as one approahes theritial point � �j T � T j�� : (9.8)Two new exponents are required to desribe the deay ofthe two point orrelations, � for T 6= T and � for T = T.Let's �rst evaluate them in MF, and then we disussthe physial piture. 1. Comments(1) We have now de�ned a third way of harateriz-ing the ritial point. This is the temperature at whihlong range order sets in. Let's all it TLRO . At the spe-ial point, there is no harateristi length sale in theproblem - the system looks similar at all length sales(in the large distane limit of ourse, not at the lattiespaing!). That's why we get power law behaviour forthe orrelation. Power laws do not have any length sale.From a rigorous point of view, \long range order"is de�ned as the ase when the spin spin orrelationdoes not go to zero in the large distane limit, i.e.,limr!1hs0sri = onst 6= 0. There is a subtle di�erenebetween this and the spontaneous magnetization. How-ever, the suseptibility is related to the utuation, whihaquires a long range harater only at T. The utu-ation deays suÆiently fast (like exponential) even inthe ordered state. So far, one an prove rigorously, thatTLRO � T SB � THT . The last inequality is known to betrue for the Kosterlitz Thouless transition. For simpleIsing type problems, they are known to be all equal.(2) It is not guaranteed that all high temperaturephases or the low temperature phases will have exponen-tial deays. Power law deay of orrelation throughouta range of temperature is not unheard of. These asesrequire speial attention.(3) A simple onsequene of immense experimental im-portane is that if you freeze the struture of a ritialsystem like a binary mixture at its ritial point, it willhave omposition utuation at all length sales withoutany harateristi length!7



B. �, and �We utilize the simple minded piture used to derivethe Curie Weiss law at the end of Se. VII A. Start witha periodi �eld hr = hk exp(i ~k � ~r). The response is alsoexpeted to be sinusoidal, mr = mk exp(i ~k � ~r). The re-sponse of magnetization need not be loal. Think of anelasti body if you press at one point, it is going to a�etother points also. Sine the �eld is nonuniform, we de�nea nonloal suseptibility �(~r � ~r0), so that the magneti-zation an be written as m(~r) = mh=0(~r) + R d~r0�(~r �~r0)h(~r0), where mh=0 is the zero �eld magnetization, and� is really the pair orrelation funtion as in Eq. 9.5.Fourier transformation givesmk = mh=0k + �khk; (9.9)where �k is the Fourier transform (FT) of g(r). This �kgives the response of the system to a sinusoidally varying�eld of wave vetor ~k. In this Fourier spae, �k=0 is thezero �eld suseptibility that diverges. It really pays tostudy the orrelation funtions in Fourier spae!Now use the simple feedbak argument, taking arethat in a varying �eld, magnetization is not uniform.The internal �eld is aordinglyPr Jm(~r), with m(~r) =Pkmk exp(i~k � ~r). For site ~r, we then havem(~r) = �0[h(~r) +XNN Jm(~r)℄; (9.10)so that after Fourier transformation,getk2 mk = �0[hk + aJk2mk℄; =) �k = �01� aJk2�0 ;(9.11)a being a onstant. Using �0 � 1=T , we rewrite thiswhy? equation for �k as�k � [��2 + k2℄�1; (9.12)with � �j T � T j�1=2. � is the length sale that deter-mines the deay of �k, the FT of g(r). Hene,� = 12 : (9.13)Right at T, ��2 is zero. Thus, �k � k�2. The powerlaw deay of Eq. 9.6 has a FT k�2+�. So,� = 0: (9.14)C. Comments(1) �k or the Fourier transform of g(r) is importantexperimentally. This is related to the struture fator

or sattering. It is measured diretly by light sattering,x-ray, neutron sattering et.(2) The Lorentzian shape of �k is also known as theOrnstein-Zernike formula.(3) the width of the sattering funtion gives the or-relation length.X. RELATIONS AMONG EXPONENTSSo far we have alulated �ve di�erent quantities andobtained �ve di�erent exponents. How many do we need?Are they all independent? In fat they are not - only twoare needed.Let's think of the pair orrelation funtion. It deaysrapidly one we are on a sale greater than the orrelationlength �. Close to T, we an think of the system as blobsof highly orrelated regions - the blobs are of size �d ind dimensions. Inside a blob (r << �), the spins are blobhighly orrelated and at a simple level an be thoughtof as at T. On a bigger length sale r >> �, the blobsare independent. Basially, we are arguing that it is theorrelation length that matters - all other length salesare unimportant.We use this simple piture for the suseptibility, whihis an integral of g(r). We an uto� the integral at r � �,and inside this region g(r) � r�(d�2+�). The integralR � dr r1�� � �2�� . Using the temperature dependeneof �, we get the temperature dependene of � as j T �T j��(2��). The net result is = �(2� �): (10.1)The MF exponents do obey this relation. There are manysuh relations.Problem X.1 Take free energy � hm to argue that 2�+ = 2� �. MF exponents satisfy this.Prove, from thermodynamis, that h � m =T ��m�T �2h ��1T , where x is the spei� heat with x on-stant. Sine sp.heat is positive de�nite, show that � +2� +  � 2. Now, argue that equality is the general rule.A speial ondition is required for the inequality. Findout that ondition.We an push suh arguments a bit further. Considerthe free energy density. This goes inversely as volume.But in the thermodynami limit, orrelation length is theonly length available. No harm in expeting f � ��d,and using the temperature dependene of �, we getf �j T �T jd� . Compare this with f �j T �T j2��. As how?a onsequene, we must have 2�� = d� (HYPERSCAL-ING). Unfortunately, the mean �eld exponents have no ddependene. Therefore, this hypersaling an be obeyedonly in a speial dimension, whih turns out to be 4. Thisis extremely important.8



Problem X.2 What's wrong with hypersaling? Exatexponents below this speial dimension obey hypersalingbut not above. How an this be violated?XI. LANDAU THEORYWe disussed MF theory in the ontext of the Isingmodel but also pointed out that the detailed features ofthe model are not really important. It would be natu-ral, indeed, to have a theory that does not inlude un-neessary details, and still be simple and rih enough todesribe ritiality. Landau developed suh a sheme.There are various ways of introduing the Landau the-ory. We take the sequel of the MF theory developed inSe. 4. In the in�nite range model, we landed on an in-tegral involving A whih was easy to takle. At the endwe ultimately didn't do any omputation and the freeenergy was given by A at its minimum. For a given Tand h, this A depends on �, that turns out to be themagnetization. The Landau approah is based on this.Antiipating the result, we de�ne A(m;h; T ), to be alledthe Landau funtion or Landau free energy, or extremelyloosely free energy, suh that its minimum with respetto m should desribe the thermodynami property. Wealready assumed that m is homogeneous in spae.Ifnot? First a few tehniality. The free energy we get from,say, the Ising Hamiltonian is a funtion of T and h - theintensive quantities or the externally imposed variables,f = f(T; h). As you understand, these are the variablesthat ouple to \operators" whih depend on the internaldegrees of freedom. These operators, after the stat mehaveraging, are the thermodynami quantities that shouldbe proportional to the size of the system. Free energy it-self is suh an example. The intensive variables do notsale with size. The magnetization omes from a deriva-tive of this free energy, m = ��f=�h. The extensivity ofthe derivative is a result of the same of f . It is, therefore,onvenient to divide by the volume to get \densities".Sine the free energy ontains most of the informationabout the ritial singularity, it would be nie to have asimple expansion around say the ritial point (T; h =0). Suh an expansion has to be highly singular beause,as we now know, m (�rst derivative) is well behaved onthe high temperature side but is a multivalued funtionfor h = 0 when T < T. This is hopeless! The situation isslightly better if one hooses some other thermodynamipotential.Di�erent thermodynami potentials ome throughLegendre transformation. We onsider A(T;m) =f(T; h) � hm (We are sloppy with the variables.) Anexpansion in m may not be bad beause h � ��A=�mand �h=�m � ��1 ! 0, as T ! T. So rudely speakingthe derivatives one would need for a Taylor expansion arenot that bad. But, see, below T, two phases oexist atzero �eld. This means that any value of magnetization

(within a range) is possible by appropriate hoie of thevolumes of the two phases, in zero �eld. This indiatesthe existene of a at region in the A(m;T ) urve. That'sagain a soure of diÆulty.The funtion we onsider is not really the thermody-nami potential, beause the onjugate variables (h;m),whih are to be oupled by the equation of state, aretreated as independent. The equilibrium value of momes only after minimization. The gain is an ana-lyti funtion. (Why not ompare with the saddle pointmethod disussed earlier?)What about the struture of this Landau funtion? Wewant it to respet the symmetries of the problem. For theIsing model, there is an up down symmetry that's brokenin the low temperature phase. We expand A(T;m) in m,and use this symmetry to throw away terms not allowed.The T dependene will be handled separately. In short,for the problem in hand, A(m) has to be an even funtionof m. If there is no external magneti �eld, there shouldbe no linear term. Hene,A(m) = a0(T ) + a2(T )m2 + a4(T )m4 + ::: (11.1)where the oeÆients ai depend only on T . We have al-ready observed that the seond derivative of A goes tozero at T. Nothing speial an be said about a4. As-sume, and just assume, that these oeÆients are ana-lyti funtions of t, amenable to Taylor series expansion.Obviously we will havea0(T ) = a00 + ::: (11.2a)a2(T ) = a21(T � T) +O(t2) (11.2b)a4(T ) = a40 + ::: (11.2)(11.2d)Important observations for us are (i) a2 hanges sign atT, beoming negative for T < T, (ii) a4 is positive. a4an be zero or negative. Those ases lead to multiriti-ality and require speial attention.Problem XI.1 Expand A of Eq. 4.11 and get the Lan-dau expansion.Next, minimize A.m[a2(T ) + 2a4(T )m2℄ = 0 =) m = 0;m = (a2=2a4)1=2(11.3)For T > T, only real solution is m = 0. Sine a2 < 0 forT < T, we have m �j t j1=2 - a result we already know.The exponent 1=2 is really a onsequene of linear t inEq. 11.2b.To get suseptibility, add �hm to Eq. 11.1, and thenminimize. The result is  = 1. This we ould haveguessed. The oeÆient of m2, after all, is related to theinverse suseptibility. Also, reognize that taking suhsuessive derivatives and then h = 0, is equivalent to9



look for the urvature of the Landau funtion - it's inversegives the suseptibility.Try to understand these from a plot of A(m) with mfor various T .We an even go beyond exponents. Let's de�ne am-plitudes C� as �� � C� j t j� for t><0. For T > T,�+ � 2a2(T ), while for T < T, using the value of m,�� � 4a2(T ). The exponents are the same on both sidesof T, but the amplitudes are system spei� beause theoeÆients of the Landau funtion are. The surprisingfeature is that, the amplitude ratio C+=C� = 2 is a uni-versal number independent of the details. As a matterof fat, for eah quantity that exists on both sides of T,one an de�ne these amplitudes, and, believe it or not,the ratio is a universal number.A. Comments(1) Why is the Landau funtion not a thermodynamipotential? For the low temperature phase, there is anunstable region with a negative suseptibility. A ther-modynami potential annot have this. This is a har-ateristi of any mean �eld solution. For example, vander Waal equation of state shows this in the isotherms.The solution is to draw the onvex envelope that getsrid of the unstable branh. This is equivalent to drawingthe ommon tangent through the two minima. This, inturn, orresponds to the famous equal area onstrutionof Maxwell.(2) Taking Legendre transforms is quite ommon. Thisis also done in all �eld theories purporting to disuss bro-ken symmetries. The oeÆients give the vertex fun-tions.If you think a little bit, you will realize that, in a lattiegas analogy, this transformation orresponds to a hangeHOW?in the ensemble.XII. POTTS MODEL - A CONTRASTJust to show the power of the mean�eld theory andin the proess learn about a very important model, westudy the Potts model.The model involves a generalization of the Ising vari-able. Suppose that at eah site there is a spin si that antake q possible values. We don't are what the valuesare or what the objets are. There is an interation thatfavours neighbors of equal spin values. The mean �eldhamiltonian isH = � JN Xij ÆKr(si; sj); (12.1)where ÆKr(si; sj) is the Kroneker delta being equal to 1if si = sj , and zero otherwise. For q = 2, this model anbe redued to the Ising model.

Suppose xp be the fration of spins that are in spinstate p, p running from 1 to q. Sure, Pxp = 1.For large N , the energy and entropy are justEN = � 12JXp x2p; and SN = �kXp xp lnxp; (12.2)[remember � ln �?℄, so that the free energy per spin is�A =Xp (xp lnxp � 12 JkT x2p): (12.3)Compare this with the Ising ase, Eq. 4.5. It looks likejust a sum of independent Ising ases, but it isn't beauseof, ah! well, think why.Motivated by the Ising ase, we like to de�ne an or-der parameter that would desribe the ordered state.Suppose, p = 1 is the preferred state. Let us de�nem (0 � m � 1) throughx1 = 1q [1 + (q � 1)m℄; (12.4a)xp = 1q (1�m); for p = 2; :::q; (12.4b)put them bak in Eq. 12.3, and expand in m to get�A(m) = �A(0) + 1 + (q � 1)mq ln[1 + (q � 1)m℄+q � 1q (1�m) ln(1�m)� q � 12q JkT m2= (q � 1)[q � �J2q m2 � q � 26 m3 + q2 � 3q + 312 m4 + :::: (12.5)If you have already solved the problem of exoti f(x),you know that the negative ubi term implies a �rstorder transition. The appearane of the ubi term isnot surprising beause no inversion symmetry is expetedunless q = 2. At that q the oeÆient of the ubi termvanishes as for the Ising ase. For all real q, the m4 termis positive.The onlusion is that the Potts model, in the mean�eld approximation, shows ritial behaviour only for q �2 but a �rst order transition for q > 2.Problem XII.1 Show that for q > 2, the transitionpoint is kT = J(q�2) [(q�1) ln(q�1)℄�1. The nonzero\magnetization" at T is m = (q � 2)=(q � 1), and thelatent heat is L = J(q � 2)2=[2q(q � 1)℄.A. Comments(1) We see that the transition beomes �rst order forq > 2 for all d. It is known exatly that for d = 2, thetransition is not �rst order for q � 4. This ritial valueof q is also d dependent. For d > 4, the ritial value is 2as in the mean �eld theory. Try to get the ritial valueas a funtion of d.(2)10



XIII. VALIDITY OF MFTWe have derived the mean �eld theory, tried to un-derstand the approximations made, but as yet haven'tanswered the question of its validity for a given hamilto-nian. This is done through Ginzburg riterion.We repeatedly said that we are ignoring utuations.A quantitative statement would be this: Choose an ap-propriate volume 
 - whih is large ompared to theharateristi mirosopi volume but less than the to-tal volume - wait! I'll speify) - and the utuation ofmagnetization in this volume must be less than the mag-netization M
in that region itself, ÆM2
 << M2
. Letthe number of spin in that region be N
. By de�nition,the mean square utuation isÆM2
 = *"Xi (si � hsi)#2+ = N
X
 [hs0sii � hsi2℄:(13.1)If 
 were the total volume, then it would have been thetotal suseptibility �(~k = 0) in the notation of Se. 9.Now near the ritial region the orrelation length be-omes very large, and this is the only length that on-trols the behaviour (that's the origin of universality). Soit is natural to hoose 
 � �d, as we did for hypersal-be-ware ing. As T ! T, this volume beomes very large so thatits per spin suseptibility an very well be taken as thesuseptibility of the bulk. This enables us to write theutuation asÆM2
 = onst N
�(~k = 0; t); (13.2)where the temperature dependene is shown expliitly.Problem XIII.1 Using the expression for pair orrela-tion funtion, try to justify this formula.The magnetization is M
 = N
m, m being the bulkmagnetization per spin. The ondition to be satis�ed isN
m2 >> onst �(~k = 0; t): (13.3)The number of spins in the volume is expeted to go likeN
 � 
 � �d. Use the exponents �; , and �, to writethe above inequality asonst t� << t�d�+2� : (13.4)Consequently, the ondition for the validity of MFT anbe stated as d� > +2�. If you reall the exponent rela-tions, then +2� = 2��, so that the Ginzburg riterionis similar to hypersaling d� > 2 � �. In other words,we an de�ne a ritial dimension d = ( + 2�)=� =(2� �)=� above whih the mean �eld theory is self on-sistent in the sense that the utuation an really beignored. If neessary, they an be treated perturbatively.Use the mean �eld exponents to get d = 4. This spe-ial dimension is alled the UPPER CRITICAL DIMEN-SION.

A. Comments(1) One should be areful about the onnetion be-tween 
 and �. It is better to all 
 the orrelationvolume. This may have some other dependene on �, asfor example in dipolar magnets. Suh an extra fator of� hanges the UCD.(2) Loosely speaking, if we are at a very high temper-ature, then we do not expet utuations to dominate.One an always trust MFT in a very high temperatureregime. The question one an then ask, if we start fromsuh a region how lose should we be to T to observe de-viations? This an be estimated. A rude way to do thiswould be to ompare the di�erent length sales. Theuniversal ritiality is observed in a regime where thebasi mirosopi length sales are not important. Wedemand that in the ritial region the orrelation length� = �0t� should be greater than, say, the range of inter-ation, or the lattie spaing et. Quite often, the miro-sopi length turns out to be pretty large requiring verysmall t, and one ends up seeing the onventional MF be-haviour. This happens for old fashioned superondutors- but that's a di�erent, and not so simple, story.XIV. GOING BEYOND MFTHow do we go beyond MFT? We have seen that MFTgives universal quantities but they are too universal to betrue! No doubt, its a failure of the Landau expansion butin what sense. We will see later on that any attempt tomodify this funtion fails miserably. We have also seen,through Ginzburg riterion, that utuations are impor-tant. The right step evidently would be to inorporateutuation.If utuations are important then uniform m is not agood approximation. Let's go bak to Eq. 4.11. A saddlepoint evaluation was possible beause of N (or equiva-lently volume) in the exponent. If �(~r) has spae depen-dene then one expets this to be hanged to R d~r A[�(~r)℄,and the �nal integral (a funtional integral) over all �(~r).But this as suh is not suÆient to handle utuation aswe have seen in Se 9 � a k2 term is needed.Sine A is a salar, we take,A[m(~r)℄ = (rm)2 + a2m2 + um4 � hm: (14.1)This is alled the Landau-Ginzburg hamiltonian (or a �4�eld theory. The partition funtion is given byZ = Z Dm exp[� Z A[m(~r)℄℄: (14.2)If we now want to do a saddle point approximation withuniform m, we reover the Landau funtion of Eq. ??.Any thing better is hard!11



A. Gaussian ModelTo have a feeling for utuation, we ignore the m4term, and set h = 0. The partition funtion then involvesgaussian integrals, and is doable. The mm orrelationfuntion is easily seen to be given by Eq. 9.12, with��2 = a2. The exponents �; � are the same as there. Infat there is no hange in most of the exponents exeptfor �. For this we need the free energy.Problem XIV.1 Go to Fourier spae, use equipartitiontheorem and get the orrelation funtion.It is easy to show that the spei� heat is given by theintegral  � Z � ddk[a2 + k2℄�2; (14.3)where � is a uto� that may ome from lattie spainget. Resale k by ka�1=22 , so that for T ! T, and d < 4, � a�(4�d)=22 . This gives a DIVERGENT spei� heatwith � = (4 � d)=2, for d < 4. For d > 4, the integralin the limit T ! T diverges in a way that anels outthe saling fator, leaving behind a �nite answer. Thatmeans, for d > 4 the spei� heat has a disontinuity atthe ritial point as in MFT. Flutuations have no e�etas predited by the Ginzburg riterion.The model we solved is alled the Gaussian model andis the starting point to understand the full model. It ishowever ill de�ned for T < T.Also note that, with this �, the exponents do satisfythe hypersaling for d < 4. 4 again turns out to be theborder line dimension.XV. O(N) MODELSThe Landau theory an be generalized to any symme-try group. A ase that ours quite often is the O(n)symmetry, where ~m, the magnetization, is an n dimen-sional vetor, and the system has full rotational invari-ane with respet to ~m. For example, n = 3 orrespondsto the Heisenberg model with three omponent spins,H = �JP~si � ~sj .The Landau Ginzburg model an be written asA[~m(~r)℄ = (r~m)2 + a2m2 + um4 � hm�; (15.1)where (r~m)2 =Pn�=1(rm�)2, and the magneti �eld isin the � diretion.In MFT, we take uniform magnetization. No need forrepetition to show that the magnetization shows identialbehaviour as for the Ising ase.For suseptibility et one has to worry about the om-ponents. Similarly, the pair orrelation funtion dependson the spin omponent index. You must have reognized

by this time that this orrelation funtion omes formdouble derivatives with m. In the Fourier spae, we have,in zero �eld,[g��(~k)℄�1 = Æ�� [k2 + a2 + 4a4m2℄ + 8a4m�m� : (15.2)The magnetization diretion is alled the longitudinaluniform m is not a good approximation. Let's go bakto Eq. 4.11. A saddle point evaluation was possible be-ause of N (or equivalently volume) in the exponent. If�(~r) has spae dependene then one expets this to behanged to R d~r A[�(~r)℄, and the �nal integral (a fun-tional integral) over all �(~r). But this as suh is notsuÆient to handle utuation as we have seen in Se 9� a k2 term is needed.Sine A is a salar, we take,A[m(~r)℄ = (rm)2 + a2m2 + um4 � hm: (15.3)This is alled the Landau-Ginzburg hamiltonian (or a �4�eld theory. The partition funtion is given byZ = Z Dm exp[� Z A[m(~r)℄℄: (15.4)If we now want to do a saddle point approximation withuniform m, we reover the Landau funtion of Eq. ??.Any thing better is hard!A. Gaussian ModelTo have a feeling for utuation, we ignore the m4term, and set h = 0. The partition funtion then involvesgaussian integrals, and is doable. The mm orrelationfuntion is easily seen to be given by Eq. 9.12, with��2 = a2. The exponents �; � are the same as there. Infat there is no hange in most of the exponents exeptfor �. For this we need the free energy.Problem XV.1 Go to Fourier spae, use equipartitiontheorem and get the orrelation funtion.It is easy to show that the spei� heat is given by theintegral  � Z � ddk[a2 + k2℄�2; (15.5)where � is a uto� that may ome from lattie spainget. Resale k by ka�1=22 , so that for T ! T, and d < 4, � a�(4�d)=22 . This gives a DIVERGENT spei� heatwith � = (4 � d)=2, for d < 4. For d > 4, the integralin the limit T ! T diverges in a way that anels outthe saling fator, leaving behind a �nite answer. Thatmeans, for d > 4 the spei� heat has a disontinuity atthe ritial point as in MFT. Flutuations have no e�etas predited by the Ginzburg riterion.12



The model we solved is alled the Gaussian model andis the starting point to understand the full model. It ishowever ill de�ned for T < T.Also note that, with this �, the exponents do satisfythe hypersaling for d < 4. 4 again turns out to be theborder line dimension.XVI. O(N) MODELSThe Landau theory an be generalized to any symme-try group. A ase that ours quite often is the O(n)symmetry, where ~m, the magnetization, is an n dimen-sional vetor, and the system has full rotational invari-ane with respet to ~m. For example, n = 3 orrespondsto the Heisenberg model with three omponent spins,H = �JP~si � ~sj .The Landau Ginzburg model an be written asA[~m(~r)℄ = (r~m)2 + a2m2 + um4 � hm�; (16.1)where (r~m)2 =Pn�=1(rvek)g)℄. In the limit N ! 1,the sum in the integral an be replaed by an integral,and the whole thing an be evaluated by a saddle pointmethod (stationary phase method). I leave the detailsfor you to work out and get the exponents. It is straightforward but needs some work.The point of the exerise is to observe the introdu-tion of the delta funtion to represent a onstraint. Withthe Fourier representation, one an even think of a modi-�ed hamiltonian (with omplex parameters - but rest as-sured every thing is real!). Note the similarity with theLagrange undetermined multiplier method to takle on-straints. The sermon here is that, given a Hamiltonian,if I an identify the order parameter as a funtion of themirosopi variables, I an introdue it as a Æ funtionand obtain Z(m) as a funtion of the order parameterm. The e�etive Hamiltonian is expressed in terms of m- and that's the Landau-Ginzburg hamiltonian.A. Comments(1) The exponents of the spherial model are relatedto the exponents of the Gaussian model (GM). Any ex-ponent x for the gaussian model and the orrespond-ing one xs for the spherial model are related by xs =x=(1 � �), where � = (4 � d)=2, the spei� heat expo-nent for GM. The spei� heat exponents are related by�s = ��=(1� �). This is alled Fisher renormalization.This ours whenever there is a onstraint in the system,and original � > 0. The spei� heat turns out to benon-divergent.(2) The spherial model is also the n!1 limit of theO(n) model.

(3) Study the low temperature behaviour of the spher-ial model and you will �nd exat similarity with Bose-Einstein ondensation. Any speulation on what hap-pened to quantum features?XVII. PROBLEMSProblem XVII.1 Start with the Ising Hamiltonian andde�ne the order parameter as M =P si. Using this as aonstraint, with neessary approximations or expansions,obtain Eq. 15.4.Problem XVII.2 Test your expertise of MFT by deriv-ing the van der Waal equation of state for n partiles withpairwise interation as given by the hamiltonianH = nXi=1 p2i2m + 12Xij U(~ri � ~rj): (17.1)Take U(~r) =1 if r � r0.Problem XVII.3 Cubi systems. Spins on a ubirystal are expeted to have terms of ubi symmetry.Consider n omponent spins. The L-G form isH = a2(T )m2 + um4 + v nX�=1m4�: (17.2)Disuss the mean �eld behaviour for positive and negativeu; v.Problem XVII.4 Flutuation driven �rst order tran-sition: Consider superondutivity (or salar eletrody-namis). It requires a omplex order parameter  and avetor potential ~A. The L-G form isF ; ~A = Z d~r [a2 j  j2 +u j  j4 + j (~r� iq0 ~A) j2 +�Xi>j (rjAi �riAj)2℄: (17.3)It is quadrati in A, DO the averaging over A to de�nean e�etive L-G form for  . Show that the free energy,in the proess, aquires a ubi term that makes the tran-sition �rst order. Are you surprised?
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