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We report studies of the dynamics of a set of exactly solvable lattice models for the force-induced DNA
unzipping transition. Besides yielding the whole equilibrium phase diagram, which reveals a reentrance,
these models enable us to characterize the dynamics of the process starting from a nonequilibrium initial
condition. The thermal melting of DNA displays a model dependent time evolution. On the contrary, the
dynamical mechanism for the unzipping by force is very robust and the scaling behavior is independent
of the details of the description and, hence, superuniversal.
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The replication of DNA is a correlated process involving
many proteins and other molecules [1] working at differ-
ent points in space and time. It has recently been shown
[2—6] that the force-induced unzipping of DNA is a gen-
uine phase transition different from its thermal melting
transition. It was then hypothesized [2] that the initia-
tion of replication at the “origins” along the DNA, e.g.,
by dnaA for E.Coli [1,7] or by the “origin recognition
complex” (ORC) in eukaryotes [8] is like this unzipping
near the phase transition point (with dnaA or ORC act-
ing as the force-inducing agent). Recently, techniques like
laser tweezers [9] and atomic force microscopes (AFM)
[10—12] have been used to study DNA by pulling at one
end. The observed hysteresis in AFM unzipping experi-
ments is a signature of a first order transition [11]. Further-
more, the activities of polymerases, topoisomerase, and a
few others on a single stranded DNA have also been ana-
lyzed in terms of the force exerted by or applied against
them [13—15]. Similar in vitro investigation of the full
replication process would then require an understanding
of the coupling between the opening of the strands and
the subsequent events during replication. Such a study in-
volves the dynamics of the unzipping process [3].

The purpose of this Letter is to define a set of models,
for which the unzipping transition can be studied exactly.
Based on this, a detailed study of the dynamics not relying
on any mean-field approximation can be performed. Such
studies are so far lacking in literature. Our models are ex-
tensions of the Poland and Sheraga model [16], in which
the strands are taken as random walkers with base pair
interaction between them. Our models are different be-
cause there is a force f pulling the open end of the strands
(tied at the other end) and the self- and mutual-avoidance
(hard-core repulsion) of the strands are incorporated too.
This ensures that the zero-force melting temperature 7,
takes a finite value also in dimension d = 2 unlike in
Ref. [16]. Similar models with self-avoidance but with
no external force, and not analytically solvable, have been
recently proposed to study equilibrium denaturation [17].
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PACS numbers: 87.15.He, 64.60.Cn, 64.60.Ht, 87.14.Gg

Two types of lattice models are considered here: (i) The
“Y model” in which the two strands, of length N, are
zipped together up to a bifurcation point; i.e., the only al-
lowed configurations are those which have the first N — m
monomers bound and the remaining m separated as ina Y.
(i1) The “b model” in which configurations with “bubbles”
are allowed. In real situations there are single-strand bind-
ing (SSB) proteins which bind to the opened strands to
prevent rejoining. This justifies the “’Y model” where the
bubble formation (rejoining) is suppressed. However, in
vitro studies need not contain the SSB proteins and bubbles
can form anywhere along the strands due to thermal fluc-
tuations. This is realized in the b model (see Fig. 1a). In
both cases the equilibrium phase diagram displays a reen-
trant region at low temperature (7): for a finite range of
forces the molecule gets unzipped by decreasing T. The
dynamics of both the b and the Y models in the various
phases and on the phase boundary are then studied, by
starting from a nonequilibrium bound state as the initial
condition. By using Monte Carlo dynamics, we find that
in all regimes above or on the phase boundary, the time
evolutions of the order parameters follow dynamical scal-
ing laws. The basic features of both statics and dynamics
(but see below) are maintained for any d. This allows us to
concentrate on the d = 2 case. Generalizations to d > 2
are easy and are discussed later.

We model the two strands of DNA by two directed
self- and mutually avoiding walks. In d = 2 on the square
lattice (see Fig. 1a), the two walks are forced to follow the
positive direction of the diagonal axis (1,1) (i.e., the co-
ordinate along this direction always increases). A force
f acts along the transverse (—1,1) direction (the x di-
rection). By measuring the x separation in units of the
elementary square diagonal, we say that two complemen-
tary monomers are in contact when this separation is 1: a
binding energy —e (we choose € = 1) is gained for each
contact. Because of the geometrical properties of the lat-
tice, all these contacts contributing to the energy involve
monomers labeled by the same base pair index, as one
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FIG. 1. (a) A typical configuration of the two DNA strands
as modeled on a square lattice. Thick vertical lines indicate
monomers which are in contact. The quantities m and x are
graphically represented. (b) Plot of the f vs T phase dia-
gram for the model. Note the reentrance from 7 = 0 up to
T = 0.260 1937,,.

would require for base pairing in DNA. The quantities of
interest are the average open end separation (x), the aver-
age number of contacts @, and the average number of “lib-
erated” monomers (i.e., from the last contact to the end)
(m) (see Fig. la).

We calculate (x), for the two N-step chains, one starting
at (0, 1) and the other at (1,0), at T = B! (with the Boltz-
mann constant kg = 1) and under a force f. A discontinu-
ity or nonanalyticity in (x), for N — o, would signal
a phase transition. We can obtain (x) exactly from
the partition function Zy(B,f) as {(x) = d;?ﬁv, where
ZN(B.f) = D=1 dn(x)exp(Bfx), and dy(x) rep-
resents the fixed distance partition function, i.e., the
sum over all interacting pairs of directed chains whose
last monomers (open ends) are at distance x. The
thermodynamic behavior comes from the singularity
closest to the origin of the related grand partition
function  [6,18,19] G(z,B8.f) = Y n_0Z¥Zn(B.f)
where z is the step fugacity. From the recursion re-
lation dyi1(x) = [2dn(x) + dy(x + 1) + dy(x —
D1[(eP — 1)8,1 + 1], for the b model, together with the
boundary conditions dy(0) = 0 V N, and do(x) = 6y,
one finds two competing singularities of G(z, B, f),
namely, z; =1 —e¢ B — 1+ e # (B dependent),
and z, = m (both B8 and f dependent). If the
smallest singularity is z,, the molecule is in the unzipped
phase; otherwise it is in the zipped one. By equating
these two singularities we get the critical line, f.(T),
separating the two phases. For the b model, f.(T) =
T cosh™ [ p(B) — 1], with p(B) = 1/(2z;) (see Fig. 1b).
For the Y model, f.(7) is similar with p(8) = eP.

For both the models, the critical force at T = 0 is
fo = 1. There is a maximum threshold fy; such that for
f > fwm the system is always in the unzipped state. For
the b model, T, = fy75 and fy = 1.358806..., while

T, = %2 and fyy = 1.282143... for the Y model. Both
O and (x) show discontinuities at f = f.(T), implying a
first order transition, everywhere except for the b model

028102-2

atf =0in2 =d = 5. For fm > f > fo the usual zip-
ping transition is present but if 7 is still lowered the two
strands cleave again through a “cold unzipping.” The ex-
act results on reentrance can be understood in a more gen-
eral way. Let us consider a configuration of DNA which
is dominant as T — 0 in our models, in which the first
N — m monomers are zipped and the remaining are com-
pletely stretched by the force f. The energy and entropy
gain with respect to the completely unbounded case is
thus —(N — m) + af(N — m) and (N — m)c, respec-
tively, where c is the entropy per bounded unit and a is
a geometrical factor. Thus f. = (1 + ¢T)/a as T — 0
which shows the emergence of reentrance. For our models,
a = 1 and ¢ = log2 give the exact low-T phase boundary
derived earlier. A lower value of ¢ (which in any case
ought to be >0 [20]) may occur if, e.g., the bound region
has a larger persistence length. The argument given sug-
gests that reentrance is common to all polymeric models of
DNA similar to ours [20]. Even if the realistic parameters
of DNA (persistence lengths) might confine this effect to
unrealistically low 7', with a proper choice of solvent and
double stranded polymers reentrance should be observable.
In the continuum approximation of Refs. [2,4,5] this effect
is not found since these models are not valid in the low T
regime as the average bond length vanishes as 7 — 0.
We now consider the dynamics of the b model and the
Y model. In both cases, we start from a nonequilibrium
initial condition with the two chains zipped in a zigzag
configuration (as at 7 = 0), and let the system evolve at a
temperature 7 and under a force f, with T and f chosen
so that the equilibrium state is either on or above the phase
boundary. Let us first consider the two-dimensional case.
The five regimes considered are marked A—E in Fig. 1b.
Numerically, a Monte Carlo dynamics with one-bead local
move (discretized Rouse model) is used to monitor the time
evolution of m and x (Fig. 1). We accept or reject the
moves according to a probability given by the Boltzmann
factor as in the standard Metropolis algorithm. We reject
configurations where the strands cross. In all cases we find
the following dynamical scaling laws [21] to hold good:

m(t) = N9G,,(t/N*) ~ 19, (1)

x(1) — x(0) = N2G,(t/N?) ~ 1%, (2)

with ; = d;/z; (omitting the average signs for simplicity
of notation). Here N is the length of each chain, G, , are
two scaling functions, and time (¢) is measured in units of
N Monte Carlo attempts. Equations (1) and (2) also define
the exponents d; 2 and z;, for the two variables with 6
describing the early time evolution away from saturations.
Note that d;, can be obtained through equilibrium consid-
erations as one requires m(t) ~ N and x(t) ~ N% for
t — oo, The crossover to the equilibrium behavior is de-
scribed by the “dynamic” exponents z;,. The exponents
are obtained from simulations by collapsing (see Fig. 2)
the Monte Carlo data according to Eqgs. (1) and (2) [22].
The results are summarized in Table L.
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FIG. 2. Plot of m(r)/N vs t/N*? for various values of N in
regime A (see Fig. 1b) for the b model: the collapse of all curves
indicates that d; = 1, z; = 4/3, and 0; = 3/4. Same quality
collapses are obtained for the other cases.

The dynamics displays two different time scales mir-
rored in the difference of the exponents z;, in regimes A
and C. One time scale (~N?') quantifies the time neces-
sary for the unbinding (or unzipping) of the bases while
the other (~N?%) gives the time needed to open (and to
stretch whenever f # 0) the two chains up to their equilib-
rium open-end separation. At 7 < T, the two processes
are virtually the same, because the unbinding (or unzip-
ping) is dragged by the stretching. However, above T,
the processes decouple and the unbinding gets faster, be-
ing controlled by the temperature, yielding z; < z. Fur-
thermore, in the numerical calculations we found large
sample-to-sample fluctuations, thus requiring a huge num-
ber of runs (~10%) to reduce statistical fluctuations in m(z)
and x(¢). This is due to the long time correlation present
in the system, which keeps samples with different initial
histories far apart for any . We can explain the exponents
for the Y model found numerically.

Regime A: f = 0,T > T,,: Above T,, the dominance
of the entropy implies that at every time step one base pair
breaks, yielding a linear behavior with ; = 1 and d; = 1.
Also x(1) tends to increase, up to its equilibrium value N
(a fact reflected in the upward derivative at x = 1 of the
equilibrium probability distribution). This suggests that
the dynamics of this quantity is in the same universality

TABLE I. “Dynamic” and equilibrium exponents for the Y
model (Y) and the b model with bubbles (b) as defined in
Egs. (1) and (2). The regimes A, B, C, D, and E are shown
in Fig. 1.

Regime d; 21 0, d> 2 0,
AY 1 1 1 1/2 3/2 1/3
Ab 1 4/3 3/4 1/2 3/2 1/3

BY,b 1 2 1/2 1/2 2 1/4
Cc:Y 1 1 1 2 1/2
Cb 1 4/3 3/4 1 2 1/2

D:Y, b 1 2 1/2 1 2 1/2

E:Y,b 1 1/3 1 3 1/3
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class of the d = 1 Kardar-Parisi-Zhang equation [21], and
s0 0, =1/3,d, = 1/2,and 7o = 3/2.

Regime B: f = 0,7 = T,: In this regime 0, = % =
z1 ! because at criticality the probabilities to increase and
to decrease m are expected to be equal, so that m performs,
roughly speaking, a random walk in time with reflecting
boundaries at m = 0, N. Also for the open-end separa-
tion, steps toward larger or smaller values of x are equally
probable, and therefore the time evolution of x is in the
universality class of the d = 1 Edward-Wilkinson equa-
tion [21]. Hence, 6, = % and z, = 2.

Regime C: f > 0,T > T,,: The strands tend to stretch
along the direction of the pulling force. However, once we
have pulled the two chains up to an open-end separation
x, to increase x further by one unit we first need to move
all of the stretched part, which would take a time typically
of order x. In other words, one has x(¢ + 19) ~ x(r) + 2
implying 6, = %(01 = 1 as before and d;» = 1).

Regime D: T < Ty, f > f.(T): Here the only micro-
scopic mechanism for opening the fork is through the ap-
plied force: the strands must stretch completely in the
vicinity of the bifurcation point and only at this point will
the fork liberate one more monomer. Thus, x ~ m, and,
using arguments as done for regime C, 612 = %, dip = 1.
In Ref. [3] it was found, in a mean-field approach for a
model resembling our Y model, that the time necessary to
unzip DNA is ~N?2. This is consistent with our analysis,
but works only in this regime.

Regime E: T < T,,,f = f.(T): On the phase bound-
ary, one expects that the cost for unzipping and zipping is
the same (the equilibrium probability distribution of having
m monomers unzipped or an open-end separation equal to
x is flat), so that x(¢ + #9) = x(¢) = ;—“ with equal proba-
bility. Therefore, the open-end separation makes a random
walk inlthe rescaled time = so that x ~ (£)!/2 implying
012 = 3. Moreover, di» = 1 since at coexistence there
is a finite fraction of liberated monomers. Another way
of obtaining 6; = % is to demand that a kink liberated at
the fork needs to diffuse out of the end before the next
one is released. In other words, the rate of change of m
is determined by the diffusion of a kink over a distance
m. The latter time scale being of order m 2, we expect
dm/dt ~ m~? which gives m ~ t'/3.

Turning to the b model (bubbles are allowed), the dy-
namical exponents in regimes B, E, and D with T = T,
are the same as in the Y model. This states thatat 7 < T},
not only for statics, as we saw previously, but also for the
dynamics, bubbles are not relevant in the scaling proper-
ties. At T = T, instead, the opening of bubbles heavily
affects the base unpairing process, unlike in the Y model
where bubbles are forbidden [23]. The length of the un-
zipped part now can change by *[(¢), where [(¢) is the
typical length of bubbles, and the motion of the fork point
can by no means be approximated by a simple random
walk (and so 8, changes as shown in Table I). The quan-
tity x(¢) instead has a dynamics in the b model similar to
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the fork case, and indeed 6, is the same for both the mod-
els in all regimes. We show in Fig. 2 the collapse leading
to 0 = 43_1 in regime A.

An important question is the dependence of our results
on dimensionality (let us consider only 6, for simplicity).
As for the Y model, the arguments we gave above for 6,
for regimes A—E suggest that there be no d dependence.
For the b model, instead, the d independence should be
true only in regimes D and E for T < T,,, where the Y
model gives the exact result; at T = T,,, on the other hand,
bubbles play a dominant role, and so we expect a depen-
dence on d. We confirmed this picture with some calcu-
lations on a simpler model which should be in the same
universality class of the one under study: that of a single
random walk, pinned at the origin by an attractive inter-
action and subject to a stretching external force. In this
system m is defined as the number of monomers from the
last visit to the origin to the end of the walk. For T > T,
in regimes A and C, our calculations show that the expo-
nent #; increases as dimension increases, apparently with
no upper critical dimension. Just at criticality at zero force,
instead, we find that the exponent 6, is very close to % in
any d. The emerging picture of robust results for 7 < T,
and model-dependent dynamics for T = T, would be pre-
served even if, in the original models, the directedness
constraint is relaxed. Our models can be extended to in-
clude sequence heterogeneity though a distinction between
a single realization and an ensemble averaged case needs
to be made. We, however, expect the reentrance and the
existence of dynamic scaling at least in the ensemble-
averaged case. As sequence heterogeneity controls the
strength of the binding of base pairs, its role becomes less
crucial as T increases so we expect that for high enough
T also the values of the dynamic exponents of regimes A
and C will be recovered.

The observed power-law and scaling behaviors in
Egs. (1) and (2) imply that in our model there is scale
invariance. As it is generally accepted [21], this could
be due to the presence of strong temperature driven
fluctuations or of long range time correlations (necessary
to build up a cooperative mechanism) in the unzipping.
In a replication process, it is expected that fluctuations in
unzipping, after its initiation at the origin, would affect
the binding of the next set of proteins. Though the nature
of this coupling is not known, we note that the difference
in the dynamical scaling at the thermal denaturation point
and on the unzipping phase boundary can in principle
provide a dynamic selection mechanism for binding of
proteins in the Y fork. However, at this point, this is
speculative.

In conclusion, based on the exact phase diagrams of the
Y model (without bubbles) and the b model (with bubbles)
for the force-induced unzipping transition (and denatura-
tion), we investigated the dynamics of unzipping from a
nonequilibrium bound state both on and away from the
phase boundary. The dynamics shows scaling behaviors in
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different regimes of the phase diagram. These scalings in
most cases could be understood from the plausible mecha-
nisms of unzipping and denaturation as discussed above,
except for a quantitative understanding of the scaling in the
high T region for the b model. Lastly, the unzipping dy-
namics on the phase boundary in the presence of a force is
distinctly different from the thermal denaturation at zero
force. Whether a real biological system takes advantage
of these differences to distinguish the unzipped region of
DNA from a fluctuation-induced bubble formation remains
to be probed.
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*Email address: somen@iopb.res.in
[1] A. Kornberg and T. Baker, DNA Replication (W.H. Free-
man, San Francisco, 1992), 3rd ed.
[2] S.M. Bhattacharjee, J. Phys. A 33, L423 (2000); 33,
9003(E) (2000); cond-mat/0010132.
[3] K.L. Sebastian, Phys. Rev. E 62, 1128 (2000).
[4] D.K. Lubensky and D. R. Nelson, Phys. Rev. Lett. 85, 1572
(2000).
[5] H. Zhou, cond-mat/0007015.
[6] D. Marenduzzo, A. Trovato, and A. Maritan, Phys. Rev. E
64, 031901 (2001).
[7] E. Boye, T. Stokke, N. Kleckner, and K. Skarstad, Proc.
Natl. Acad. Sci. U.S.A. 93, 12206 (1996); W. M. Xia and
W. Dowhan, Proc. Natl. Acad. Sci. U.S.A. 92, 783 (1995).
[8] J. Marx, Science 270, 1585 (1995); 270, 1667 (1995); 270,
1671 (1995); 270, 1674 (1995).
[9] B. Essevaz-Roulet, U. Bockelmann, and F. Heslot, Proc.
Natl. Acad. Sci. U.S.A. 94, 11935 (1997).

[10] M. Reif, H. Clausen-Schaumann, and H. E. Gaub, Nature
Struc. Biol. 6, 346 (1999).

[11] D. Anselmetti, J. Fritz, B. Smith, and X. Fernandez-
Busquets, Single Mol. 1, 53 (2000).

[12] T. Strunz, K. Oroszlan, R. Schafer, and H. H. Giintherodt,
Proc. Natl. Acad. Sci. U.S.A. 96, 11277 (1999).

[13] B. Maier, D. Bensimon, and V. Croquette, Proc. Natl. Acad.
Sci. U.S.A. 97, 12002 (2000).

[14] G.V. Shivashankar, M. Feingold, O. Krichevsky, and A.
Libchaber, Proc. Natl. Acad. Sci. U.S.A. 96, 7916 (1999).

[15] G.J.L. Wuite, S.B. Smith, M. Young, D. Keller, and
C. Bustamante, Nature (London) 404, 103 (2000).

[16] D. Poland and H. Scheraga, J. Chem. Phys. 45, 1464
(1966).

[17] M.S. Causo, B. Coluzzi, and P. Grassberger, Phys. Rev.
E 62, 3958 (2000); Y. Kafri, D. Mukamel, and L. Peliti,
Phys. Rev. Lett. 85, 1572 (2000).

[18] R.J. Rubin, J. Chem. Phys. 43, 2392 (1965).

[19] S. Lifson, J. Chem. Phys. 40, 3705 (1964).

[20] A rigorous treatment can also be given that supports our
claims (details will be presented elsewhere).

[21] See, e.g., A.L. Barabasi and H.E. Stanley, Fractal Con-
cepts in Surface Growth (Cambridge University Press,
Cambridge, U.K., 1995).

[22] S.M. Bhattacharjee and F. Seno, J. Phys. A 34, 6375
(2001).

[23] Regime B is a borderline case: bubbles heavily affect the
evaluation of m but do not change 6.

028102-4



