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The finite-size effect is studied in the Kasteleyn model of dimers on the f)rick lattice. This model
is isomorphic to an anisotropic domain-wall model. Asymptotic analysis of the exact Pfaffian solu-
tion for the specific heat establishes that finite-size-scaling theory is valid near the critical point of

this model. The finite-size-scaling function is a function of a scaled temperature variable 7 and a |

shape factor »=N2/M, where 2N is the number of lattice points in the direction perpendicular to
the preferred axis for the domain walls and 2M is the number of lattice points parallel to the pre-
ferred axis. The scaled temperature variable 7 is given by MN?%t /(M +N?), where ¢ is the reduced
temperature. As a function of 7 the scaling function Z2(r,») is a sequence of & functions in the lim-
it =0 and a smooth smgle-peaked functlon 1n the limit »=eo. In the latter case the specific heat
per lattice site can be wrltten as MM (tM ), where ¢ is the bulk specific-heat exponent
with the known value of 5 and v,, is found to have the value of 1. In the case »==0, the specific
heat per lattice site can be written in an equivalent form by replacing M by N and v,, by vy which
takes the value vy =-%—. According to finite-size-scaling theory vy, and vy may be interpreted to be
the critical exponents v, and v, respectively, of the divergent length scales in the two principal
directions. Our exact values of v,, and vy are in agreement with the values of v, and v, predicted
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Finite-size effect for the critical point of an anisotropic dimer model of domain walls

for general anisotropic domain-wall models.

L. INTRODUCTION

About twenty years ago Kasteleyn' introduced a dimer
model on an anisotropic honeycomb lattice, which is aptly
described as a brick lattice, as shown in Fig. 1. Each state
of this model, which has been called the Kasteleyn model
(or K model),? consists of a complete covering of the sites
of the brick lattice by dimers, each of which covers two
nearest-neighbor lattice sites and the connecting bond.
Dimers on vertical bonds have zero energy and dimers on
horizontal bonds have an energy €. This difference in en-
ergy for dimers lying in different directions creates the
spatial anisotropy that breaks the symmetry of the topo-
logically equivalent honeycomb lattice. The total energy
E of any state is just the sum of the energies of the indi-
vidual dimers. Cooperativity is due to the excluded

volume constraint that does not allow two dimers to occu-

py the same lattice site; there are no softer interactions be-
tween neighboring dimers in this model. As for any pla-
nar dimer model of this type, the partition function®

Z =73, ueXp(—BE) can be determined exactly, for f1-

nite or infinite lattices, by the Pfaffian techmque —6

The exact solution of the K model in the thermo-
dynamic limit of an infinite lattice size reveals an unusual
phase transmon The specific heat has a square-root
divergence® (a=+) at T,=e€/(kp1n2) as T is lowered to-
ward T, but the speciﬁc heat is identically zero for all T
smaller than T,. This phase transition behavior contrasts
strongly with the symmetrical logarithmic divergence of
the traditional planar Ising models.””® Some purely
dimeric models .that cannot be formulated as Ising
models, such as the dimer model on the “4-8 lattlce,”9
also share the more traditional symmetric logarithmic
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specific-heat divergence. Other dimer models have been

_found that behave similarly to the K model.!%!! It is use-

ful to think of three universality classes of models that
can be solved exactly by the Pfaffian method; the Ising
class, the Kasteleyn class and a third class that is less in-

teresting because it includes models, such as dimers on a

rectangular lattice,%? that have no phase transition. Al-

though it is not proven that this classification scheme is
coraplete nor is it perfectly clear what diagnostics, short

| L

‘FIG. 1 One state of the K model on a finite brick lattice
with penodic boundary conditions. There are 2N=8§ lattice

- points in the horizontal x direction and 2M =4 lattice points in

the vertical y direction. Each of the eight horizontal dimers
(thick lines) costs energy e [activity x =exp( —fBe) (Ref. 3)] while

the four vertical dimers cost no energy (activity=1). The non-
colliding domain walls (dashed lines) are obtained by connecting
the centers of the horizontal dimers. Two horizontal dimers are

connected if and only if they have a common adjacent vertical
bond.

©1985 The American Physical Society



3200

of a full exact solution, determine which class a given
model will fall into, models in the Kasteleyn class seem to
have a conservation (or forcing) property that requires the
correlation functions to be long range with algebraic, rath-
er than exponential, decay with distance.!*'* This forcing
property is very easy to see in the K model. If one starts
in the ground state with all dimers on the vertical bonds
and tries to shift one dimer onto a horizontal bond, then
one must shift a vertical dimer onto a horizontal bond on
each of the horizontal layers, from top to bottom, in the
whole ldttice. For example, in the state shown in Fig. 1
there are two horizontal dimers in the first row which re-
quires that there be two horizontal dimers in each row.
For infinite lattices this requires an infinite amount of en-
ergy. As a consequence, the excited states of the K model
are separated by infinite energy gaps from the ground
state and also from each other.

The aforementioned forcing property of models in the
Kasteleyn class has sometimes been thought to be artifi-
cial, especially if one is thinking of fluids or magnetism.
However, this property is very natural for two much dif-
ferent kinds of physical system. The first such system,
which has been elaborated upon in the past,' is lipid bi-
layer biomembranes, for which the forcing property
translates to the fact that the linear unbranched hydrocar-
bon chains can not end or begin arbitrarily. (The dimer
model one needs'! for this system is shown in Fig. 2. This
model, to be called the generalized K model, is character-
ized by two parameters x and y and includes the K model
as the y =0 case.) The second such system, which will be
discussed more fully here, is a domain-wall model of the
commensurate-incommensurate (CI) transition.!® The iso-
morphism!”!® of the K model to a domain-wall model is
shown in Fig. 1. The anisotropy of the K model
translates to the domain walls lying along the y axis and
the forcing property of the K model translates to the
domain walls not being allowed to begin, end, or annihi-
late each other as they proceed along the y axis. This iso-
morphism and the exact solution of the K model have
provided rigorous tests of some of the theories'® of the
p X1 CI transitions. It might also be mentioned that a di-
mer model where the walls can meet and annihilate in
pairs has recently been introduced.!® Its exact solution al-
lows the testing of theories of CI-Ising crossover.?’

A phenomenological theory of the critical point ex-
ponents for p X1 CI transitions based on the domain-wall
picture has recently been developed.?’?® Two length
scales have been proposed; one, &,, pertains to the direc-
tion parallel to the domain walls; the other, £,, pertains to
the transverse direction. According to this theory, these
length scales £, and &, diverge near the critical point with
two different critical exponents® v, =+ and vy=1. These
values of v, and v, satisfy the hyperscaling relation gen-
eralized to anisotropic systems,?! namely Vet vy =2—a
and @ equals 7 as in the K model. One of the results of
this paper will be to demonstrate that the phenomenologi-
cal theory is consistent with extensive additional exact re-
sults for the K model on finite lattices. This demonstra-
tion involves use of the concepts of finite-size-scaling
theory®? and our exact calculations demonstrate that this
theory, when suitably generalized to anisotropic models, is
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FIG. 2. (a) The generalized K model on a square lattice of
shape N XM with 2M =6 lattice points in the vertical direction
and 2N=6 lattice points in the horizontal direction. The hor-
izontal bonds have activity x while the vertical bonds have ac-
tivities 1 and y alternately as shown. The K model corresponds
to y =0. This generalized model belongs to the Kasteleyn class
for y+£1 and belongs to the third class for y =1, when it is just
the rectangular lattice model. A unit cell for the Pfaffian solu-
tion is shown by the dotted lines. (See also Ref. 11.) This unit
cell is chosen because of the periodic boundary conditions in the
two principal lattice directions. (b) The phase diagram of the
generalized K model in the (x,y) activity plane. In phase I, the
system is frozen in the ground state where the dimers are on the
bonds of activity 1 (y <1). Phase III is also a frozen state where
the dimers are on the edges of activity y (y > 1). Phase II is the
disordered phase. P is a multicritical point. The dashed line
corresponds to the rectangular lattice model and there is no
nonanalyticity as one crosses this line by changing y, except at
P.

valid for the K model.

Since the finite-size-scaling theory plays a crucial role
in this paper, we give a brief review of it here. Figure 3
shows the specific heat ¢, « ,, (T) of the K model on a lat-
tice infinite in both directions (e X co lattice). Also
shown there are the specific heats ¢« p(T) for different
values of M when the lattice is finite in the vertical direc-
tion with 2 M lattice points (i.e., with M unit cells) and in-
finite in the horizontal direction (0 XM lattice). Now, as
the limit M — o is taken at a fixed temperature T (£T,),
¢ oxm(T) must approach ¢ x.(T) so that the error
Ry (T)=c¢ 45 o (T)—c o x p(T) approaches zero. Howev-
er, right at T =T, the specific heat for any finite value of
M remains finite so that the error term Ry (T,) has to be
as significant as the bulk term. This means that breaking
up ¢, xu{7T) as a bulk term plus some correction term is
not possible at or close to T,. Finite-size-scaling theory*
is designed to provide an asymptotic form that works in
this critical region. Various limiting procedures are
shown schematically in Fig. 4.

The central concept of finite-size-scaling theory is that,
if a critical point is characterized by a divergent length
scale £ with an exponent® v, then finite-size effects will
become substantial only when the size of the system is
comparable to this length scale £. Close to the critical
temperature it is supposed that any thermodynamic func-
tion, such as the specific heat, can be written in a scaling
form
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FIG. 3. The finite-size effect for the specific heat per lattice
site, ¢, of the K model (Fig. 1) as a function of temperature T

for a few different sizes. For a doubly infinite system the (bulk)

specific heat ¢, x,(7T) is shown by the solid line. The vertical
line indicates the bulk transition temperature T,. For finite M
and infinite N the specific heats ¢, xu{T) are shown by a dot-
ted line for M =10 and by a dashed line for M =20.

(=M M P M), (1.1)

where wj and vy, are the two exponents characterizing
the finite-size effect, M is a length characteristic of the
finiteness of the system and ¢ is the reduced temperature,
(T —T.)/T,. The argument of the function & in Eq.
(1.1), namely tM "™, must be related to the ratio of M to
& since £ is assumed to be the only intrinsic length scale
available with which to compare the finite size M. (M
and N will be referred to as lengths, although formally
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FIG. 4. Schematic diagram showing various limiting pro-
cedures for simple finite-size scaling theory for isotropic sys-
tems. The vertical axis is the inverse of the size of the system
raised to the 1/v;, power and the horizontal axis is the reduced

temperature (Ref. 3) . The origin represents the bulk critical .

point. The trajectory indicated by the horizontal line (a) corre-
sponds to scanning the temperature of a fixed finite-size lattice,
with specific heats as shown in Fig. 3. The trajectory indicated
by the vertical line (b) corresponds to taking the thermodynamic
limit at a fixed temperature. The trajectory indicated by (c)
maintains constant Ty =tM "M Finite-size scaling theory
makes predictions for such a trajectory (c) as the origin is .ap-
proached. i
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one should multiply them by the lattice spacing which,
hovsllsver, can 1/be set equal to 1) Therefore,
tM "™~ (M /€)™ which implies that vy, =v since v is
defined through &~t~". Moreover, one requires that the
form in Eq. (1.1) should give the bulk behavior
c(t)=C4t~% as M— . Therefore, to obtain the proper
t dependence one must have Z(z)=Cy|z|~% as
z—>*w. Eliminating the M dependence requires
wy =a/vy. Together with vy, =v this shows that the
finite-size exponents are related to the bulk exponents.
The scaling form is, therefore, given by

()M P M) (1.2)

Note that the identification of v, as v, though highly
plausible, is really a hypothesis of the scaling theory be-
cause one has to compare M with the bulk length scale £
which, strictly speaking, does not exist in the finite sys-
tem. However, the dependence of wys on o is a require-
ment, and not a hypothesis, once Eq. (1.1) is accepted. If
the finite system does not show any critical behavior, then

_ one can identify?? the position of the maximum specific

heat as a pseudocritical temperature T,,: as M — 0, I,
must approach T,. Assuming a power-law dependence®

Tm - Tc b

; ~2 1.3
n=—"r 7 (1.3)

in the limit M — o, one can again use the argument that

- £ is the only length scale to conclude that the shift ex-

ponent A must be equal to 1/v. It may also be noted that
the divergence of the total specific heat right at the criti-
cal temperature t =0 goes as M /",

In this paper we perform exact calculations to study the
finite-size effect of the critical behavior of the K model
with periodic boundary conditions. We use the usual
methods of asymptotic expansions® to obtain the finite-
size-scaling behavior of the specific heat as the thermo-
dynamic limit is taken. Such methods have been used by
Ferdinand®* to calculate the expansion of the free energy
of the rectangular lattice dimer model at a fixed tempera-
ture away from the multicritical point P of Fig. 2 (e,
along the dotted line). Later Ferdinand and Fisher®® used

.these methods to obtain the finite-size-scaling behavior

for the square lattice Ising model. For the rectangular lat-
tice dimer model the approach to the thermodynamic lim-
it at a fixed temperature is algebraic and not exponential
as it is in the Ising model when T is not equal to 7,. One
of us has also performed extensive calculations on the K
model and the generalized K model at a fixed tempera-

~ture.?® Like the rectangular lattice model, the approach to

the thermodynamic limit is found to be algebraic with the
system size M. We will not give details of these calcula-
tions in this paper. Rather, we will focus upon the scaling

“behavior in the critical region.

Three different lattice shapes for the K model are con-
sidered in this paper: (1) shape N X o0, in which the lat-
tice has 2N lattice sites in the horizontal x direction but is
infinite in the vertical y direction, (2) shape <« XM, in
which the lattice has 2M lattice sites in the vertical y
direction but is infinite in the horizontal x direction, and

(3) the general shape N XM in which the lattice is finite
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in both directions with 2M lattice sites in the vertical
direction and 2N lattice sites in the horizontal direction.
Since we are interested in the finite-size effect, periodic
boundary conditions in the two principal lattice directions
will be used throughout this paper. Periodic boundary
conditions and the choice of the unit cell in Fig. 2(a) (to be
used in the Pfaffian solution) demands that the number of
lattice sites in each direction be even. The behavior of the
specific heat for shapes N X o and o XM are studied in
Secs. III and IV. Finite-size-scaling theory is shown to be
valid and the scaling variables are identified for these two
shapes. From these results it becomes clear that the
relevant shape factor is ~=N?%/M. (In previous calcula-
tions on the rectangular lattice dimer model?* and the Is-
ing model® the relevant shape factor was s=N/M be-
cause of the obvious equivalence of the x and y axes.) To
verify this new shape dependence the thermodynamic lim-
it is calculated in Sec. V for lattice sizes finite in both
directions at fixed values of ~. In Sec. VI the results for
the three different shapes are compared and shown to fol-
low a consistent pattern. From this pattern and the iden-
tification of the scaling variables the values of v, and v,
are determined and conclusions are drawn in Sec. VIL
Section II begins with the relevant formulas and notations
for subsequent calculations.

1I. FUNDAMENTAL FORMULAS AND NOTATIONS

It is well known" that the partition function Z for a
planar dimer model with periodic boundary conditions
can be expressed as a linear combination of four Pfaffians.
A straightforward extension of the standard method as
presented by McCoy and Wu in Ref. 6 for the rectangular
lattice model gives the Pfaffians for the generalized K
model of Fig. 2(a) (see also Ref. 11). By setting y =0, the
partition function of the K model of size 2N X 2M is?’

4
z=1 >z, 2.1)
2 &
where
N M
Z;="; IT II |s(¢né2)] , 2.2)
n=1m=1
—1 ifj=1
Y= ! 2.3)

i 1 otherwise ,

n=1

n=1

—1
[(= 1Y+ 2x)?M] T] (s (nar/N)PM4(— 1V if j=1and 2

1T {Is((n — L) /N) M4 (—1V)2 if j=3 and 4.
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8(@1,42)=2x*1—cosp;) —exp($,) , 2.4)
x =exp(—Pe), (2.5)
, 11'2]:7—1* for j=1 and 2
1= _ (2.6
an ! for j=3 and 4,
and
ﬁz—m-ffor j=1and 3
, M j=1an -
2= _ : 2.7)
17'2mM 1 ~for j=2and 4.

The allowed sets of values of ¢; and ¢, can be recognized
as the components of the reciprocal vectors of a lattice of
size N XM. Note that N and M correspond to the num-
ber of unit cells in the two directions and also note that
the physics of the system does not depend crucially upon
whether N and M are odd or even. However, to avoid
dealing with two separate cases in the following sections
we will take N to be even; the asymptotic scaling func-
tions do not depend upon this choice.

Since from Eq. (2.7) exp{cp,(m)} are the Mth roots of
+1, the product over m can be performed to reduce the
right-hand side (rhs) of Eq. (2.2) to a single product over
n. The factors in the resulting product are of the type
{2x sin(¢,/2)}*+1 and the product is taken over the al-
lowed values of ¢, given by Eqgs. (2.6) and (2.2). One can
use the symmetry of the trigonometric function about 7/2
to reduce the number of factors to N /2 because every
n <N /2 in Eq. (2.6) can be paired with an n >N /2, ex-
cept when n=N and n=N/2 for j=1 and 2. For
n=N, and j=1 and 2, ¢;=27 so that 2x sin(¢,/2)=0
giving a contribution of (—1) to the product. We com-
bine this factor with Y; in Eq. (2.3) so as to yield a posi-
tive contribution for all j. Introducing the notations

s(@)=2x cos¢ ,

2.8)
p=N/2,
we have
(2.9)
(2.10)

For later convenience we have used the cosine function in Eq. (2.8). The factor outside the product sign in Eq. (2.9) cor-
responds to ¢, = in Eq. (2.6) which is equivalent to ¢ =0 in Eq. (2.8) since ¢ =(7—¢,)/2.

The fundamental thermodynamic relation 4 MNf = —kp T InZ connects the free energy per lattice site, f, to the parti-
tion function Z. The density of horizontal dimers, p, is determined by .

d
4MNp=x . InZ

(2.11)
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and the specific heat per lattice site, ey (T), is given by the derivative of the energy density (=ep) with respect to tem-
perature. Denoting the differentiation with respect to x by a prime and using the notations

: 2
Ej=_zl_.xzj' and Cj=—21—x(ij Y — El'—xZJf for j=1,2,3,4, o (2.12)
J 1 J
o

it is convenient to write : - two-dimensional K model.) In this section we derive these
N transition temperatures for the K model. This will enable
¢ dx zzj (C;+Ej) _us to exhibit an explicit finite-size-scaling form which
&£éx\J . o ———=identifies the appropriate scaling variable when the final

AMNeysu(T) xd 2 Z; - limit N — oo is taken.
J - The origin of the sequence of first-order transitions in
: 2 ~ " the K model of size N X « can be understood in a simple
> ZE; way if one thinks of the excited states above the ground
| (2.13)  state. As discussed in the Introduction each first excited
>z ~ state has one horizontal dimer in each row of the lattice.

J

Since a horizontal dimer can be placed in two different

, - ways in each row, the free energy per lattice site for this

In the thermodynamic limit (N,M — o), the density of  get of excited states is (e—kzT In2)/(2N). Hence the set
horizontal dimers, p(T), and the specific heat ¢, (T)  of first excited states will be thermodynamically preferred

are given by"? - “to the ground state if and only if kzT >kpT,=€/In2.
. 1 o This simple argument actually locates the bulk critical

PID=Cuxeu(D=0 ifx <7, (2',14*)*' temperature exactly. The transition from the ground state
and, if x > 7, S -to the set of first excited states is a first-order transition
because the energy density of this finite system changes

T R RS I (2.15) discontinuously from O to €/(2N). In the same fashion,
p()= T cos 2x : another first-order transition takes place when the set of

- second excited states, with two horizontal dimers per row,
and - is preferred to the set of first excited states. Such transi-
_ 2042 1)—172 ' tions continue to occur as the temperature is increased un-
€ax o (T)=(kp /m)Inx) (45"~ 1) ) @10 . til the system becomes maximally disordered. In the limit
These equations show that the thermodynamic functions ~ N— oo these transition temperatures form a dense set and
are nonanalytic at x,=-—.- The variable 4x2—1 in Eq. their density determines the bulk behavior.?
(2.16) will appear repeatedly in subsequent sections. This The above sequence of transition temperatures can be
variable is related asymptotically to the reduced tempera- calculated exactly from Egs. (2.9) and (2.10). First we
ture t=(T —T,)/T,, as one can easily see by recalling  consider the region where 2x <1. Then s*™(¢) in Egs.
that x =exp(—pe) and x,= % Then, Eq. (2.16) explicitly ~ (2.9) and (2.10) vanishes in the limit M — o because s (¢)
exhibits the =172 dependence of the bulk specific heat as  in Eq. (2.8) is less than one for all ¢. Therefore
t—0-+. Equation (2.15) shows that p(T), which is the in- Z=(—-14141+4+ 1)/21.=1 fqr all T <T,, where T, is
verse of the average separation of the domain walls in Fig. ~ determined by x,=7. This means that the system
1, vanishes with an exponent 5 as T—T,+. This result, remains frozen in the ground state for all T <T, with
though known for a long time, has recently been  zero free energy. However as T is increased above T,
rediscovered in the context of domain wall models.?® Our  (2x >1),5(¢) can be greater than 1. If the temperature is
task in the following sections is to evaluate the asymptotic ~ such. that s(¢=0)>1 but s(¢)<1 for all other allowed
forms of the sums and the products appearing in Eqs.  values of ¢ in Eqs. (2.9) and (2.10), then only the pair Z,
(2.9), (2.10), (2.12), and (2.13) as N and M approach infin-  and Z, survive the limiting procedure (M — ), each be-
ity. " ing equal to (2x)*M. This yields

III. LATTICES OF SHAPE N X - Z =(2x)*M _ (3.1)

The thermodynamic limit of infinite lattice size can be , or, equivalently,
taken in many different ways since both N and M must ksT
go to infinity. In this section we will first let M — oo S0 Faxo(T=— SN
that the lattice becomes infinite in the vertical direction
while remaining finite in the horizontal direction with 2N ~ The energy density, obtained by taking the appropriate
lattice points and N unit cells. Such semi-infinite lattices  derivative of InZ, is now €/(2N), i.e., the system is now in
will be called N X « lattices. For lattices of size N X o _ the first excited state, showing that the first transition has
the K model is known to exhibit a sequence of first-order  taken place at the bulk critical point x =-;—, just as
transitions.!” (This property has been used to study the  predicted by the simple argument in the preceding para-
critical behavior” of a three-dimensional analog29 of the graph_ The system remains frozen in this state, as the

In(2x) . (3.2)
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temperature is changed, until another -s(¢) becomes
greater than 1. From Eq. (2.8) we see that the next term
in the queue to cross the barrier is the n =1 term of Z;
and Z,. However this crossing does not alter the parti-
tion function as long as s(0)>(s(m/2N))®> because
Z,,>>Z;4, and so the free energy after summing in Eq.
(2.1) is still given by Eq. (3.2). But as T is increased fur-
ther (s (7/2N))? can become greater than s (0), so the par-
tition function is dominated by Z;4 and the free energy
per lattice site is given by
kp

(1) Tzl
fNXoc - IN n

J

2N

2x cos (3.3)

where q =[i/2};, the integer part of i/2. For the first
transition at T (= T,), we have 2x;=1. For finite /, ex-
panding the cosine functions in Egs. (3.5) and (3.6), one
can show that the activities x;’s have the following
asymptotic behavior:

NY4x}—1)m~4r%ii —1) withi=1,2,..., (3.7)

up to O(N~?%) as N— . Note that the rhs of Eq. (3.7) is
independent of N. The above equation (3.7) also shows
that when the limit N — oo is taken all the transition tem-
peratures approach'’ the bulk critical temperature T, as
N~

Between any two successive transition temperatures the
N X o« system remains frozen in a set of excited states,
and so the specific heat is identically zero except at the se-
quence of first-order transition temperatures. Therefore,
the specific heat per lattice site can be written as a sum of
delta functions

€
Te=——= N 8T ~-T; 3.8
cNX oo( ) 2N ; ( 1) ( )
which, by changing over to the activity x, becomes
k
evx el T ==x(Inx)? 3 8(x —x;) - (3.9)
2N T

We now perform a few elementary manipulations to ex-
hibit the specific heat in finite-size-scaling form. One has

x —x;=~5((2x —1)—(2x;—1))

1
4N?

asymptotically in the limit N— oo and x close to x, be-
cause in this limit, by Eq. (3.7), the x;’s also approach
x.=7. Defining

Tn=N%4x?—1)

(N¥(4x2—1)—N%4x}—1)) (3.10)

=

(3.11)

| is even,

j is odd and greater than 1,
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The energy density is now €/N showing that the second
transition has taken place at a temperature T,, deter-
mined by

2x cosX(w/2N)=1. (3.4)

This “survival of the stronger term” argument can be
used repeatedly to locate the other transition tempera-
tures. Denoting the transition temperatures by T;, with

i==2,3,..., one can see that the odd values of i corre-

spond to jumps from the pair Z; 4 to the pair Z, , while
the reverse jumps are responsible for the T;’s with even
values of i. The activities x; that correspond to these
transition temperatures are given by

(3.5)

(3.6)

f
and using the property 8(ax)=a ~'8(x), the asymptotic
form of Eq. (3.9) is

Cwa(t)szNg’(TN,O) N
where, using Eq. (3.7)
?(TN,O)=(1n2)225(TN-7T2i(i —1)/4) .
i

(3.12)

(3.13)

The significance of the second variable with the value
zero in the scaling function Z(7y,0) will be revealed in
Sec. VI. Equation (3.12) is in the scaling form of Egq. (1.1)
with wy =1 and vy =1/2, even though the scaling func-
tion Z(ry,0) is a highly nonanalytic function.

IV. LATTICES OF SHAPE o XM

In this section the infinite limits are taken in reverse or-
der compared to the previous section. First, the limit
N — o of lattice sites in the horizontal direction is taken.
This gives a semi-infinite lattice that will be described as

" an oo XM lattice where M is the finite number of unit

cells (i.e.,, with 2M lattice sites) in the vertical direction.
For this type of semi-infinite lattices the energy gaps, un-
like the previous case, are not infinite. Such finite energy
excitations essentially make each of these lattices into typ-
ical one-dimensional models that cannot have a phase
transition and so all the thermodynamic quantities are
smooth analytic functions of temperature except in the
thermodynamic limit as M— . Again we show that
close to the critical point the specific heat per lattice site
can be written in the finite-size-scaling form of Eq. (1.1).
The free energy can also be written in a scaling form,?¢
but as it does not give any additional information we will
concentrate only on the specific heat in this paper.

Since N is infinite, the difference between the products
in Eq. (2.2), for the two allowed sets of angles in Eq. (2.6),
is negligible so that Z; cancels Z; (see Appendix A for
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details). Therefore, the partition function for the wXM
lattice has the following form:

i nZ|= [0 40xcosp™ds @1
1m -ZW f 0 n(1-+(2x cos¢ ¢ A
and the specific heat per lattice site is given by
7/2  (2x cosg )
T)=kpz~—(Inx)*
Coxm(T)=kp fo [1+(2xcos¢)2M]2
4.2)

For x <5, the rhs of Eq. (4.1) is less than
bln(14(2x)*) for some constant ‘b independent of M, so
that the free energy

Soxar~O0(exp[2M1n(2x)])

as M—»co. This shows that at a fixed temperature beIow

4.3)

T, the free energy approaches its thermodynamic limit of

zero exponentially fast. If, however, the thermodynamic
limit is taken in such a way that MIn(2x)~M (4x>—1) is
O(1), for x closé to x,= %, the approach is no longer ex-
ponential. In other words the thermodynamic limit is not
achieved in a region close to x. and the critical region is
determined by the variable

Ty =M (4x%—1) . 4.4)

The analysis for a fixed x > 5 involves a more detailed
calculation because s (¢) [defined in Eq. (2.8)] is no longer
less than one for all values of ¢. In this paper we will not

describe this more lengthy analysis which shows that the

same variable T,; determines the critical region on the
high-temperature side also. However, strong numeérical
evidence to support this assertion will be presented.

We now study the limiting behavior of the thermo-
dynamic quantities as M — o0 for a fixed 73;. The tem-
perature appears in Egs. (4.1) and (4.2) in the form (2x)**
so that

(2x cosg)*M =exp(7a +2M1n cosd)+O (M)

as M— . The two temperature regions T <7, and
T > T, are considered separately because of the dlfference
in the behav1or of s(¢) for the two cases. o

A, T<Tc T T

For T <T,, 7y in Eq. (4.4) is negative and the argu-
ment of the exponential in Eq. (4.5) is monotonically de-
creasing w1th ¢ in the entire range 0 to 7/2. Therefore,
(2x cos¢)
integral in Eq. (4.2) can be expanded as a convergent
series, S

I=3 (—1yw,, @6
r=1 A
where
w/2 L
J,=exp(rr) fo exp(2Mrlacosg)d¢ . )

Because of the monotonic behavior of the integrand in Eq.
(4.7), the leading contribution in the asymptotic limit

(4.5)

is less than one and the denominator of th .
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comes from a region close to ¢=0. One can use the first
term of the expansion

Incosp=—~+¢?— 5 d*+ 4.8)
to approximate the integrand. The range of integration
can also be extended to infinity. The errors from each of
these two steps can be estimated to show that they are less
significant (see Appendix B for details) than the leading

term which is

exp(7r) fow exp(—rM¢p?)dé . 4.9)

By changing the integration variable to s =M!2$ we
have

J,=M—1? fow exp(r(7—s2))ds . (4.10)

" Putting the above asymptotic form for J, in. Eq. (4.10)
into Eq. (4.6) and thence into Eq. (4.2) we obtain

Coxcm()=P (T, 00 M2+ OM—1?) | (4.11)
where
2 e (Tar—s2)
Plrygyo0) =22 o SPTMTS) 0 (41

T 0 (1+4exp(ry—s2))?

Although the derivation assumes 7, <0, we will see
shortly that Eq. (4.12) is also valid for 74, >0. The mean-
ing of the value infinity of the second variable in the scal-
ing function in Eq. (4.12) will be revealed in Sec. VL
Also, to obtain Eq. (4.12), we have replaced Inx by
(—In2), because x approaches 1/2 for a fixed 7, as
M— . :

B. T>T,

For T >T,, 74+2M Incos¢ in Eq. (4.5) will be positive
for
cosd > cosgo=exp( —7y /(2M)) . (4.13)

To evaluate the integral I in Eq. (4.2), we now break it up
into two parts as

I=I+1,,

(4.14)
where
% (2x cosg)—M
I, =
= [ (1 2 cosg) T4 (4.15)
and
/2 2 2M
= f (2x cosg) dé , - (4.16)

%o (14(2x cosp)?M)?

so that the denominator of each integrand is of the form
14z with z < 1. The denominators of I 1,2 €an now be ex-
panded to obtain integrals like J, in Eq (4.7), with ap-
propriate limits and with the replacement of M by — M
for I,. For both I,, the leading contributions come

from a region close to ¢=d,, where one has
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Incos¢ = ——;—;l{——(exp(TM/M)— DV —o)

—%(exp(TM/M))(¢~—¢o)2+ 4.17)
As was done in Sec. IVA for T <T,, one can use Eq.
(4.17) to simplify the integrands of I;,. The errors intro-
duced by doing so can be estimated along the same lines
sketched in Appendix B. By changing the integration
variable to ¢ —¢g, one limit of each integral (I ,) can be
made zero. The upper limit for 7, can be extended to in-
finity, as in Eq. (4.9), giving

w  exp( —27-}”/2s —5?)
LM~ ' ds . (4.18)
2 fo (1+CXp( 1/2 SZ))Z S
|
expl( -—21‘}”/2; —s?

2n2) | =
P )= o T enpt —2eifs

Equation (4.22) is the analytic continuation of Eq. (4.12).
This can easily be verified by completing the squares in
the arguments of the exponentials in the two integrands of
Eq. (4.22) and changing the integration variables ap-
propriately. This proves that the scaling function
P (1y, ) given by Eq. (4.12) is valid for both 75, <0 and
M > 0.

C. The scaling functions

We have shown that for an o XM lattice, the specific
heat close to T, can be expressed in a scaling form

€ oxn(t)mky P (1hy, 00 M2, (4.23)

where the scaling function Z(71, ) is given by Eq.
(4.12) for 73y <0 and by Eq. (4.22) for 7y, > 0. The scaling
function Z(7y, o) depends solely on the scaled variable
=M (4x?>—1)~Mt and not on M and x separately,
consistent with Eq. (1.1). The finite-size exponents are
therefore given by @y =1/2 and vy;=1 for o XM lat-
tices.

The scaling function & (7, ) has been plotted in Fig.
5 (solid line) as a function of 7,,; this calculation involves
numerical integration of Eq. (4.12), using a standard In-
ternational Mathematical and Statistical Library (IMSL)
routine,’® to an absolute error of 1 in 10°. From Egs.
{4.12) and (4.22), and Fig. 5 it follows that Z (7, ) is a
monotonically decreasing function of |7, | for 73 <0
but first increases to a maximum for positive values of
7y Therefore, the reduced pseudocritical temperature ¢,
[Eq. (1.3)] is positive for this shape. The maximum of
P71y, ) is found to occur at 7,,,=1.108. Translated
into ordinary temperature, this means

ty ~0.7993/M (4.24)

as M — . Therefore the shift exponent A is 1 and the
amplitude b =0.7993 [see Eq. (1.3)].

One can check from Egs. (4.12) and (4.22) that
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+f0

However, the range of integration for I, cannot be ex-
tended to infinity because ¢, decreases to O as

$o=(Tse /M) >+ 0 (M ) (4.19)
as M— 0. The change of vanable to s =—M"*$—dp)

gives the lower limit of I; to be T . Therefore,
i expl—2ri%s +s 2

=M= [ P Mm ——ds . (4.20)
0 (1+4exp(—27mp°s +5%))

The details of the error estimates are omitted. The lead-
ing contribution to the specific heat is obtained by com-
bining Egs. (4.18), (4.20), (4.14), and (4.2) giving

Coxmu)=kp Py, 0 M2 LOM™1?),  (421)
where
—2r42% +52)
exp! TMI S| >0, @22)
(14exp(—274% +s%)

f

P(1y, 0)—((In2)2/mVyr'? as my—+oo and
P(rp,0)~exp(— |1a|) as 74— —o0. When these
limiting forms are used in Eq. (4.23), one obtains the bulk
behavior of Eq. (2.16). This is a requirement the scaling
function has to satisfy and, as discussed in the Introduc-
tion, it predicts wy, =a /vy which is consistent with our
result of wy =1/2 because a=1/2 for the K model.!
Since the finite-size-scaling theory is found to hold with
the same exponents on the two sides of 7T, and since the
scaling function approaches zero as 7, approaches — o0,
one can interpret the asymmetric bulk behavior of the
specific heat [Eqs. (2.14) and (2.16)] as a=a’'=1/2 with
zero amplitude on the low-temperature side.

D. Comparison of the asymptotic
form with direct numerical evaluation

The specific heat for a given value of M has been com-
puted by numerically integrating Eq. (4.2) using the stan-

P

Q

]

FIG. 5. Plot of the scaling function Z(7y, ) for shape
oo XM (Sec. IV) vs 74y =M (4x?— 1)~ Mt. The numerically cal-
culated points from Eq. (4.2) are: (i) M for M =50, (i) @ for
M =70, and (iii) & for M =90.
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dard IMSL routine.®® These numerical results for dif-

ferent values of M are plotted against the variable 75 in
Fig. 5 to compare with our asymptotic results. Note the
spectacular collapse of the calculated points on the solid
curve for T < T, indicating that the error in using Eq.

(4.23) is negligible for M ~50. In contrast, for T >T,, _

the numerical results for finite M clearly differ from the
asymptotic scaling form but they systematically approach
the solid curve. To show that for 73, >0 the specific heat
for these semi-infinite systems really approaches the solid
curve in Fig. 5 in the asymptotic limit, the quantity
M=% (2 has been calculated for different values of
M keeping 7 fixed at 73, =0 and 7y =2. The numerical
values obtained are then plotted against 1/M in Fig. 6
[curves @ and b] and extrapolated to the 1/M=0 limit.
These extrapolated values agree remarkably well with

2(0,00)=0.10303 and Z?(2,00)=0.11335 obiaingirr

from Eq. (4.12). Curve c in the same figure shows a simi-
lar extrapolation plot for the maximum specific heat,
computed from Eq. (4.2), and the extrapolated value is
found to agree with 2 (Tp,y, 0)=0.12098. The extrapo-
lated value for the amplitude b (for t,), obtained from
curve d where numerically calculated values of Mt,, are
plotted against 1/M, is also found to agree with the value
given in Eq. (4.24). '
The agreement between the extrapolated numerical
values in Fig. 6 with the values from our asymptotic scal-

0.9

0.64

)| |

@

0.105.

0.8

0 M ol
FIG. 6. 1/M extrapolation plots using numerically calculated

specific heats from equation (4.2). (a) M “2 alT) with

T™M= 2y (b) M—I/ZC © xM( Tc ), i.e', with ™ =0. i(C)

M~V2%_ (Ty), where T, is the temperature for maximum

values computed from Fig. 5 are shown by X’s on the vertical
axis. These are respectively 2 (2, «0), Z(0, c0), P (Tmax, 00), anid
b [see Eq. (4.24)].
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ing function provides strong numerical support that 7 is
the proper scaling variable in the high-temperature region
for oo XM lattices. Let us consider a general form M
for the scaling variable so that for a fixed 7 ~Mt, the
scaling function would behave as (M9 !ry). Now in
__the limit M-—»>o there are three possibilities: (1)

limy_, . Z(M% 1, )=22(0) for all 7y if 6<1, (2)

limy_, , 2 (M9 13)= P () for all 7 if 6>1, and (3)
imyy_, , P (MO 1) =P (1y) if 6=1. In the first two
cases the limits are independent of 7,;. However, the ex-
trapolations in Fig. 6 strongly indicate that the limiting
values depend on 7j,. This dependence on 7, is incon-
sistent with the first two possibilities and supports the
conclusion that vy, =1 and that 7, is the proper scaling
variable.

V. LATTICES OF SHAPE N XM

The results of the preceding two sections emphasize the
strong dependence of the scaling functions and the scaling
variables upon the order of taking the infinite size ther-
modynamic limit of the lattice. At first glance it would
appear that the scaling function for N X « lattice shapes
is completely unconnected with the scaling function for
o0 X M lattice shapes. In fact there is an underlying unity
which, however, can only emerge if a shape variable is ex-
-plicitly considered. In this section consideration of gen-
“eral lattices of shape N XM reveals what the appropriate
-shape variable ~ is. It might be noted that the shape vari-
able s =N /M which was appropriate for isotropic Ising
and dimer models, is not appropriate for the K model.

_Calculations,? which we will not give here, show that tak-
zing the thermodynamic limit holding » constant always
reduces to the scaling function derived for co XM lattices
in Sec. IV. This section also derives the formulas from
which the unified scaling function can be computed for
arbitrary values of r.

First we note that the partial partition functions Z; in -
Egs. (2.9) and (2.10) involve exp(2MIns(¢)) which for
x <1/2 leads to an exponential approach to the thermo-
dynamic limit as we have seen in Eq. (4.3). This shows

- % that 7, defines the critical region for finite systems also.

" From Eq. (2.9) we have

2
=

- 2

InZ,=—In(14+2x)*)+2 3, In[1+(s (nm/N)*M] .

n=0

= (5.1)

~For x < 1/2, following the arguments of the previous sec-
tion (Sec. IV A), one finds that the leading contribution to
the sum on the rhs of the above equation comes from a re-

= -gion close to n =0. For n << N, we have .

M

-\

mh

2M Incos (wn)z—%(ﬂn)“—{- s (5.2)

showing'that for a fixed 7, this n-dependent contribu-

specific heat and (d) Mt, for the reduced pseudocritical tem- __ tion becomes significant only if

perature. [Note the change in scale for curve (d).] Asymptotic _

~=N2/M (5.3)

is held constant because only then is s(n7/N) of O(1).
One comes to the same conclusion from the other three
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partial partition functions. This identifies » as the shape
factor to be kept constant as the thermodynamic limit is
taken.

For a fixed value of » we have to evaluate all four
terms in Eq. (2.1) and also the quantities defined in Eq.
(2.12). The explicit forms of E; and C; are given below:

E=2M, S v (5.4)
e s}M<n>+<—1)f ! '
and |
3Z(¢;+8h | 32,8,
j j

chM(T)=k13(1n.>c)2
J
Note, in particular, that for a fixed ~
M/N=I‘—1/2M1/2=IL_IN .

N 3>z | 3z
J

2M(n)
c,~(~1>1(2M)22 L—Y =M%, ,
(5.5)
where
s{nw/N) if j=1 and 2
si(n)= (5.6)

s((n —5)r/N) if j=3 and 4 .

The above two equations (5.4) and (5.5) define two new
quantities &; and ¥ ;. Using these in Eq. (2.13), one
finds

2

5.7

(5.8)

For later use we introduce a size-dependent variable .# defined as

MN?

M= =
M +N?

L+ﬁ
so that
M/N=#"*1+)"2/r .

) ' (5.9

(5.10)

The following analysis will show that the expression inside the big bracket in Eq. (5.7) is, in the thermodynamic limit, a
function of 73, and ~ only so that in the scaling limit Eq. (5.8) or Eq. (5.10} gives the relevant M or N dependence for
fixed values of 7, and ~. This analysis is performed separately below for T < T, and T' > T,.

A T<T,

Our results in Sec. IV make it clear that, for x < 1/2, the leading contributions to the partial partition functions come
from the values of n <<N. For example, expanding the logarithm in the summand on the rhs of Eq. (5.1), for Z,, we

have to evaluate the following sum:
1y+1

<« (=0T
> —S,
I=1

where

S;= ﬁ exp

n=1

I7Tp +2+M Incos (_n}\_;r_ ] l .

Using Eq. (5.2), one approximates

Sy~ i exp{l[Ty—(mn)*/r1} ,

n=1

(5.11)

(5.12)

(5.13)

where the error comes from using only the first term of Eq. (5.2) and also from extending the range of summation to in-
finity. Using Eq. (5.13) in Eq. (5.11) we obtain the leading behavior of the partial partition function Z;. The error esti-
mates are performed in Appendlx C to show that the error in InZ; is O (N~ 147) with < 1. Similar analyses can be per-
formed for the remaining Z;, and for the &; and %';. Defining

exp(ry —(mn)*/x) for j=1,2,

exp[Ty —(m(n —5))2/~] for j=3,4 (5.14)

&{ﬂn)=

and representing the leading terms by a subscript 0, we have
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o0 _ 5 ‘=1 2
InZ;0=2 Z (o j(n)+( —1)1)] [“ 1Y +exp(ry)) (j=1,2)

1 (j=3,4), o ' (5.15)
w  ofin) exp(ry) (j—l 2)
F2 2 ety | e T
2l )+ (— 0 Gt (5.16)
and
" Zym) (1) (j=1,2)
G A=V S = T T D enpln P T
1 j 0 (j=3,4) . (5.17)
B. T>T,

For T > T,, we make use of the angle ¢, defined in Eq. (4.13). Since the summation in, say, Eq. (5.1) musi be per-
formed with integral values of the index, we define two quantities ng and n, as

na =N¢0/1T » =
- (5.18)
no=[noli ,
where [n ]; is the integer part of no. Then Z, in Eq. (2.9) may be written as _
InZ, =In(1+2x)M)+-01+0,+03 . N (5.19)
where
no s
o1=2 3, Insy(n), o (5.20)
n=1 N
g . .
03=2"S In(1+s7M(n)), . (5.21)
=1 e
and
P M ’ . .
o3=2 3 In(1+s3"(n)), - . (5.22)
n=ng+1 =

s, being given by Eq. (5.6). The leading contributions to these o;’s come from the neighborhood of n =n, and therefore
Eq. (4.17), with appropriate values of ¢, can be used to approximate these o;’s. Since the procedure used for T < T, can
be used again, a detailed discussion will not be given. For o3 a sum from 1 to infinity [compare with Eq. (4.14)] is ob-
tained. This extension of the range of summation is not possible for o ; because asymptotically

no=(rr)"?/m+0O (M) , ] 623

as M— oo for a fixed ~, i.e., because ng is O(1). One can still use Eq. (4.17) to obtain the asymptotic forms of o, 2 83
in Eq. (4.20). Combining all the terms and changing the variable to »2=n —n, the partial partition functions are given
in the form of Eq. (5.15) where <7 has to be replaced by #; defined as

172 TS
17'2 . .
exp [——217- —_ (n—k)——I(n —K)z] if j=1,2
Vod N
B j(n)= o 12 B = (5.24)
exp [—217 l—M- (n—%—K)——ﬂ-—(n —5—k)?| if j=3,4,
» ‘ »

where k= (730 )2 /7 —[(+73¢)'"*/7];. The only major change needed there is the replacement of the lower limit of the
sums from n =1 to n =—z, where 4=[(+7y)"?/7];—1 and the term n =0 is to be excluded. Identical changes are
also necessary to obtain &; and € ;, from Egs. (5.16) and (5.17).
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C. Final form

Combining the results of Secs. VA and VB with Egs. (5.7) and (5.10), we obtain the final form for the specific heat
per lattice site. We find that the leading term depends on two variables 75y and ~. However, we prefer to write it in a
slightly different form where the temperature dependent variable is taken as »7y /(14- ), for reasons to be explained in

the next section. Therefore, we have
CNxM(t)sz.@(l"TM/(1+’°),"‘)Vll/2 y

where

i

(5.25)

2
2 Zj,()g )

172
Pty /(1 + 2,2 ) =(In2 2 L)
-

with Z;o, &}, and % 0, given by Egs. (5.15)—(5.17) for
s <0. For 73, >0 one substitutes #; from Eq. (5.24)
into Egs. (5.15)—(5.17) with the corresponding change in
the lower limit of the summations as mentioned after Eq.
(5.24).

Figure 7 shows the behavior of the scaling function
Prrye/(1+x),x) for =1 (solid line) as a function of
7 /2. The values of the specific heat calculated from Eq.
(2.13) for small lattices with ~=1 are also shown there for
comparison. The systematic approach in Fig. 7 of the ex-
act finite lattice results to the scaling function & as the
lattice size is increased supports the conclusion that Z is
the limiting scaling function. One generally expects the
finite-size-scaling function to be analytic at 74, =0 as
proven rigorously in Sec. IV for the short, fat (0 XM)
case. Although this has not been proved analytically in
this general case, numerical calculations strongly favor
this expectation.

VI. COMPARISON OF RESULTS
FOR DIFFERENT LATTICE SHAPES

The analysis in the preceding section shows that the ap-
propriate shape factor to hold constant as the thermo-

[»)
o

22Z
j .

(5.26)

J _
>Zjo
J

rdynamic limit is approached for the anisotropic K model
is »=N?/M, where 2N is the number of lattice sites in
the horizontal direction and 2M is the number of lattice
sites in the vertical direction. We will now emphasize this
point further by comparing the scaling functions & for
the different cases studied in Secs. III—V. Recall that the
finite-size-scaling functions are related to the specific heat
per lattice site by Egs. (3.13), (4.23), and (5.25) and that
they apply in the limit as both the size of the system be-
comes infinite and the critical point is approached, (see
Fig. 4.) The finite-size-scaling functions are functions of
two variables. One variable is the shape factor. ». The
other variable is a scaled temperature variable 7. In Sec.
IV this scaled temperature variable was 7y ~Mt and in
Sec. V this variable 75, was used. However, in Sec. III
this scaled temperature variable was 7y ~ N2t because 7
is undefined for lattices of shape N X o where M = .
This inelegant difference in scaling variables can be elim-
inated by considering a new scaling variable  defined by

- MN? ;
M4+N2’

TMTN Ve
—_ 7
TA{-{—TN 1+I°

M (6.1)
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FIG. 7. Plot of the scaling function P(rry/(14r),~)
versus Ty /2 for finite N and M with ~ (=N?*/M)=1. The
functional form is given by Eq. (5.26). The numerically calcu-
lated points from Eq. (5.7) are: (i) @ for N =4, (ii) & for N =6,
(iii) + for N=38, and (iv) X for N =10. This multipeaked
curve contrasts strongly with the single peaked curve in Fig. 5.

FIG. 8. Plots of Z(1,~) v8 T [=sr7y /(14 )] for different
values of ~<1. (a) ~=+ (dotted curve), (b) r~=+ (dashed
curve). The vertical lines indicate the d-functions for ~=0 or
equivalently the limiting scaling function, #(7y,0). (See Sec.
IIL.) The position of the first peak remains fixed at 7=0.
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approaching the limiting case of a sequence of delta func-

- —tions when ~=0. The multiple peaks in the curve in Fig.

7 computed for ~=1 are then understandable as remnants
of the 8 functions for r =0. Figures 7 and 9 show what
happens to the scaling functions as « is increased. Figure
9 shows & for three values of ~>1. The functions for
»=3 and 5 were computed as described in Sec. V, Eq.
(5.26) and the function for ~=c was computed in Eq.
(4.12) of Sec. IV and is also shown in Fig. 5. As « in-
creases from ~=1 the peaks become broadened and their.
amplitude decreases as seen in Fig. 9, until af »= oo there
is only one remaining peak which locates the pseudocriti-
cal temperature [see Eq. (4.24)] for the o XM geometry.
Figures 7—9 show that there is an orderly progression
of the scaling function, Z (7, ) as a function of both vari-

e ]
FIG. 9. Plots of Z(r,) vs 7 for different values of ~>1. (a) _

=3 (dotted curve), (b) ~=35 (dashed curve). The limiting form_
P (14, o), for shape o XM, is shown by a solid line. The firsvt_
peak for general ~ approaches the single peak of Z(7y, ) as »

tends to infinity.

where ¢ is the reduced temperature.’> For oo XM shapes
r=c0 and 7=7y. For NX e shapes »=0 and r=7y- -
For the same reason the generalized size variable .#, de-
fined in Eq. (5.9), is used in Eq. (5.25). Note that .# is
equal to M for »~=co but is equal to N for »=0. There-
fore, the results for the scaling functions in Secs. III and
IV are already expressed in terms of Z2(7,x) in the limit-
ing cases »=0 and »= o0, respectively. For intermediate
values of » this variable 7 is an appropriately generalized
variable and this is the reason for using it, rather than 7,7,
as an argument in Eq. (5.25). '
Figure 8 shows Z(r,~) as a function of 7 for three
values of ~<1. The curves for »=+ and + were com- _
puted as described in Sec. V, Eq. (5.26) and the delta func-
tions for ~=0 were computed in Sec. III, Eq. (3.13).
Clearly, as » is decreased toward 0, the scaling functions _
become more and more strongly peaked consistent with

042

P, )

0l

0 ' /n ' oI5

FIG. 10. Extrapolation plot of Z(7=0, ) vs 1/~. This ex-
trapolation gives Z7(0, «0)=0.103 which agrees well with the
corresponding value in Fig. 5.

ables, 7 and ~. This orderly dependence upon « is also in-
dicated in Fig. 10, where the scaling function is shown as
a function of 1/~ at one temperature, namely the critical

~ temperature, 7=0. The limiting value as 1/, approaches

zero is in good agreement with the value,
(0, »= 0)=0.103, computed in Sec. IV, Eq. (4.12) and
also calculated numerically in Fig. 6. Such consistency
provides another check on the more difficult calculations
performed in Sec. V.

VII. CONCLUSIONS

The central conclusion in this paper is that finite-size-
scaling theory works asymptotically close to the critical
point of the K model. This conclusion would be of no
surprise for the usual sort of magnetic or fluid models.
However, it was not a foregone conclusion for the K
model because of its unusual forcing constraint, its long-
range correlation functions at all temperatures above T,
and its highly asymmetric specific-heat divergence at 7.

The finite-size-scaling functions, Z(r,), obtained in
this paper (see Figs. 5 and 7—10) reflect the anisotropic
nature of the K model. This can be made clear by com-
paring with a well-known system, namely, the two-
dimensional Ising model. One can define an anisotropic
square lattice Ising model by using two different coupling
constants in the two principal directions. However, close

- to the critical point isotropy develops asymptotically so

that even the finite-size effect for the anisotropic model is
qualitatively similar to the isotropic model. In other
words the anisotropy is not relevant for the critical
behavior. The relevant shape factor for such an anisotro-
pic model will be the ratio s=N/M as one would guess
for an isotropic model. The scaling function Z in Eq. (1)
for =0 and s= o will be the same if appropriate vari-
ables are used. In contrast, for long, thin N X o shapes
(»=0) of the K model Z(r,) is a series of & functions in
7 and for = (short, wide oo XM shapes) Z(1,~) is a
smooth typical finite-size-scaling function. This differ-
ence shows the relevance of the anisotropy of the K
model. We have shown that, despite these differences, 7
interpolates smoothly as a function of » between the two
extremes, and so there is no question that there is one uni-
fied scaling function of both variables 7 and 4.

The scaling variables for the K model contain impor-
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tant information. Asymptotically, they are given by
T~MN? /(M +N?) (7.1)
and
r=N%/M . (7.2)

These scaling variables also exhibit the anisotropy of the
K model because the linear dimensions along the two mu-
tually perpendicular directions do not enter with the same
powers. For ~=0 one has 7~N?; by the central dogma
of finite-size-scaling theory this implies that there exists a
length scale £, along the horizontal (or N) direction
diverging as ¢~1/2 for the bulk or « X co lattices. For
r=0o one has 7~Mt; according to finite-size-scaling
theory this implies the existence of another length scale &,
along the vertical (or M) direction diverging as ¢! for
the bulk or co X co lattices. To obtain a finite-size-scaling
function of the single variable 7 different from % (r,0) or
Z (1, ) requires holding ~ fixed, meaning that the verti-
cal M dimension of the lattice grows proportionally to the
square of the horizontal N dimension. This is exactly
what one would expect if the length scale in the vertical
direction diverges as t~! which is the square of the
asymptotic divergence ¢ ~!/? in the horizontal direction.
Therefore, these finite-size-scaling variables provide very
strong evidence that the critical exponents for the diver-

gence of the length scales of the bulk system near the crit-
]

ical point are indeed anisotropic with &, ~¢—1/2 (ve="1)
and £,~t~' (y=1). These values of v, and v, are in
agreement with the general phenomenological theory.?»%
However, these values of v, and vy deduced from finite-
size-scaling theory should also be substantiated with
direct calculations of the correlation functions for the
bulk system. Therefore, at present we prefer to describe
the inverse powers of N and M that appear in the scaling
variables as vy and vy;. We conclude that we have calcu-
lated the values VN=% and vy, =1 exactly and that it is
very likely that vy =v, and v, =,
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APPENDIX A: PARTITION FUNCTION
FOR SECTION IV

Using the whole range of ¢, [Egs. (2.5) and (2.6)], one
can rewrite Egs. (2.9} and (2.10) as

N .
S In [(—1)‘f+(s(n1r/N))2M] (for j =1,2) (A1)

n=1
S In [<-1>—f+[s(<n — Lya/N)PM

n=1

In the limit N— oo these sums can be replaced by the fol-
lowing integrals:

N p7 —Jj
H= S, ml(—D~+52M(¢)1ds (A3)
so that
Z;="Y;exp(/}) (A4)

with /=4 and /4 =/4,. From Eqgs. (A4), (2.3), and (2.1)
and exploiting the symmetry of cos¢ about ¢ =0 one ob-
tains Eq. (4.1).

APPENDIX B: EVALUATION OF J.
Equation (4.7) can be written as

q
exp( —7r)J, = fo exp(—Mri)d¢+R1+R2 ) (B1)

where

w/2 )
R,= fq exp(2Mr Incosd)dé , (B2)
Ry= foq(exp(—-Mrgbz))[exp(ZMr lncos¢+Mrﬁ)_1]d¢, .

(B3)

(for j=3,4) . (A2)

f
and g [~O(1)] is an undetermined number close to zero.
The first significant term of the Taylor expansion of
Incosé is used to obtain the first term on the rhs of Eq.
(B1). From Eq. (B2) we have

|R; | <bexp(2Mr Incosq) , (B4)

for some constant b so that R, is exponentially small for
q~0O(1). Therefore when summed over 7, its contribu-
tion to I in Eq. (4.6) is also exponentially small. For R,,
we note that exp(2MrIncos¢+Mr¢?)—1 is analytic in
the neighborhood of ¢=0 and therefore can be expressed
in a uniformly convergent series in that region. We write
it as
1 —exp(2Mr In cosd + Mr¢?)

=1—exp| ¥ ar(Mré®*/(Mr*-1|, (B5)

k=2

where a’s are the coefficients of the expansion of the ar-
gument of the exponential. It therefore follows that the
leading term of Eq. (BS) gives the leading M dependence
of R, and its magnitude is

| a | Mr foqzﬁ“exp(—MrgSz)dgb <Br=3M 32 (B6)
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for some constant B. The last inequality is obtained by
extending the range of integration to infinity. Extending
the range of integration of the first term of Eq. (B1) to in-
finity introduces an error

Ry= f:’ exp(—Mré?)d . - BT,

which, being in the form of the error function, is exponen-
tially small as M->o. Hence the significant error is
from Eq. (B6) which when inserted 1nto Egs. (4.6) and
(4.2) yields an error of order O(M 172) to the specific
heat while the leading term is O (M'/?).

APPENDIX C: EVALUATION OF §;
We write S; in Eq. (5.12) as B

exp(— Ity )Si=Su+Su » (C1)
where
Sy= i exp [2,~M Incos nT\;T_ ‘ ] , (C2)
n=1
p
Sy= 2, exp|2»MIncos [M] ’ (C3)
n=q-+1 N

and g <N /2 is to be determined later. For Sy; wehave

Sy < (3N —g —1)exp[2IM Incos(gm/N)] . (C4)

and we write Sy; as

3213
Su= S expl—Imn?/r)+ B+ (C5)
n=0
where
g
= Y [exp(—I7*n?/x)]
0
 {exp[2IM Incos(nm/N)+lmn)2/x]—1} ,
(C6)
and
R o= i exp( ——l7r n2/w) . (CT)

g+l

The leading M dependence of %, can be estimated along
the same line as done in Appendix B for R,. The leading
term for Z#, is now

q N B
|ay | IN=2 S nexp(—I17°n?/+) <8I°N~%q ,
n =0
where 8 is some constants. The last inequality is obtained
by replacing x"exp(—ax) by its maximum term at
x =n/a. When all the above contributions to Sy; and Sy
are combined and summed over [ to obtain InZ, in Eq.

(C8)

- (5.11), we choose g~N" with-0<n <1 so that %, is

O(N—2t"). For this choice of g both S, and %, the
latter of which can be estimated via error functions as in

- Appendix B, are exponentially small.
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