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The glass-transition point of th:eisquzrirc-tiliné model is shown not to be an isolated point but a
point of confluence of a large number of higher-order phase transition lines. This multiphase na-
ture of the glass-transition point is a consequence of the competition of the internal energy with

What is the nature of the glass transition that occurs
when a liquid is cooled?! ™ This is a question that has
been haunting physicists for decades ever since Kauzmann
pointed out the thermodynamic necessity of a glass transi-
tion to prevent a negative entropy disaster.® At present the
question is hotly debated and many alternatives have been
suggested.” In such a situation, it helps to study simple
model systems to gain a better understanding of the phe-
nomena. It is in this spirit that the square-tiling model is
studied in this paper. 7 )

The square-tiling model as a model for glass transition
has been studied numerically,®~'® and by rigorous
methods.!! The physics that goes into the model building
is that any amorphous structure obtained by cooling a
liquid can be divided into domains of various sizes, the in-
teriors of which contain only well-packed particles.®’
Restructuring of these domains as the temperature
changes is taken to be the important process for the glass
transition. In the model, the set of domains are represent-
ed by square tiles of all sizes and the geometric packing
problem is to tile a square lattice by these tiles without
any overlap or gap. (See Fig. 1.) For a particular con-
figuration, the energy is taken as'?

E-2x)j_“,(j+ej")ry, a1

where #; is the number of jx tiles (also called j-tiles).
The first term on the right-hand side represents the
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FIG. 1. Tiling of a 10x10 lattice. The energy for thiﬁ partic-
ular configuration with periodic boundary condition is 2A(48
+2706).
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of the perimeter of each tile. Periodic boundary condi-
tions will be assumed. The second term assigns internal
energy to the tiles according to their sizes. This term is
important because domains with different geometrical
structures are expected to have different energies. 6 is the
relative strength of the internal energy. The exponent a
needs to be greater than 2 in two dimensions for the 6
term to compete with the domain-wall term.'* For simpli-
city, we consider a=3. Generalization to arbitrary a is
straightforward.

In the previous studies,®”!! the domain-wall energy
was taken to be the only relevant quantity and so the 6
term was not considered. The existence of the thermo-
dynamic limit for the 6=0 case was proved by Bhatta-
charjee and Helfand.!! A first-order transition was found
at T, =kpT./A=3.7 from extrapolation of a sequence of
rigorous bounds on 7,.!! A finite-width strip transfer ma-
trix was used to obtain these bounds which were shown to
have T, as the limit point. The above estimate agrees well
with Monte Carlo results®1® which, furthermore, show the
glassy behavior of the system near T,. For T < T, with
6=0, the system is frozen in its ground state where the
lattice is covered by a macroscopic tile of size NXN
(N— o). Our purpose is to study the nature of this
glass-transition point when 8 is not equal to zero.

The competing nature of the two terms in Eq. (1) fol-
lows from the fact that the domain-wall energy is mini-

‘mized by reducing the number of walls, thereby going

over to larger tiles, whereas the internal energy is lowered
by choosing smaller tiles. The compromise, in the N — oo
thermodynamic limit, is a ground state that consists of j-
tiles (see below) if

G+l '<o<[jG—1)1"". )

This means that for 6> %, there are only 1x1 tiles
whereas only 2x2 tiles if 6 € [+, 11, and so on. See Fig.
2.

The stability of the assumed uniform j-tiled structure
for the ground state in Eq. (2) against any aperiodic frag-
mentation can be proved by comparing the energy E; of a
J-tile with @ satisfying Eq. (2) with the energy E; of an ar-
‘bitrary tiling of a j X j lattice. The difference is

AEE’E;-"-’E,"-QX[ [gknk —j] +6 [%k%k —j3] ] ,
3)
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FIG. 2. Proposed phasc diagram in T =ksT/7 plane. The
glass transition is at 7. =3.7... for §=0. The numbers 1, 2, 3,
.- (not all shown) represent the ground-state structure at
T =0, For example, 2 represents a ground state with all 2x2
tiles.

where k goes from 1 to j— 1. Using the perfect tiling con-
straint Y,ngk2=j2, AE can be written as

AE =2\ Z

——O]k Ny
k=1

which is strictly positive if @ satisfies Eq. (2) as an in-
equality. AE is zero only at the boundaries of Eq. (2),
and, in fact, at these special values there is a large degen-
eracy.

The energy per lattice site for the tiling with the j-tiles
is € =2A1(j "'+ 8j). There is a discontinuity in the slope
of & (=free energy at T-O) with 8 at each of the transi-
tion points 8=[;(j+1)1 "}, j=1, 2, ..., indicating a se-
quence of first-order transitions at T=0 at these special
values, the last one being at =3 beyond which we have
only 1x1 tiles, and no further fragmentation is possible.

To study the behavior for T-kB T/A#O let us first con-
centrate on the region 8 close to 3 L and T=0. At very low
temperatures (T— 0) with 8= % +s&, an expansion of the
free energy involves excitations above the 1-tiled structure
which are obtained by replacing n 1-tiles by one n-tile.
The relevant expansion is (8=1/kgT)

Bf =2AB(1+6) —xx "2+ §x2x ~4
-, ¢))]

where x =exp(4p81), and f is the free energy per lattice
site.!¥# The low-temperature limit x— oo with fixed
z=x ~2¢ removes all but the 2x2 excitations. For exam-
ple, the last term x3x 7% in Eq. (4) that originates from
3x3 tiles goes to zero. Hence, in the low-temperature
limit, the free energy, apart from a trivial constant, is
equivalent to a hard-square lattice gas (HSG) problem
with both nearest-neighbor and next-nearest-neighbor ex-

clusion, i.e., the problem of placing 2x2 squares on a

— -?x:’x —69_x3x -4 ..
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square lattice with fugacity z.'>™!° Equation (4) in terms
of zis

Bf=2A(1+0)—z+%z>—Fz3+ -,

which agrees with the corresponding expansxon of Belle-
mans and Nigam for the hard-square problem. '’

The hard-square lattice gas problem,'>™'° after a long
debate, has been resolved in favor of a higher-order,
nonuniversal transition at Inz =4.7. This value has been
found by phenomenological renormalization-group meth-
od!® and agrees well with the independent interfacial
method,!® but slightly higher than the estimate from
direct transfer matrix approach.'® Incidentally, this is a
problem that has been resolved very easily by the
renormalization-group method, for which even the ex-
istence of a phase transition was in doubt. !>16

A phase transition (PT) in the HSG implies a PT for
the tiling model at very low temperatures (T'0). The

phase boundary in the Tvs 6 plane near 6= 4 and T =0
is given by 7=0.85 (1 —26), using z=x ~. The nega-
tive slope of the phase boundary (see Fig. 2) forbids any
reentrant PT. Since the 1-tiled structure (degeneracy =1)
is not connected by any symmetry to the 2-tiled structure
of infinite degeneracy, a symmetry argument & la Landau
tells us that the phase boundary cannot terminate unless it
hits a special point in the phase diagram or its boundary.
The line cannot extend to infinity like the ordinary solid-
liquid line because at high temperatures 7> T, the state
with 650 should be similar to 8 =0. The only possibility
is the termination at the glass-transition point on the 6=0
axis. Bending over to T =0 is ruled out by the presence of
a narrow window of N-tiled phase close to 6=0. The
thermodynamlc equivalence of the 1-tiled structure for
6> + and T =0 to the high-temperature phase for =0
should not come as a surprise because a similar
equivalence was shown in Ref. 9 by considering A <0.

What happens at the other values of  where first-order
transitions take place at 7 =0? Low-temperature expan-
sions of the free energy around these special values can be
done as for = %. For example, around 8=[;j(j—i)17",
j>1, the relevant excitations are (j+1)-tileson a lattxce
covered with j-tiles. Since the j-tiled lattice has a large
degeneracy, an averaging over the degenerate states has to
be done as, e.g., for fcc Ising antiferromagnet.?’ Howev-
er, the corresponding lattice gas problems, though similar
to the two-dimensional physisorbtion problems (com-
mensurate phase transitions?!) remain unexplored. Weak
transitions are expected to occur at nonzero T.

A transition from j-tiles to (j+1)-tiles can take place
only if the (j-+1)-tiles form an infinite network or per-
colate on the j-tiled lattice. The critical density of the
(j + 1)-tiles should be bounded below by this percolation
threshold. Thresholds for such correlated percolation
problems are, in general, not known. However, for 8= L
an estimate would be p=p./9 where p.=0.59 is the
threshold for a square lattice. Since, for a lattice gas, the
transition takes place when un—~kgT, where u is the
chemical potential and n the density, an upper bound for
the slope for the transition line around 6= + can be ob-
tamed as |dT/de| =1.08, following the procedure for

0= 1 case. The bound obtained is crude, no doubt, but at
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least gives an idea of the phase boundary. Symmetry ar-
gument can again be invoked to conclude that all these
lines meet at the glass-transition point as shown in Fig. 2.
The glass-transition point, therefore, appears as a multi-
phase point in the extended T vs 0 phase diagram.

A further justification of the phase diagram of Fig. 2
comes from finite-size effects observed in Ref. 11. For
A >0, if we change the sign of 6, the energy in Eq. (1) is
minimized by going over to the largest tile. Because of the
infinitely large cost in energy, smaller tiles will not be al-
lowed no matter how small 8( <0) is. Since the texture
changes drastically as the =0 line is crossed on the
high-temperature side (T > T,), this part of the tempera-
ture axis is a singular line in the phase diagram.?? At
singular or critical points, various thermodynamic quanti-
ties approach the bulk limit algebraically with the size of
the system.? Such an algebraic approach is, therefore, ex-
pected for T > T, with 6=0. In contrast, for T < T, if
the proposed phase diagram of Fig. 2 is correct, the 8 =0
line is surrounded by the largest tile phase on both sides
and nothing special happens when the line is crossed. For
such cases exponential approach to the bulk limit with the
size of the system should be observed. This difference in
behavior has, indeed, been seen in Ref. 11 where only the
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6=0 case was considered.

In summary, we propose that the glass-transition point
observed in the square tiling model without the competing
internal energy [#=0 in Eq. (1)] is a multiphase point
where an infinitely large number of higher-order phase-
transition lines meet, even though it looks like a first-order
transition for 8=0.2* The whole high-temperature phase
for =0 is a singular phase in the extended T vs 0 phase
diagram of Fig. 2, which is supported by the observed'!
finite-size effect. Since the phase boundaries for 60 are
of higher order (> 2) they will be rather elusive !¢ with
signatures only in derivatives higher than 2. Specific heat,
for example, will not show any divergence.

Further analytical and numerical studies are necessary
to obtain the full phase diagram and to understand the
significance of the multiphase nature of the glass-
transition point. It is necessary to know if a richer phase
diagram than Fig, 2 is possible. A renormalization-group
approach, currently under investigation, will shed light on
these issues, and will, in particular, put to the test a recent
conjecture® on the fixed-point structure for the glass tran-
sition.
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