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Infinite number of exponents for a spin-glass transition
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We consider the behavior of the overlapmf=2) paths at the spin-glass transition for a directed polymer
in a random medium. We show that an infinite number of exponents is required to describe these overlaps. This
is done in ane=d—2 expansion without using the replica trick.

When disorder induces a new thermodynamic phase natquation.>® The simplicity of the model, nontrivial solutions
found in the pure system, the description of the transitiorin many case$>***?and the possibility of studying various
itself poses new challenges. This is exemplified by the effortfundamental questiof*related to disorder systems in gen-
made to understand the spin-glass transitibrOther ex-  eral, make the strong disorder phase and the transition a topic
amples are magnets in random fiefdpplymers in disor- of paramount importanckln fact, various techniques have
dered medid;” or with random interaction$,etc. Several been used for this purpose, as, e.g., Bethe ansatz for
concepts emerged from the solution of the infinite ranged=1,2° dynamic renormalization groud;>®?* scaling
“mean-field” spin-glass problem using the replica trick, but theory!® numerical simulation$® mode coupling® 1/d
their validity for finite dimensional systems, remains to beexpansiorf/ on a Cayley treé! on hierarchical lattice¥’
established:'° etc. Replica symmetry breakiffy has been tried by

The most important concept in the replica approach is thasomé®!®2°and vehemently opposed by a few oth&s!
of the overlap which plays the role of the order parameter for For DP, the overlaprti overlap describes the fraction of
the transitiont: The overlap purports to characterize the rug-paths common to twonf) minimum (free) energy paths, and
ged free-energy landscape in the spin-glass phase through tisetherefore equal to the fraction of the paths twa) (poly-
statistics of the pairwise common configurations in the varimers go together when placed in the same random
ous minima. In principle, a many valley free-energy surfacemedium!®*611:122432rhe two (m) polymers act as the rep-
would require higher order overlaps for a more detailedicas of the one chain system. In the spin-glass phase, if there
descriptiont™*? These are the overlap of say, three or moreis only one minimum free energy path, then both the chains
(m) minima, to be called therh overlap” All of these over-  would follow the same path, an attraction induced by the
laps vanish at the transition point ag,~|T.—T|#m for  disorder. In case there are many valleys, then the chains can
T—T.—,because the free-energy surface goes over to get separated by hopping to a neighboring valley. Thus over-
smooth one in the high-temperature phase. Now, how mankaps contain information about the valley structure.
exponents are needed to describe these overlaps? The answeiThem overlapsq,,, have been calculated for a DPRM on
is one forinfinite range or infinite dimensionahodelst!  a Cayley tree and on hierarchical lattidés! The Cayley
justifying the use of the pair overlapy,, as the sole order tree problem can be thought of as an infinite dimensional
parameter in the replica approa@hith 8, as the order pa- case while the hierarchical lattices are definitely finite dimen-
rameter exponent>!4 What about finite dimensional sys- sional with tunable dimensionality. For the Cayley tree prob-
tems? The question assumes importance because the numbam, closed form expressions fq, show thatg,,=1 for all
of independent exponents tells us the number of quantitiem.! For hierarchical lattices, there is a critical dimension
one requires to characterize the transition. Alas, so little issbove which a transition takes plateNumerically the tran-
known of the spin-glass problef. sition temperature has been obtained by locating the tem-

In this paper, we develop a method to calculate these perature where], and q; vanish. Nothing, unfortunately, is
overlaps for arbitrarym in an e=d—2 expansion for the known for 8,,. A linear dependence @,, on m, in a mul-
spin-glass transition of a directed polymer in a random metifractal analysis, would also mean that only one exponent is
dium (DPRM) without using the replica trickA d+ 1 dimen- needed, as, e.g., for pure noninteracting Gaussian chains,
sional directed polyme(DP) is a string stretched in a pre- (see beloyw The crucial question is, therefore, whether such
ferred direction and with free fluctuations in the transversdinearity is maintained for finite dimensional systems. The
d dimensions. In a random medium, the gain in the potentiaknswer we find is no.
energy from randomness can win over the “random walk” In this paper, we use the continuum approach. The poly-
entropy, producing a disorder dominated “super diffusive” mer is described by the Hamiltonian
phase 1518 For d>2, there is a transition from a low-
temperature, strong disorder, spin-glass-type phase to a pure-
type phasé&!"18The transition is described by an unstable H= fo d7
fixed point[ ~O(e€)] in a renormalization grougRG) ap-
proach via the mappiftg to a nonlinear noisy stochastic wherex(t) is thed-dimensional transverse spatial coordinate
equation for the free energy(Kardar-Parisi-Zhang of the DP at the contour length andx(7)=dx(7)/d7. The
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first term on the right hand side represents the entropic fluc-
tuatipns of a free Gaussian chain with as the bare line G o Gk ;3 0) v 5 k) o
tension.V corresponds to a space- and time-dependent ran- ! " i
dom potential seen by the chain, and the amplithd2y is @
chosen for convenience. The random potential is taken to be g 5 (ZPp;)
uncorrelated, normally distributédwith zero mean, and AS( k+k ) S(or+oof 2
V(x,)V(y,7")=2A8(x—y)S8(7— 7'), where the overbar —O— P}
stands for disorder averaging. ko ko I S
A formal way to define then overlap is to putn chains in o
the system and take Pk =k kg,
{b) Vs
1 LALNR T
1t —p = —> D i %4
qmz—?JO dr<i]:[l 5[xi,i+1(fr)]>, 2 + &} S\p—kl
k,—p

wherex; 4+ 1(7) =X;(7) — X3+ 1(7), and(- - -) stands for ther-

mal average for a realization. One way of computipgis to FIG. 1. Diagrammatic representation of the parametarand

. . . - the solution(b). [See also Figs. 1 and 2 of Ref(5.] The solid
couple them chains or replicas with a weaki-body inter- square represents the vertex function which for zero external mo-

a!ctlo_n. Then overlap would fOIIO_W from an appropriate de_'menta give ,r. The dotted line in the series for, is a dummy
rivative of_the total free energy with respect to the hypothetl'Iine signifying loop closing. This line indicates that two different
cal coupling constantsee below. This procedure was jygices are coupled by the dummy momentpmThere are two
adopted for the overlapgg) in the numerical work of  factors in(b). (i) A combinatorial factor 8 from the insertions of
Mezard in -1 dimension¥’ and by one of us in a one-loop \ vertices and the subsequent noise contraction @ndT) for
RG approacH (see also Ref. 32We generalize the method choosing the wave vectors.
of Ref. 24 forq,,. The RG analysis is geared towards cal-
culating the scaling exponent of the coupling constant. A
judicious use of finite-size scaling, as explained below, then
gives us the exponem,,.

With the definition of them overlap in Eq. 2, we consider
anm chain interacting Hamiltonian

+gOi (4)

p m A
—h _§=l§ [th+2(vjh)

wherego= 2" V(x; 1) + vl 8] %) 4 1(7)]. This equa-
tion, though resembling a highem() dimensional KPZ
equatior?, is actually not so for the peculiar noise term. We
prefer this equation to Eqsl) or (3) because an RG can be
implemented with the nonlinear termas perturbation. This
is different from a perturbation in the random potential
around the Gaussian chains. Moreover, the equation de-
scribes the free energy and averagmgvill naturally give
the quenched average free energy without any recourse to the
replica trick.

A scaling of x— bx,t—b*t, then shows that, in the ab-
sence of nonlinearity, v, —b? (M V4~x, - An anoma-

. . . lous part#,, would creep in through renormalization when
vm, andy andz are the single-chain-free energy fluctuation . : : :
the nonlinearityA is present. The crossover exponent is

(Af~t¥?) and dynamic(size x~t?) exponent$*° We ~ oV
have verified that, as expected, there is no change in ihgereforegn=—[z=(m=1)d=x+ 7m]. This gives
single-chain exponent. Taking derivative then gives - _
Om~t>m, with 3,,=(x— ¢m—2)/z. Incidentally, the system Am=rd(m=1)+ pml/z. ®
is taken to be infinite in extent in all the transverse direc- The m dependence, apart from the Gaussian one, therefore
tions and is of length in the preferred direction. This form comes fromz,,. At the Gaussian level the exponents depend
of q,, can, therefore, be treated as a finite-size scaling frm. linearly onm.
Now, the transition takes place only in the thermodynamic The formal solution of Eq.(4), in the Fourier space
limit of t—oc. In that limit, for d>2, there is a diverging (Kj,®) conjugate to X;,t), can be written as
length scale with exponent, £§~|T—T.| ™", parallel to the .
specialt-like direction®!7 Finite-size scaling suggests a scal- h({Kj},®)=Go({kj},@)3o— (A/2)Go({ki}, @)
ing form q,,,= t‘f"m’”g(tlgu). Therefore, right at the critical

<

{}

m-—1

Ho= 3, Wit 2yon [ ar TT o0l @)
i=1 0 i=1

whereH; is the Hamiltonian of Eq. 1 for théth polymer.
Defining the quenched free enerdy(v,,t)=InZ, where
Z,, is the partition function for7,,, the m overlap is ob-
tained agyy=—t"* df (v m,t)/dvgl,, —o-

Our interest is in the scaling part of the free energy,
fm~tX2f (vt~ ?m’?), where ¢, is the scaling exponent for

point (i.e., the unstable fixed point in RGg,~t Am’". A
comparison then yield®,,= —vX,,. Remember, thav is
strictly m independent. Our strategy is therefore to calculate

> WJ)h({pi}*ﬂ)h({k;—pj},w—ﬂ),

(6)

m-
Define h({x;},t) =(2y/N)InZ({x;},t), whereZ({x;},t) is

the partition function for chains with end points {ag}, all

starting at the origin. Thif satisfies the equatiot,

where Go({k;}, @) =[y=;k’—iw]~* represents the bane
particle propagatofGreen’s function (see Fig. 1, andgg is
the Fourier transform of,. A shorthand notation is used,
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viz., Z=p;-(kj—py), [iy=(2m) ™l dQ I, dp;,  Where{ =1z is the size exponent at the transition point.
and{k;} to represent all then k vectors. To tame possible We now see that the linear relation betwegpnandm at the
divergences, we put an upper cutdff (=1) for all p inte-  Gaussian level is not respected in the first order. In other
grals. This cutoff actually comes from a short distance cutoffvords the exponentg, are not linearly dependent on each
in real space. other, and higher order terms are expected to make the inter-
We now use a dynamic renormalization group approach telependence more complicated. Hence the need for an infinite
determine the behavior af,, for large length scales by inte- number of exponents at the transition point.
grating out fluctuations on smaller scales. This is based on From the nature of the perturbation series, we see that the
Eg.(6). The procedure is well documented, especially for thechange in exponent to first order énis due to the effective
KPZ equation and for them=2 case of Eq(4).2* The basic  two-body interaction induced by the disorder. The loop in
idea is to(i) integrate out the fluctuations at the shortest scald-ig. 1 and in Eq(7) comes when disorder couples two dif-
by taking a sliceAe”?<p=<A from the momentum inte- ferent chains. Withs-correlated noise, this means that the
gral, (i) absorb it in the coupling constant, afid) rescale two chains are going through the same point in space. The
all the momenta, etc., to get back the original cuthffThe  purpose of overlap is to count these. It is well known that
resulting changes are then absorbed by renormalizing the p&wo-body interaction changes the reunion behaviornof
rameters of the problem. In the lim& —0, these changes chains, and eacin requires a new exponent for reunigit?
are expressed in terms of differential equatignscursion  This is the situation here.
relationg that tell us the flow of the parameters as we go to Let us now try to connect this result to a replica analysis.
longer length scales. Special care is needed, for the probleiye taken chains in the random medium and average the
at hand, to keep track of the momenta indices that getesulting partition function, or equivalently, get the effective
coupled by the noise. These interchain connections produddamiltonian for thenth moment of the partition function.
the necessary anomalous part in the RG equation. We skiphe effect of the disorder is to couple these chains through a
the algebraic details. two-body interactiort’ The m overlap, then corresponds to
The flow of the disorder is described in terms of thethe reunion ofm chains out of thesen, in the limit n—0
dimensionless couplingU=K4\?A/(2y%), where Ky (the replica trick. At the critical point, taking the chains to
=(2m) 9S4, Sy being the surface area of the unit be Gaussiafsincel.= 1/z.=1/2),"®®the reunion of a subset
d-dimensional sphere, and can be found in Ref. 5. We havef interacting random walkers can be studied following Ref.
verified that this single chain equation is recovered from Eq36. The only difference with Ref. 36 is that the relevant fixed
(6), and is independent ain. Let us recapitulate that at point is the unstable one, and the-0 limit can be taken
d=2, U is marginally relevant. This leads to a new critical [see, e.g., Ref. 36)] to get the anomalous part of E().
point for d>2. For d=2+¢, the unstable fixed point This is essentially correct but it still needs to be established
U* =2e corresponds to the spin-glass transition point, withthat the chains are actually Gaussiamot just {.=1/2).
v=2/(d—2) as the length scale exponéfit. These problems are not present in the differential equation
We concentrate on the renormalization of the couplingapproach used in this paper.
vm. For the long wavelength, long time limit, the external ~ What do all of these mean for the spin-glass transition in
wavevectors and frequency are small or zero. In this limitfinite dimensions? One expects to write dofim the n—0
for arbitrarym, the effective coupling constant to one-loop limit) a Landau-Ginzburg type free-energy functional with
order (see Fig. 1 is given by (suppressing the zero wave the overlaps as the order parameters. There can be two pos-
vectors sibilities. (i) One is that the simple minded description
through the overlap of two copies is not sufficient, and one
m has to worry about the higher overlaps, and in fact an infinite
UmR=Um™t 8( 2 ) ( - 5) (2v,A) number of them. Even if one starts with the Gaussian distri-
bution, renormalization effects will generate the higher over-
4 ) laps(arbitrary distributions generate then in any Jasethis
X Jp o Go(P, )[Go(—p, =) ]*Go(p, —p,0). situation, the conventional replica approach may not be use-
’ ful. The problem here again may be the interchange of the
(7)  two limits, viz, n—0 and the thermodynamic limitii) The
other option is that the two copy overlap is good enough in
the sense that highem overlaps are irrelevant. Naively
speaking, at the transition point wit+2, y=0, v, is irrel-
Um- (8 evant atd=2 for m>2. However, this does not necessarily
imply irrelevance of then overlaps in the single-chain prob-
Since our interest is in the crossover exponentifgrat  lem. Remember, that,, is a coupling introduced by hand in
vm=0, this first ordexin v,,), one-loop equation is sufficient the many chain Hamiltonian in E3) to calculate the over-
for us. Higher loops will generate higher order termsuin  laps anddoes notappear in the description of the single-
(and hencex). chain problem. This opens up the possibility where under
Using the one-loop fixed point valug* = 2¢ for the tran- ~ SPecial conditions higher order overlaps can become impor-

sition point, we findy,,=—m(m—1)e, which from Eq.(5)  tant as @n multicritical cases or polymers with higher order
gives composite operators becoming relevant. Proper choice of pa-

rameters can then lead to multicritical analogs of spin
Bm=vi{[2(m—1)—(m—1)2e+0O(€?)], 9 glasses. These are not the random version of pure multicriti-

2

The recursion relation fas,, follows from Eq.(7) as

dup,

dl v

m
2

Z—)(—(m—l)d+(
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cal models but are of inherently different type. In both casesof independent exponents. This indicates either a failure of
if the m overlaps are important at the transition, they arethe simple replica picture in finite dimensions or the possi-
expected to be so in the spin-glass phase also. We hope tHitity of highly complex spin-glass phases.

this will motivate further detailed numerical work to settle e thank A. Baumganer for discussions and hospitality

this issue. We conclude that, like multifractals, a spin-glassait KFA-IFF. The visit of the authors is supported by the
transition in finite dimensions subsumes an infinite numbeindo-German collaboration PHY-25/1.
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