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Melting behavior and different bound states in three-stranded DNA models
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Thermal denaturation of DNA is often studied with coarse-grained models in which native sequential base
pairing is mimicked by the existence of attractive interactions only between monomers at the same position along
strands (Poland and Scheraga models). Within this framework, the existence of a three-stranded DNA bound
state in conditions where a duplex DNA would be in the denaturated state was recently predicted from a study
of three directed polymer models on simplified hierarchical lattices (d > 2) and in 1 + 1 dimensions. Such a
phenomenon which is similar to the Efimov effect in nuclear physics was named Efimov-DNA. In this paper
we study the melting of the three-stranded DNA on a Sierpinski gasket of dimensions d < 2 by assigning extra
weight factors to fork openings and closings, to induce a two-strand DNA melting. In such a context we can
find again the existence of the Efimov-DNA-like state but quite surprisingly we discover also the presence of a
different phase, to be called a mixed state, where the strands are pair-wise bound but without three chain contacts.
Whereas the Efimov DNA turns out to be a crossover near melting, the mixed phase is a thermodynamic phase.
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I. INTRODUCTION

A loosely bound state of a triple-stranded DNA when no
two are bound was recently found with a theoretical approach
and named Efimov-DNA [1–3]. It occurs at and above the
melting point of a double-stranded DNA (dsDNA) [4–8], and is
reminiscent of the Efimov effect in quantum mechanics [9,10].
In fact, the sequential base pairing of a DNA opens up a path
to make a formal connection between a quantum problem and
the DNA thermodynamics, with thermal fluctuations playing
the role of quantum fluctuations. Owing to this quantum
analogy, an Efimov-DNA could be an affordable system in
the domain of classical biology for studying aspects of the
quantum Efimov physics. In this paper we widen the scope of
the Efimov physics by establishing the presence of the effect
in certain classes of low-dimensional DNA models by staying
purely in the classical domain of statistical mechanics. We also
show that the same cause that produces the Efimov-like effect
in DNA can lead to a new phase in triple-stranded DNA, a
phase we call a mixed phase.

In 1970, a novel phenomenon in quantum mechanics,
the Efimov effect [9,10], was discovered, which resembled
the by-then-forgotten Thomas effect of the 1930s [11]. Three
nucleons with a critical short range pair potential become
bound due to an emergence of a long range interaction. The
result was a tower of an infinite number of bound states right
at the critical threshold of the two-body binding. As one
moves away from the critical point the number of bound states
decreases and vanishes at a particular strength. This three-body
bound state has a size much larger than the range of the short
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range pair potential. Such a loose three-body bound state is
named the quantum Efimov state.

The paths of particles in quantum mechanics (QM), in the
path integral formalism, are analogous to Gaussian polymers
under an imaginary time transformation; the time of quantum
mechanics maps on to the contour length of the polymers.
In QM, along the paths of two interacting particles, the
interactions are strictly at the same time only. This maps nicely
onto the sequential base pairing of a dsDNA. The excursions
of the quantum particles in the classically forbidden region
because of quantum fluctuations correspond to the bubbles on a
DNA generated by thermal fluctuations. The infinite time limit
in QM corresponds to an infinitely long DNA, a necessity for a
phase transition. For the case of base pairing as the only form of
mutual interaction, the melting is equivalent to the unbinding
transition of a pair of particles in quantum mechanics when the
bound state energy approaches zero by tuning the potential.
This basic connection prompts the similarities between the
Efimov problem in QM and a tsDNA.

Triple-stranded DNA (tsDNA) is well known in biology
[12,13]. The base sequence of a double-stranded DNA (ds-
DNA) allows a third strand to bind via the Hoogsteen or
the reverse Hoogsteen pairing to form a triple helix [14,15].
There are evidences, from NMR, of Hoogsteen pairing formed
dynamically (1% of time) even in a normal DNA [16]. The
triplex helix can also be formed with DNA-RNA [17] and
DNA-peptide nucleic acid (PNA), whose uncharged peptide
backbone helps in the stabilization of the triplet structure
[18–21]. A triple helix formation controls the gene expression,
which may be of use in antibiotics [22], and therapeutic
applications like targeting a specific sequence in gene therapy
[23–25]. All of these involve tightly bound states of a size
determined by the hydrogen bond length. The Efimov-DNA
however is not a tight bound state like these triple helices and
one does not need any special pairing for its formation.

The nature of dsDNA melting depends on many factors
and could either be an all-or-none process or be mediated by
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the formation of bubbles along the chain. Bubble formations
increase the entropy of the bound state. The melting takes
place when the gain in entropy by strand unbinding outweighs
the energy gain of the bound state. At or close to the duplex
melting, if a double-stranded DNA allows bubbles of any
length, a third strand of DNA can pair with the strands of the
bubble. This process, known in biology as the strand exchange
mechanism, would lead to a bound state of the three together.
The possibility of a long-range attraction, an important aspect
of the Efimov effect, has been argued by a polymeric scaling
analysis in Ref. [1]. The existence of a three-strand bound state
has further been verified by real space renormalization group
(RG) on hierarchical lattices of dimensions d > 2, transfer
matrix calculations in real space in 1 + 1 dimensions, and by
an RG limit cycle for polymer models in continuum in three
dimensions [1–3].

The triplex formed by the pairwise attraction of bases has
a melting point higher than the duplex melting temperature.
As already mentioned, the Efimov-DNA occurs in the region
between the melting point of dsDNA and tsDNA. This is an
exotic state mainly because of the special role played by the
third strand, but thermodynamically it is not a distinct phase.
It is a continuation of the low temperature triplex bound state.
This raises an interesting issue of whether the Efimov-like
state mediated by the third strand of DNA can be stabilized
as a thermodynamic phase, distinct from the triplex and the
denatured state. This mixed phase, alluded to at the beginning,
is a bound state where, in any stretch of length, one strand
remains unbound with two others paired; it should share a
boundary with the denatured DNA on the high temperature side
and a boundary with the triplex state on the low temperature
side. We establish in this paper that such a mixed phase
does occur if the bubble formation on the DNA is controlled
suitably. The major consequence of this intermediate mixed
phase is that a tsDNA would undergo two phase transitions,
triplex↔mixed↔denatured, as opposed to a simple melting
(see Fig. 1). This is one of the important results of this paper.

It may now be asked, what it is that is responsible for the
Efimov effect. For a broader perspective, it helps to define the
DNA melting problem in any dimension, like in many other
polymer problems. On one hand, the standard quantum me-
chanical results and the polymeric scaling argument indicate
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FIG. 1. (Color online) Schematic diagram showing the predicted
phases as temperature T is varied. While the Efimov-DNA is not
a phase, mixed phase is predicted to be a thermodynamic phase. A
triplex DNA crosses over to the Efimov-DNA before melting at Tt ,
while in the case of a mixed phase, there will be a two-step melting,
a triplex-to-mixed transition at Tt , and a mixed-to-denatured DNA
transition at Tc.

the importance of large scale fluctuations in bubbles to produce
an effective inverse square law attraction [1,9]. On the other
hand, the models of DNA on hierarchical lattices (d > 2),
which do not have any metric, also show the Efimov-DNA.
It is then tempting to hypothesize that the Efimov effect of
three being bound, but not two, is a consequence of a phase
transition through its associated nonanalytic behavior. If true,
this would broaden the range of situations where the Efimov
effect could be seen. Admittedly, it is difficult to establish the
hypothesis in the quantum domain but it can be done in the
DNA context. For example, in lower dimensions (d � 2), the
bubble entropy is not enough to cause a melting, so that DNA
would remain bound at all temperatures for any arbitrarily
weak short-range attraction [26]. However, for a DNA in a
lower dimension d � 2, a phase transition can be triggered
by adding extra factors. These extra factors are either local
constraints in bubble opening (e.g., crossing) or the hard core
repulsion or some cooperativity weight factors (σ ) for each
bubble formed in the model between the DNA strands. A
test of the hypothesis would then be to show the existence of
an Efimov-DNA in such low dimensional models with phase
transitions.

In this paper we aim to verify the robustness of such a
finding and to reach such a purpose we want to investigate the
effects of variation of the σ parameter. Hence it is worthwhile
to consider a model in a lower dimensional lattice which is
amenable to exact treatments and where σ the cooperative
parameter can be easily tuned. This lattice turns out to be
the Sierpinski gasket, the common regular fractal which has
been widely used in studying different statistical models, for
instance the Ising model, the directed or the self-avoiding
polymer model, the Potts model, the sandpile model, the
ice-type vertex models, models of polymers under a force
[27–33]. It is remarkable that very often the results obtained on
the Sierpinski gasket or on other hierarchical lattices turn out
to be true in the real world, for instance, the collapse transition
(θ ) point for linear polymers [34,35] or, as we will show later in
the paper, the correct order (first) of the denaturation transition
of double-stranded DNA.

II. OUTLINE

This paper is organized as follows. In Sec. III, our model on
a Sierpinski gasket is introduced. In Secs. IV and V two- and
three-polymer problems on a fractal lattice are introduced. The
exact recursion relations of the partition functions for both the
crossing and the noncrossing cases are written and the method
of calculations is discussed. The two-chain phase diagrams
are discussed. With various interactions and the crossing or
the noncrossing conditions three different models of the three-
chain system are introduced. Results obtained from the exact
recursion relations are discussed in Secs. VI and VII.

III. MODEL

A Sierpinski gasket is a fractal lattice obtained after an
infinite iteration from a single equilateral triangular lattice.
This particular lattice is drawn on the two dimensional (d =
2) plane. Taking out the middle piece of a triangle yields
three smaller triangles and, by repeating this for every allowed
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FIG. 2. Recursive construction of the Sierpinski gasket.

triangle, the fractal lattice is formed recursively; see Fig. 2.
The dimension for an infinite lattice is

d = ln Nn

ln Ln

= ln 3

ln 2
≈ 1.58, (1)

where Nn is the the number of the surviving triangles and Ln

is the number of bonds of the lattice along any one side of the
lattice at the nth generation.

In order to mimic the Poland-Scheraga [36] DNA-like
models in which monomers in different strands interact only
if their position along the chain is the same (complementary
bases), we consider directed polymers on a Sierpinski gasket
which are restricted to occupy only the nonhorizontal bonds
as shown in Fig. 3. In such a way, each time two different
strands occupy the same bond, it is automatically guaranteed
that they share the same chemical distance from the origin.
Still, there can be two different classes of models differing
in the restrictions on the crossing of the two strands. Two
configurations with a bubble are shown for generation n = 1
in Figs. 3(a) and 3(b). If we allow crossing, the strands can
exchange and both Figs. 3(a) and 3(b) are allowed. In the
noncrossing case, only (a) is allowed. The crossing among the
polymers increases the number of configurations, resulting in
more entropic contributions compared to the noncrossing case.

In this approach the sequence of bases is not explicitly
considered since the model is coarse grained in character. In
this respect each monomer is not to be thought of as a single
base, but as a group of bases (block). Consequently a mismatch
between corresponding blocks has to be very disfavored with
respect to a correct matching.

We can consider two or three different polymers. The
following weights are assigned to them:

(i) Fugacity z for each bond,
(ii) Boltzmann factor yij = eβεij , when a single bond is

shared by the two polymers i and j with binding energy εij ,

(b)(a)

FIG. 3. (Color online) A polymer is not allowed on any horizon-
tal bond. In the figure, two possible configurations of two polymers
[black (dark) and red (light)] are shown (bn and gn type from Fig. 4).
The crossing case allows both while only (a) is allowed for the
noncrossing case.

and yijk = eβεijk when a single bond is shared by the three
polymers with the binding energy εijk . Here β represents the
inverse temperature T , β = 1/kBT , where kB is the Boltzmann
constant.

(iii) σij for the two-chain and σijk for the three-chain bubble
opening or closure.

The weight of a walk of a single chain of length N is zN ,
where N is the number of bonds. Usually [27,35,37] one can
consider z as an extra variable, the fugacity for the length
of the polymers in a grand-canonical ensemble, but here we
will set it to 1, as is discussed below. We use z when a direct
computation of the free energy is required.

There are two special values of σ ; σ = 1 implies that
no weight is given for bubble opening or closure, and σ =
0 implies no bubble formation, i.e., a model without any
bubble (fork model). In biological contexts the co-operativity
factors σ ’s depend, for example, on the chain length, the
ionic strength, the stacking potential, etc. [38]. Most of the
studies have reported the value of cooperativity factor in the
range 10−4–10−5 with the loop nucleation free energy as
∼ −kBT ln σ ∼ 10kBT . We shall take the cooperativity factor
as a controlling parameter, not necessarily restricted to small
values.

To study the melting of DNA on a fractal lattice, we need to
define the partition functions for the two- and the three-chain
systems as shown in Fig. 4. We choose z = 1 to be in the
canonical ensemble. The standard way to study the polymers
on a fractal lattice is to find out the fixed point of z by an RG
procedure as proposed by Dhar [27]. This corresponds to the
grand canonical ensemble, where the fixed point of z gives
the free energy. We know that the choice of ensemble does
not matter, as long as we work with the large lengths of the
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FIG. 4. (Color online) The partition functions for two and three
strands irrespective of crossing conditions of the chains.
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polymers. In our approach we calculate the free energies of
different possible phases in the canonical ensemble, look for
the most favorable one, and obtain the phase diagram directly
from the free energies. Since all the polymers are of the same
length (N = 2n+1 → ∞) and traverse the whole lattice, we
may set z = 1.

Different possible polymer configurations are shown in
Fig. 4. The corresponding partition functions an, bn, cn, dn,
en, fn, gn, hn, in are defined at the nth generation and their
corresponding recursion relations can be easily computed for
successive generations. An example of the procedure to obtain
the recursion relation is given in Appendix A. The initial
conditions (the partition functions at the first stage of iteration)
are dictated from the physical properties of the studied model.

IV. TWO-STRANDED DNA ON THE GASKET

In order to explain our strategy and to fix some preliminary
results let us first consider the melting of a double-stranded
DNA. The partition functions of a single chain and a double
chain for the nth generation are given by bn and dn respectively.
However, to do the sum over all configurations, one needs the
subpartition functions, an,cn, and gn, as one sees from Fig. 3
and Appendix A. The crossing and the noncrossing cases are
discussed separately below.

A. With crossing

We first consider a two-chain system where the walks can
cross each other. Here y is the weight at the bond for sharing it
by the two polymers. The two-chain bubble opening or closure
is associated with the weight σ at the vertex. Five partition
functions are necessary and using the label used in Fig. 4
their values for the (n + 1)th generation are given by (see
Appendix A)

an+1 = a2
n, (2a)

bn+1 = b2
n + a2

nbn, (2b)

cn+1 = c2
n, (2c)

dn+1 = d2
n + 2g2

nbn + c2
ndn, (2d)

gn+1 = angn(bn + cn). (2e)

The Boltzmann factors and other weights are defined on
the bonds and the sites. They are therefore specified for
the smallest triangle, i.e., at the zeroth generation. Those
specifications act as the initial conditions for the recursion
relations. The initial conditions are taken as

a0 = 1, b0 = 1, c0 = y, d0 = y2, g0 = yσ. (3)

These values follow from Fig. 4 by counting the shared bonds
and bubble opening or closing. For c0 and g0 there is only one
bond with two strands on it and hence they require a Boltzmann
factor y. On the other hand, dn has two shared bonds, thereby
requiring a factor y2. A configuration like gn is required to
open or close a bubble. Hence gn involves an additional σ for
the junction point.

By iterating the equations it turns out that the leading terms
are coming from the generating function bn (single chain) and

1 1.05 1.1 1.15 1.2 1.25 1.3y
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FIG. 5. The two-chain phase diagram for σ vs y. (a) The polymers
can cross each other, (b) the noncrossing case. For both the cases,
the two-chain melting is at yc(0) = 1.264 . . . for σ = 0. Here and
elsewhere, y = 1 (y = ∞) corresponds to infinite (zero) temperature.

dn (two chains). It is then convenient to look at the ratio

r1 = dn+1

b2
n+1

. (4)

This ratio compares the two-chain bound state free energy
with the free energy when the two strands are in the denatured
state. By monitoring the divergence or the convergence of r1,
for given values of σ and y, one can easily and quickly pinpoint
the denaturation transition and obtain the phase diagram in the
y-σ plane. The phase diagram is shown in Fig. 5. The transition
is from the unbound to the bound state of the two-stranded
DNA at y = yc(σ ).

For σ = 0, there are no bubbles. In this situation, the bound
state partition function for the nth generation consists of two
factors, the Boltzmann factor and the number of configurations
of the bound pair bn, i.e.,

dn = bn yN, N = 2n+1, (5)

while the partition function of the unbound state is b2
n. The

continuity of the free energy at the transition point (r1 = 1)
then gives the transition point as

ln yc(0) = lim
n→∞

1

2n+1
ln bn,

or, yc(0) = 1.264 084 7353 . . . . (6)
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This value corresponds to the temperature at which the binding
energy per bond ε is equal to the entropic free energy (T s) of
a single chain, viz.,

Tc = ε/s, with s = lim
n→∞(1/N) ln bn. (7)

B. No crossing

If the crossing between the two strands DNA is not allowed,
the recursion relations are same as the crossing case except for
dn, which in this case is

dn+1 = d2
n + g2

nbn + c2
ndn. (8)

The initial conditions are still given by Eq. (3). A similar
comparison method [Eq. (4)] is used here as in the two-chain
crossing case. We obtain the phase diagram in the y-σ plane
as shown in Fig. 5(b). For σ = 0 the two-chain melting is at
yc(0) = 1.264 . . ., which is the same as in the crossing case.
There is a difference between the crossing and the noncrossing
melting curve for σ �= 0. In fact, the two curves can be mapped
onto one another by rescaling σ by 1/

√
2 in the crossing case;

indeed, the consequent rescaling of gn necessary to keep the
initial condition in the form of (3) allows us to change Eq. (8)
into Eq. (2d). In particular it can be noticed that for σ = 1 the
melting transition occurs at a finite temperature only for the
noncrossing model. For the crossing case, yc(σ = 1) = 1, but
for the noncrossing case yc(σ = √

2) = 1.
It is important to notice that for both the considered models

(with crossing and no crossing) and for any σ , the first
derivative of the free energy is discontinuous at the thermal
transition (see Fig. 11). Therefore, despite its simplicity, our
model predicts a first order transition for DNA denaturation as
observed experimentally [39].

V. THREE STRANDS

When we consider the three-chain system, several cases are
possible. With the crossing and the noncrossing conditions and
the choices of the interacting and the noninteracting pairs, we
classify different models. Among the many possible varieties
we will discuss only three of them, TS1, TS2, and TS3 since
they exhibit the full range of critical behaviours we explored.
The models are the following:

1. Model TS1. This is the noncrossing case with a weight
for two-chain bubble opening or closure of all pairs. The
weight is penalizing bubbles for σ < 1 but favoring for σ > 1.
There is no contact energy between chains 1 and 3. These two
chains are nevertheless coupled with each other through the
σ weight, only when all three strands are bound together.
As a consequence, the opening or closure in the triplex state
is weighted twice (it involves two pairs) with respect to the
duplex state.

2. Model TS2. This is the crossing case with the three-chain
repulsion, so that the overall energy of the triplex state is the
same as for the duplex state. Similar to TS1, the weight for a
two-chain bubble opening or closure is present for all pairs, so
that the opening or the closure in the triplex state is weighted
twice with respect to the duplex state.

3. Model TS3. This is the crossing case with the three-chain
repulsion and a weight for both the two- (for all pairs) and

the three-chain bubble opening or closure. The weight for the
three-chain bubbles counters that for two-chain ones, so that
both the overall energy and the weight for the opening or
closure are the same in the triplex and in the duplex state.

A. Model TS1: Noncrossing

In this case walks cannot cross each other. We assign
a weight Boltzmann factor y for each interaction between
chains 1 and 2, and 2 and 3, i.e., y12 = y23 = y, but no
interaction between chains 1 and 3, i.e., y31 = 1. The weight
σ is assigned for each bubble opening between all pairs,
i.e., σ12 = σ23 = σ31 = σ . When all chains are together we
consider a weight y2 and such a situation can also be described
if we take y12 = y23 = y31 = y and yijk = 1/y. If y > 1, yijk is
repulsive in nature. The two definitions of the contact energies
are equivalent only because of the noncrossing constraint.

The recursion relations for the partition functions for this
model are given by

an+1 = a2
n, (9a)

bn+1 = b2
n + a2

nbn, (9b)

cn+1 = c2
n, (9c)

dn+1 = d2
n + g2

nbn + c2
ndn, (9d)

en+1 = e2
n, (9e)

fn+1 = f 2
n + e2

nfn + h2
ndn + i2

nbn, (9f)

gn+1 = angn(bn + cn), (9g)

hn+1 = hn(anen + bncn), (9h)

in+1 = in(cnen + dnan) + g2
nhn, (9i)

with initial conditions

a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4,

g0 = yσ, h0 = y2σ 2, i0 = y3σ 2. (10)

The powers of y follow from Fig. 4 by counting the pairs
sharing the bonds. For the σ factors, we note that both h0 and i0

correspond to a single chain breaking off from a triplet, thereby
producing two “bubbles” with the remaining two. Hence σ 2

for both these partition functions. For example, in i0, one bond
with three chains has three pairs requiring y3 but with an
additional factor y123 = 1/y for the three chain interaction,
while the other bond has only one pair requiring a factor y.
This gives y3 with σ 2 for opening or closing of two bubbles.

We look at the divergence or convergence of the ratios

r2 = fn+1

b3
n+1

, (11)

r3 = fn+1

bn+1dn+1
, (12)

for given σ and y. The idea behind the choice of the above
ratios is to compare the three-chain free energy with the free
energy when three chains are free [r2 in Eq. (11)], or when one
chain remains isolated with the other two forming a duplex
[r3 in Eq. (12)].
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FIG. 6. (Color online) Model TS1: The three-chain phase dia-
gram in the y-σ plane for model TS1. The bound, the unbound,
the Efimov, and the mixed states are shown. The solid line is the
two-chain melting curve and is valid for the three-chain case in
the region y > yE = 1.075 26 . . . but not in the region y < yE . The
dash-dotted (green) line is the boundary for the mixed phase while
the dashed line is the melting line for the Efimov-DNA.

By looking at the divergence or convergence of the ratios
r2 and r3 for different values of y,σ and comparing these
values with the two-chain melting curve, different phases can
be identified (see Fig. 6). In this model we obtain two different
phases, an Efimov and a mixed phase. However, the Efimov
phase is not a distinct phase. It is just an effect on three chains,
where no two are bound but three are bound. On the other
hand, in a mixed phase, the strands are pair-wise bound but
there is no three-chain contact. The possible types of the mixed
phase are shown schematically in Fig. 7. In Fig. 6, within the
range y = 1 to y < 1.075 26 for σ > 1.144 58 the Efimov
region is obtained and the region is enclosed between the line
for r2 and the two-chain melting curve. The mixed phase is
enclosed between the line for r3 and the two-chain melting
curve for y > 1.075 26 and σ < 1.144 58. Unlike the Efimov

3 12 1 2 3

(a) (b)

FIG. 7. (Color online) Schematic diagram of a mixed phase of
three polymers of two possible configurations. At each monomer
position, two are bound but the third monomer is free along the
length of the chains. (a) Polymer chains can cross each other. (b)
Polymer chains cannot cross each other and no interaction between
chains 1 and 3.

DNA, the mixed phase undergoes a phase transition to a state
of three-chain bound state.

B. Model TS2: With crossing

We now extend the study to a slightly different model with
the following characteristics:

(i) Walks can cross each other.
(ii) y12 = y23 = y31 = y,y123 = 1

y
.

(iii) σ12 = σ23 = σ31 = σ,σ123 = 1.
In this model all chains are having equal pair interaction.

There is a three-chain repulsive interaction. A weight is given
for the two-chain bubble opening or closure for all pairs.
With crossing, there will be extra weights for configurations
involving bubble opening due to the exchange of strands.
Therefore, configurations involving gn, hn, and in would
have additional combinatorial factors compared to model TS1
[Eqs. (9a)–(9i)]. The recursion relations for the (n + 1)th
generation partition functions are given by

an+1 = a2
n, (13a)

bn+1 = b2
n + a2

nbn, (13b)

cn+1 = c2
n, (13c)

dn+1 = d2
n + 2g2

nbn + c2
ndn, (13d)

en+1 = e2
n, (13e)

fn+1 = f 2
n + e2

nfn + 3h2
ndn + 3i2

nbn, (13f)

gn+1 = angn(bn + cn), (13g)

hn+1 = hn(anen + bncn), (13h)

in+1 = in(cnen + dnan) + 2g2
nhn, (13i)

with the initial conditions

a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2, f0 = y4,

g0 = yσ, h0 = y2σ 2, i0 = y3σ 2. (14)

Following the same procedure of comparison of free
energies, the phase diagram is obtained in the y-σ plane, as
shown in Fig. 8. With the given initial conditions this model
exhibits the mixed phase. One sees two transitions: At low
temperature we have a three-chain bound state that goes into
the mixed state (green dashed line in Fig. 8) and the mixed
state melts into free chains (black solid line in Fig. 8). This
latter transition coincides with the two-chain melting curve.

C. Model TS3: With crossing

Here three chains have repulsive interaction as in TS2, but
we consider a different generalization that favors three-chain
bubbles.

(i) Walks can cross each other.
(ii) y12 = y23 = y31 = y,y123 = 1

y
.

(iii) σ12 = σ23 = σ31 = σ,σ123 = 1
σ

.
Here σ < 1 and therefore σ123 > 1. Two-chain bubbles are

penalized by σ but σ123 favors three-chain bubbles.
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FIG. 8. (Color online) Model TS2: The three-chain phase dia-
gram in the y-σ plane. The unbound, the bound, and the mixed
phases are shown. The solid line is the two-chain melting curve
which is present in the three-chain case. There is no Efimov-DNA.
The dash-dotted (green) line is the boundary for the mixed phase.

However, the recursion relations are the same as for TS2
given by Eqs. (13a)–(13i). The initial conditions are

a0 = 1, b0 = 1, c0 = y, d0 = y2, e0 = y2,

f0 = y4, g0 = yσ, h0 = y2σ, i0 = y3σ. (15)

Following the same procedure of comparison of free energies,
the Efimov state is obtained and is shown in Fig. 9.

VI. ENERGY DIAGRAM

The first order nature of the phase transitions can be
determined from the behavior of the average energy. For that
we first validate, with a direct calculation of the free energy,
the identifications of the phases done in the previous sections.

In the grand canonical approach, we determine its fixed
point value of fugacity z (see Sec. III), for given values of
y and σ . These are shown in Fig. 10. Based on the idea of
the various phases, the total partition functions Ztot and Qtot

1 1.1 1.2 1.3y
0
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0.4

0.6

0.8

1

σ

r
r

               TS3: crossing case

unbound

bound

efimov

FIG. 9. (Color online) Model TS3: the three-chain phase diagram
in the y-σ plane. The unbound, the bound, and the Efimov states
are shown. The dark (black) line representing the two-chain melting
curve, is not present in the three-chain case. There is no mixed phase.
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FIG. 10. (Color online) The fixed point values (circles) of grand
canonical z are compared with the canonical partition function
Q

1/3N
tot (solid line). The values of the mixed phase partition function

(bndn)1/3N , are shown by the dash-dotted line (green). Here N = 226

is the length of each polymer.

for the two-chain and the three-chain cases in the fixed length
ensemble can be written as

Ztot = b2
n+1 + dn+1, (16)

Qtot = fn+1 + b3
n+1 + 2dn+1bn+1, (17)

in terms of the subpartition functions bn+1, dn+1, and fn+1. A
comparison of the grand canonical partition function z and the
canonical one Q

1/3N
tot for polymers of length N = 2n+1 with

n = 25 is shown in Fig. 10. The figure also shows the partition
function for the mixed phase [bndn]1/3N vs y. Armed with this
agreement, the average energy calculation can be simplified.
The total average energies of the two-chain system (Etot) and
the three-chain system (Etot) can be written as

Etot = dnEdn

Ztot
, (18)

Etot = fnEfn
+ 2bndnEdn

Qtot
, (19)

where Edn
and Efn

are the energies corresponding to the
partition functions fn and dn, all of which can be computed
iteratively. The recursion relations for the energies for model
TS1 are given in Appendix B.

The three-chain average energy per bond, 〈E〉 = Etot/N , is
shown for model TS1 in Fig. 11. Fig. 11(a) is for σ = 1.25.
The three-chain average energy (marked as 1) is compared to
the two-chain average energy (marked as 2). This shows the
nonzero three-chain average energy, even though the duplex
average energy is zero.

Figure 11(b) is for σ = 0.5. The three-chain average energy
(marked as 1) is compared to the two-chain average energy
(marked as 2). The transition from the unbound to the mixed
state is at the same temperature as the two-chain case, i.e., at
yc(σ ). The transition from the mixed state to the bound state
occurs for y > yc(σ ) (lower temperature).

The average energy curve in Fig. 11(a) marked as 1 shows
only one jump, where as in Fig. 11(b) the average energy
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FIG. 11. (Color online) Plot of the average energy per bond with
y, for Model TS1. Here ε = 1. The dashed vertical lines are to show
the discontinuity in the energy curves. The three-chain average energy
(marked as 1) is compared to the two-chain average energy (marked
as 2). (a) For σ = 1.25. (b) For σ = 0.5. The first order transition for
the two-chain model is consistent with experimental findings.

curve marked as 1 shows two jumps. In the latter case the two
transitions are from the unbound to the mixed state and from
the mixed to the three-chain bound state.

VII. DISCUSSION

All the models and results are given below for easy
reference. A large class of models can be defined distinguished

by the nature of interactions and the cooperativity factors.
Many of the models are not discussed in detail in this paper
but the results are stated in Table I.

We discuss briefly model TSnull, because it is a reference
model that allows us to understand the origin of the three-body
effects, either Efimov or the mixed state, in the other models.
In model TSnull, instead, the duplex and the triplex melting
curves superpose exactly and no special three-body effect is
present. That is due to chains 1 and 3 being uncoupled, so
that the three-chain behavior is dictated by the independent
behavior of the chain pairs 12 and 13.

Any model feature that effectively couples chains 1 and
3 causes the presence of cooperative three-body effects. The
coupling can be induced by conditions on the contact energies
y(> 1)’s, on the weights σ ’s for bubble opening and closure,
or by the presence of the noncrossing constraint. Depending
on the combination of those conditions, a few models, like
TS2, show the mixed state while the others, like TS3, show the
Efimov-like state. But for model TS1 we get both of the states
though in different regimes of σ and y.

If we compare models TS2 and TS3, in both of them the
overall energy of the triplex state is the same as for the duplex
state due to the repulsive nature of the three-chain interaction
(y123 > 1), but there is a bias in TS2 penalizing the bubble
opening or closure in the triplex state. This biasing seems to
favor the mixed state in TS2, by entropically destabilizing
the triplex state. On the other hand, the conditions on the σ ’s
used in TS3 remove this bias and leave an effective coupling
between chains 1 and 3 that seems to favor the Efimov state
by entropically stabilizing the triplex state. Intriguingly, the
Efimov state is stabilized through the same mechanism in
model TS4 as well, even in the absence of the energetic
coupling between chains 1 and 3 that is present in both models
TS2 and TS3.

The presence of the noncrossing constraint further compli-
cates things. Its effect on a two-chain system is equivalent to
a rescaling of σ by a 1/

√
2 factor in the presence of crossing,

thus causing the entropic destabilization of the duplex state.
In a three-chain system a different rescaling by a 1/

√
3 factor

would be needed to obtain Eq. (9f) from the corresponding
Eq. (13f) in the presence of crossing. As a consequence, the
simultaneous presence of two-chain and three-chain bubbles
does not allow us to establish any simple mapping between the
noncrossing model and a σ -rescaled crossing model. Yet, one
can argue on this basis that the noncrossing constraint induces
an entropic destabilization stronger for the triplex state than for
the duplex. In fact, in model TS5 the coupling between chains

TABLE I. The results obtained for the three-chain models. The subscripts label the chains, i,j = 1,2,3. The models are distinguished by
the conditions satisfied by the parameters. The new phases obtained are also flashed in this table. Models TS4 and TSnull require a different
set of recursion relations, that use 14 generating functions, as shown in Appendix C.

Model Parameters Parameters Results

TS1 (noncrossing) y12 = y23 = y,y31 = 1 σij = σ , σ123 = 1 Efimov, mixed
TS2 (crossing) yij = y,y123 = 1/y σij = σ,σ123 = 1 mixed
TS3 (crossing) yij = y,y123 = 1/y σij = σ,σ123 = 1/σ Efimov
TS4 (crossing) y12 = y23 = y,y31 = 1 σij = σ , σ123 = 1/σ Efimov
TS5 (noncrossing) y12 = y23 = y,y31 = 1 σij = σ , σ123 = 1/σ mixed
TSnull (crossing) y12 = y23 = y,y31 = 1 σ12 = σ23 = σ,σ31 = 1,σ123 = 1 nothing

012121-8



MELTING BEHAVIOR AND DIFFERENT BOUND STATES . . . PHYSICAL REVIEW E 89, 012121 (2014)

1 and 3 is due only to the noncrossing constraint, and the mixed
phase emerges, consistent with the above observation.

Finally, in model TS1 a further coupling is caused by the
choice of the σ ’s weights that either penalizes (for σ < 1) or
favors (for σ > 1) the bubble opening or closure in the triplex
state. As a result, the mixed and the Efimov states coexist in
the same phase diagram, with the Efimov state being present
in the σ > 1.144 58 part of the phase diagram.

For σ = 0 all the models are like the Y-fork model and come
out to be the same, and yc(0) = 1.264 0847 353 . . . denotes the
melting for both the two- and three-chain systems.

All the models that we considered show first order phase
transitions, with discontinuities in the average energy. This is
an effect due to the fractal lattice since similar DNA models
defined through directed polymers on the Euclidean lattice
show second order melting transitions when σ > 0 [6]. Only
for the Y-fork model the melting transition is first-order on the
Euclidean lattice as well.

VIII. CONCLUSION

Working on regular fractal lattices has the advantage of
allowing for exact solutions. Consequently, even very tiny
and elusive effects, as those observed in this paper, can
be highlighted without the doubts that can affect numerical
simulations on Euclidean lattices. For these reasons, we
believe our results are very intriguing and deserve attention
by experimentalists.

In particular we have shown that, when an extra weight
σ for the two- and three-chain bubble opening and closure
is introduced the Efimov-DNA, a loosely bound three-chain
state where no two are bound occurs even in d < 2. What is
remarkable is the emergence of a new state, to be called a mixed
state, where locally any two are bound keeping the third strand
always free but in a global view no one is completely free.
The intermediate phase evolves as a separate phase whereas
the Efimov state is a crossover.

The cooperativity factor σ acts as a control parameter for
the bubbles on DNA. We see that for both Efimov-DNA and
the mixed phase, the existence of bubbles is a necessity. There
is no such effect at σ = 0, despite a duplex melting transition.
Since there is no distance defined on the fractal lattices, the
results of the paper do not necessarily require any induced
long range interaction. Our results for a large variety of models
rather imply that a necessary mathematical condition for both
the phenomena is the bubble induced thermodynamic phase
transition.

Why DNA? The native interaction involving base pairs
at the same monomer position on the two strands is very
special to DNA. The effects we are modeling depend crucially
on this feature, even though the strands can be taken as
ordinary polymers. For ordinary polymers, monomers interact
irrespective of their locations on the chain [40] which vitiates
the quantum-polymer mapping, and the models used here.
Fractal surfaces are routinely generated in the laboratory but
we are not aware of any attempt of adsorption of DNA or
any other polymers on such fractal objects. The closest we
are aware of is DNA adsorbed on a surface. E.g., a double
stranded DNA on a lipid bilayer is known to behave like a
two-dimensional self-avoiding random polymer [41]. We feel

dn+1 n
2dn

2
n n

2g b c dn

= + +

FIG. 12. (Color online) Diagrams showing Eq. (8). A combina-
torial factor 2 is needed for the second diagram on the right hand side
for Eq. (2d), as explained in Fig. 3.

that such systems of DNA in low dimensions might show some
signature of the “mixed phase.” We tend to believe that DNA
adsorbed on a surface is the most natural choice for seeing the
mixed phase predicted in this paper.

The existence of a bound state involving two otherwise
denaturated strands of DNA due to the presence of a third
strand (the Efimov state) or the opening of a double for the
presence of a third strand, might have important implications
for biological processes. Many biological processes involve
three strands, especially strand exchange. Whether the emer-
gent structures resemble the phases obtained in this paper
remains a matter of speculation. We expect our results will
stimulate further theoretical calculations in higher dimensions
and new experiments to look for signatures of the proposed
mechanisms.
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APPENDIX A: DIAGRAMS FOR RECURSION RELATION

In this Appendix we show how to generate the recursion
relations for dn for the noncrossing case as an example. The
subpartition function for n + 1 can be expressed in terms of
the various partition functions of the nth generation as shown
in Fig. 12. For the crossing case, one would need a factor of 2
for two possibilities of the bubble in Fig. 3.

APPENDIX B: RECURSION RELATIONS FOR ENERGIES

For model TS1, one may associate an energy for each of
the subpartition functions. These energies obey the following
recursion relations:

Ecn+1 = 2Ecn
, (B1)

Edn+1 = 1

dn+1

[
2d2

nEdn
+ c2

ndnEdn
+ 2c2

ndnEcn
+ 2g2

nbnEgn

]
,

(B2)

Een+1 = 2Een
, (B3)

Efn+1 = 1

fn+1

[
2f 2

n Efn
+ e2

nfnEfn
+ 2e2

nfnEen
+ h2

ndnEdn

+ 2dnh
2
nEhn

+ 2bni
2
nEin

]
, (B4)
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Egn+1 = 1

gn+1

[
(bn + cn)angnEgn

+ gnancnEcn

]
, (B5)

Ehn+1 = 1

hn+1

[
hnEhn

(anen + bncn)

+hn

(
anenEen

+ bncnEcn

)]
, (B6)

Ein+1 = 1

in+1

[
inEin(cnen + dnan) + in

(
cnenEcn

+ cnenEen

+ dnanEdn

) + g2
nhnEhn

+ 2g2
nhnEgn

]
. (B7)

These are used to calculate the energies in Sec. VI.

APPENDIX C: RECURSION RELATIONS FOR TS4
AND TSNULL MODELS

In this Appendix we show the recursion relations used
for TS4 and TSnull models. In both cases we need to use
an expanded set of 14 generating functions, because the
conditions on the y’s and σ ’s parameters cause the chain pair
13 to have different properties with respect to the two other
pairs 12 and 23. Therefore, the two chain generating functions
cn, dn, gn and the two three-chain bubble opening and closure
generating functions hn, in need to be considered twice. Note
that if the noncrossing constraint is present, conditions such as
y12 = y23 = y,y31 = 1 are equivalent to yij = y,y123 = 1/y

and there is no need for an extended set of generating

functions,

an+1 = a2
n, (C1)

bn+1 = b2
n + a2

nbn, (C2)

c12,n+1 = c2
12,n, (C3)

c13,n+1 = c2
13,n, (C4)

d12,n+1 = d2
12,n + 2g2

12,nbn + c2
12,nd12,n, (C5)

d13,n+1 = d2
13,n + 2g2

13,nbn + c2
13,nd13,n, (C6)

en+1 = e2
n, (C7)

fn+1 = f 2
n + e2

nfn + 2h2
12,nd12,n + h2

13,nd13,n

+ 2i2
12,nbn + i2

13,nbn, (C8)

g12,n+1 = ang12,n(bn + c12,n), (C9)

g13,n+1 = ang13,n(bn + c13,n), (C10)

h12,n+1 = h12,n(anen + bnc12,n), (C11)

h13,n+1 = h13,n(anen + bnc13,n), (C12)

i12,n+1 = i12,n(c12,nen + d12,nan) + g2
12,nh12,n

+ g12,ng13,nh13,n, (C13)

i13,n+1 = i13,n(c13,nen + d13,nan) + 2g12,ng13,nh12,n.

(C14)
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(2013) P02045.
[33] S. C. Chang, L. C. Chen, and H. Y. Lee, Physica A 392, 1776

(2013).
[34] D. Dhar and J. Vannimenus, J. Phys. A 20, 199 (1987).
[35] E. Orlandini, F. Seno, A. L. Stella, and M. C. Tesi, Phys. Rev.

Lett. 68, 488 (1992).

[36] D. Poland and H. A. Scheraga, J. Chem. Phys. 45, 1456
(1966).

[37] D. Dhar and Y. Singh, in Statistics of Linear Polymers in
Disordered Media, edited by B. K. Chakraborty (Elsevier,
Amsterdam, 2005).

[38] S. A. Kozyavkin, S. M. Mirkin, and B. R. Amirikian, J. Biomol.
Struct. Dyn. 5, 119 (1987).

[39] See, for instance, discussion in Y. Kafri, D. Mukamel, and L.
Peliti, Phys. Rev. Lett. 85, 4988 (2000).

[40] See, e.g., S. M. Bhattacharjee, A. Giacometti, and A. Maritan,
J. Phys.: Condens. Matter 25, 503101 (2013).
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