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Abstract: The force induced unzipping transition of a double stranded DNA is considered from a purely thermodynamic

point of view. This analysis provides us with a set of relations that can be used to test microscopic theories and

experiments. The thermodynamic approach is based on the hypothesis of impenetrability of the force in the zipped state.

The melting and the unzipping transitions are considered in the same framework and compared with the existing statistical

model results. The analysis is then extended to a possible continuous unzipping transition.
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1. Introduction

To read the genetic information encoded in the base

sequence, hidden in the helical structure of a DNA, it is

necessary to break the hydrogen bonds of the base pairs [1].

The mechanism for doing so is the unzipping by a force

[2, 3] of a double stranded DNA (dsDNA), or a thermal

melting [4, 5]. In the melting transition, the hydrogen

bonds of base pairing are broken by thermal energy, while

in the unzipping transition, it is by a pulling force at one

end of the DNA. In both cases, the strands remain intact.

While there is a long history of experimental studies of

the melting transition [4, 5], the investigations of the

unzipping transition or responses to external forces are of

more recent origin [6]. Pioneering calorimetry studies have

been done over a large range of temperature (T) from 2 to

400 K under different solution conditions [7]. So far as

force is concerned, isotherms of DNA, like the response

under a force have been obtained in many different types of

single molecule experiments [8–10]. However, calorimetry

in presence of a force is still not available.

It is known from various theoretical models that, for

both melting and unzipping, the nature of the transition

depends on the aspects of the DNA captured in a model

[2, 8, 11–20]. Any natural DNA, because of its large

length, is expected to show the characteristic features of the

transitions, but the situation is not so clear on the experi-

mental front. Since experiments are restricted to very short

chains, it is not clear if the predicted transition varieties are

at all seen with variations in the base sequence, as for

example, across species, or there is actually only one type.

We even lack a clear experimental answer about the order

of the melting transition.

Cooperativity in melting comes from the entropy (S) of

the DNA through the correlations introduced by the strands

as long polymers [21, 22]. The unzipping transition is due

to the competition between the pairing of the strands and

the stretching of the unbound strands [2, 11–13]. The work

done in stretching the free polymers provides the cost of

unpairing the strands. This cost at zero temperature is only

the pairing energy, but, because of entropy, the critical

unzipping force vanishes as one approaches the melting

temperature. The thermodynamic conjugate pair for the

transition is g, the unzipping force, and x, the separation of

the two strands at the point of application of force (see Fig. 1).

It transpires that gross quantities like the entropy, the

specific heat, and the response function for force, are the

relevant thermodynamic quantities to study, especially as

the transition point is approached. The advantage in the

thermodynamic approach is that the results obtained are

valid under quite general conditions without getting into

the microscopic details of DNA.
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Besides the conjugate pairs (T ; S), and ðg; xÞ, there could

be other types of external forces, e.g., isotropic hydrostatic

or osmotic pressure affecting the volume of the polymer,

and a stretching force (f) that distorts and elongates the

chain. Although there are evidences of hydrostatic or

osmotic pressure affecting protein-DNA interaction, there

is only a very weak effect on the melting of DNA. In

contrast, a stretching force may lead to an ‘‘overstretching’’

transition where the length of the DNA increases by a

factor of 1.7 [9, 18, 23–25]. Whether it is an equilibrium

(meaning thermodynamic) transition is still debated.

The unzipping transition has been first established in a

continuum model in [2, 3]. It was also proved by studying

the dynamics of pulling in [26] and by several exactly

solvable models [11, 12, 14]. Various aspects of the

unzipping transition, and in that context the corresponding

melting transition, have been studied. These include the

effects of randomness in interaction, or force [27–30],

semiflexibility [31], and finite length [32, 33]. Many details

of the transition have also been studied, like various dis-

tributions [34], temperature dependence [35], different

types of noise [36, 37], role of ensembles [38]. The

dependence of melting on the nature of the space has also

been studied via the choice of different fractal lattices

[39–43], showing the possible variations in the melting

transition. The mapping of the DNA melting problem to a

quantum problem reveal the connection between the bub-

ble entropy of DNA and the quantum transition [44].

Biological applications have also been considered, espe-

cially the motion of the interface or the Y-fork [45–47].

Our purpose in this paper is to consider the melting and

the unzipping transitions from a purely thermodynamic

point of view, without any consideration of any micro-

scopic models. This way we derive the relevant thermo-

dynamic relations applicable to these transitions.

Obviously such predictions are independent of the micro-

scopic details. We start with the definitions and standard

relations in terms of the DNA variables in Sect. 2. The case

of a first order unzipping transition is discussed in Sect. 3.

Here we consider the case of no penetration of force in the

bound state. In other words the bound state remains the

same till the critical unzipping force is reached. The ther-

modynamic predictions are then compared, in Sect. 4, with

the known exact solutions in certain class of models.

Although all theoretical studies based on simple coarse-

grained models predict a first-order unzipping transition,

there is a proposal that local penetration of forces may lead

to a continuous transition [48]. Thermodynamics does not

rule out any continuous unzipping transition. A thermo-

dynamic analysis of such a case of a continuous transition

is discussed in Sect. 5. In this case we assume that for a

range of force gc1� g� gc2, there is a change in the DNA

bound state by the external force. A few details can be

found in the Appendices. The additions of other forces like

hydrostatic pressure and a stretching force are discussed in

Appendix 1. The relevant Maxwell relations for DNA

unzipping are listed in Appendix 2. The specific heat

relation for a continuous transition can be found in

Appendix 3.

2. Thermodynamic description

Our main concern is in the unzipping transition and

therefore we restrict ourselves to the g and x pair. In

absence of any other information, we may allow both the

unzipping and the melting transition to be either first order

or continuous. Both cases are discussed here.

What makes the problem different from others is the fact

that the unzipping force does not affect the bound state for

small forces. In fact only other system that shows similar

thermodynamic relations is a superconductor with the

Meissner phase not allowing the external magnetic field to

penetrate [49]. In that analogy, a parallel scenario for DNA

would be the case where the force penetrates for an inter-

mediate range of force, leading to a continuous transition

[48].

One may consider two mutually exclusive situations,

either g or x is fixed. These correspond to the two possible

ensembles in the statistical mechanical approach. The

fixed-force case described by the Helmholtz free energy

FðT ; xÞ and the fixed-distance ensemble, described by the

Gibbs free energy GðT ; gÞ. These are in addition to the

usual canonical (fixed-T) and micro-canonical (fixed-S)

ensembles. The free energies are given by

FðT ; xÞ ¼ U � T S; ð1aÞ

GðT; gÞ ¼ U � T S � g x ¼ F � g x; ð1bÞ

where U is the internal energy. Henceforth, we use

F;G;U; S to mean the corresponding quantities per

monomer or base pair. The differential form for G is

dG ¼ �S dT � x dg: ð2Þ

R

f

f

g

x

(a) Unzipping force (b) Stretching force

Fig. 1 Various external forces on a DNA. (a) Unzipping force where

the ends of the two strands are pulled in opposite directions.

(b) Stretching force where the two ends are pulled in the same

direction
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It is possible to extend the thermodynamic formulation to

include other external forces. Some details may be found in

Appendix 1.

By integrating Eq. (2) at constant temperature, one gets

the Gibbs free energy at a force g as

GðT; gÞ ¼ GðT ; 0Þ �
Zg

0

x dg: ð3Þ

This form is valid for equilibrium with x ¼ xðgÞ as the

equilibrium isotherm of a DNA and is used extensively in

this paper. The formula for work done in Eq. (3) is different

from the mechanical definition of work (
R

gdx). A

justification is as follows. In a nonequilibrium situation,

to change the force from zero to g, the work done on the

DNA is
R g

0
xdg for a trajectory. For example, an

instantaneous change in force would require a work w ¼
xg if the distance remains fixed at x. Then the histogram

transformation in statistical mechanics gives us the free

energy difference as [50]

GðT; gÞ � GðT ; 0Þ ¼ �kBT ln hexpð�bwÞi; ð4Þ

where b ¼ ðkBTÞ�1
, and the angular bracket indicates

averaging over all possible trajectories starting with the

equilibrium distribution at zero force. In this particular case

of instantaneous increase, the averaging is over all values

of x with the equilibrium probability distribution PT ;gðxÞ at

the initial force. For an infinitesimal increment dg, from g

to gþ dg, we may expand expð�bxdgÞ � 1� bðx dgÞ.
Therefore, for small dg, the equivalent of Eq. (4) is

DGðT ; gÞ ¼ �kBT ln 1� b
Z

dx ðx dgÞ PT ;gðxÞ
� �

¼ xðgÞ dg;

ð5Þ

where the average value of x is denoted by xðgÞ. On suc-

cessive integration, one recovers the thermodynamic for-

mula of Eq. (3) (with no angular bracket). Incidentally, the

mechanical work done in stretching or unzipping has been

used in other contexts too, as, e.g., to obtain and use the

hysteresis around the transition for thermodynamic free

energies [51] and associated dynamic transitions [52–54].

The notations we are using are as follows. The zero

force thermal melting temperature is denoted by Tc. The

unzipping transition by a force g at temperature T takes

place at a temperature dependent force g ¼ gcðTÞ so that

gcðTcÞ ¼ 0.

3. First order unzipping transition

For the unzipping transition, GðT ; gÞ is continuous across

the phase boundary. This implies

GzðT; gcÞ ¼ GuðT ; gcÞ; ð6Þ

where subscripts z and u indicate the zipped and the

unzipped phases. Equation (3) therefore allows us to write

GzðT; 0Þ � GuðT; 0Þ ¼
Zgc

0

ðxz � xuÞ dg: ð7Þ

Here GuðT; 0Þ is the free energy of the unzipped phase in

zero force if it had existed. One way of obtaining GuðT; 0Þ
is by extrapolation of the high force free-energy, assuming

that the extrapolation is thermodynamically admissible, or

from the free energy of a single stranded DNA.

It is known that for the first order unzipping transition,

as shown in Fig. 2(a), the force does not penetrate the

bound state for g\gcðTÞ. We take this as the starting

hypothesis in the thermodynamic analysis. Therefore,

effectively, xz ¼ 0, and

GzðT; gÞ ¼ GzðT ; 0Þ; ðg� gcÞ: ð8Þ

This equation is valid at g ¼ gc because of coexistence of

phases. At this point the force-dependent unzipped phase

has the same G as the zipped phase. In the linear response

regime, xu ¼ vT g where vT , the extensibility, may be taken

to be a constant (See Appendix 2 for definitions). Equation

(7) then simplifies to

GzðT; 0Þ ¼ GuðT ; 0Þ �
1

2
vT g2

c ; ð9Þ

where the last term is the work WðgcÞ. A more useful form

is obtained by combining Eqs. (3), (8) and (9), as

GzðT; gÞ ¼ GuðT ; gÞ þ
1

2
vT ðg2 � g2

cÞ; ð10Þ

in principle, valid for all g. This shows that for g\gc, the

zipped phase is more stable than the unzipped one and vice

versa.

gggc

(a) (b)
x x

gc1 c2 g

Fig. 2 Possible isotherms (constant T). (a) A first-order unzipping

transition at g ¼ gc. There is a jump in x. (b) Two continuous

transitions at g ¼ gc1 and g ¼ gc2. The force does not affect the DNA

for g\gc1 but penetrates and modifies the bound state continuously

from g [ gc1 to g\gc2. The unbound or stretched denatured phase

occurs for g [ gc2
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3.1. Entropy

The entropy difference, from Eq. (9), (see Appendix 2)

comes out to be

SzðT ; gcÞ � SuðT; gcÞ ¼ v gcðTÞ
ogcðTÞ

oT
ð11Þ

¼ xðgcÞ
ogcðTÞ

oT
; ð12Þ

where the second form, a more general one, follows by

noting that oWðgÞ=og ¼ x. For notational simplicity, we

omit the subscripts of v. The entropy difference is related

to the latent heat L ¼ TðSz � SuÞ at the transition. Except

for g ¼ 0, energy is required to unzip a DNA. In real sit-

uations this energy is supplied by nonthermal sources like

ATP etc.

The continuity of the Gibbs free energy at the unzipping

transition point in a fixed force (dGz ¼ dGu along the phase

boundary), gives the Clausius–Clapeyron equation as

ogc

oT
¼ Su � Sz

xu � xz

; ð13Þ

where all the quantities on the right hand side are on the

phase boundary. The impenetrability condition, xz ¼ 0

with the linear response relation xu ¼ vgc, yields the

entropy relation of Eq. (11).

The sign of the right hand side in Eq. (11), i.e., the slope

of the phase boundary, is not fixed a priori. This is

important for identification the state which is more ordered.

In a temperature driven transition, the entropy increases as

one crosses a phase transition line from the low to the high

temperature side. If the zipped phase is more ordered then

Sz\Su requiring ogc=oT\0.

3.2. Specific heat

The specific heat relation for g ¼ 0 follows from Eq. (11)

as

CzðTc; 0Þ � CuðTc; 0Þ ¼ T v
ogcðTÞ

oT

� �2

g¼0

; ð14Þ

where v is the extensibility of the unzipped chain at the

melting point T ¼ Tc. Equation (14) gives the discontinuity

in the specific heat expected at the melting point, provided

ogc=oT is finite. If the entropy change is finite, there is a

latent heat which contributes a d-function peak at the

transition point. Equation (14) is a special case of the

general formula valid for all g, viz.,

CzðT; gcÞ � CuðT ; gcÞ

¼ T v
ogc

oT

� �2

þ xðgcÞ
o2gc

oT2
þ ov

oT
gc

ogc

oT

" #
;

ð15Þ

with an extra latent heat contribution. The derivatives

appearing in Eq. (15) may conspire to make the RHS zero.

The specific heat curve has only a delta function at the

transition point superposed on a continuous specific heat

curve.

3.3. Phase boundary

The shape of the unzipping phase boundary near the zero

force melting point can be described asymptotically by

Fig. 3

gcðTÞ� jT � Tcjj; for gcðTÞ ! 0; T ! Tc: ð16Þ

Depending on the value of j, a few cases can be considered

as gcogc=oT � jT � Tcj2j�1
.

1. If j [ 1=2, then
ogcðTÞ

oT
remains finite. At the zero force

melting point, there is no change in entropy or no

latent heat. In this situation, the melting transition is

continuous.

2. If j ¼ 1=2, there is a latent heat and the melting

transition is first order.

3. Since infinite latent heat is not possible, there is a strict

lower bound: j� 1=2.

The shape of the phase boundary, as determined by the

exponent j, is linked to the order of the melting transition.

Away from melting, in general, the right hand side of

Eq. (11) is not zero, unless ogc=oT ¼ 0. The force induced

unzipping transition is necessarily first order. The extre-

mum of the phase boundary, as shown by Point C at

ðTm; gmÞ in Fig. 4, is a special case. In absence of any

nonanalyticity in the phase boundary, both phases have

same entropy but with a discontinuity in the specific heat as

per Eq. (15). Since both g and T are intensive variables,

every point in the T-g plane represents a unique phase of

the DNA, except on the transition line. Along a path ACB,

g g g

T
c

   T T
c

   T T
c

   T

(a) κ>1 (b) κ=1 (c) κ=1/2
Fig. 3 The unzipping phase

boundary near the melting point

for different values of j, the

shape exponent
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there is no real change in phase and no latent heat is

expected. There is however the possibility of occurrence of

the zipped phase at C. One may therefore measure either

Cu or Cz. If T is kept constant at Tm, specific heat will show

a discontinuity as we cross C in the phase diagram verti-

cally. This looks like a continuous transition.

When ogc=oT [ 0, the unzipped phase becomes more

ordered than the zipped phase. This counter-intuitive

behaviour is an example of a re-entrant phase transition. It

occurs because the unzipping force acts as stretching forces

on the two unbound chains, orienting them at low tem-

peratures in the direction of the force reducing the entropy,

while the flexibility of the zipped phase, because of the

impenetrability of the force, contributes to the entropy.

4. Comparison with exact results

There are several models for which exact solutions for the

unzipping transition are known. We compare the thermo-

dynamics results with a few such cases.

4.1. Continuum Gaussian models

The unzipping transition has been first proved in [2, 3] for

Gaussian polymers interacting with same monomer index as

in DNA. The transition line in ðd þ 1Þ-dimensions is given

by gcðTÞ� jT � Tcj1=ðd�2Þ
, i.e., j ¼ 1

d�2
for 2� d� 4. The

zero force melting is continuous but the unzipping transition

is first order. For d [ 4, the melting transition is first order

and there is a j ¼ 1=2 behaviour, as also found in the lattice

modes of [12] discussed below.

The model shows that the bound, zipped state does not

allow the force to penetrate and after the unzipping transition

the strands are stretched by the pulling force. ogc=oT\0.

A necklace model analysis shows that j is determined

by the size exponent of the polymer provided there is no

other length scale, i.e., j ¼ m, where m is the size exponent

[13, 16]. For a first order melting point, since all other

length scales remain finite the relevant length scale is the

size of the polymer. For Gaussian polymers m ¼ 1=2, giv-

ing j ¼ 1=2, as we saw above for d [ 4. For continuous

melting. the thermal correlation length is going to play an

important role, giving a different j.

4.2. Lattice models with bubbles: continuous melting

The unzipping transition problem can be solved exactly for

a class of lattice models involving directed polymers in

d þ 1 dimensions [11, 12]. For the model with bubbles,

there is a continuous melting transition in dimensions d\4

as for the continuum case.

1. d = 1

For the 1þ 1 dimensional model if the two strands are not

allowed to cross, the free energies are [11]

GzðT; gÞ ¼ kBT ln zzðTÞ; ð17aÞ

zzðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�b
p

� 1þ e�b; ð17bÞ

GuðT ; gÞ ¼ kBT ln zuðT ; gÞ; ð17cÞ

zuðT ; gÞ ¼ ½2þ 2 coshðbgÞ��1; ð17dÞ

where b ¼ ðkBTÞ�1
. We choose kB ¼ 1, and the base

pairing energy � ¼ 1. Here Gz is independent of g because

of the impenetration of the force. The melting transition

(g ¼ 0) at Tc ¼ ½lnð4=3Þ��1
is continuous with a finite

discontinuity of the specific heat.

The unzipping phase boundary is given by

gcðTÞ ¼ T cosh�1ðpðbÞ � 1Þ; pðbÞ ¼ ð2zzÞ�1; ð18Þ

obtained by equating the two free energies at the unzipping

transition, i.e., from GzðT ; gcÞ ¼ GuðT; gcÞ. Close to Tc

where zu ! 1=4, and gc ! 0. The shape is

gcðTÞ �
2e�1=Tcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�1=Tc

p
Tc

ðTc � TÞ; ð19Þ

i.e., j ¼ 1 , shown in Fig. 3.

The extensibility comes from the derivative of Gu as

v ¼ 1

2T
sech2ðg=2TÞ: ð20Þ

Linear response is expected in the small force limit, when

x ¼ g=ð2TÞ. At the transition

xc ¼ tanh
gc

2T

� �
: ð21Þ

The free energy near an unzipping point ðT ; gcÞ can be

written as

g

T

g m

Tm

A C B

Fig. 4 A maximum at C = ðTm; gmÞ in the T-g phase boundary. A

path ACB sees certain special features at C. A zipped phase at T ¼ Tm

can be unzipped by a force gm without any discontinuity in entropy
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GzðT; gÞ ¼ GuðT ; gÞ � T ln
zuðT ; gÞ
zzðTÞ

ð22Þ

¼ GuðT ; gÞ � T ln
zuðT ; gÞ
zuðT ; gcÞ

; ð23Þ

by the continuity of the free energy at the transition point.

Close to the melting point T ¼ Tc; gc is small. In this

region, for a small g, an expansion gives

GzðT; gÞ ¼ GuðT ; gÞ þ
1

2
vðTcÞðg2 � g2

cÞ; ð24Þ

consistent with Eq. (9) based on thermodynamic work.

For specific heat, the discontinuity at T ¼ Tc for g ¼
0 is just the specific heat of the bound state because the

unbound state at g ¼ 0 has zero specific heat. A dif-

ferentiation of Eq. (17a) shows the agreement with the

RHS of Eq. (14). [32] shows the behaviour of specific

heat for a force that shows reentrance. For a nonzero

force, the latent heat from Eq. (11) can be verified

directly. The phase diagram shows reentrance and an

extrema as in Fig. 4, recovering the features discussed

in the previous section. Figure 5(a)–5(d) show the

specific heat as we go through the peak C in the ver-

tical direction keeping T ¼ Tm and horizontally by

keeping g ¼ gm. The entropy is continuous. The specific

heat shows a discontinuity along the vertical direction.

Along the horizontal direction of the phase diagram, the

entropy is continuous but the specific heat has one

single point for the zipped phase. There is no identifi-

able critical region. The results are fully consistent with

our discussions in Sect. 2.

4.3. Y-model: first order melting

A model of DNA that does not allow any bubble is also

exactly solvable [11, 12]. The thermal melting corresponds

to an all or none type behaviour, all base pairs are either

formed or broken. In the bound state, the number of con-

figurations is 2N for N bonds, while it is 2N for each strand

in the unzipped state. The free energies are of the form of

Eqs. (17a) and (18), except

pðbÞ ¼ expðbÞ: ð25Þ

The all-or-none melting transition is first order with a latent

heat at kBTc ¼ 1= ln 2.

Near the melting at pðbÞ ¼ 2, the phase boundary

behaves as gcðTÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T
p

, matching with j ¼ 1=2

behaviour of Fig. 3 for a first order transition. Equation

(24) is valid with appropriate Tc and gc. Other relations like

specific heat, entropy and latent heat can be directly

verified.

4.4. Other special cases

[12] considers several exactly solvable models. Reentrance

is observed in all situations considered except for the case

of two strands with crossing in 1þ 1 dimensions. In this

case ogc=oT [ 0 for all T with Tc !1. Therefore, as in

Eq. (11), by increasing temperature under a force, it is

possible to get a double stranded bound state at high

temperatures from an unzipped state.

Another special situation is the 2þ 1 dimensional model

without crossing of chains. The phase boundary is

gcðTÞ� exp½�a=ðT � TcÞ� with ogc=oT ! 0 as T ! Tc. It

is possible to unzip for T close to but below Tc by an arbitrarily

small force. Even though this case does not correspond to the

power law form of Eq. (16), the thermodynamic relations can

still be verified including the reentrance behaviour and the

behaviour near the extrema of the phase boundary.

4.5. Summary of model comparison

As mentioned exact results are available for a large class of

models in various dimensions. In all these cases, we find
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Fig. 5 Specific heat for the d ¼ 1 exactly solvable model with no

crossing. The phase diagram is similar to Fig. 4 with Tm ¼
0:904642475::: and gm ¼ 1:358806498::: in the units chosen.

CðTm; gÞ (in a) and SðTm; gÞ (in b) vs g. In (a) there is a discontinuity

as we go through the peak of the phase boundary vertically by

changing g at T ¼ Tm. In (b), we see that the entropy is continuous at

the transition point. There is no latent heat. In (c) CðT ; gmÞ versus T

and in (d) SðT ; gmÞ versus T are shown for a fixed g ¼ gm, i.e., along

the horizontal line of Fig. 4. The zipped phase occurs only at one

point without any signature elsewhere. This contribution is shown by

a star. The entropy remains continuous and analytic throughout but

the specific heat has one extra discontinuous point at T ¼ Tm

P Sadhukhan and S M Bhattacharjee

Author's personal copy



that the general thermodynamic predictions based on

impenetrability of the force below the unzipping transition

are consistent with the extant results. This lends credence

to a general thermodynamic analysis of various thermo-

dynamic functions near the transition and phase boundary.

5. Continuous unzipping transition

Thermodynamics, by itself, does not exclude the possibility

of a continuous transition under force of the type shown in

Fig. 2(b). In this section we obtain the thermodynamic

relations for such a continuous transition. We here assume

that the force affects the bound state over a range

gc1� g� gc2, but leaves the bound state as it is for smaller

forces. In other words, a DNA in its bound state is resilient

to small forces but allows it to penetrate and alter its nature

over a range of forces.

Instead of a jump discontinuity in the isotherm, we

allow a continuous transition at a force gc1 where the DNA

goes from the bound to a phase different from the unzipped

phase. The intermediate phase is further assumed to

undergo a transition to the unzipped phase at gc2. In case,

gc2 !1, there is only one phase in the high force regime.

However, since single stranded DNA under a force is a

stable thermodynamic system, we expect gc2 to remain

finite. There is therefore a range of forces gc1\g\gc2 for

which the DNA is affected in a nontrivial way by the force.

Such a scenario was considered in [48]. The intermediate

state is called a mixed state.

Near the two transition points, we take the isotherm to

behave as

x � a1 ðg� gc1Þb; for g! gc1þ;
v g� a ðgc2 � gÞ; for g! gc2�;

(
ð26Þ

with b; a; a1 [ 0 (b is not to be confused with 1=kBT). The

unzipped phase for g [ gc2 is taken, for simplicity, to be in

the linear response regime, x ¼ vg. The exponent b, by

universality, is same along the transition line.

With the help of the formula for work at a constant

temperature from g to gc2, the Gibbs free energy, Eq. (7),

can be written as

GmðT; gÞ ¼ GmðT ; gc2Þ þ
1

2
vðg2

c2 � g2Þ

� 1

2
a ðgc2 � gÞ2;

ð27Þ

where the subscript m indicates the mixed or the intermediate

state. By continuity, GmðT ; gc2Þ ¼ GuðT ; gc2Þ, and therefore,

Gmðg; TÞ ¼ Guðg; TÞ �
1

2
a ðgc2 � gÞ2; ð28Þ

for g close to but smaller than gc2. This form not only

shows that the mixed state has a lower free energy than the

unzipped state, but also gives the specific heat behaviour at

gc2, as (see Eq. 42)

CmðT; gc2Þ � CuðT ; gc2Þ ¼ �Ta
ogc2

oT

� �2

: ð29Þ

The specific heat relation derived in the appendix is also

applicable for the z to m transition. In this case the zipped

phase has zero extensibility and therefore

CmðT; gc1Þ � CzðT; gc1Þ ¼ �T
ogc1

oT

� �2

a1bðg� gc1Þb�1;

ð30Þ

indicating the possibility of a diverging specific heat if

b\1.

6. Conclusions

In this paper, the thermodynamic description of the DNA

unzipping phase transition is discussed. Without consid-

ering any microscopic details, we show that the thermo-

dynamic relations in the fixed force ensemble have all the

important features of the phase transition. Here we con-

centrate only on the force induced unzipping by pulling

the two strands apart. A linear response has been used for

evaluating the work by force, but the analysis can be

carried out keeping the full form. Although a first order

phase transition is observed in various models, the pos-

sibility of a continuous transition havn0t got much atten-

tion. Thermodynamics does not discard this possibility

and hence we extend our study to the case of continuous

transition. The only information we use as an input to our

analysis is that the zipped phase does not allow the force

to penetrate below a certain critical force in the first order

phase transition. The behaviour of the change in entropy

and the specific heat go in accordance with the observed

features in some known models. Various cases of the

phase boundary line near the melting point are also ana-

lyzed. For the continuous transition there is an additional

region in the phase diagram, showing a possible mixed

phase, which allows the force to penetrate. We proceed

with the general forms of the isotherms. This phenome-

non of partial penetration of force looks very much like

type II superconductors. Even though the variables and

the microscopic origins are different in the two cases,

there is a striking similarity between the relations

obtained here for DNA and thermodynamic relations for

superconductors. Lastly, we restrict ourselves to the

unzipping force here but similar analysis can be done for

the other forces like stretching force and pressure. It

would be interesting to observe the effect of these forces

on such transitions.
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Appendix 1: Other external forces

As discussed in the Introduction, there could be other

forces like pressure and the stretching force. To include

these external forces, the Gibbs free energy of Eq. (1a)

needs two additional terms

GðT; g;P; f Þ ¼ U � T S � g x þ P V � f � R; ð31Þ

where V refers to the volume and R ¼ R1 þ R2 to the end

to end distances of the chains. In this notation x ¼ jR1 �
R2j with the subscript denoting the two chains. The con-

jugate variable is volume (V), but it is the volume of the

polymer with the surrounding distorted solvent layers. For

simplicity we have ignored the terms involving f and P,

and considered only the unzipping force g. The extended

form of the free energy shows that it is possible to have

cross-effects like the f and P dependence of x.

Different studies looked at the effect of hydrostatic pressure,

e.g., the stability of hairpins, B-DNA, the stalling of tran-

scription elongation complexes [55–60]. The melting temper-

ature Tc seems to depend on the hydrostatic pressure, P, only at

a very high P [55]. It is possible to measure the adiabatic

compressibility (constant entropy) of a DNA molecule by

measuring the velocity of ultrasonic waves [56]. A different

way of exerting a pressure is to use osmolytes like polyethylene

glycol (PEG) and other molecules that cannot penetrate the

DNA. There are reports of hydrostatic pressure reversing the

effect of osmotic pressure in protein-DNA interaction [59, 60].

There can be a stretching force (f ) that distorts the shape

and tries to elongate the chain. What one finds is a trans-

formation of a dsDNA to an ‘‘overstretched’’ state with its

length increasing by a factor of 1.7 [9, 18, 24, 25]. Whether it

is an thermodynamic (meaning equilibrium) transition is still

debated. The conjugate variable is the end-to-end distance

(R), if the end points are tied together. The conjugate vari-

able becomes the length of the polymer for the overstretching

transition. This is the usual force considered for a polymer

[21, 22], but coupling to unzipping seems to lead to the new

feature of overstretching. As a perturbation to an entropy-

dominated polymer configuration, the response to the

stretching force need not be linear, if the chain does not

behave as Gaussian, but the overstretching transition is

beyond this regime where the finite extensions of the bonds

need to be taken into account. There are evidences of

overstretching being coupled with unzipping making cross

terms important. The response functions needed for such

cross effects would be vi ¼ ox=ofi; vP ¼ ox=oP with other

appropriate variables kept constant.

Appendix 2: Maxwell relations

The differential relations of the free energy are of the

expected type

dU ¼ T dSþ g dx; ð32Þ

dF ¼ �S dT þ g dx; ð33Þ

In the canonical fixed-g case, the conjugate parameters and

the response functions are the first and second derivatives

respectively of the appropriate thermodynamic potential as

S ¼ �oG

oT

����
g

;
1

T
Cg ¼

oS

oT

����
g

¼ �o2G

oT2

����
g

; ð34aÞ

x ¼ �oG

og

����
T

vT ¼
ox

og

����
T

¼ �o2G

og2

����
T

; ð34bÞ

where Cg is the constant force heat capacity and vT is the

extensibility at constant temperature, the local slope of a g-

x isotherm. As usual, the positivity of Cg and vT , needed

for stability, are related to the convexity conditions satis-

fied by G.

The differential forms yield the Maxwell relations for

DNA as

ox

oT

����
g

¼ oS

og

����
T

; and
ox

oT

����
S

¼ oS

og

����
x

; ð34cÞ

oS

ox

����
T

¼ �og

oT

����
x

; and � oT

og

����
S

¼ ox

oS

����
g

; ð34dÞ

of which the first two relate the thermal expansion of the

open fork to the heat flow for change in force.

Appendix 3: Specific heat near a line of continuous

transition

Let us consider a phase boundary g ¼ g	ðTÞ, where at any

point ðT ; g	ðTÞÞ, the Gibbs free energies and the entropies

of the two phases A and B are the same, i.e.,

GAðg	;TÞ ¼ GBðg	; TÞ; ð35Þ

and

SAðg	; TÞ
ð36Þ

Along the phase boundary, at a neighbouring point,

GAðg	 þ dg	; T þ dTÞ ¼ GBðg	 þ dg	; T þ dTÞ. An expan-

sion gives

oGA

oT
dT þ oGA

og	
dg	 ¼ oGB

oT
dT þ oGA

og	
dg	; ð37Þ

which tells us that at the transition point, the conjugate

variable x is continuous, because of the continuity of the

entropy (S ¼ �oG=oT).
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The constant force specific heat is given by

CA ¼ T
oSA

oT

����
g

: ð38Þ

The derivative of the entropy can be expressed in terms of

the derivative along the transition line as

dSA

dT
¼ oSA

oT

����
g

þ oSA

og

����
T

og	

oT
; ð39Þ

and a similar relation for phase B. Since at each point on

the transition line entropy is continuous, dSA

dT
¼ dSB

dT
.

Equation (38) can now be used to express the constant

force specific heat difference as

CA � CB ¼ T
og	

oT

oSA

og

����
T

�oSB

og

����
T

� 	
: ð40Þ

A further simplification can be achieved by using one of

the Maxwell relations, Eq. (34d),

oSA

og

����
T

¼ oSA

ox

����
T

ox

og

����
T

¼ og	

oT
vA; ð41Þ

where vA is the extensibility of phase A. With a similar

relation for phase B, we obtain

CA � CB ¼ �T
og	

oT

� �2

vA � vBð Þ: ð42Þ

If the extensibility of phase A is less than that of B, then the

specific heat of phase A is higher than that of B.

References

[1] J D Watson, T A Baker, S P Bell, A Gann, M Levine and R

Losick Molecular Biology of the Gene 7th edn (USA, Benjamin

Cummings) (2014)

[2] S M Bhattacharjee J. Phys. A 33 L423 (2000)

[3] S M Bhattacharjee Indian J. Phys. A. 76A 69 (2002)

[4] O Gotoh Adv. Biophys. 16 1 (1983)

[5] M Daune Molecular Biophysics: Structures in Motion (Oxford:

Oxford University Press) (1999)

[6] C Danilowicz, Y Kafri, R S Conroy, V W Coljee, J Weeks and

M Prentiss Phys. Rev. Lett. 93 078101 (2004)

[7] G M Mrevlishvili, E L Andronikashvili, G Sh Dzhaparidze, V M

Sokhadze and D A Tatishvili Biofizika 27 987 (1982)

[8] S Kumar and M S Li Phys. Rept. 486 1 (2010)

[9] S B Smith, Y Cui and C Bustamante Science 271 795 (1996)

[10] J M Huguet, C V Bizarro, N Forns, S B Smith, C Bustamantec

and F Ritort Proc. Natl. Acad. Sci. 107 15431 (2010)

[11] D Marenduzzo, S M Bhattacharjee, A Maritan, E Orlandini and

F Seno Phys. Rev. Lett. 88 028102 (2002)

[12] D Marenduzzo, A Trovato and A Maritan Phys. Rev. E 64
031901 (2001)

[13] E Orlandini, S M Bhattacharjee, D Marenduzzo, A Maritan and

F Seno J. Phys. A34 L751 (2001)

[14] R Kapri, S M Bhattacharjee and F Seno Phys. Rev. Lett. 93
248102 (2004)

[15] D Giri and S Kumar Phys. Rev. E 73 050903(R) (2006)

[16] Y Kafri, D Mukamel and L Peliti Eur. Phys. J. B27 135

(2002)

[17] S Buyukdagli and M Joyeux Chem. Phys. Lett. 484 315

(2010)

[18] D Marenduzzo, E Orlandini, F Seno and A Trovato Phys. Rev. E

81 051926 (2010)

[19] G Mishra, D Giri, M S Li and S Kumar J. Chem. Phys. 135
035102 (2011)

[20] R Kapri J. Chem. Phys. 130 145105 (2009)

[21] P G de Gennes Scaling Concepts in Polymer Physics (Ithaca,

Cornell University Press) (1979)

[22] S M Bhattacharjee, A Giacommetti and A Maritan J. Phys.

Condens. Matter 25 503101 (2013)

[23] M Santosh and P K Maiti J. Phys. Condens. Matter 21 034113

(2009)

[24] X Zhang, H Chen, H Fu, P S Doyle and J Yan Proc. Natl. Acad.

Sci. 109 8103 (2012)

[25] L Bongini, L Melli, V Lombardi and P Bianco Nucl. Acids Res.

1 (2013)

[26] K L Sebastian Phys. Rev. E 62 1128 (2000)

[27] D K Lubensky and D R Nelson Phys. Rev. E 65 031917 (2002)

[28] A E Allahverdyan, Zh S Gevorkian, Chin-Kun Hu and Ming-

Chya Wu Phys. Rev. E 69 061908 (2004)

[29] M V Tamm and S K Nechaev Phys. Rev. E 78 011903 (2008)

[30] R Kapri and S M Bhattacharjee Phys. Rev. Lett. 98 098101

(2007)

[31] J Kierfeld Phys. Rev. Lett. 97 058302 (2006)

[32] R Kapri and S M Bhattacharjee J. Phys. Condens. Matter 18
S215 (2006)

[33] S.-Liang Zhao, J Wu, D Gao and J Wu J. Chem. Phys. 134
065103 (2011)

[34] S Srivastava and N Singh J. Chem. Phys. 134 115102 (2011)

[35] N Singh and Y Singh Eur. Phys. J. 17 7 (2005)

[36] R Kapri and S M Bhattacharjee Phys. Rev. E 72 051803 (2005)

[37] Pui-Man Lam and Y Zhen J. Stat. Mech. Theo. Expt. P06023
(2011)

[38] A M Skvortsov, L I Klushin, A A Polotsky and K Binder Phys.

Rev. E 85 031803 (2012)

[39] S Kumar and Y Singh J. Phys A Math. Gen. 26 L987 (1993)
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