Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

PHYSICS LETTERS A

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Physics Letters A 373 (2009) 3113-3117

www.elsevier.com/locate/pla —

Contents lists available at ScienceDirect

Physics Letters A

Scerertem

Transverse diffusion induced phase transition in asymmetric

exclusion process on a surface

Navinder Singh*!, Somendra M. Bhattacharjee

Institute of Physics, Bhubaneswar-751005, India

ARTICLE INFO ABSTRACT

Article history:

Received 21 May 2009

Received in revised form 26 June 2009
Accepted 30 June 2009

Available online 4 July 2009
Communicated by C.R. Doering

We extend one-dimensional asymmetric simple exclusion process (ASEP) to a surface and show that the
effect of transverse diffusion is to induce a continuous phase transition from a constant density phase
to a maximal current phase as the forward transition probability p is tuned. The signature of the non-
equilibrium transition is evident in the finite size effects near the transition. The results are compared
with similar couplings operative only at the boundary. It is argued that the nature of the phases can be

interpreted in terms of the modifications of boundary layers.
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1. Introduction

History has shown us that the study of model systems or toy
models of real physical systems is the first step towards a deeper
understanding of working of real physical systems [1]. In this spirit,
the asymmetric simple exclusion process (ASEP) is a prototypical
model of non-equilibrium statistical mechanics that deals with sys-
tems with currents flowing through them. Such systems are, in
general externally driven, for example, in living cells, motor pro-
teins, traffic flows, driven diffusive systems, transport in condensed
matter and mesoscopic systems, etc. [2,3].

1D ASEP is comprised of particles moving in a particular direc-
tion with the constraint of no two particles at the same site at
the same time, called simple exclusion. A particle can hop if the
next site is empty. Particles are fed at one end, say i =1 at a rate
o and withdrawn at i =m (m — oo) at a rate 8 =1—y so that
there is a current through the track. See Fig. 1(a). The main in-
terest in ASEP has been in the steady state properties, especially
the non-equilibrium phase diagrams and the stability of phases as
the external parameters or drives are changed. The phase diagrams
in several cases are known both for conserved and non-conserved
cases [5,6] and an intuitive deconfinement of boundary layer ap-
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proach provides a physical picture of the phase transitions [7-10].
Several variants of ASEP have also been studied [4,11-13].

For 1D ASEP chains, the phase diagram for the case with con-
servation in the bulk is shown in Fig. 1(b). For large length, the
phases are characterized by the density p(x), x € [0, 1]. The ex-
ternal drives at the boundaries maintain a density p =« at x=0
and p=y =1-8 at x=1, and determine the fate of the bulk
phase. Unlike equilibrium situations, the information of the bulk
phases and phase transitions are contained in the boundary behav-
ior. (This can be termed a “holographic principle”.) In the «-phase
of Fig. 1(b), the bulk density is p(x) = o with a thin boundary layer
maintaining the density at the other end. Similarly, in the y-phase,
p(x) =y in the bulk with a boundary layer at the x =0 end. There
is @ maximal current phase with p(x) =0.5 for « > 0.5, y <0.5
with boundary layers on each side protecting the bulk. In all these
cases, the boundary layers are attached to the edges. On the first
order phase boundary between the «- and the y-phase, the den-
sity profile is p(x) =« + (¥ — «)x without any boundary layer. In
case of a non-conservation in the bulk, this phase boundary gets
replaced by a shock phase with localized shocks on the track [5].
This additional shock phase can be understood as a deconfinement
transition of the shock from the boundary [7,10].

Here, we consider a collection of such one-dimensional ASEP
chains diffusively coupled to form a two-dimensional ASEP
(2D ASEP). The transverse diffusion does not lead to any current
in the extra dimension but affects the bulk and boundary in the
preferred forward direction. An arbitrary chain may seem to have
non-conservation through the leakage to or from the neighboring
chains but there is an overall bulk conservation on the lattice. We
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Fig. 1. (a) Schematic diagram of 2D asymmetric simple exclusion process (ASEP), with forward jump probability p (thick lines) and transverse (dashed lines) excursion
probability g, with p + 2q = 1. For ¢ =0, one gets decoupled 1D ASEP. (b) The phase diagram of 1D and 2D exclusion process. M = maximal current phase (o =0.5), in
the a-phase the bulk density is ¢, and in the y-phase it is y, here 0 <y <1 and 0 < « < 1. The dotted line is the first order phase boundary while the thin solid lines
represent continuous transitions. For the 2D or the modified 1D, the M region widens with p inducing a transition to M in the shaded region. In the a-phase region p. = 2«

and in the y-phase region p. = 28. The points marked refer to Fig. 3.

show here from simulations the existence of the maximal current
phase with p = 0.5 for high transverse coupling over a wider range
of o and y with a phase transition to the conventional phase at
a critical coupling. The phase transition behavior in this situation
can be analyzed through the changes in the boundary layers. To
do so, we also consider a few variants of the model both in one
and two dimensions. This model differs from the ‘two-lane’ mod-
els [4], in that, it does not show a transition to a jammed state. All
the phases in our case have nonzero currents.

2. Model

Consider a modified asymmetric exclusion process (ASEP) on a
sheet of m x n sites as shown in Fig. 1(a) with forward particle
jump probability p > 0 and the transverse (perpendicular to the
forward direction) probability q (with the constraint p +2q=1)
provided the neighboring sites are empty. Here g is a measure of
the transverse coupling of the chains. For ¢ =0, we get back in-
dependent 1D ASEP chains. On the left boundary i =1, 1 < j<n,
particles are injected at a rate & and on the right boundary (i =m,
1 < j < n) particles are withdrawn at a rate 8. The sheet is folded
in a cylindrical geometry to impose periodic boundary conditions
in the transverse direction, i.e., sites (i, j=1) are identified with
sites (i, j =n-+1). Thus in the steady state situation we have a
net particle current in the forward direction only, and no particle
current in the transverse direction, because the probabilities of up-
and down-hops are the same.

2.1. Mean field analysis

The occupation number at site (i, j) is 7; ; =0 or 1 depending
upon whether the site is empty or occupied. The rate equation
governing the average particle density distribution p(x, y) = (7; ;)
(where the average is over all realizations of the process) in the
bulk is:

d T ;
% =p[{d —wpti1j) - (A —mpuj)]+J5 (1)

where the transverse part is

]iTj =q[—( — 7 j10)T,) — (1 = 7 j—1) T j)

A =) j) + (=7 T )] (1b)
The rate equation for the two boundaries are
d(ty,j)
dltj =+a(l—1;) —p(( —Tz,j)fl,j)'i‘]Lv (1)
d(Tm, j)
d";J = —B(Tm.j) + P{(1 — T, ) Tm—1,5) + Jj- (1d)

It is interesting to note an invariance in the above equations
known as the particle-hole symmetry. It implies that if we change
o to1—pand B to 1 —«a with 7 changed to 1 — 7, the equations
of the process remains invariant.

In a mean-field independent-site approximation, one sees that
p = constant is a solution of the bulk equation in the steady state.
The phase of the system is then determined by the boundary con-
ditions. It transpires that a constant density cannot satisfy in gen-
eral both the boundary conditions. This importance of the bound-
ary, i.e., the choice of one, both or none of the boundary condi-
tions, is at the heart of the phase transitions. One can in addition
do a stability analysis to see that a constant bulk density is indeed
a stable solution [15]. With the Boltzmann approximation (ne-
glecting nearest neighbor correlations), ie., (7; j(1 — Ti+1,j+1)) =
(Ti,j)(1 — (Tix1,j+£1)), we take (t7; j) = po +8p(, j,t), with 5p a
small perturbation. In terms of the Fourier modes,

27 qx(y)

Spk.t) =Y e RYsp(x y 1), kyy) = T

X,y

: (2)

where L is the dimension of the lattice, and k denotes {k,ky},
Eq. (1a) can be written as

dsp(k,t)
dt

with

=2(p,q.Kspk, 1), (3)

22(p,q, k) = ipsinkx(2po — 1) + p cosky
+ (1 —p)cosky — 1. (4)

Since pcosky 4+ (1 — p)cosky, — 1 < 0, the negativity of the real
part of §2 insures decaying perturbations and stability. This linear
stability analysis, though useful in the context of traffic jams in
similar two-dimensional models [15], is not sufficient for ASEP.

2.2. Simulation

To simulate the process for any p we use a random sequential
update scheme. In this sequential update scheme, the position of a
randomly chosen particle at time t + 1 is determined by the posi-
tions of the other particles at time t and the motion is one particle
at a time. For N sites, one Monte Carlo time step is defined as N
such attempts so that on an average every site gets a chance to get
updated. Starting from a random distribution, we allow the system
to reach a steady state. From the simulations we study the spatial
density distribution and currents for various values of p and for
various sizes of the lattice.
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Fig. 2. (a) Spatial density distribution p(i, j) for a particular j along the forward direction i for various values of p (o =y =0.2). The vertical width of any point on the
line reflects the variation in the density in the transverse direction. For p < p. curves form one group and for p > p. the bulk density is determined by the left boundary
p(1, j) =a/p. (b) The presence of diffusing shocks for « =0.2 and y = 0.8 when p > p..
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Fig. 3. The density phase transition for various values of « and g in (a) 2D and (b) 1D cases. The average bulk density o0 =0.5 up to p < pc, but varies with p for p > p..
For both, curve (1) is for « = 0.8,  =0.2, curve (2) for « =0.2,  =0.2, curve (3) for « = 0.8, 8 =0.8, and curve (4) is for « =0.2, 8 = 0.8, as marked in Fig. 1(b). All these

have same p.

To analyze in detail the density dependence on p, let us define
the average bulk density p(p) (for given o and B),

_ 141
PP=5 D~ D T

cyc=1 i,jCAcenter

(5)

The averaging in Eq. (5) is done on a strip (Acenter) at the cen-
ter of the cylinder, i.e, m/2 -4 <i<m/2+4+4,1<j<n, and n’
(=9 x n in our case) is the number of sites in the central strip
Acenter- N in the above expression is the total number of cycles of
the simulation (~ 108) used for averaging.

3. Results

For given o and B, the steady state profiles are of two types as
shown in Fig. 2(a) for several values of p. We see that for small
p the bulk reaches half-filling and changes over to a boundary
dependent density for larger p. In Fig. 3, p is plotted as a func-
tion of p for various values of o and B. The behavior shown in
Fig. 2(a) is evident here. For the case o > 0.5, 8 <0.5, the be-
havior is complementary to the case o < 0.5, 8 > 0.5. However,
there is no such transition for o > 0.5, and 8 > 0.5. The critical p,
also depends upon the values of @ and B as shown in the phase
diagram Fig. 1(b). We have studied an equivalent 1D model, be-
cause the transverse periodic boundary conditions in 2D has some
similarity with 1D. Despite the similarities, there are quantitative
differences between the two models as noted below. Furthermore,
with other processes, like evaporation deposition on selected lanes
or patches, the 2D model cannot be mapped on to the 1D model.
To mimic the behavior we modify the 1D ASEP so that a parti-

cle jumps to the next empty site not with probability 1 but with
probability p, i.e., particle waits with probability 1 — p. The aver-
age bulk density in this 1D case also shows behavior similar to the
2D case and is shown in Fig. 3(b). One sees the phase transition
with p. Thus, we have the following three main observations:

1. p(i, j)=0.5 for all p less than p¢, for all @ and 8.

2. In the regime p > p., mean-field continuum approximation is
valid and phase diagram resembles the 1D phase diagram.

3. In the shaded region marked «-phase in Fig. 1(b) p. =2« and
in the y-phase region p. =28.

These results can be explained by examining the boundary den-
sities. If we do a mean-field approximation in the steady-state
situation of Eq. (1c), then a homogeneous density would give
(¢ —pp)(1 —p)=0or p=a/p for the left boundary. The bulk
current is expected to be I(p) = pp(1 — p) (see below) as shown
in Fig. 5(a). For ASEP, the bulk satisfies the left boundary condi-
tion only in the «-phase which requires the boundary density to
be less than or equal to 0.5. Therefore a maximal current phase
is expected if o/p > 0.5, i.e, p. =2«. The left boundary layer
then develops (Fig. 2(a)) for p < pc. The density variation in the
boundary layer vitiates the simple argument because the density
gradient dependent diffusive part of the boundary current needs
to be taken into account. The net boundary density is obtained
by the balance of the input and the outflow consisting of the
hopping and the diffusive parts. Similar argument holds in the y-
phase region for 8 and p.. For the y-phase, the right density is
p =[y — (1 —p)]/p if there is no boundary layer. The bulk density
is controlled by this boundary value (rather than the withdrawal
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also. The solid line is I(p) = pp(1 — p) for the parameters of curves (2) and (3). In (b) the dependence of p. on « and g is shown. For all the curves, « + g = 1. The curves
are: (1) « =0.85, (2) « =0.15, (3) « =0.75, (4) « = 0.25, (5) « = 0.65, (6) o =0.35, (7)  =0.55, (8) o = 0.45. The main observation is that p. = 2« for downward curves
(cr-phase region of Fig. 1(b)) and p. =28 for the up going curves () -phase region of Fig. 1(b)).

rate) so that it also takes the same value as the boundary. These
observations are supported by Figs. 5(a), (b).

It is known for ASEP, that on the first order phase boundary
separating the «- and the y-phases, there are shocks that diffuse
slowly on the track vanishing or getting created at the boundaries
only. Same thing happens here also on the phase boundary which
is still set by @ =1 — y. Because of slow diffusion of the shock, the
measured density in the central patch could be either that of the
«-phase or of the y-phase. This is shown in Figs. 3(a) and (b). The
density remains constant for p < p., but after this (p > p.) the
average density shows an erratic behavior, fluctuating wildly [5].
The special point where the three phase boundaries meet is now
ata=p/2, y =1—(p/2) in the a-y plane.

The above mean-field results seem to suggest a singularity in
the density as a function of p, because p = 0.5 for p < p. but

p =o/p for p > p.. Such a singularity is expected only in the
long chain limit (infinitely long system) and not in finite systems.
Figs. 4(a), (b) shows a strong size dependence near p.. For equilib-
rium phase transitions, singularities are rounded off by finite size
when the size of the system is comparable to the characteristic
length scale for the transition. The finite size behavior, especially
the size dependence, then follows a finite size scaling form. In
that spirit, let us make a finite size scaling ansatz for this non-
equilibrium case as

p—pc~L7Hf(p—pL'), (6)

with
for L — oo,

P — pc~|p—pc*” (7)
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where p. = 0.5 is the constant density for p < p, L is the lin-
ear dimension of the system (lattice or chain), and © and v are
scaling indices; then, to recover the mean-field results, we need to
have ;1 =v~1. We have used the Bhattacharjee-Seno method for
data-collapse [14]. In Fig. 4(c) the data collapse scaling is shown
for 2D for which we get p. =0.40+0.008, &t = 0.69+0.07, v~!
0.72+0.03. For the 1D case (Fig. 4(d)), we have p. = 0.401+0.006,
i =0.46+0.02, v~! =0.44 £ 0.06. These are consistent with the
prediction of wv =1. The characteristic length scale seems to di-
verge as & ~ |p — pc|~Y which is set by the width of the boundary
layer. Mean-field analysis is not fine enough to get this length
properly.

Since the current is a measure of jumps from occupied sites to
nearest vacant site in the forward direction, the probability of site
occupation is p, the probability of vacancy of the next site is 1 — p,
and jump probability in the forward direction is p, thus, the net
current in the forward direction is I(p) = pp(1 — p). Consequently,
I(p) =p/4 for p < pc, while I(p) =a(1 —«a/p) for p > p., joining
continuously at p = p. with a slope discontinuity. Fig. 5(a) shows
the overall agreement of the measured current and this general
form of the current when the corresponding o obtained from the
simulation is used. However, finite size rounding masks the ex-
pected singularity at p = p. in this current plot.

In order to show that the above results, though boundary
driven, are not a consequence of local perturbations at the bound-
ary, we considered a variant of the model where the transverse
coupling is only at the two ends. We have put p=1 in all the
bulk sites, i.e., for sites 2 <i<n—1 and kept finite p from the
first and the last site, i.e., jumps from first site to second and
(n — 1)th site to nth happen with finite p. We see that the sys-
tem self-organizes to a state with new boundaries that control
the bulk density. The actual drives (the injection and withdrawal
rates) passively help in creating the relevant boundary conditions.
In particular, we observe that the transition induced by p for the
bulk case is no longer present. The behavior of average p with p
is shown in Fig. 6(a) and the corresponding density profiles are
shown in Fig. 6(b) (similar profile has Been observed in 1D case
also). The behavior of average p with very small p < 0.05 shows
a long living transient state, due to the very small forward mo-
tion. These observations indicate that the transition is due to a
co-operative phenomenon, where bulk and boundary play their
role co-operatively and inter-dependent way.

4. Summary

In conclusion, the continuous transition from the injection rate
dominated phase to the maximal current phase has been ob-
served as a function of forward transition probability p in a
two-dimensional ASEP (diffusively coupled chains). The transition
shows finite size effects, reminiscent of equilibrium phase transi-
tions, and finite size scaling predicts exponents which are consis-
tent with the mean field theory predictions. The bottleneck created
at the boundary by the transverse coupling changes the effective
particle densities at the two boundaries and the ensuing phase di-
agram can then be mapped out from the 1D phase diagrams with
p =1, with the multicritical point shifting to (¢ =%, y =1-5).
However, no such transition can be induced if artificial bottlenecks
are created at the boundaries only. In such situations, the particles
organize themselves to form a new or effective boundary density
which then as per the holographic principle fixes the bulk density.
The 2D model can be modified to include non-conservation of par-
ticles along a few special lanes and our results would serve as the
starting point for such cases. The analysis of this Letter reiterates
that the non-equilibrium transitions observed are cooperative but
boundary driven and the boundary layers contain the information
about the bulk.
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