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1 Introduction

In a classic paper in statistical mechanics Kasteleyn (1963) included a
short section, consisting only of two paragraphs and a footnote, in which
was announced a striking exact result for the phase-transition behaviour
of a simple two-dimensional model on an infinite lattice with periodic
boundary conditions. The specific heat of Kasteleyn’s model is identically
zero for all temperatures below the transition temperature. However,
when the temperature exceeds its critical value Ty, the specific heat is
non-zero and diverges as (T — Tx)~"? as T approaches T from above,
as shown in Fig. 1.1.

This behaviour is in marked contrast with that of the two-dimensional
Ising model (Onsager, 1944), which has a logarithmic divergence of the
specific heat when T, is approached from either below or above, as is
also shown in Fig. 1.1. This contrast in behaviour is especially surprising
in view of the fact that both the two-dimensional Ising model and
Kasteleyn’s model can be solved by the same Pfaffian technique.

The model solved by Kasteleyn that has the aforementioned thermal
behaviour is a particular dimer model that will be called the K; model.
For a small lattice with periodic boundary conditions one microstate of
this model is shown in Fig. 1.2.

The next two paragraphs give some background about dimer models
and precise definitions of these models for readers who are not familiar
with them.

The term dimer is an abbreviation for a diatomic molecule. Dimer
models were introduced (Fowler and Rushbrook, 1937) as models of
physical adsorption of diatomic molecules on crystal surfaces. In that
context a general physisorption model for diatomic gases consists of
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Fig. 1.1 The specific heat C/Nk versus temperature for the K model is shown by
the heavy solid line with C = 0 below the transition temperature Tx. For
comparison, the specific heat for the Ising model on the square lattice is shown
by dashed lines. Also, the generic low-temperature specific heat of other models
with K-type transitions is shown by the dot-dashed line.

Fig. 1.2 The K, model. The three inequivalent bonds are labelled 1,2and 3. A
particular state is shown with dimers indicated by heavy dashed lines. The energy
of this particular state is 26 + 5 + &,

mixtures of diatomic molecules (dimers) and vacancies (monomers), which
is known as the monomer—dimer model. That problem has not been
solved by exact methods, even in two dimensions. For all of the exactly
solvable dimer models in two dimensions to be discussed in this chapter,
the requirement for an allowed state is that each lattice site be covered
by one and only one dimer and that each dimer covers two neighbouring
lattice sites. Sometimes these dimer models are called close-packed dimer
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models to distinguish them from monomer—dimer models, but the shorter
term “dimer model” will bé’employed in this chapter.

In physjsorption and in dimer models the energy of a dimer may be
different depending upon which pair of neighbours it covers on the
underlying crystal surface or lattice. It is often convenient to identify the
energy &, with the bonds b on the lattice, and it is then said that a dimer
covers a bond rather than a pair of lattice sites. The partition function
Z for dimer models can then be written as

Z@= > [lz™. (1)
microstates

Each activity z, is simply the Boltzmann factor e=*#*7 for a dimer on a
bond of type b with energy &,, and the general activity variable z is the
set of actjvities z,, for all different bond types b. The product in (1) is
over all of the different types of bonds that may occur in a unit cell. The
sum is over all microstates that may be formed by covering each site with
exactly one dimer, and N, is the number of dimers of type b on the
entire lattice for the microstate in question. ’

In terms of the general definitions in the preceding paragraph, the K,
model illustrated in Fig. 1.2 employs the honeycomb lattice for the
topological connection of sites and bonds, but the symmetry is broken
by giving dimers different energies &,, which correspond to the activities
2, for the three geometrically distinct bond types, b = 1, 2 and 3.
Without loss of generality, one may restrict attention to the case
g < & < &. Then, Kasteleyn showed that the transition temperature
Tk is given by the relation 2, = z; + z3, i.e.

e-—e./kTK = e—rzlkTK + e—i3lkTK 3

One of the purposes of this chapter is to emphasize that the K, model
is not an isolated abstract model with bizarre thermal behaviour. It is not
isolated because there are many distinct models in two dimensions with
the same qualitative thermal behaviour and there are also unsolved three-
dimensional analogues. It is not simply abstract because there are physical
problems that require the particular features that give rise to this type of
thermal behaviour. Two of these problems will be emphasized in this
chapter. The first is the main melting transition in biomembranes, which
is discussed in Section 9, and extended to amphiphilic monolayers in
Section 10. The second is transitions in physisorbed systems involving
striped incommensurate phases, which is discussed in Section 11. One of
the principal insights offered by this chapter is that these two seemingly
disparate types of system are related theoretically through anisotropic
dimer models.
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Another of the purposes of this chapter is to emphasize that solvable
two-dimensional dimer models have only two types of phase transition.
These types may be thought of as the Onsager type (with the prime
example being the two-dimensional Ising model) and the Kasteleyn type.
In the remainder of this review the two different types of transition will
be called O-type and K-type transitions, respectively. One of the authors
admits to the inconsistency of having earlier (Nagle, 1973b, 1975a)
propagated a different name, “%-order transition”, for what is here being
called the K-type transition. The rationale for the name $-order transition
was that the free energy has an extra piece proportional to (T — Ty)¥?
when T > Ty. Also, when approaching the transition from below, the
specific heat behaves rather ordinarily, as for approach to a first-order
transition, whereas it diverges strongly as (T—Tx)~ "2 when approaching
from above, as for approach to a transition of higher than first order
such as a critical point, so g—order seemed a descriptive compromise.
However, the %—order name has not caught on. In the area of physisorption
this kind of transition is usually named after Pokrovsky and Talapov
(1979) for their seminal work on striped commensurate-incommensurate
transitions. In this chapter we bow to the convention of naming transition
behaviour after people, but suggest that Kasteleyn (1963) deserves
priority. '

In Section 2 we describe some of the dimer models that have K-type
transitions. For purposes of comparison and contrast we also describe
some very similar models that have O-type transitions. There are several
important properties of these models that are clearly relevant to the
transition behaviour. These are identified in Section 3, and the extent to
which these properties are valid predictors of the behaviour of anisotropic
models is critically examined. In Section 4 some of the details of the
solutions are given, with special emphasis on the contrast in the behaviour
of the singularities in the integrand of the partition function for the K-
type transition compared with the O-type transition. A number of exact
results are tabulated in Section 5 for a variety of dimer models. The
striking behaviour of the correlation functions for the simplest model with
a K-type transition is discussed in Section 6. This behaviour is also
dramatically revealed in the finite-size effect as the system size approaches
infinity, as discussed in Section 7. Nevertheless, finite-size scaling is
obeyed, when “finite-size scaling” is sensibly redefined to account for the
strongly anisotropic nature of the models. In Section 8 analogous three-
dimensional models with predicted K-type behaviour are discussed.

Sections 2-8 focus upon the statistical mechanics of the K-type
transitions. The focus in the remaining three sections is upon two physical
applications. The first involves anisotropic chain-melting phase transitions
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that occur most notably in lipid bilayer membranes, which are discussed
in Section 9. It should be emphasized, however, that this application
also leads to a fundamental theoretical development that enhances
understanding of the phase diagram of models with K-type transitions,
as is discussed in Section 10 in the context of monolayer systems consisting
of amphiphilic molecules with many internal degrees of freedom. The
second application is to anisotropic-domain-wall, commensurate—
incommensurate transitions, where these exactly solvable dimer models
provide a firm underpinning to more qualitative theories.

2 Some two-dimensional dimer models

The simplest model with a K-type transition is obtained from the K,
model by setting the two higher dimer energies, say &, and ¢, equal to
€. Since there is no loss of generality in setting the lowest dimer energy
& equal to 0, there is then only one effective activity, z = e~ %7, This
model has been called the K moﬂ:l (Nagle, 1975a). It is appropriate to
represent it on the brick lattice shown in Fig. 2.1. Although the brick
lattice has the same topology as the honeycomb lattice, it better illustrates
the symmetry corresponding to the different dimer energies for the
different bonds. :

Fig. 2.1 The K model and the K, model. The lattice is the brick lattice with
three types of distinguishable bonds. A dimer on a type-1 bond has energy ¢
(= 0) in both models. In the K model a dimer on both type-2 and type-3 bonds
has an energy &. In the K, model a dimer on a type-2 bond has energy ¢, and a
dimer on type-3 bond has energy &,. The energy for this microstate of dimers

showrll by bold dashed lines is 8¢, + & + 3¢ for the K, model and 4¢ for the K
model.
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temperature as the K; model, given by the relation, z, = 23 + 2z, between
the activities. '

Let us turn next to a slightly more complex dimer model, which is
shown in Fig. 2.2. This model has been very important to the authors
because it has helped us to avoid an overly simple characterization of the
family of models with K-type transitions. + The exact result for the thermal
behaviour of the model in Fig. 2.2 yields a (T = Ty)-1»2 divergence in
the specific heat as Ty is approached from above, but it also reveals an
interesting variation. The specific heat of this dimer model is not zero
below T but is qualitatively as shown by the dot-dashed line in Fig. 1.1.
However, the specific heat does not diverge or have any other non-

Fig. 2.2 The V22 dimer model. The positions of dimers in the ground state are
shown by heavy dashed lines. Placing a dimer on any other bond costs an energy
€. The light dashed lines show the unit cell, which has a rectangular repeat pattern
and which contains eight lattice sites numbered from 1 to §,

tThe V2H2 dimer model in Fig. 2.2 was discovered by Nagle and Allen (1971) through a
study of proton ordering in a real ferroelectric material, NaH,SeQ,, although it was shown
in that paper that this dimer model is inappropriate for this material, More-appropriate
models were discussed in the original paper and by McMullen ¢f 4/, (1982).
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columns of vertical dimers fellowed by two columns of horizontal dimers.
A convenient notation for this pattern is VVHH or V2H2. In this notation
the simple K model becomes just V. Clearly, a whole family of models
can be generated simply by writing various products of V and H2. This
family will be called the VH family. The unit cells and the dimer
configurations of the ground states of a few of these models are shown
in Fig. 2.3. The size of the unit cell, Nyc, can be deduced from the VH
notation by multiplying the sum of the exponents by two. The density of
vertical dimers in the ground state, g,,, is given by the sum p of the
exponents of V divided by the sum p+q of all exponents. In order to
appreciate the variety and also the common features of models with K-
type transitions, a number of these models will be considered explicitly,
including V, V*H2, V3H2, V2H?, V’H2VH?, VH?, V2H¢, VZH¢, VH* and
H2. This sequence of models is arranged in decreasing order of g.g, but
within this list both V2H? and V*H2VH? have ¢,, = %, and both VH?
and V2H* have g, = 3.

The preceding VH models do not exhaust the possible models on the
honeycomb lattice. One variation is to introduce more than two energies

i

'
iy
L

5

¢

Fig. 2.3 The V, VH?, V*H? and V?H* members of the VH family. The unit cells,
and the way the unit cells are packed on the plane, are indicated by light dashed
lines. The positions of dimers in the ground state are shown by heavy dashed
lines. Placing a dimer on any other bond costs an energy €. The arrows on the
V model will be used in obtaining the exact solution in Section 4.
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for dimers on different types of bonds. For example, in the VH? model
there are a total of nine different bonds, all of which could have different
energies. While there seems little value in considering such a general
model, Nienhuis ef al. (1984) did find it appropriate to introduce a model
with six energy parameters in their study of solid-on-solid models of cubic
crystal shapes. Their main results and the model of most interest here
has two distinct energy parameters. The first of these energies is the same
as the energy in the K model, i.e. it favours vertical dimers over horizontal
dimers by &. The second of these energies is the same as the energy in
the VH? model, i.e. it favours the bold-dashed dimers in Fig. 2.3 by an
energy 0. Since this two-parameter model consists of a competition
between the K (or V) model ordering and the VH? model ordering, we
shall call it the VH*V model. It will also be of interest to consider a
second two-parameter model where the first energy ¢ corresponds to the
energy of dimers in the V*H? model and the second & corresponds to the
energy of the VH? model. This model will be called the VH2/V*H2 model.

The K, K, and K, models and the VH models are all clearly closely
related in that the underlying lattice is the three-coordinated honeycomb
lattice. However, coordination number three is not a necessary feature
for a dimer model to have a K-type transition. Figure 2.4 shows a dimer
model on a four-coordinated lattice that is topologically equivalent to the
square lattice. In this model a dimer can have three different activities,
1, z or w, depending upon which of three different bond types it covers.
In this chapter the model in Fig. 2.4 will be called the SQK model, which

cesqemmdeao-

N

cmanfocepena

Fig. 2.4 The SQK model. The lattice is isomorphic to the square lattice but has
three kinds of distinguishable bonds. A dimer on the type-1 bonds has zero
energy, a dimer on the type-w bonds has energy & and a dimer on the type-z
bonds has energy e. The ground state is shown by heavy dashed lines and the
unit cell by light dashed lines.
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may be thought of as thg, staggered quadratic K model.t It reduces to
the K model when the activity w goes to zero. The SQK model also
reduces to the dimer model on the simple quadratic lattice when w = 1.
The exact solution to the SQK model shows that it has a K-type transition,
with zera specific heat below the critical temperature given by w + 2z
= 1 and by a specific heat that diverges as (T — Tx)™'? above Tk.
Neither is lattice coordination number three a sufficient condition that
a model have a transition of K type rather than O type. This is illustrated
by the 3-12/1 model shown in Fig. 2.5. The lattice will be called the 3-12
lattice because of the appearance of triangles and dodecagons as the basic
figures. For x = w the 3-12/1 model is just the dimer model associated
with the Ising model on the brick (or honeycomb) lattice (Fisher, 1966).
For x = 0 this model is isomorphic to the K model of Fig. 2.1 with
z = w? (Bhattacharjee, 1984). It thus provides an example for studying
crossover between the O-type and K-type transition behaviour.

Fig. 2.5 The 3-12 lattice and the unit cell of the 3-12/1 model with dimer activities
1, x and w on the bonds are shown.

Another example of a three-coordinated lattice with an O-type transition
is the 4-8/1 model shown in Fig. 2.6. This lattice is called the 4-8 lattice
because of the appearance of squares and octagons as the basic figures.
The specific heat of the 4-8/1 dimer model is asymptotically symmetrical
and logarithmically diverging, just as for the two-dimensional Ising model,
and so the 4-8/1 dimer model clearly has an O-type transition, not

+This dimer model has been called the generalized K model (Bhattacharjee and Nagle,
1985), but this name could be confusing because Kasteleyn (1963) also discussed a different
generalization of the dimer model on a square lattice; Kasteleyn's generalized model has
an O-type transition.
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Fig. 2.6 The 4-8 lattice and the unit celi of the 4-8/1 model, for which dimers
on the horizontal bonds have activities xi, dimers on vertical bonds have activities
x2 and dimers on bonds on the squares have activities z; as shown.

K-type. A model discussed by Salinas and Nagle (1974) to describe the
proton-ordering phase transition in SnCl,2H,0 (Kitahama and Kiriyama,
1977; Matsuo et al., 1974; Youngblood and Kjems 1979) is a special case
of the 4-8/1 model.

Recently, some new models have been discovered (Nagle and Yokoi,
1987) whose phase-transition behaviour is very rich indeed, with multiple
transitions, and with interesting correspondences to domain-wall models
that will be discussed in detail later. The simplest of these models, which
has two transitions of K type, is shown in Fig. 2.7(a), and will be called
the 4-8/2/1 model.+ It has a unit cell consisting of two “squares” of the
4-8 lattice, arranged in a “staggered” way with each A(B) type square
connected only to B(A) type squares. The “2” in the name 4-8/2/1 refers
to this feature of the unit cell and the “1” is an arbitrary numbering to
distinguish models that are all of the 4-8/2 type. For example, models
4-8/2/2 and 4-8/2/3 are also shown in Figs. 2.7(b) and (c) respectively.
At first glance, these three 4-8/2/i models are rather similar. However,
model 4-8/2/2 has only one transition of O type, and model 4-8/2/3 has
no transitions, except in the special case when z = w, for which all the
4-8/2 models reduce to a special case of the 4-8/1 model and have one
O-type transition. .

An interesting variation of the 4-8/2/1 model is shown in Fig. 2.7(d)
and will be called the 4-8s/2/1 model. The mere addition of an extra
option for placing dimers, no matter how large the energy. changes each
of the K-type transitions found in the 4-8/2/1 model into an O-type

*It has been emphasized {Oncdy 2nd Kurak. 1985) that the £87 1 model i 2k 2 stageered
six-vertet mode! of the sort introduced some time 2g0 (Nagle, [%02: Bawrer. 1973 Wa
and Lin. 1975).
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Fig. 2.7 Unit cells for four staggered models based on the 4-8 lattice. The dimer
ground state is shown by bold dashed lines. Dimers on other bonds have activities

w, z or x as indicated. The numbering of the sites in the 4-8/2/2 model shows
how the unit cells are connected.

transition.¥ In the limit when either z or w becomes 0, the 4-8s/2/1 model
reduces to the 3-12/1 model of Fig. 2.5.

We have also explored models with even larger unit cells on the 4-8
lattice. Figure 2.8(a) shows the 4-8/4/1 model, which has a line of Ising
transitions when 2zw=1. In contrast, the 4-8/4/2 model shown in Fig.
2.8(b) has no transition except when z = w, for which it reduces to a

+It may also be noted that inclusion of two diagonal bonds in each square leads back, via

Kasteleyn (1963). to the dimer representation of the Ising model on the square lattice if
all the bonds in the square have the same dimer activity.
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Fig. 2.8 Unit cells for the 4-8/4/1 and 4-8/4/2 models. The dimer ground state is

shown by bold dashed lines. Dimers on other bonds have activities w or z as
indicated.

4-8/1 model. Additionally, the 4-8/4/1 model has very rich transition
behaviour with multiple transitions of both K type and O type when the
energy € of the z-bonds becomes the lowest energy and the ground state
becomes frustrated.

The point of this section is that there are many possible dimer models
that exhibit interesting thermal behaviour. Clearly, not all the interesting
models have been defined and studied, so there is more fun for other
workers in statistical mechanics. Nevertheless, it is reasonable at this time
to take stock of what is known about these models.

3 Special features of models with K-type transitions

One of the purposes of this chapter is to explore the extent to which one
can characterize how models with K-type transitions differ from dimer
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models with O-type transitions and from typical spin-type models. This
will be done at a number of levels. The focus in this section is upon four
particularly simple features that are not shared by spin-type models.
There are, however, two somewhat conflicting purposes in this discussion.
The first purpose is to explain what these features are so that the reader
may appreciate intuitively why K-type transitions occur. The second
purpose is to suggest that, important as it is, the intuitive understanding
gained from examining these features may not be sufficiently precise to
allow reliable predictions whether a new dimer model will have K-type
or O-type transitions.

Let us begin by considering the perturbations away from the ground
state of the simple K model. Take any type-1 vertical dimer and rotate
it around one end onto a horizontal bond. This creates an excluded-
volume overlap on a different vertical dimer in a neighbouring row.- The
new vertical dimer that has been bumped by the original dimer can now
be rotated around its other end. Repetition of this bump-rotate process
successively involves dimers in successive rows in the lattice, either
proceeding upwards or downwards, depending upon how one starts the
process. A typical result of this process is shown in Fig. 2.1. Therefore
the bump-rotate process can only end at the edge of the lattice for open
boundary conditions or by looping the torus and forming a closed cycle
of perturbations for periodic boundary conditions. In the limit of an
infinite lattice the perturbation involves an infinite number of steps and
an infinite energy. As will be justified more fully in Section 11, it is
appropriate to call the perturbation shown in Fig. 2.1 a domain wall,
even though the “domains™ on either side of the wall appear identical
with each other in Fig. 2.1.

Despite the fact that the domain wall costs an infinite energy, the K
model is not completely frozen at all temperatures. Each time a vertical
dimer is bumped, it can be rotated in two different ways, so the degeneracy
of the domain wall increases as 2, where m is the number of rows in
the brick lattice. This means that the ground-state contribution to the
partition function, which is just 1, becomes negligible compared with the
contribution (2z)™, where z = e~ “*7, from the single domain-wall
perturbation when z > } amd m goes to infinity. This suggests, but does
not prove, that z = ! might locate the transition temperature; this

suggestion is. indeed, verified by the exact solution.t

+The perturbation calculations in this paragraph are very similar to those used to investigate
the Slater KDP six-vertex model, which also has an anisotropic forcing constraint. In the
case of the Slater KDP model Nagle (1969b) extended those arguments using formal series-
expansion arguments to prove rigorously that there is a first-order transition at kT, = g¢ln 2
in any dimension. However, a rigorous proof has not been achieved for the K model or
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The preceding perturbation calculation reveals an important conservation
property, which is most easily seen for models on the brick lattice. The
property is that the number of vertica dimers in each horizontal row is

conserved quantity is n,-n,, where n; is the number of dimers per
horizontal row on those bonds with activity z;. Again, this is easily proved
by using the fact that for each allowable configuration of horizontal z-

4-8/2/1 model is particularly rich because there are two kinds of domain
wall: z-walls, which use z-bonds, and i-walls. which use w-bonds. The
two kinds of wall may annihilate when they meet. This means that
localized excitation loops. such as the one seen in the upper left corner
of Fig. 3.1, which costs 2e+248 in energy, may be formed. In addition,
the primarily w-wall seen in Fig. 3.1 has two reversals in direction, at
which points it may be thought of as changing into a z-wall and then
back to a w-wall or. alternatively. as annihilation/creation pairs. The

_—

its higher-dimensional analogues. althouch 3 simitar nen-ngereus perturbation cakutation
successfully tocates the eritical temperatere of the K madel, the K. modzt and the SOX
model. Fuﬁbfm‘-re. for 2amv of the other VH modsk shoan in Fiss 22 and 23 phore [ 3
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Fig. 3.1 Domain-wall picture of the 4-8/2/1 model. A particular microstate of
dimers (bold dashed lines) is shown. Superimposed are domain walls shown as
pairs of dashed lines enclosing continuous sequences of bonds on the lattice, with
the activities of the high-energy dimers indicated. A unit cell is shown with light
dashed lines, with the bond activities and the A/B staggered lattice pattern
indicated.

conserved quantity is the number of dimers on z-bonds minus the number
of dimers on w-bonds, n,-n,., which must be the same for each row in
a lattice with periodic boundary conditions. While this conservation
property may be proved rigorously following the same line of reasoning
as the proof for the conserved quantity for the SQK model, it is intuitively
obvious from Fig. 3.1 because the net number of z-walls minus the net
number of w-walls is conserved from row to row.

Let us now turn to the converse hypothesis, namely that for all models
that do not have a K-type transition there is no conservation property.
Of course, it is usually more difficult to prove non-cxistence, but there
is an additional feature that forces us to sharpen our notion of the
relevance of the conservation property. Consider, as an example, the
SCD model, which is the 4-8/1 dimer model (Fig. 2.6) with x, = x, and
z; = z for i=1, ..., 4. Just as for the square lattice, the total number
of dimers on the vertical bonds is not conserved from row to row. This
encourages one to believe in the hypothesis. However, the conservation
property elucidated in the preceding paragraph for the 4-8/2/1 model is
clearly satisfied by the 4-8 lattice and therefore by the SCD model. This
simple example shows that if the concept of a conservation property is
to have relevance, it should not only reflect the topological structure of
the lattice, but must be refined to reflect the symmetry of the ground
state of the model being investigated. Once this is appreciated, it is
apparent that the SCD model has no conservation property consistent
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with its symmetry, and that it requires breaking the high symmetry of
the 4-8 lattice, as in the 4-8/2/1 model, before one would expect to obtain
a model with a K-type transition.

The concept that emerged in the preceding paragraph becomes
challenged when one considers the 4-8/2/2 model (see Fig. 2.7) and when
one evaluates the quantity n,~n,, with respect to the bond pattern for the
4-8/2/2 model, not for the bond pattern for the 4-8/2/1 model. This
quantity n,-n,, is also conserved from row to row for the 4-8/2/2 model,
but this model has only one transition of O type. There is nevertheless
a more subtle difference between the 4-8/2/2 model and the 4-8/2/1
model. The quantity n,-n,,, evaluated with respect to the 4-8/2/2 model, is
identically zero. In contrast, n.-n,,, evaluated with respect to the 4-8/2/1
model, may vary; indeed, its value is a key parameter in describing the
phases of the 4-8/2/1 model, as will be discussed later.

The considerations in the preceding two paragraphs impel a more
careful discussion of the conservation property for the VH family of
dimer models. For the V2H2 model Fig. 3.2 shows an excited dimer state
superimposed on the ground state, which results in the superposition
polygons of Montroll (1964). In the lower left corner of Fig. 3.2 is shown
a localized excitation costing 3¢ in energy; such excitations account for
the non-zero specific heat below Tk. On the right hand side of Fig. 3.2
is shown a domain wall that reverses its direction twice in the middle. A
conserved quantity that is specifically relevant to the ground state of the
V?H? model is C(m), the net number of domain walls passing through
any horizontal row m of the lattice, where a wall that turns around js
counted with the opposite sign. C(m) is trivially related to just the total
number of vertical dimers, g,, in each row, which is also the obvious
conserved quantity for the K model. The exact solution also shows that
the density of vertical dimers remains constant in the low temperature
State, whereas g, decreases steadily in the high temperature state. It must
be emphasized, however, that any dimer model has superposition
polygons, some of which can be interpreted as domain walls, but that it
is not always clear before an exact solution is obtained whether such
excitations will ensure a K-type transition.

A final clue to the features that determine whether a model will have
a K-type transition (before the exact solution is known) concerns the
spatial anisotropy of the model. All the - known models with K-type
transitions have two symmetrically inequivalent principal directions. When
the underlying lattice is either the brick lattice or the square lattice the
principal directions are the vertical and the horizontal. A further test for
the necessity of spatial anisotropy comes from the solution of the VH?2
model. which has three-fold symmetry along the three axes of the
honeycomb lattice. This model does not have anv transition at finite
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Fig. 3.2 Superposition of ground state dimers (heavy black lines) with excited
state dimers (heavy dashed lines) for V2H2 model.

temperature, much less a K-type transition. This supports the suggestion
that spatial anisotropy is a necessary feature for a model to have a K-
type transition. However, spatial anisotropy is by no means sufficient to
obtain a K-type transition, as seen by the simple quadratic dimer model.
Another pertinent example is the VZH* model. This model is also spatially
anisotropic, but the exact solution shows that it behaves similarly to the
VH? model.

This section has emphasized that there are many clues to whether a
given dimer model will have a K-type transition and many properties that
are clearly relevant to describing these models. Nevertheless it appears
dangerous to espouse any comprehensive theorems that might be proven
incorrect by exact calculations, to which it is now logically time to turn
in a volume devoted to statistical mechanics. The reader who prefers
physical motivation before delving into the intricacies of statistical-
mechanical calculations may, however, turn to Sections 911 to examine
the applications first. :

4 Mathematical foundations of the transition behaviour

In this section the method for obtaining the formal integral solution to
dimer models in two dimensions is first briefly illustrated. We then enter
into a detailed discussion showing how the different kinds of transition
behaviour are related to the algebraic structure of the matrix computed
by the method.
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.The exact method of solving dimer problems using Pfaffians was
discovered independently by Temperley and Fisher (1961) and Kasteleyn

nZz) 1 [ ]
N ey de A d¢In det M(z,(),d)), 2)

in terms of the determinant of a matrix M, which must be determined
specifically for each dimer model.

The simplest illustration of the Pfaffian method is given by the solution
of the K model. A unit cell of the K model is shown in Fig. 2.3, where
it is identified as the V model. The arrows on the bonds in Fig. 2.3
conform to Kasteleyn's clockwise-odd rule for each clementary “brick™
in the lattice, The unit cells are packed in a triangular pattern with six
neighbours for each cell. An anti-Hermitian matrix M of dimension equal
to the number of sites in the unit cell is constructed according to the
following recipe. For cach bond joining site j to site & add to the matrix
clement M, the product of

the bond activity,

u to the power of the x-coordinate unit cell index of the kth site.
v to the power of the y-coordinate unit cell index of the kth site,
—1if and only if the arrow on the bond points from & to j.

The functions u and o are related to the angles 6 and ¢ in (2) by
u = €and v = e, For the K model M is a 2x2 matrix consisting of

It should be noted that the choice of boundary conditions for dimer models on lattices of
low coordination number may even affect bulk properties. Trivial examples abound for
which the boundary conditions completely determine the dimer state uniquely, and a non-
trivial example has been calculated by Elser (1984). While none of these examples represents
appropriate open boundary conditions—which would have dangling bonds at the boundary,
which could either be or not be occupied by a dimer—even for this more appropriate case
it is not proven that the bulk properties are the same as for periodic boundary conditions.
It is encouraging. however, that the same results are obtained with periodic boundary
conditions when different unit cells and different (8,¢) directions (sce below) are chosen.
even though the excitations that loop the torus are incquivalent,
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zeros on the diagonal and q,and —a* in the two off-diagonal positions
respectively, where a = »2 + 2vz cos 6. The v? term comes from the
bond connecting the upper site in the unit cell shown in Fig. 2.3 to
the site in the unit cell directly above with unit-cell index (0,2). The
vz(u + u~'}) terms come from the bonds connecting this same site to
the two neighbours in the same row with unit-cell indices (1, *1).

The reader should now be able to obtain the integral expression (2)
for any of the dimer models discussed in this chapter or any new models
of interest. It should, however, be appreciated that obtaining a formula
of the type of (2) is the major step in obtaining exact solutions in the
statistical mechanics of cooperative phenomena. This should not be
obscured by the relative brevity of the preceding two paragraphs compared
with the much greater space devoted to analysing (2) to extract
thermodynamic details for specific models. Rather, the simplicity of this
step for dimer models in two dimensions is a testimonial to the Pfaffian
method. Furthermore, the fact that taking such a step is practically
impossible for most models of physical interest places a special emphasis
on those models for which exact rigorous solutions can be obtained.

For the K model and for many of the models that will be considered
in this chapter M has a simple block structure, consisting of four equal-
sized blocks.t The two diagonal blocks consist only of zerost. Let one
of the off-diagonal blocks be called M,. Since M is anti-Hermitian, the
other off-diagonal block is —M,*. Since

In det M = 2 Re (In det M,), 3)

it is only necessary in these cases to display the simpler det M, function.
While det M, is generally complex, det M is clearly real and positive for
all values of its arguments when M is decomposable into two off-diagonal
blocks.§ The two integrals in (2) are difficult to obtain in closed form

+The blocks for the K model are just single elements.

tFor example. this is brought about by the numbering of lattice sites shown in Fig. 2.2 for
the V2H? model and in Fig. 2.7 for the 4-8/2/2 model. Exceptions to the case discussed in
this paragraph are the 4-8/1 model in Fig. 2.6, the 4-8s/2/1 model in Fig. 2.7(d) and any
model for which the lattice sites cannot be divided into two sets such that all lattice sites
in one set are connected only to sites in the other set, i.e. non-bipartite lattices.

§Even when M is not decomposable into two off-diagonal blocks, det M is real and positive
in all cases that we have encountered. The reality of det M follows easily from the anti-
Hermitian property of M provided that the order of M is even; det M is imaginary if the
order of M is odd. The positivity of det M, for even order, is not a general property of
anti-Hermitian matrices, even when the matrix is spineless (zeros on the diagonal), as can
be seen by a 4 x 4 counterexample. Thermodynamically, it is necessary that In Z be real,
but this does not preclude the cancellation of imaginary parts if det M goes negative or
imaginary. Nevertheless, experience indicates that it is reasonable in subsequent discussion
to focus upon the case when det M is both real and positive for all values of z, 8 and ¢.
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because of the presence of the logarithm, as is well known from the
appendix of Onsager’s (1944) famous paper. It is easier to work with the
energy E/N or with the densities of dimers 0:, = N,/N, which involve
first derivatives of In Z, such as

E _kT*dInZz - d(mZ)
N N dT " %= Zg, \'N )

which yields integrals like

2w 2w
: de| d¢-—- s 5
L [, ¢det M(z,6,9) N (5)
where the Num function in the numerator of the integrand in (5) depends
upon which first derivative (which bond b) is being taken.
In the case of the simple K model the integrals in the preceding

paragraph are easily obtained, as is now shown. Using (1)-(5), one
obtains

4)

E_edinz
N N dz
2w - 2w
_ £ f do f dp- Z0sO ©)
412 Jy 0 e? + 2z cos @

where N is the number of unit cells in the model, which is half the
number of lattice sites. Next, the substitution p = e'* is made and the
integral over v is performed by calculus of residues. For z < % the residues
at v = 0 and at v = ~2z cos@ sum to zero, giving E = 0, so the
thermodynamic state of the system consists only of the ground state. For
z > 3 the pole at v = —2 cosf is outside the unit circle if -@ < 9 < @
orif m—0 < 6 < w+6, where

1
— ~tf .
© = cos (22). @)
When summed with the contribution from the pole at v = 0, the final
result is
E_2(® = 2 ~|(],)
N—;TJ; dO—"cos 5y (8)

From this result for the energy,t the free energy can be obtained

It may be noted that the energy approaches 3r as T approaches infinity. This corresponds
to each unit cell. which consists of two sites and one net dimer. having 2 of a horizontal
dimer and £ of a vertical dimer on average.
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by integrating with respect to 7, and the specific heat is easily
obtained by taking the derivative with respect to T, yielding for T > Tk
= &l(kIn 2)

2
i\/CI} N 12-r (kET) (4« ;;’;,;‘L 1y’ ©
(4e kT _ 1)I/2

which is plotted in Fig. 1.1. This specific heat exhibits the square-root
divergence (a=%) because z varies linearly with T as T approaches Ty
from above. The density of horizontal dimers is just E/N¢, and the density
of vertical dimers and horizontal dimers sums to unity. Remarkably, this
completes the calculation of the thermodynamic properties of the K
model. In particular, for this model there is no obvious second intensive
thermodynamic variable, such as a magnetic field, a point to which we
shall return in Section 10.

As just shown, in the case of the K model the integrals in (5) are easily
performed. However, for other models the integrals are more complicated,
and in such cases it is very useful to be able to diagnose what kind of
analytical behaviour to expect near the critical points without working
out a complete formulat or relying exclusively on numerical integration.
It is also interesting to see how the mathematical development of the
O-type logarithmic singularity differs from the development of the
%-order K type of singularity in terms of the algebraic structure of
M(z.60,).

The first focal point for answering the aforementioned questions is the
investigation of the zeros of det M(z,0,¢), since In Z(2) can only become
non-analytic at values of z. if the integrands in (2) and (5) are non-
analytic at some place in the (6.¢) plane. The zeros of det M(z,6,¢) for
the K model follow a pattern that is typical of all models with K-type

transitions. It suffices to consider det M, = (e’ + 2z cos 0)e'¢, which
has zeros whenever

v=¢® = —27cos 6. (10)

Since the right-hand side of (10) is real, it is clear that zeros in det M
can only occur for ¢ = 0 or w. It is also clear that there are no zeros _
for z < % because the right-hand side of (10) is less than 1. For z = %
there are two zeros. one at 8 = 0. ¢ = 7 and one at 8 = T, ¢=0. As
z is taken larger than 3. each of the zeros for z = % splits into a pair of
zeros, one pair at 8 = *0, ¢ = w and one pair at 8 = 5w+ 0, ¢ = 0,
where @ is given by (7). By noting the symmetry of det M(z.0,¢) in the

tFor example, in the case of the 4-8/2/1 model M. L. Glasser has shown (private
communication) that, although the energy can be expressed analytically, it involves a non-
trivial combination of incomplete elliptic integrals of the first and second kinds.
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(6,¢) plane, the 8 integral in (5) can be restricted to the interval [0, l-n-].
so only the zero at 9 = 6, ¢ = 7 need be considered. Despite the
existence of zeros in det M for z > 3, the thermodynamic functions are
analytic, and only become non-analytic at the K-type transition at z, =§.
Near the critical point det M scales as

det M(z,6,¢) ~ (6°=1) + @2, (11)

where ¢ is the reduced temperature (7 T ) T.

The form of det M close to its zero in (11) suffices to predict the
analytic behaviour of the K-type transition, as we now show. Using (4)
and (5), one has

O O _92
Efafar 10 @
N ) (t~02p + ¢’
Performing the change of variable ? = (t—6%)x yields
E £ ]‘;\/(/-03) dr
w~ 1 do e 13
N [0 0 I+ ( )

The integral over x yields tan~! [8/(t~62)], which. near the transition
when ¢ is small and for g small, can be replaced by 5'11 sign (1—62). For
! > 0 above the transition the 6 integral in (13) may then be split into
two parts:

E 172 , 2] ,
N~[, d051r+[”2d9(—511) (14)
= a2 — 5'116

In contrast, for 1<0 there is only one integral over the range [0,8], which
yields —iné. This demonstrates the non-singular nature of the energy
below Ty and the Square-root temperature dependence above Ty, which
yields the (172 divergence of the specific heat.

For comparison, we now turn to a discussion of the behaviour of the
zeros in models that have O-type transitions with logarithmic specific-
heat singularities. As an example, let us consider the special case of the
4-8/1 model, for which Xy =x>=1land z; = 7 for all ;. Then

det M =1 - 422 ¢os B cos ¢+ 4z, (15)

There is only one zero in det M. which occurs at -, = viand8=0=¢
In the vicinity of this zero det M scales z:

det M-~ - b~ -, (16)
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In order to obtain the sasymptotic non-analyticity, we replace det M in
(5) by the scaling-form approximation (16). This gives the following
contribution from the double integral near the origin (|| < § < 1):

S 2] ()
E ~J dej do - SR ~I dr -~ —tinld. 17
N o P+6%+¢? y P -
From this derivation, one expects that the occurrence of isolated zeros
in det M will result in critical points of logarithmic type for those values
of z. at which the zeros occur.t
It is also worth showing the result of first doing the integral over ¢ in
(5). In terms of v = /%, the ¢ integral becomes a contour integral around
the unit circle in the complex v plane. Poles occur at ¥ = 0 and also at
the zeros of det M. Often det M is a low-order polynomial in v, and the
locations of the poles can be found explicitly. For example, for the K
model one has a pole at » = ~22 cos 6. However, for several models
introduced in Section 2, det M is a fifth-order polynomical in v, and even
higher-order polynomials should be expected for more complex models,
so it is of value to analyse theoretically what may occur. By the calcutus
of residues, contributions to the v integral come only from those poles
that are inside the unit circle. These poles move around in the complex
v plane both as a function of z and as a function of 6, and it is the
crossing and touching of these poles to the unit circle that gives rise to
the non-analytic critical thermodynamic behaviour.
Let us first illustrate how the movement of the poles in the complex
plane give rise to logarithmic non-analyticity using the special case of the
4-8/1 model as a specific example. Rewrite (15) as

det M = — (2z? cos 8) + 1+42* ~ 27 '(222 cos 6) (20)

_ ~(v~v,)(v—v,) 22 cos 6
v

tThere is, however, one caveat that should be added. Even when there is only one zero
in det M, it is possibic that the scaling form of det M may have a more general form, such
as

det M~ 12 + 9> + ¢, (18)

If so. then it is an easy exercise to show, for m = n, that near the critical point

EIN ~ =t~ t] 3 In]4|, (19)
where for a bounded energy one must have 2k > m. For example, if k = 2m then one
would have E/N ~ ~it[' In }1], which would have a square-root dlvergcnce as the

dominant specific-heat singularity. However, it is clear that this is not a K- -type transition,
and such a transition would be best thought of as a variation of the O-type transition. Such
a variation could occur as a multicritical point in an extended phase diagram.
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where v = ei® and where ¥y 2 are the roots of the quadratic form. These
roots are real and related by v = 1/v,. As the temperature approaches
the critical point at 7 = \/; both poles approach 1, as 6 approaches 0.
The pole inside the unit circle has a residue proportional to v,—v,)~!,
which behaves as (2+62)=1/2. The singular part of the energy then
behaves as

E [° tde
N (rgeyn tinfd, (21)
as was previously found in (17).

A very different pattern of pole movement occurs in models that have
K-type transitions. Using the K model as an example, one sees from (10)
that for z > 21 the pole in the complex v plane at —2z cos @ crosses from
outside to inside the unit circle as 8 increases from 0 to @ given by (7).
This means that the integral over 6 in (6) of the residue of this pole has
limits of +@ and 7 + @ for 7 > 3 instead of the limits + for z < 3
For all models known to the authors the integrand of this integral over
6 is non-singular, and all the singular behaviour comes about from the
thermal variation of the limit 6, which behaves near the critical point as

O~ (z-2,)2 ~ pr2. (22)

Thus the singular part of E/N goes as 1'2, above the transition only, and
the specific heat diverges as 2,

The preceding analyses of the zeros of det M clearly show that there
are two (at least) distinct kinds of singularities that should be expected
for solutions of dimer models. There may be an isolated zero at z. in
det M, and then in the second integral over 8 in (5) two poles approach
the unit circle, and each other, at one isolated value of z and 0. In this
case one expects a symmetric logarithmic singularity and an O-type
transition. In contrast, det M may have a pair of zeros for a range of z
values, no zeros for a contiguous range of z values, and the pair of zeros
merges at values z. on the boundary between the two ranges. In this
case, in the second integral over 6 a pole crosses the unit circle
continuously as a function of 6 at a value of @(z), and at 2. the crossing
ceases, i.e. ©(z) approaches 0 or . This behaviour leads to a K-type
transition at z.. It may further be noted that it is possible for the same
model to have both kinds of transition because there may be many poles,
some of which exhibit one kind of behaviour and others which exhibit
the other kind.

While obtaining the exact solution for other models is not generally as
casy as for the K model, for which the integrals can be expressed in
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terms of simple functions, .the preceding analysis allows one to diagnose
whether the transition is K-type or O-type, and numerically accurate
values for thermodynamic quantities are readily obtained from the
integrals in (5). Using this analysis, a number of exact results are tabulated
for a variety of dimer models in Section 5.

5 Results for thermodynamic properties

In this section basic exact results for the partition functions of a variety
of dimer models are presented in a uniform way. The first result reported
for each model is det M that appears in (2) or det M, in (3). These
determinants will generally be functions of several activities z;, w; and
X, which will correspond to energies &, 6; and &. The determinants will
also be functions of cos 6 and v = e'*, where 6 and ¢ are the angles of
integration in (2). The specific way of writing det M depends upon some
trivial conventions. For example, since the integrals in (2) are over 2,
B and ¢ can be replaced by their negatives or by their values incremented
by constant values or by linearly independent combinations of 6 and ¢;
these unimportant variations occur when the unit cell is chosen differently.
The second result for each model is the location of the critical singularities
in the (6.¢) plane and the values of the activities at which the model has
a transition. We shall only consider cases for which the ground-state
energy is zero and all bond energies are either 0 or positive, so each
critical value of the activities will lie in the interval [0.1]. The third result
is whether the phase transition is of K-type or O-type, based on the
analysis in Section 4.

5.1 VH family

Unit cells for some members of the VH family are shown in Fig. 2.3.
The numbering pattern of the lattice sites that we found useful is
specifically illustrated in Fig. 2.2 for the V2H? model. It might be noted
that the unit cells are in a rectangular pattern if the sum p of exponents
on the Vis even (e.g. V?H* or VAH>VH?) and in a triangular pattern if
the sum p is odd (e.g. VHY).

Vo model—same as K model

det M, = v + 92z cos 8
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The critical singul?rities occur at (0,m) and (w,0) for the critical value of

the activity z, = 5. There is a K-type transition at kTJe = (In 2)7' =
1.4426, . :

V'H? model
det M, = — 9322 4 v’(3z%4+223+1)
- v(z°+425+z“+3zz) + 2°-225¢cos 8+ 4
The critical singularities occur at (0.0) for z. = 312, There is a K-type

transition at k7./e = 1.8204. . .

V'H? model

det M, = 1552 — v4(2244223+1) + v3(22°+2*4+222) + 2024 cos @

The critical singularities occur at (0,0) and (n,m) for z, = %(S"z-—l).
There is a K-type transition at kT./e = 2.0780. . . .

VZH? model

det M, =252 — 24223 4+1) + 24~223cos 6 + 2?2
The critical singularities occur at (w.m) for z. = 2-12_ There is a K-type
transition at kT./e = 2.8853, co .

VIH2VH? model
det M, = p4z4 — 03222(z+l)(z3+zz—z+1)
+ v2(2+1)(6zﬁ—z5+z“+3z3+zz—z+1)

= 022%(z+1)%(22—z+ 1)(222=2+1) + 22%(1-cos 0)

The critical singularities occur at (0,0) for z, = 0.6738. . . . There is a
K-type transition at kT./e = 2.5331. . . .

VH? model

det M, = — 2222 + (224 1) - 9= 1222 cos ]
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The only critical singulagity occurs at (0,0) and (w,m) for z. = 1
corresponding to kT = o<,

V2H? maodel

det M; = — 92% + 02(254225+24+222)
—v (228422542244 223+1) + 25—2z%cos 6 + 22
The only critical singularity occurs at (w,0) for z, = 1 corresponding to
kT = =,
V2H® model

det M, =v*2® — v3(z8+2274225+32%) + V*(328+427+4254 42542244 372)
= v(32%+227+32542254 324422 +1) + 22—2z5cos 0 + 22

The critical singularities occur at (w,0) for z. = 2~"2. There is a K-type
transition at kT,./e = 2.88539. . . .

VH? model

det M, = v°z* — v*(225+2%4222) + v2(225+223+1) + v223 cos @

The critical singularities occur at (0,7) and (w,0) for z. = 2-'2, There
is a K-type transition at k7./e = 2.88539. . . .

H? model

detM; = —vz2+22+2zcos 0+ 1

The critical singularities occur at (w.,0) for z, = i. There is a K-type
transition at kT /e = 1.4426. . . . .

There are some obvious systematic trends in the form of det M, in the
previous results. For models with a rectangular packing pattern for the
unit cells (p even) det M, is a polynomial in v of order 3(p+q), where
p+q is the sum of the exponents in the V?H¢ notation. For models with
a triangular packing pattern (p odd) det M, is a product of (a) v to some
power and (b) a polynomial in v of order p+q with all even powers
missing except for the 2” term. Clearly, for the general VH model det M,
may be of quite high order so that there are many poles to be considered
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in (5). To find the zeros of det M,, a simple computer program was
written to scan the (2,6,¢) space and to converge to the zeros. For the
VH models there are no zeros for z<z,, and at z, a zero appears at =0
for w. For z>z_ this zero splits into two zeros at values of =@, which
for the case of the K model are given by (7). Except for the V3H2VH?
model, the numerical values found for z, suggested simple algebraic
numbers, which were then verified algebraically and are listed in the
results above,

For models in the VH family the temperature Tk at which the K-type
transition occurs shows a general trend with Ovg. the density of dimers
on the vertical bonds in the ground state at temperature T=(). As seen
in Fig. 5.1, Ty generaily increases as 0. approaches 3 from either side.
This correlation is not perfectly smooth: indeed, two models with different
values of Ovy have the same values of Ty, and two models with the same
value of Ove have different valyes of Tx. Nevertheless, the trend is

copies of brick-lattice graph paper—that, compared with the K model,
models with Qv closer to_—; require more energy and gain less entropy
PEr row, on average, to create such a string. However, we have not
succeeded in making this into a qQuantitative argument to locate T except
for the K (i.e. the V) model.

The VH? and the V2H* models are clearly special in that they do not
have K-type transitions or any other transition at all for finite temperatures.

O.GF‘*r*v‘ T T T
4 L ]
0.6} 4
[ ]
< [ ]
% 0.4F . .
[ N ] [ ]
0.2} i
i - i i 1
0 0.2 %53 0.6 0.8 1.0
Py

Fig. 5.1 The dimensionless inverse transition temperature, &/kTy versus density
of vertical dimers in the ground state, g,,, for the VH models solved in this
review.
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Considering only Fig. 5.1, one might suggest that for all finite temperatures
these two models are in ordered phases corresponding to the low-
temperature ordered phases existing in the other models. This view is
supported by the fact that,there are no zeros in det M(z,0,4), just as
there are no zeros in the ordered low-temperature phases for the other
VH models, in contrast with their high-temperature phases above Tk.
On the other hand, there is good reason to suggest that these models are
in disordered phases, like the high-temperature disordered phases in the
other VH models. As T increases to x in the other models, 0. approaches
3 Whereas o is already 3 at T=0 for the VH2 and V2H* models and
remains at 3 for all higher temperatures. This means that these two
models do not require overturning strings of dimers from top to bottom
of the lattice in order to achieve the completely disordered T=x state,
consistent with these models being effectively disordered for any non-
zero T.

VH?IV model

An additional perspective on the question in the preceding paragraph is
obtained from the solution of the VH2/V model. The VH*V model was
defined in Section 2 as having an energy ¢ for dimers on those bonds
that are high-energy bonds for the V model (i.e. the vertical bonds) plus
an energy 6 for dimers on those bonds that are high-energy bonds for
the VH? model. With activities z = e~“*T and w = e %7 dimers on
some bonds of the model have activities z or w or zw or 1. For this
model

det M, = — v®w? + 22(223+1) — v~ 2w2z% cos § .

A critical singularity of K type occurs at (0,0) on the line w=z. Another
critical singularity of K type occurs at (7,0) on the line 2z2w2—w+z=(,
The result is the phase diagram shown in Fig. 5.2(a). For £ > § and for
low temperatures the VH2/V model remains completely frozen into the
same phase as the K model with all vertical dimers, g,=1, and then at
higher temperatures it undergoes a K-type transition to a phase with
varying o, and varying density of domain walls (the phase labelled IC in
Fig. 5.2a). In contrast, for & > ¢ the model has no phase transition and
resides exclusively in a single phase, which is characterized by o, = % but
which is not rigidly ordered. From the perspective of Fig. 5.2(a), it is
clear that this phase is distinct from either the low- or the high-temperature
phases of the K (i.e. V) model.
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Fig. 5.2 Phase diagrams for (a) VH%V model and (b) VH¥V*H? model. Locj of
transitions (two bold lines) and [fwo representative physical trajectories (two

dashed lines for r = §/¢ = 2 and 3 )

VH?IV'H? model

As a function of temperature, the VH¥V model is not very interesting
because it behaves in the same way as the V model for £ > § and in the
same way as the VH? model for ¢ < 8. More interesting in this regard
is the VH2/V*H? model. For this model

det My = — o372y + V223w (z+1)+ wi(z4+1)]
- v[zwS(z+ 1?+222w3(23+ D+22] + 2*w*(22—22 cos 9 + 1)

The critical singularities occur at (0,0) and (m,0) in the (6,9) plane. The
loci of the transitions are shown in Fig. 5.2(b). Topologically, the
arrangement of this phase diagram in Fig. 5.2(b) is the same as that in
Fig. 5.2(a). However, as a function of temperature the VH%/V4H? model
undergoes two transitions when ¢ > 6. as can be seen from the r = 3
line in Fig. 5.2(b). From this perspective, the phases in the lower right-
hand sides of Figs. 5.2(a) and (b) would appear to be best characterized
as high-temperature disordered phases, at least relative to the other two
phases in these phase diagrams.

5.2 Models based on the 4~8 iattice

The 4-8 lattice family of dimer models is very rich and has yet to be fully
and systematically mapped. Therefore the list of models chosen for this
review should be looked upon as an exploration, rather than a complete
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and systematic classificatiay. However, there is one fairly obvious
classification principle that we have followed. This is to classify the models
by the size of the unit cell. Since the smallest unit cell consistent with
the 4-8 lattice (see Fig. 2.6) is a square, and larger unit cells consist of
integer numbers p of squares, our classification scheme consists of naming
the models 4-8/p/i, where i is an arbitrary integer that distinguishes
different models with the same p value. Unit cells for the following
models are shown in Figs. 2.6-8. The specific numbering of sites that we
found usefyl is illustrated in Fig. 2.7(b) for the 4-8/2/2 model.

4-8/1 model

The 4-8/1 model shown in Fig. 2.6 is the general case for models on the
4-8 lattice with unit cell containing only one basic square, i.e., four lattice
sites. It may be noted that the matrix M does not decompose into two
off-diagonal M, blocks. For this model

detM=— X 1x5(242,€ 194 23246 719) + (2122+2324)% + (x;x, )2
= 072,270 + z3z,0)

The critical singularities occur at (0,0) for z,z; + z3z4 = x,;x,. These
singularities yield lines of O-type transitions.

A simple special case of the 4-8/1 model is the SCD model (Salinas
and Nagle, 1974), for which x, = X =1land z, = z; = z; = z,. Then

det M= —2222cos @ + 42*+1 — 91272 cos o,

and the critical singularities occur at (0,0) for 222 = 1, yielding an O-
type transition at kT./e = 2.8853. . . .

4-8/2 models

The result that there are only O-type transitions for the 4-8/1 model is
not a good indicator of the rich variety of results for larger p, to which
we now turn. The three models in the 4-8/2 class all have the property
of being “staggered” models in the sense that there are two types of
squares, A and B, and each square is completely surrounded by squares
of the other type as shown in Fig. 3.1. It may also be useful to note that
the angle 6, not ¢, corresponds to the vertical direction in Fig. 2.7.

4-8/2/1 model

det M, = —22w? cos 6 + 422w2+1 — v~ 1222 cos @
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The critical singularities occur at (0,0) and (w,m) for 2. = 272 and for
We = 27'2_ The loci of the critical singularities are shown as bold lines
in the (w.z) plane in Fig. 5.3(a); these lines divide the (w.z) plane into
four regions, which will be called the low-temperature region (LT), the
high-temperature region (HT), and two intermediate-temperature regions,
denoted IT+ and IT- in Fig. 5.3(a). Also shown by dashed lines in this
figure are three loci for physical values of (w.z) as a function of
temperature for three different values of the ratio r = §/e of the two
energies in the model.

In the general case (r # 1), as T increases from zero, the physical locus
of (w,z) crosses one of the bold lines in Fig. 5.3(a) and there is a K-type
transition at 7y, as shown in Fig. 5.3(b). As T increases further to 7.,
(w.z) crosses the other bold line. This is accompanied by a square-root

K-type transition. When &/ goes to zero there is one inverted K-type
transition. For the special case ¢ = 6 (r=1) the 4-8/2/1 model reduces to
a 4-8/1 model and has a single O-type transition, which therefore appears
as a multicritical point in the larger 4-8/2/1 phase diagram in Fig. 5.3(a).
In this context, the crossover from the “typical” behaviour of two K-type
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Fig. 5.3 4-8/2/1 model. (a) Loci of transitions (bold lines) and' physical tra-
jectories (dashes lines) in the (w.z) plane for r = &/¢ = 2. I and 5. (b) Specific
heat verus temperature for the general case r # |.
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transitions to the O-type, muiticritical point has been fully described
(Nagle and Yokoi, 1987) and carries a crossover exponent ¢=1.

The domain-wall isomorphism leads to physical insight into the exact
thermal behaviour of the 4-8/2/1 model. These domain walls are illustrated
in Fig. 3.1. The density of walls of z type minus the density of walls of
w type eqyals the density of dimers of z type minus the density of dimers
of w type, which we shall call g,_,.. The exact solution shows that g,_,,
is zero in the low-temperature LT phase and in the high-temperature HT
phase of the 4-8/2/1 model. In the IT* phases between the two K-type
transitions g._,, is non-zero. This is a powerful result when coupled with
some simple observations about the domain walls. Localized excitations
contribute nothing to g._,.. The only way to obtain g,_,. # 0 is to have
some walls that run from top to bottom of the lattice (with reversals
permitted) and with an excess of one wall type over the other. (The
example in Fig. 3.1 has go,_,, = —;',.) A non-zero value of g,_,, is the
intuitive characterization of the intermediate phase of the 4-8/2/1 model.
The low-temperature phase certainly has localized excitations. It has not
been shown whether or not the LT phase has a non-zero but equal density
of extended domain walls of z type and w type, but the authors speculate
that the density of both wall types is zero in this phase. The high-
temperature phase probably has many extended domain walls as well as
localized excitations. It is not clear whether the HT phase is a completely
disordered phase or whether some residual order extends to T=x.

By far the most interesting of the three 4-8/2 models is the 4-8/2/1
model. The other two models are presented for contrast to show how

apparently small variations in the models leads to large and qualitative
variations in the thermal behaviour.

4-8/212 model

det M, = —v2zwcos 8+ 422w?+1 — v~ 2zwcos 6

The critical singularities occur at (0,0) and (w,%) for zw = % This yields
a line of O-type transitions in the (w,z) plane. For any fixed values of
the energies € and o the 4-8/2/2 model has a simple O-type transition.

4-8/2/3 model

det M, = —022zwcos 0+ (z2+ w2+ 1 -9~ 12zwcos 0

The critical singularities occur at (0,0) and (w,w) only for z, = 2-12 =
W, at which there is an O-type transition. Therefore the 4-8/2/3 model
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has no transition at all, except when £ = §, in which case it is a special
case of the 4-8/1 model.

4-8s/2/1 model

The 4-8s/2/1 model involves a modification of the 4-8 lattice. While our
classification scheme would suggest that this modification might occur
elsewhere in the list, the domain-wall isomorphism compels discussion of
it with the 4-8/2/1 model. In the domain-wall picture this model has an
extra degree of freedom, which consists of allowing domain walls to
annihilate with walls of the same type, as well as with walls of opposite
type as in the 4-8/2/1 model. With this modification. the M matrix does
not decompose into two off-diagonal M, blocks. For this model

det M =(v° + 9~2)422w(cos? 6 — x2) — (v + 97 1)2(z24+w?)
(42°w?+1-x2) cos 0 + (42202 +1)?
+4(z*+w*) cos? @ + x* — 2x2 cos 20,

The critical singularities occur at (0,0) and (w,m) for 222-1)(2w?~-1) = x2,
This gives two non-intersecting lines in the (w.z) plane; an example is
given in Fig. 3 of the paper by Nagle and Yokoi (1987). For fixed energies
€, 6 the (w,z) trajectories cross each of these lines. so there are two
transitions, each of which is O-type. In this context. the K-type transitions
in the 4-8/2/1 model are multicritical points at £ = 0 in the 4-8s/21
model.

3-12/1 model

The 4-8s/2/1 model reduces to the 3-12/1 model when 6 = = (w=0). In
this case the multicritical point is the single K-type transition of the
K model, for which there is only one type of domain wall. This was first
discovered by Bhattacharjee (1984), who also caiculated that the
conventional crossover exponent is ¢ = '

[T

4-8/4 models

Stimulated by the interesting thermal behaviour that appears when models
are considered on the 4-8 lattice with unit cells having more than p=1
square, we have begun exploration of models with p=4 squares.
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4-8/4/1 model oy’
det M, = (27 + v72)22w? ~ v(82°w + 22+ w?)
— v 422w (22 + w?)+ 2zw] ‘
+ (42°w+1)(4zw3+1) — 222w? cos 6 _

When the bond energies ¢ and 6 for the z and w bonds respectively are
greater than zero. the critical singularities occur at (0,0) for 2zw = |, at
which there is a line of O-type transitions. Additionally, when either ¢
or 6 is less than zero, this model has several phase transitions of both
K type and O type. The details of these transitions will be given in a
subsequent publication.

4-8/4/2 model

By way of contrast, we also list the 4-8/4/2 model. It has the same
underlying motif as the 4-8/4/1 model in that the four squares- in the unit
cell are related by i rotations. Nevertheless, the 4-8/4/2 model has no
transition except in the limit £ = 8, in which case it reduces to a 4-8/1
model. For the 4-8/4/2 model

det M, = (v + 2~ ")zw(22—2zw cos 6 + w?)
+162*'w*+(22+ w22+ 1+ 2zw(22+w?) cos 0 .

The critical singularities occur at (w,) only for z, = we = 272 at which
there is an O-type transition.

5.3 Other models
Staggered quadratic lattice model
The SQK model is shown in Fig. 2.4. For this model

det M, = —v + 2w+2z%(1—cos 6) — v~ 'w2,

The critical singularities occur at (m,0) for 1 — 2z, = w, and there is a
line of K-type transitions. In the case when w > 1 the phase boundary
is I + 2z, = w,, and the low-temperature ordered phase has all the w-
bonds filled with dimers. The point w = 1, z = 0 corresponds to the
square-lattice model, which has no phase transition and which appears
as a malticritical point in the phase diagram for the SQK model. It may
also be worth noting, in passing, that these two low-temperature phases
are similar to the valence-bond crystals discussed in connection with the

resonating valence-bond theory of high-T, superconductors (Rokhsar and
Kivelson, 1988).
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6 Correlation functions

While determination of the thermodynamic functions at phase transitions
is one of the main goals of solving models, it is clearly established that
the determination of the correlation functions leads to considerably
enhanced insight. In the case of the two-dimensional Ising model the
correlation functions decay exponentially with distance as e "% where
the correlation length & increases as the critical point is approached
according to & ~ v, Right at the critical point the correlations decay
only algebraically as r—*2-n_ where n = 3 in two dimensions, As the
correlations become longer-range near the critical point, the lattice
structure becomes less important and the long-range correlations become
isotropic in direction on the lattice (Hartwig and Stephenson, 1968). This
leads to an essential characterization of the critical point in the Ising
model and many other spin-type models, namely that it is a state of the
system in which all spins are well correlated in an isotropic fashion. As
we shall see, the correlation functions for models with K-type transitions
present a strongly contrasting picture to this standard picture developed
for spin-type systems.

Fortunately, the method for computing correlation functions for two-
dimensional dimer models has been well established by Fisher and
Stephenson (1963). Unfortunately, carrying out the method in the detail
necessary to obtain reliable results involves a great deal of tedious
calculation. This accounts for the fact that results for the correlation
functions for models with K-type transitions are known only for the
simple K model and not for any of the other interesting models discussed
in the previous sections. Nevertheless. the results for the K model already
vield much essential insight into K-tvpe transitions.

The dimer pair-correlation function C,.(x.v) is defined as

C,o(xry) = P.(x.v)— P.P.. (23)

where P, and P, are the probabilities that hond types a and 5 respectively
are occupied by dimers, and P, (x.y) is the joint probability that both
bond a located at the origin (0,0) and bond b located at (x.y) are occupied
by dimers. Using the perturbation theory of Pfaffians, C,, can be
expressed in terms of Green's functions, which typically look like

e~ix9~i_v¢

Glxy) = f 2"dof T g e . 24)

|z—zei2 — e-io

The integration over ¢ may be performed analytically and the remaining
integration over 6 may be evaluated numerically to produce tables of
correlation functions for varying x and y. More elegantly, the asymptotic
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expressions for the Green’s fynctions at long distances and for temperatures
close to Tk have been obtained. Since the ensuing asymptotic or scaling
form of the correlations functions reveals most of the significant physical
features, this review will focus upon these only, although the original
paper (Yokoi et al., 1986) shows some of the numerical results for one
specific temperature. Furthermore, the functional forms of these scaling
functions are essentially the same, regardless of the two bond types
involved; the differences are contained in fairly simple factors whose
temperature dependence is modest and with a minus sign when one of
the dimers is vertical and one is horizontal.

The first striking feature of the asymptotic form of the scaling functions
is that they depend upon two scaling lengths &, and &,, which are naturally
identified as the correlation lengths in the x and y directions respectively
because of the way they appear in the formula for the correlation functions
given by

(x/&)? sin’® (x/&,) — (y/&,)* cos® (x/&,)
E(H/E)? + (IE)P '

The divergence of the two correlation lengths is quite different as a
function of reduced temperature ¢ as the K-type transition is approached
from above, with

(25)

C,,/,(X .}’) ~

E ~t7'72 & ~r'. (26)

The existence of two independent and functionally disparate correlation
lengths requires the use of two critical exponents », and p, to describe
the divergence of the correlation lengths, v, in the x direction and », in
the y direction. Equation (26) shows that the numerical value of v, is %
and the numerical value of v, is 1. The fact that two critical exponents
are required to describe the critical correlation behaviour is a major

indicator of the essential anisotropy of the K model. The values of these -

critical exponents agrees with the values obtained by Schultz (1980) in
connection with commensurate-incommensurate transitions, and they
obey the anisotropic hyperscaling relation (Fisher, 1986)

vty=2-a. 27

Another major indicator of the essential anisotropy in the model is the
spatial pattern of the correlation functions. This is emphasized in Fig.
6.1, which shows the pattern of positive and negative values for correlation
functions for a horizontal dimer located anywhere, given that there is a
horizontal dimer at the origin. Since domain walls pass through
the horizontal dimers, this is essentially the domain-wall/domain-wall
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Fig. 6.1 The pattern of positive and negative regions for the domain-wall/domain-
wall correlation function in the asymptotic scaling limit. The X and Y axes are
the actual distances x and y scaled by the correlation lengths in the respective
directions.

correlation function. Because of the anisotropic forcing constraint, a wall
at the origin gives rise to positive correlations for finding a wall near
X = 0 for non-zero values of y. In addition, there are positive correlations
for finding walls at regular spacings along the x axis, corresponding in
an obvious way to the bulk density of walls. Because the walls repel each
other, the correlation function is negative in-between.

Another important feature to appreciate, which was first published by
Sutherland (1968), is that the correlation functions fall off with distance
only as r~2, even when the temperature is greater than the transition
temperature Ty. This is in strong contrast with the models with O-type
transitions, such as the Ising model (McCoy and Wu, 1973) or the 4-8/1
dimer model (Salinas and Nagle, 1974), for which the correlation functions
decay exponentially as e~"/* when ¢ # 0 and only decay algebraically right
at the critical point.

7 Finite-size effects

There has been a long-standing interest in how phase transitions develop
as system sizes become infinite. Experimentally. this interest arises
naturallv because real samples have finite sizes. Theoretically. it is
impossible for the partition function of z finitz svwtem 10 behave pon-
analyucally. so it Is natural te enquire how smooth anahvtic functions can
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develop singularities. Conggquently, there has been a.good deal of work
performed on exactly solvable models, such as the Ising model. To put
the analytical results into a form .that can be extended to models not
solved or to real systems, the finite-size scaling theory has been developed
to represent models in the critical region, as has been reviewed by Barber
(1983).

It is appropriate to ask whether finite-size scaling theory pertains to
models with K-type transitions, for which one can, with some effort,
obtain complete results for finite as well as infinite systems. As was the
case for the correlation functions discussed in Section 6, explicit calculations
have only been performed for the K model and not for the other models
that exhibit K-type or inverted K-type transitions. It turns out that the
K model does obey finite-size scaling provided that the theory is suitably
extended. This extension requires an extra variable to account for a shape
dependence. In terms of the correlation functions discussed in Section 6,
this shape dependence stems from the anisotropy in the correlation lengths
in the two directions. The exact asymptotic scaling function depends
dramatically upon this shape variable, ranging from a smooth function
for one limiting shape to a sequence of delta functions for another limiting
shape.

Figure 7.1 shows the specific heat for the K model for a brick lattice
with M = 20, 40 and = rows in the vertical direction and N = = rows
in the horizontal direction. The buildup of the specific-heat peak at Tk
with increasing M appears reasonable, with the asymmetrical character
of the bulk (M = =) result appearing already. Unlike the Ising model,
however, where the specific heat approaches its bulk value at a fixed
non-critical temperature exponentially (e™™), the approach for the K
model is algebraic (M~2) for T > Tk (Bhattacharjee and Nagle, 1985).
This is consistent with the algebraic decay of the correlations for T > T,
discussed in Section 6.

In striking contrast with the behaviour described in the preceding
paragraph, the specific heat for the K model on a brick lattice with M
= > rows and N = finite columns consists of a sequence of delta functions.
The first delta function occurs at T and corresponds to the formation,
as temperature is increased, of the first domain wall. The second delta
function occurs at a higher temperature given by 2 cos?(n/2N) = e®T;
and corresponds to the formation of a second domain wall. Between Ty
and T,, the system remains frozen into the state with precisely one
domain wall, and the specific heat is zero. For finite N subsequent delta
functions appear at higher temperatures, T,, and the thermodynamic
state of the system develops an nth wall. The integrated (over T) strength
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Fig. 7.1 Specific heat per lattice site versus temperature for two short fat lattices
of size 20 x o and 40 x @, two tall thin lattices of size % x 10, % x 20 and the
bulk system of size % x %,

of each delta function corresponds to the energy required to create one
additional domain wall. As N becomes larger, the delta functions become
denser, but with smaller integrated strength proportional to &/N for the
specific heat per lattice site. The density of delta functions approaches
infinity at all temperatures, but at Ty the approach is more rapid than
/N, 50 that the bulk thermodynamic limit consisting of the 112 divergence
in the specific heat is recovered.

The contrast in behaviour between the two shapes for the K model
discussed in the preceding two paragraphs indicates that any finite-size
scaling theory must have a scaling function that is strongly shape-
dependent as well as being dependent upon the reduced temperature .
After a laborious analysis of cases, the following form was found to do
the job. The asymptotic scaling form for specific heat per lattice site,
cn=m(t), for a lattice with M rows and N columns may be written as

ch/ll(’) = k./“,“zg)(t./'), (28)
where
MN? N2
At —M+N2. =M r= ﬁ

and the function 2 is the finite-size scaling function,
It is illuminating to compare (28) with the usual finite-size scaling form
for isotropic systems, which is usually written as
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Crrxm(t) = kM P(MW), (29)

The prefactor M2 in (28) has two limiting cases that should be compared
to the prefactor M“* in (29). In both limiting cases the divergence of the
specific heat is given by a = % In the case when N2 goes to ~ faster
than M, M ~ M. Since the divergence of the correlations in the vertical
direction has a critical exponent v, = 1, the prefactor is consistent with
the finite size-scaling form. In the case when M goes to « faster than N2,
M ~ N? and the prefactor is given by N, which is consistent with a
critical exponent v, = % in N**x. Similarly, the first scaling variable 7 in
the P function goes as tM or tN2 in the two preceding cases. Again, by
comparison to the form in (29), this requires the two critical exponents
v, = 3 and v, = 1. This much could have been predicted from the
correlation-function results reviewed in Section 6. Actually, the finite-
size-scaling results preceded the correlation-function results. When the
finite-size-scaling results were determined, it was strongly suggested that
the values of », and v, were 3 and 1 respectively. However, since that
conclusion depended upon the assumption that the finite-size-scaling
theory was correct, it was conservatively concluded (Bhattacharjee and
Nagle, 1985) that there were two finite-size-scaling exponents vy, and vy,
with those two values. Now that the correlation function calculations have
been performed, there is no doubt that Uy =y = % and vy = p, = 1
and that the suitable extended finite-size-scaling theory is correct.

In addition, it is clear that the scaling function % in (28) also depends
dramatically upon a second anisotropic variable, r=N2/M, which describes
the relative dimensions of the finite lattice. To illustrate how dramatic
this dependence is, Fig. 7.2 shows @ as a function of 7 for several values
of r.

For the M x = lattices the @ function is smooth with a maximum a
little above 7 = 0. This means that the temperature at which the maximu'a
in the specific heat occurs is greater than Ty for finite M, as seen in
Fig. 7.1. The fact that P(1) goes to zero exponentially fast for v < 0
means, according to (28), that the specific heat at any fixed temperature
below Ty (fixed negative 1) goes to zero as M goes to =. Turning again
to the general case of N x M lattices, as » = N/M becomes less than
=, P develops oscillations as a function of 7. As 7 is reduced below 1,
these oscillations begin to develop into peaks, which, as » goes to 0,
become the delta functions characteristic of the long thin « X N lattice.

The behaviour described in the preceding paragraph may be compared
with the asymptotic behaviour of the specific heat of the two-dimensional
Ising model (Ferdinand and Fisher, 1969), who, in addition to obtaining
an exact form, gave the following convenient approximate from:
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Fig. 7.2 The scaling function for the specific heat @ as a function of the scaled
temperature 7 for several values of the anisotropy parameter , as indicated. The
arrows on the peaks of the , = 3 and 7 = 3 curves show the direction of their
movement as - decreases. .

%}1—3 ~—~In [ (: + %)2 + (}’;ﬂ (30)

where a* depends upon the shape parameter s = M/N and there is the
obvious symmetry that a*(s) = a*(1/s). In contrast, for the K model the
scaling function is an essentially more complicated function of s, and
there is no obvious symmetry in .,

8 Three-dimensional models

A natural question to ask is whether there are models in dimensions
greater than two that have K-type transitions. Although there are no
exact solutionst to answer this question rigorously, the answer is almost
certainly that there are such models, provided that one allows for the
critical exponent a to vary with dimension d. The simplest three-
dimensional model has a lattice that is sketched in Fig. 8.1. This lattice
bears the same relationship to the simple cubic lattice as the brick lattice
bears to the square Iattice, namely half the vertical bonds are removed
in an alternating pattern in any direction. This lattice will be called the

*There is one exactly solved three-dimensional dimer mode ( Priezzhev. 1981). but it does
not have a phase transition.
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Fig. 8.1 A horizontal slice of the modified simple cubic lattice. The bonds in
each horizontal plane form a square lattice as shown by the lines. Each lattice
site has only one vertical bond connecting to one of the two neighbouring
horizontal planes instead of two as for the unmodified simple cubic lattice. Those
vertical bonds indicated by open circles on the lattice site are connected to the
plane above the plane shown, and those vertical bonds indicated by open squares
are connected to the plane below. '

modified simple cubic lattice. As with the two-dimensional K model, the
energy for dimers will be taken to be 0 if the dimer is on a vertical bond
and ¢ if it is on a horizontal bond. We will call this model the 3-d K
model. Tt was first discussed by Izuyama and Akutsu (1982a), who also
discussed the three-dimensional analogue of the SOK model (lzuyama
and Akutsu, 1982b).

The ground state of the 3-d K model has all the dimers on vertical
bonds, and each vertical bond has a dimer. Let us consider perturbations
from the ground state. Just as for the 2-d K model, moving any vertical
dimer onto a horizontal bond causes a chain reaction of moves so that
each plane in the lattice has a horizontal dimer. The only minor difference
is that for the 3-d K model there are four options in each plane for
making the move instead of two. By the same argument used for the
2-d K model, this locates kT, = &/ln 4, and indicates that for T < Ty
the model is frozen into its ground state. Above Ty, each microstate of
the system is characterized by a unique set of repelling dislocation lines
connecting horizontal dimers in successive levels, thereby exhibiting the
essential nature of the anisotropy in the model. Thus the assertion is
justified that higher-dimensional models with K-type transitions exist,¥
although these observations do not determine the nature of any
thermodynamic non-analyticity above Ty, nor would one expect a to
remain 3 for dimension higher than two.

tThere is a different kind of extension of the 2-d K model that one could also imagine—
one in which the microstates of the model would consist of repelling 2-d surfaces (not
necessarily flat), each of which would stretch from top to bottom of the system, but this
kind of model would not appear to arise from dimer models.
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Although the 3-d K model has not been solved, it has been argued
that a = 0. The first argument was presented as an exact calculation by
Izuyama and Akutsu (1982a); it gave a finite specific heat at Ty. This
argument was shown to be in error by Bhattacharjee et al. (1983) and
was shown to be similar to a Bethe approximation (Kornilov. and
Priezzhev, 1984). Bhattacharjee et al. (1983) agreed that a = 0, but
suggested that a logarithmic divergence of the specific heat above Ty is
likely. They also suggested that the specific heat at Ty remains finite for
d greater than 3. While the nuances of the discussion are best left to the
primary papers, it is worth indicating the main features of the analysis.

The discussion is based on one rigorous calculation for finite systems,
which yields complete details of the second perturbation from the ground
state, namely those states involving two horizontal dimers in each plane.
This might seem to be a weak base for any calculation of a if one thinks
of spin systems in which many perturbations have already occurred before
the transition takes place. The reason it is a useful base in the K models,
both 2-d and 3-d, is that the models remain in their ground state up to
Ty and the first perturbation already determines Tk, so additional low-
lying excitations may also be informative. How this may be so is indicated
in Fig. 7.1 by the calculation for 2-d lattices of size = X N. For the 3-d
model the comparable calculation will be for an infinite stack of finite
planes of size N2. For systems of this shape the specific heat consists of
delta functions, as shown in Fig. 7.1, which become denser as the system
size becomes larger. In the infinite limit the density of delta functions
determines the value of the specific heat. The idea is to approximate this
density of delta functions at Ty from the first two delta functions. The
first of these delta functions corresponds to the system going from the
ground state to states with one string of horizontal dimers, and the second
delta function corresponds to the system going on to states with two
strings of horizontal dimers. Although obtaining the details of the second
delta function is a good deal more challenging than for the first delta
function, it is a calculation that can be performed using random-walk
techniques developed by Montroll (1969).

The result of the rigorous calculation and its non-rigorous extrapolation
to the thermodynamic behaviour is best described in terms of the free
energy per lattice site, f(9), as a function of the density of horizontal
dimers, . For d = 2 the analysis yields

flo)~—to+ bg“+ higher-order terms . 31

From (31) one obtains g2 ~ ¢ for small ¢. Since the energy £ = ge, this
yields a specific heat C = dE/dt ~ t~"2. The agreement with the exact
result lends confidence in this analysis. For d = 3 the same analysis yields
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2
flo) ~ —to— :;—QQ + higher-order terms . (32)
From (32) one obtains ¢ ~ —t In ¢, which yields a logarithmic divergence

in the specific heat as ¢t goes to zero at Tgx. Ford > 3

fle) ~ —to — bg® + higher-order terms , (33)
which yields a finite specific heat at T.

9 Application to biomembranes

The structure of biomembranes is determined by the lipid component,
which forms lipid bilayers as shown in Figs. 9.1(a,b). The lipids portrayed
in Fig. 9.1 are amphiphilic molecules of molecular weight ca. 600-1000,
with headgroups containing charges that prefer an aqueous environment
and with hydrocarbon tails that, like oils, phase-separate from water.
These molecules have many internal (i.e. conformational) degrees of
freedom. Especially important and most numerous are the conformational
degrees of freedom of the hydrocarbon chains, which are basically
-(CH,),,CH;, where each n = 12-18. Each of the (n—1) C—C bonds
joining two methylene (CH,) groups has a conformational, rotameric
degree of freedom, which is conventionally modelled in polymer physical

2) ®)

Water Walsr
56536 -
Water

Fig. 9.1 Schematic sketches of small sections of lipid bilayers for (a) below the
main transition and (b) above the main transition. Each bilayer section shows
eight lipid molecules, with headgroups indicated by ovals and tails by solid lines.
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chemistry by three states: one trans ground state and two gauche states
with energies £ ~ kT for biological temperatures. In Fig. 9.1(a) the
hydrocarbon chains are pictured with all rotameric states trans. In Fig.
9.1(b) gauche states have been introduced.

Since lipid molecules have complex internal structure, it is not surprising
that a description of their condensed-matter phases requires many different
concepts of order/disorder. As with simple spherical atoms, there may be
positional order/disorder. The symmetry of each lipid is so low that there
may also be orientational order/disorder, which may be thought of as
headgroup order/disorder. As portrayed in Fig. 9.1(a), the molecules are
orientationally disordered. Another possibility is tilt order/disorder. Each
hydrocarbon chain in Fig. 9.1(a) is perpendicular to the bilayer surface,
but for many lipids the chains are tilted. Also, all-frans chains themselves
have an orientation, defined by the C—C—C—C plane not indicated in
Fig. 9.1(a); this may give rise to chain orientational order/disorder which
may be decoupled from headgroup order/disorder. Finally, the rotational
isomerism emphasized in the preceding paragraph gives rise to confor-
mational order/disorder.

Lipid/water systems undergo several phase transitions as temperature
is changed and as water concentration is changed. (Tardieu et al., 1973;
Tristram-Nagle et al., 1987). 1t is quite likely that most of the kinds of
order/disorder mentioned in the preceding paragraph will play a major
role in one or several of the observed transitions. However, in this chapter
the focus is upon the main lipid-bilayer transition. This is the largest of
the transitions between two different forms of bilayers, and, of the several
transitions of this sort, it is the one that occurs at the highest temperature.
In the biophysical literature it is often called the gel-to-liquid-crystalline
transition, but this is somewhat inappropriate because both phases are
smectic liquid crystals. For the main transition the kind of order/disorder
that plays the major role is conformational order/disorder. The X-ray
data and the Raman data make it quite clear that conformational order/
disorder is important. The size of the entropy of the transition requires
many degrees of freedom per molecule that only hydrocarbon chain
conformational disorder can supply. Therefore, even though other types
of order/disorder may play minor roles in the main transition, the basic
picture of this transition is from the states shown in Fig. 9.1(a) to states
similar to the ones shown in Fig. 9.1(b). A more detailed discussion of
this background information, including the use of experimental data to
perform simple thermodynamic tests of the model, has been given by
Nagle (1980).

The statistical-mechanical challenge is then to find tractable models
that allow conformational order/disorder in chains that interact strongly
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with each other and that have a strongly anisotropic boundary condition
imposed upon them by the water/head interface. The simple K model
provides such a model through a 1-1 isomorphism that is illustrated in
Fig. 9.2. The lattice for the chain links is the dual to the brick lattice
and is topologically equivalent to the triangular (i.e. hexagonal) lattice.
The isomorphism consists of two parts. The first part is between vertical
dimers and overlying vertical chain links. The second part is between
horizontal dimers and slanted chain links. The vertical chain links therefore
carry an energy of 0 and the slanted chain links carry an energy of ¢. It
is easily verified that the conservation condition on the number of
horizontal dimers in each row guarantees that each chain proceeds, albeit
in an irregular fashion, vertically through the lattice and that the chain
ends may occur only at the top and bottom of the lattice.

The chain-melting model derived from the K model has some major
desirable features. The first such feature is that each individual chain has
the capability of having one trans state and two gauche states for each
link, just as for actual hydrocarbon chains. However, these possibilities
are stringently proscribed by the states of neighbouring chains. Indeed,
no two chains can occupy the same lattice site. This is the second desirable
feature of the chain model because it includes the excluded-volume
interaction between CH; groups completely rigorously. The third desirable
feature is that anisotropy is built into the model from the start, so this
is clearly a model for anisotropic chain melting in membranes rather than
a model for isotropic chain melting appropriate for bulk polymers or
alkanes. Although the anisotropy is a little stronger in the model than in

Fig. 9.2 Isomorphism between a state of dimers in the K model on the brick
lattice indicated by light dashed lines and a state of anisotropic chains indicated
by solid lines on a triangular lattice, with lattice sites shown as large filled circles.
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membranes where chains are allowed to reverse their progress along the
vertical direction, such reversals would occur rarely.

Not surprisingly, such a simple model also has some undesirable
features, as was pointed out when the model was introduced (Nagle,
1973a). Although membranes are thought of as two-dimensional structures
for many purposes. and this chain model is clearly a 2-d model,
nevertheless, one of the dimensions is not the same. In this chain-melting
model the chains are infinitely long along one direction and can only
move laterally along one dimension. In contrast, the chains in membranes
can move laterally in two dimensions. Even though the chains in
membranes are not infinitely long, there are sufficiently many independent
units (conformational degrees of freedom) along each chain that it is best
to think of the main transition being essentially a 3-d transition. Indeed,
this was the motivation for studying the 3-d dimer model discussed in
Section 8.1 Nevertheless, one still expects a K-type transition for a 3-d
model, and there are unlikely to be any new insights gained in comparison
with those from the 2-d chain model. The advantage of the 2-d chain
model is, of course, the tractability of the mathematics.

A major undesirable feature in the chain model presented in Fig. 9.2
is that every lattice site of the model is occupied by a CH, group, so that
there is no possibility for the volume of the system to expand. Experiments
show, however, that the system does expand in volume. Furthermore,
the energy required to do work against the cohesive van der Waals
attractive interaction between chains is a substantial fraction (ca. 60%)
of the total enthalpy of transition (Nagle, 1980). This suggests that there
are four principal features that should be included in a chain-melting
model for lipid bilayers:

(i) conformational order/disorder:

(ii) excluded-volume interaction;

(iii) anisotropy;

(iv) volume expansions and cohesive interactions.

Except for the anisotropy, similar conclusions have also been drawn for
polymer melting transitions (Nagle and Goldstein, 1985).

The basic model in Fig. 9.2 can be modified to accommodate lattice
vacancies in the chain model. This is accomplished using the SQK dimer
model in Fig. 2.4. The isomorphism to an anisotropic chain model with

tThe 3-d model in Section 8 would have an isomeric ratio of 4 gauche/l trans, but a
different 3-d model that preserves the 2 gauche/l trans isomeric ratio has been discussed
by Bhattacharjee er al. (1983) with similar results.
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Fig. 9.3 Isomorphism between a state of dimers in the SQK model and a state
of anisotropic chains with two vacancies.

some lattice sites vacant is shown in Fig. 9.3. In addition to the two-part
isomorphism between the K model and the simple chain model in Fig. 9.2,
there is a third part to the isomorphism: whenever a dimer overlies a
lattice site of the triangular lattice, no chain passes through that lattice
site.

Those vertical bonds on the rectangular lattice for the SQK dimer
model that pass through a triangular lattice site are just those that carry
an energy 8 when occupied by a dimer. Therefore the density of those
dimers that correspond to vacancies in the chain model is regulated by
8. In practice, 8 is varied so as to vary the chain density o, and the free
energy is computed as a function of ¢. The cohesive energy is then
introduced into the model in a g-dependent form as

Ecohcsivc = avdwo_h . (34)

This form for the cohesive interactions is basically classical in that local
fluctuations are ignored. This is a compromise with the rigour of the
statistical mechanics to this point, one that is dictated by the poor
prospects for performing detailed r~® interaction calculations rigorously.
It may be noted. however, in view of the fact that classical or mean-field
calculations are best for very-long-range potentials, that the rigour is
placed on the proper part of the model, namely the nearest-neighbour
excluded-volume part, and the long-range van der Waals interactions are
the ones best approximated classically. The best value of the exponent b
is not altogether clear, with various arguments yielding values in the
range 1-2.5% (Nagle, 1973a); the results are not highly sensitive to values

tCotter (1977) has pointed out that b = 1 is the only value strictly consistent with mean-
field theory.
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of b in this range. The overall strength of the cohesive interactions dyaw
is known experimentally to some precision for 3-d systems. For each
temperature the thermodynamically stable state is determined by finding
the value of ¢ for which the free energy per chain link is lowest.

The results of the calculations are rather encouraging. By allowing for
volume expansion against cohesive attractive forces, the transition becomes
first-order. In the first calculations the value of a.gw Was taken to yield
the heat of sublimation of 3-d hydrocarbon chain systems, which resulted
in transitions that were too small. This choice, however, is inappropriate
for a 2-d model, for which each chain is surrounded by only two other
chains rather than six as in the 3-d system. Reducing a4y by a factor of
3 gives results for the enthalpy of transition, the volume change, the
change in surface density of the lipids (surface area per lipid) and the
transition temperature that are in reasonable (ca. +25%) agreement with
experiment (Nagle, 1986).

At this point the reader may have the impression that, while the
preceding development is certainly an application of dimer models, the
K-type transition has disappeared from the picture. In fact, the effects
of the K-type transition are still felt above the first-order transition in
the form of elevated fluctuations that may be responsible for the enhanced
permeability of lipid bilayers above the transition temperature Ty, (Nagle
and Scott, 1978). In Section 10 we shall see that the K-type transition
has just moved into a different part of the phase diagram.

There have been many theoretical papers dealing with the main
transition in lipid bilayers—far too many to review here. Many of the
earlier papers were reviewed by Nagle (1980). Subsequent papers of
particular interest from the point of view of this chapter include that of
O'Leary (1981). in which the chain-melting lattice model is combined
with a lattice decoration scheme to allow the inclusion of anaesthetics.
and the papers of Izuyama and Akutsu (1982a.b) reviewed in Section 8.

10 Order parameter, anisotropic field, and application to
monolayers .

Up to this point in this chapter the focus on thermodynamic properties
has been on the specific heat or the energy or the free energy. It is
customary, when discussing spin-type models or vertex models, to give
equal attention to the order parameter, such as the spontaneous
magnetization, and to the conjugate ordering field, such as the magnetic
field. The reason why equal attention has not been paid to similar
quantities for the dimer models with K-type transitions is simply that it
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is far from apparent what the related quantities are for these models.
The obvious attempt to find an order parameter for the low-temperature
phase of the K model would be to consider the density of vertical dimers,
perhaps with a constant such as 1 subtracted. Any quantity involving
densities of dimers, however, while being non-zero in the ordered low-
temperature phase, where the order parameter ought to be non-zero, is
also non-zero for all but a few temperatures above Ty, where a proper
Landau order parameter should be identically zero. Similarly, the obvious
attempt to include an ordering field is to favour vertical dimers versus
horizontal dimers by an additional energy &, but this just changes the
single energy parameter from € to £ + 4.

In the field of physisorption to be discussed in more detail in Section
11, this issue has been dealt with by focusing on the high-temperature
phase and descrlbmg the density of domain walls as vanishing near T
as 13, where B = 3. This choice of notation for the critical exponent
suggests that the dens:ty of domain walls is a kind of order (or disorder)
parameter. However, since the specific heat is just proportional to the
derivative of the density of domain walls, B is trivially related to the
specific-heat exponent a by B = 1-a, and so this does not add a second
pair of conjugate variables to the model. The use of the bar over B does
emphasize the main point of the preceding paragraph, namely that the
K-type phase transition is unusual when compared with spin- or vertex-
type transitions.

A different perspective regarding a second pair of conjugate thermo-
dynamic variables has been obtained in the course of applying the models
in Section 9 to monolayers of lipids or general surfactants. Since those
models involve only one layer of chains rather. than the two layers that
exist in bilayers, they should be at least as good for monolayers as for
bilayers.t A most important advantage of doing monolayer experiments
in the laboratory is that a very natural pair of thermodynamic variables
is available, namely the surface area per molecule A and the lateral
surface pressure 1. Indeed, the most popular experimental way to induce
the main phase transition in monolayers is to vary w isothermally.}

+ Of course, just as for bilayers, the models would not be expected to yield all the transitions
in monolayers, such as the 2-d liquid-to-vapour transition or the 2-d solid transitions that
seem 1o occur in monolayers at the densest coverages.

 The experimental literature is especially confusing regarding the determination of the
thermodynamic order of the phase transition observed by m-A isotherms, with many of
the results not having flat portions consisting of A changing at constant & as demanded by
a first-order transition. It has been concluded by one of the authors (Nagle, 1986) that the
monolayer transition is basically standard first-order. Since then, especially clean isotherms
that show flat portions have been generated for DPPC and pentadecanoic acid by Hifeda
and Rayfield (Hifeda, 1988) so the issue will be considered resolved in this chapter.
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Although the main transition may also be induced in bilayers by increasing
the isotropic pressure P isothermally, the size of the transition varies little
when this is done at different temperatures. In contrast, the size of the
isothermal discontinuity in A in monolayers decreases substantially as T
is increased, suggesting the approach to a critical point. Unfortunately,
such critical points, if they exist, would occur at values of & too large
for mechanical stability of the monolayers studied. Nevertheless, the
experiments are suggestive that w and A are the variables that play the
role of ordering field and order parameter, and this view is supported by
the calculations to which we now turn.

Since the methods and the results are qualitatively the same for the
simpler chain model corresponding to the basic K model as for the more
realistic chain model corresponding to the SQK model, let us consider it
for simplicity. The area per chain A, which is a linear distance along the
horizontal direction in Fig. 9.2, is proportional to (2—g,)~", where g, is
the density of horizontal dimers, which can vary from 0 to 1. Given T
and #, the thermodynamic value of A is determined by minimizing the
free energy per chain link given by

£=0— TS+ aA (35)

with respect to A. This calculation is possible because the entropy §
depends only upon the density of horizontal dimers. That is to say, the
entropy is the same for two different states with different values of x
and T, provided that both states have the same value of g, and therefore
of A. This is a special property of systems whose interactions are
exclusively the all-or-nothing excluded-volume interaction. Therefore the
exact calculation of the usual free energy with 1 = 0,

f=—kTInZ=9.- TS, (36)

enables one to calculate § for a given value of T. The exact calculation
also yields g,. By systematically varying T in (36), the entropy § is
obtained as a function of g,. These values of S(o,) are then used in (35),
where, of course, T is not the same as in (36) and = is not zero. Further
details of the calculation are provided in Nagle (1975a,b).

The results of the calculation are shown schematically in Fig. 10.1. In
this figure steeply rising isotherms are drawn for A4 < 1. In fact, the
model does not allow chains to be packed more closely together than
A = 1, so, strictly speaking, these isotherms should all be vertical and
lie on top of one another. Since this is visually difficult, and since it is
due only to a minor omission in the model (namely lattice compressibility),
artistic licence has been employed in Fig. 10.1 for A < 1. For T > Ty
the isotherms in Fig. 10.1 are monotonically decreasing and the only
transition is a weak second-order one at A = 1. As T decreases toward
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Fig. 10.1 The 7-A phase diagram for the chain-melting models of Section 9. The
dashed lines show three isotherms for T, > T, Tx and T;, < Tk. The boundary
of the two-phase region is shown by bold solid lines ending in a critical point
indicated by an open circle. The isotherms in the ordered phase (A < 1) have
been drawn with finite slope instead of infinite slope for visual clarity and to
accommodate non-zero lattice compressibility not included in the model.

Ty, the slope of the isotherms approaches zero at A = 1. For T below
T the slope of each isotherm becomes zero for a value of A, >1and
is negative for I < A < A,,. This corresponds to a typical van der Waals
loop, except that the loop has a discontinuous derivative at A = 1, and
there is a region in the m-A plane where each putative homogeneous
thermodynamic state has a higher value of g than the heterogeneous state
consisting of a mixture of states with the same value of  and the values
of A=1and A = Ap > A,,. The values A = 1 and Ag, of course, mark
the boundaries of the two-phase region depicted in Fig. 10.1.

In the calculations described in Section 9, 7 was implicitly set equal to
zero, so only a one-dimensional slice of the phase’diagram in Fig. 10.1
was obtained. For the chain model with no vacancies corresponding to
the simple K model this slice encountered the K-type transition at Ty
because my is 0. For the chain model with vacancies corresponding to
the SQK model the two-phase region essentially slides up the = axis with
fairly minor shape changes, so m¢ > 0, and the 7 = 0 slice yields a first-
order transition. However, the model still has a K-type transition, which
is a special critical point in the extended phase diagram in Fig. 10.1.
Furthermore, the critical fluctuations that become infinite as the critical
point at Ty and my is approached are still significant as the first-order
transition is approached at values of m near to but not equal to wg. .




R

2 Dimer modules on anisotropic lattices 289

The phase diagram in Fig. 10.1 makes the K model look a little more
normal in so far as there is a two-phase region that ends at some kind
of critical point and there is a pair of conjugate thermodynamic variables,
A, in addition to S-T. The critical point is, however, still abnormal.
If one supposes that the discontinuity in the order parameter is proportional
to the discontinuous change AA then the critical exponent B, defined by
AA ~ F equals 1. With this identification, the other critical
exponents become y = 1 = y', § = 2 and ¢ = a’ = 0 (finite) {(Nagle,
1975a). These exponents obey the thermodynamic inequalities, such as
a' + 2B+ y' = 2 (Rushbrooke, 1963), but not the scaling identities.

Technically, the critical point in Fig. 10.1 is reminiscent of a tricritical
point (Griffiths, 1970) because it is the point in the m-T plane where a
first-order transition changes to a continuous transition. It is, however,
considerably different from the classical tricritical points found in spin-
type systems, for two reasons. First, the continuous transition exhibits
only a weak discontinuity in the lateral compressibility —A4~'(5A4/8w),
instead of a strong divergence. Secondly, the critical exponents are
considerably different from the usual tricritical €xponents. Also, to exhibit
a typical tricritical point with three critical lines meeting at it would
require yet another pair of conjugate thermodynamic variables. Perhaps,
with such an additional pair of variables, it would be possible to resolve
the two aforementioned differences by redefining the order parameter
and the ordering field.+

At this time it seems that the phase diagrams for models with K-type
transitions are quite different from the conventional phase diagram
obtained for simple magnetic or fluid systems. Nevertheless, the identifi-
cation of the m-A variables at least yields a comparable kind of phase
diagram. Most importantly, it allows an application of the models to
monolayer systems and gives deeper insight into the bilayer phase
transition.

11 Application to 2 x 1 commensurate-incommensurate
transitions

A number of new kinds of phases and phase transitions have emerged
from the field of physiadsorption of simple atoms to crystalline surfaces.

t1t should be noted that a considerably different way to define an ordering field for the
high-temperature phase has been advanced by Huse and Fisher (1984). This definition
requires distinguishing alternating A- and B-type domains and the field favours one type
over the other. Unfortunately, it has not so far been possible to implement this field in
exact dimer calculation. Using a phenomenological theory, Huse and Fisher calculate a
susceptibility exponent y = §
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Fig. 11.1 Sketch of a 2 x I incommensurate phase. Each adsorbed atom is
represented as a large open circle. Each site of minimum potential energy on the

crystalline substrate is represented as a small dot. The state shown has two
domain walls indicated by dashed lines.
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The particular kind of phase discussed here is characterized as a striped
incommensurate phase. An example is sketched in Fig. 11.1 for a substrate
that is spatially anisotropic. The underlying crystalline substrate is
supposed to consist of sites of potential energy minima for the adsorbed
atoms. If the y spacing of the substrate is nicely commensurate with the
energetically preferred spacing of nearest-neighbour adsorbate atoms then
the adsorbed atoms will tend to line up in vertical rows. However, if the
potential minima in the horizontal direction are spaced too close together
for nearest-neighbour occupancy of the adsorbate atoms then one or
more sites on the substrate will be vacant. In the example in Fig. 11.1 it
is supposed that there is also an attractive force that favours occupancy
of alternate sites in the horizontal direction. Furthermore, the mean
coverage of the surface is affected by the vapour pressure/chemical
potential of the adsorbate. In the example in Fig. 11.1 it is supposed that
the vapour pressure is too low for coverage of half the sites of the
substrate and that the preferred defects consist of occasional larger spacing
of atoms in the horizontal direction. Going from row to row, these larger
spacings will tend to occur at the same value of x so as to minimize the
interaction energy in the vertical direction between adsorbate atoms on
adjacent rows. These larger spacings therefore form domain walls, which
are indicated in Fig. 11.1 by dashed lines. Nevertheless. entropy demands
that there be some wandering in the x direction of the domain walls, as
illustrated by the wall to the right in Fig. 11.1. The domains on either
side of each wall are distinguished by the adsorbate atoms sitting on one
of two (or p in general) different sublattices of minimum substrate
potential. In the terminology used in this field the entire state shown in
Fig. 11.1, including both types of domains and the domain walls, is a
single p X 1 incommensurate phase (with p = 2) and not a mixture of




|

2 Dimer modules on anisotropic lattices 291

coexisting crystalline phases, as the term “domain wall” might suggest.
As the surface coverage increases, the concentration of domain walls
decreases and a transition occurs into a commensurate phase in which all
X spacings equal the smallest ones shown in Fig. 11.1 and all atoms sit
on just one of the two sublattices. For more details and reviews of the
experimental systems the reader may consult more extensive reviews
(Fisher, 1984, 1986: den Nijs, 1988).

Figure 11.2 shows how the 2 x | state in Fig. 11.1 corresponds to the
K model. A brick lattice is superimposed upon the rectangular lattice of
Fig. 11.1. Regions of vertical dimers in Fig. 11.2 correspond to regions
in which the adsorbed atoms are regularly spaced in the 2 x 1 pattern.
Strings of horizontal dimers in Fig. 11.2 correspond to the domain walls
in Fig. 11.1. One notices, however, that the domain walls in Fig. 11.2,
indicated by light dashed lines, are not drawn identically with the ones
in Fig. 11.1. This emphasizes that the correspondence between the K
model and the most physical adsorbed 2 x I model is not one-to-one.
In particular, each domain wall in the K model must wander to the right
or the left upon proceeding from row to row, whereas domain walls in
the most physical 2 x 1 model may proceed straight up or may, with an
extra energy, wander to either the left or the right as they proceed from
row to row. Therefore, while every state of the K model corresponds to
a state of the adsorbed 2 x 1 model shown in Fig. 11.1, there are

additional states in the physical model and the states have different
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Fig. 11.2 Correspondence between the 2 x | adsorbed atom model in Fig. 11.1
and the K model. The underlying brick lattice for the K model is shown with
solid lines, and the dimers are shown with heavy dashed lines. The two domain
walls are indicated by light dashed fines.
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In this paragraph we argue that the differences emphasized in the
preceding paragraph between the K model and the physical 2 X 1 model
should be inconsequential for phase-transition behaviour because they
belong to the same universality class. Both models have the three
important properties that the walls

(i) cannot terminate,
(ii)) cannot cross,
(iii) can wander in the x direction.

The details of the wandering, that is (a) the number of directions for
wall wandering at each level and (b) the energy of the different directions,
are local properties much like the local coordination number and the
local interaction strengths in spin models. Such details would not be
expected to affect the nature of long-range correlations or the universality
class of transitions.

As the surface coverage increases with increasing chemical potential of
the adsorbate, the density of domain walls decreases and vanishes at
some chemical potential uy as (ux—u)?, where B= % is the now-familiar
critical exponent of the K-type transition. This result supports the analysis
of Pokrovsky and Talapov (1979) and many others (den Nijs, 1988) for
the critical behaviour of striped commensurate-incommensurate phase
transitions.

There are three additional features that may appear, individually or in
combination, in striped incommensurate 2 X 1 phases. These features
are shown in Fig. 11.3. The first feature is a second type of domain wall
in which nearest-neighbour sites in the x direction are occupied. It is
common to call this a heavy wall, in contrast with the light walls portrayed
in Figs. 11.1 and 11.2. The second feature is that heavy and light walls
may meet and annihilate or be created at a dislocation. The third feature
is that like walls, such as two light walls, may also be annihilated or
created at a dislocation that is more costly in energy.

Combinations of these three additional features are present in some of
the exactly solved dimer models presented earlier in this chapter. The
4-8/2/1 model has two kinds of domain walls, each of which may annihilate
with one of the other type, but not with one of the same type. The
domain-wall picture of the 4-8/2/1 model can be seen in Fig. 3.1. Figure
3.1 does not indicate the correspondence to an adsorbed-atom model, so
it is not obvious that the two kinds of walls there are heavy and light;
this becomes obvious in Fig. 11.4, which will be discussed in the next
paragraph in connection with the 4-8s/2/1 model. As was discussed in
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Fig. 11.3 Three possible additional features of striped phases. On the far right is
shown a heavy domain wall. This heavy domain wall annihilates with a light
domain wall at the upper right. At the upper left is shown annihilation of two
light domain walls.

.

Section 5, the 4-8/2/1 model has two phase transitions. The lower one is
a K-type transition into a striped incommensurate phase with a density
of heavy walls that is different from the density of light walls. The upper
transition is an inverted K-type transition into a disordered phase whose
correlation functions are still not well characterized. It is possible that
this high-temperature phase is a commensurate disordered phase of the
sort described by Kardar and Shankar (1985) using the free-fermion

PENINFININC

Fig. 11.4 Correspondence between the 4-8s/2/1 dimer model and an adsorbed-
atom model with heavy and light domain walls and with dislocations of two types.
Dimers not in the ground state are indicated by their activities w, x or z. Domain
walls are indicated by light dashed lines. Two light walls annihilate at A, and a
light wall and a heavy wall are created at B. Adsorbed atoms are indicated by
large open circles centred on the substrate lattice indicated by small dots.
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method, which, however, only yields an approximation to their model.

The 4-8s/2/1 model has all the features of the 4-8/2/1 model, and
additionally it has the feature that like walls can annihilate as shown at
location A on the left-hand side of Fig. 11.4. Like the 4-8/2/1 model, the
4-8s/2/1 model has two transitions, but both transitions are O-type rather
than K-type, which shows the critical importance of like-wall dislocations
on the universality class of transitions in 2 X 1 striped systems. In the
limit when one of the two types of walls is prohibited (w — = in Fig.
11.4) the 4-8s/2/1 model reduces to the 3-12/1 model. In this case like-
wall annihilation is still allowed, but there is only one O-type transition
(Bhattacharjee, 1984).

In the field of physisorption multicriticality and crossover behaviour
are very important. In the conventional picture in this field relaxation of
the domain wall conservation condition by allowing like-wall dislocations
is relevant in changing the transition behaviour of px1 models from
K-type to O-type if and only if p = 1 or 2 with crossover exponent ¢ =
(6-p?)/4 (Huse and Fisher, 1984). The exact calculations for the 3-12/1
and the 4-85/2/1 models show that like-wall dislocations are indeed
relevant. Furthermore, the value of ¢ = 1/2 calculated for the 3-12/1
model by Bhattacharjee (1984) strongly suggests that the closely related
set of models consisting of the K, 3-12/1, 4-8/2/1 and 4-8s/2/1 models
should be viewed as p = 2 models as has been implied by Figures 11.2
and 11.4. In this picture the K-type transition becomes a multicritical
point at the end of a line of O-type transitions in a phase diagram that
includes the like-wall dislocation energy as a parameter. On the other
hand, the 4-8/2/1 model exhibits an example where an O-type transition
is a multicritical point which occurs at the intersection of a K-type
transition and an inverted K-type transition (Nagle and Yokoi; 1987) with
¢ =1, so it seems inadvisable to make overgeneralizations regarding
which kind of transition behaviour should be the special multicritical
point and which should be the more generally obtained one.

Except for the result mentioned at the end of the preceding paragraph,
each of the preceding results was anticipated by free-fermion approxi-
mations (reviewed by den Nijs, 1988) or by random-walk arguments
(reviewed by Fisher, 1984, 1986), both of which have wider applicability
than the dimer models that have been presented. The value of the K-
type models in this context is that they are precisely defined classical
statistical-mechanical models that can be solved exactly and that are in
the same universality class as the more-physical models for the phenomena.
The fact that the exact calculations yield the same results as the other
methods provides a firm underpinning for more-extensive theories of
striped incommensurate systems and their phase transitions.
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12 Concluding remarks

Dyson (1988) has recently emphasized the tension between the science
of unification, which he associates with Athens, and the science of the
particular, which he associates with Manchester. From this perspective
this chapter is more Mancunian than Athenian. This accords with the
belief that complex cooperative phenomena require careful attention to
detail to avoid the overgeneralization that accompanied the classical era
of mean-field theories. Accordingly, we have focused upon a subset of
exactly solvable two-dimensional models that embody the property of
anisotropy, upon expanding that subset by considering many new models
in Sections 2 and S5, and’ upon emphasizing the differences between K-
type and O-type transitions and the features of models that produce the
two types.

We have not, however, been impervious to the appeal of Athenian
unification. In Section 10 an attempt was reviewed to enlarge the phase
diagram of the K model so as to make it look more similar to the phase
diagram of magnets and fluids. Also, in Section 8 the extension of these
models to three dimensions was reviewed, and in Section 7 finite-size
scaling theory was shown to be correct when suitably extended. Most
important, in our opinion, is the application of these dimer models to
widely disparate phenomena. These applications relate the main lipid-
bilayer phase transition, the monolayer chain-melting transition, and
striped commensurate-incommensurate transitions to each other, and so
a higher unity of phenomena is obtained.

Finally, we should like to emphasize our appreciation of exact statistical-
mechanical methods for cooperative phenomena. Such methods, if carried
out carefully, eliminate any uncertainty in the calculations and thereby
allow more definitive conclusions. If the Pfaffian-dimer technique
employed in this chapter is representative then such methods have long
haif-lives and far-reaching applications. However, to- return to _the
Mancunian theme, it is important that exact solutions not be applied
indiscriminately to phenomena. It is unreasonable to try to describe
everything in the universe in terms of the Ising model. We hope that the
reader is convinced that phenomena such as the main phase transition in
lipid bilayers or the striped commensurate-incommensurate transitions in
physisorbed systems are better described by models in which anisotropy
plays a fundamental role. as it does in the dimer models discussed in this
chapter.
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