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Synopsis

According to the AdS/CFT correspondence, type IIB string theory on AdS5 × S5 is

dual to the four-dimensional N = 4, SU(N) gauge theory on the boundary. In the

weak coupling limit and large curvature, the string theory can be approximated by

the supergravity description. However, because of the dual nature of the AdS/CFT

correspondence, this corresponds to strongly coupled regime of gauge theory. The

study of gauge theory in this regime is very difficult due to lack of systematic for-

mulation. In this thesis, we systematically exploit this correspondence in order to

gain understanding about the strongly coupled regime of gauge theory by studing the

weakly coupled gravity theory. In particular, we have obtained a phenomenological

description of the thermodynamic behaviour which can be encoded in a matrix model.

Such a construction is by no means unique but our main interests are restricted to

the behaviour near the critical point where qualitative behaviours are believed to

be universal in the sense that, it does not depend on precise details of the theory.

Therefore, the effective model presented here belongs to the same universality class

that of the gauge theory. In addition, wherever possible we have pushed the corre-

spondence furthere to make semi-quantitative analysis and obtain the behaviour of

effective action under variation of different thermodynamic quantities.

We begin with a discussion of the thermodynamics of five dimensional bulk theory in

the supergravity limit and review the formalism to construct an effective Lagrangian

for the strongly coupled dual. The bulk has two configurations with same asymptotic
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geometry. One of them is the thermal AdS and the other is the black hole. Though

thermal AdS can exist for arbitrary temperature, the black hole nucleates only above

a particular temperature Tmin. Above this temperature Tmin, there are two black

hole solutions. Depending on their horizon sizes, we call them big and small. Bigger

one is the stable one, and has a positive specific heat. From the free energy calcu-

lation one can see even in the presence of the black holes, thermal AdS remains the

preferred phase for T < Tc. While for T > Tc, it is the big black hole phase that

takes over. This phase transition at T = Tc is a first order transition and known

as Hawking-Page (HP) transition [1]. The small black hole remains unstable at all

temperature due to its negative specific heat and acts as a bounce for the decay of

big black hole at T > Tc . Witten [2] identified this phase transition with the large

N confinement/deconfinement transition of the boundary gauge theory in the strong

coupling regime. In the boundary theory which is a gauge theory on an S3 one can

show all the degrees of freedom got massive except a Wilson loop operator. One can

integrate out the rest and write down a effective Lagrangian which has the Wilson

loop operator as its degree of freedom. For low enough temperature it can be ap-

proximated by a simple matrix model known as (a, b) matrix model [3] as it has two

parameters a and b1. For certain ranges of these two parameters, the matrix model

captures complete thermodynamic behaviour of the bulk theory. These parameters

depend on the ’t Hooft coupling λ and the temperature T . Both turn out to be

monotonically increasing functions of temperature for fixed λ.

We incorporate Gauss-Bonnet (GB) correction to the gravity action and study var-

ious phases of the bulk geometry with AdS asymptotics [4]. These phase structures

depend crucially on GB coupling α
′

. Except within a certain range of this coupling,

there is only one black hole phase, otherwise there exist three black hole phases. We

call them small, intermediate or unstable, and big black hole phases. It turns out

1This is done by assuming that the weak coupling results are to be valid in the strong coupling
regime mainly for ’t Hooft coupling λ → ∞
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that there are two first order phase transitions. One of them is from small black hole

to the big one at a temperature much lower than that of inverse AdS curvature scale.

The other one is similar to that of the usual HP transition where a crossover occurs

from thermal AdS to the big black hole phase. We then study the dual gauge theory

at the boundary by the same two-parameter matrix model. We find the λ dependence

of these parameters. By introducing higher derivative terms in the bulk, we study

corrections of order 1/λ in the gauge theory. This essentially allows us to find the λ

dependence of (a, b) for large but finite λ. We find that a is an increasing function of

λ while b decreases with λ.

Furthermore, we find that the simple (a, b) model fails to capture all the phases

(small, intermidiate and large black hole phases) in the bulk. To incorporate all

the bulk phases, we constructed a toy model which requires introduction of higher

dimensional operators in the matrix model. This model has four parameters which

depend on the temperature as well as the gauge coupling. Besides reproducing all

the qualitative features of the bulk, this model also gives an extra saddle point. We

interpret this saddle point as a phase in string theory which has no analogue in the

supergravity. This stringy phase arises at the Gross-Witten transition point [5]. This

Gross-Witten transition may be identified as a crossover from supergravity black hole

solution to string state in the bulk side [6]. In the bulk side, this stringy phase may

also serve as a bounce for the decay of the small black hole to the thermal AdS.

Finally, we include the effects of electric charge with the above theory [7]. On the

gravity side these charges come from the rotation of the internal S5. We first focus

our attention on the phase structures of this bulk theory in both canonical and grand

canonical ensembles. In the grand canonical ensemble, the phase structure crucially

depends on α
′

as well as chemical potential Φ. For a certain range of the chemical

potential Φ and α
′

, there exist three black hole phase and have two HP transitions.
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Outside this range, only one black hole phase survives and unlike simple GB the-

ory, we get a HP transition. For the canonical ensemble the number of black hole

phases are similar to the GB theory but here thermal AdS is not an allowed geom-

etry. Therefore, there exist only one first order phase transition between small and

big black hole (in the certain range of α
′

and fixed charge q). We then construct a

matrix model for the gauge theory dual. This model is similar to the one discussed

in the previous paragraph. However the four coefficients are now not only function of

λ, and T , but also depend on the chemical potential. In the grand canonical ensem-

ble, like GB theory, matrix model has an extra saddle point that has no analogue in

the gravity side and we interpret this as a bounce. In the canonical ensemble, since

chemical potential can take any value, one has to sum over all the values. To do

that it is necessary to know the exact dependence of parameters on potential. This

is very hard to determine in the strong coupling limit. For simplicity, we write down

the model where only two parameters are explicitly dependent on chemical potential

and other two are constant. This is consistent with one of the possible scenarios of

the grand canonical case. Amusingly we find that the model correctly reproduces the

corresponding bulk behaviour.
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correspond to values of Φ2 and ᾱ of figure(4.2) . . . . . . . . . . . . . 83
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Chapter 1

Introduction

1.1 An overview

One of the most exciting developments in theoretical physics in the past decade

is perhaps the AdS/CFT correspondence [1]. This correspondence provides us with

an equivalence between superstring theory on certain ten dimensional backgrounds

involving Anti de-Sitter space-time and four dimensional supersymmetric Yang-Mills

theories. This conjecture, if true, has indeed a far reaching consequence. First of all,

it relates a gravitational theory, such as string theory, to a theory which does not

involve gravity. Therefore, many puzzling issues in gravitational physics, including

black hole information loss paradox, may, in principle, be addressed within the frame

work of a non-gravitational theory. Alternatively, this conjecture relates highly non-

perturbative problems in Yang-Mills theory to problems in classical superstring or

supergravity theory. For example, the correspondence suggests that the type IIB

string theory on AdS5 × S5 is dual to a four dimensional N = 4, SU(N) gauge

theory. In the weak coupling and large radius of curvature limit, the string theory

can be approximated by a supergravity description. However, because of the dual

nature of the correspondence, the gauge theory is strongly coupled. One therefore

hopes to understand features of strongly coupled SU(N) gauge theory by studying the

1



Introduction 2

supergravity limit of type IIB string theory on AdS5 ×S5. Indeed many insights into

strongly coupled gauge theories have emerged by exploiting this avenue [1, 2, 3, 4].

At the same time, due to this very dual nature of the correspondence and an absence

of a systematic formulation of strongly coupled gauge theory, quantitative checks of

this conjecture have been difficult.

This thesis serves as an attempt to understand some features of these strongly

coupled gauge theories. By assuming AdS/CFT correspondence, in this thesis, we

try to construct a phenomenological Lagrangian of strongly coupled N = 4, SU(N)

gauge theory which qualitatively reproduces various phases of supergravity theory

on AdS5 × S5. By no means we expect this Lagrangian to be unique, except per-

haps near the critical points where the qualitative behaviours are believed to be

universal. Wherever possible, we try to push the correspondence further to make

a semi-quantitative analysis and obtain the behaviour of the effective action under

the variation of different thermodynamic quantities. Before we go on to discuss this

construction, in the next section of this chapter, we start with a general description

of D-branes [5]. This chapter serves as a brief introduction to AdS/CFT conjecture

and also helps us to set our notations and conventions.

1.2 D-brane

There are five different superstring theories in ten dimensions, namely- type I, IIA,

IIB, E8 ×E8 heterotic, and SO(32) heterotic [6, 7, 8, 9, 10, 11, 12, 13, 14]. The type

II theories have two supersymmetries (N = 2), while the other three have only one

supersymmetry (N = 1). Based on the periodic and anti-periodic condition on the

left and right moving worldsheet fermions, there are four sectors namely (R − R),

(R − NS), (NS − R), and (NS − NS), where R stands for Ramond and NS for

Neveu-Schwarz. While same boundary conditions for both the left and right moving

strings give the spacetime bosons, opposite boundary conditions give us fermions.
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Consequently, (R − R) and (NS − NS) sectors represent space time bosons and

(R−NS) and (NS −R) are fermions. The (NS −NS) sector contains graviton, two

form or antisymmetric tensor Bµν and dilaton φ as massless fields. The (R−R) sector

contains antisymmetric massless tensor fields of various ranks. In this thesis these

p + 1 form potentials will be denoted by Ap+1. Depending on p being even or odd,

theory is type IIA or IIB respectively . In order to carry the charge of p+1 form, one

needs to introduce extended p dimensional objects. In string theory, such objects are

also the ones on which open string end-points, obeying Neumann boundary condition

along p + 1 space time direction and Dirichlet boundary conditions in (10 − p − 1)

spatial directions, can attach; they are known as Dirichlet-p branes or in short Dp

branes. In this thesis we briefly describe Dp brane, and for more details we reffer to

the existing literature [5, 15, 16, 17, 18, 19, 11, 12]. As we have mentioned before,

these branes are charged under the p + 1 form where the minimal coupling is given

by

µp

∫

Mp+1

Ap+1, (1.1)

where µp is the charge of the brane and is related to the tension Tp of the brane as

µp = Tp(2π)7/2l4sgs, (1.2)

where

Tp =
1

(2π)3l4sgs
. (1.3)

Here ls and gs are the string length and the string coupling respectively. The value of

the tension Tp is determined from the string amplitude [11, 12], through a process of

a closed string exchange between two D-branes. The dynamics of the D-branes are

encoded in the fluctuation of the open strings which end on them. In the low energy

limit, this is given by a gauge theory with gauge group U(1) that lives on the p + 1

dimensional world volume of a single D-brane [20]. D-branes preserve 1/2 of the 32

supersymmetries in the bulk. The gauge theory thus has 16 super charges which for

p = 3 gives N = 4.
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1.3 D-brane in Type II String Theory

In closed string description, Dp-brane can be regarded as p dimensional solutions of

the effective low energy string action of type II string theory (see for example [21, 22,

23, 24, 25, 26]). The action has massless fields the metric gµν, a scalar φ (vacuum

expectation value (vev) of which gives string coupling), p+2 form field strengths Fp+2

from the (R−R) sector, (NS−NS) 3-form fields and their supersymmetric partners.

More specifically, the action in the Einstein frame is [26]

IE =
1

16πG10

∫

d10x
√

|g|
(

R − 1

2
gµν∂µφ∂νφ − 1

2

∑

p

1

(p + 2)!
eapφF 2

p+2 + ...

)

, (1.4)

with ap = −1
2
(p − 3),

where dots represent the (NS − NS) 3-form fields and the fermionic terms. ap

is commonly called the dilaton coupling. The closed string coupling is determined

as the vev of dilaton and is given by g2
s = e2φ in our normalisation. The open

string coupling on the other hand is given by gs and is identified as the Yang-Mills

(YM) gauge coupling via the relation g2
Y M = 4πgs(2πls)

p−3 (see [12]). G10 is the ten

dimensional gravitational constant and related with the coupling gs and string length

ls via G10 = 8π6g2
s l

8
s .

The equations of motion for graviton, dilaton and field strength are respectively

Rµ
ν =

1

2
∂µφ∂νφ +

1

2(p + 2)!
eapφ

(

(p + 2)F µξ2...ξp+2Fνξ2...ξp+2 −
p + 1

8
δµ
ν F 2

p+2

)

,

52φ =
1√
g
∂µ (

√
g∂νφgµν) =

ap

2(p + 2)!
F 2

p+2,

∂µ

(√
geapφF µν2...νp+2

)

= 0. (1.5)

The solution of these equations of motion are [26]

ds2 = H−2 d−2
∆

(

−fdt2 +
p
∑

i=1

(dxi)2

)

+ H2 p+1
∆

(

f−1dr2 + r2(dΩd−1)
2
)

, (1.6)

where H = 1 +

(

h

r

)d−2

, f = 1 −
(

r0

r

)d−2

,
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∆ = (p + 1)(d − 2) + 4a2
p,

h2(d−2) + rd−2
0 hd−2 =

∆Q2

16(d − 2)2
and d = 10 − (p + 1). (1.7)

Here r0 and Q are integration constants. Q turns out to be related to the charge µp

of the p-brane via the relation [26]

µp = Ωd−1Q/((2π)7/2l4sgs), (1.8)

where Ωd−1 is the metric on the round (d − 1) sphere. The metric has a singularity

at r = 0 due to the presence of the source. In general, for generic values of r0 and Q,

the solutions break all the supersymmetries. However, for specific r0 and Q, solution

preserves a fraction of space-time supersymmetry. The metric has a horizon at r = r0

where f(r) vanishes. When we take r0 → 0, horizon sits on top of the singularity and

the solution becomes extremal preserving 1/2 of the space-time supersymmetry.

In the subsequent part of this thesis, we will specialise to p = 3 or ap = 0, that is,

we will be focusing on D3-brane. In this case the dilaton is a constant. Thus from

(1.7) we have d = 6 and ∆ = 16.

1.3.1 Near horizon limit of extremal brane

The extremal solution is obtained by considering r0 = 0. It follows from (1.7) that

h4 = Q/4. In this case the solution reduces to,

f(r) = 1,

H = 1 +
Q

4r4
,

ds2 = H− 1
2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+ H
1
2

(

dr2 + r2dΩ2
5

)

. (1.9)

We know from equation (1.2), a single Dp-brane charge µp is related with the tension

Tp of the brane. Thus if we consider N number of coincident Dp-branes, we have to
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choose integration constant Q such that

µp

Tp(2π)7/2l4sgs
= N. (1.10)

Then by using equation (1.8), one can write Q in terms of N, gs and ls. We get

Q = 16πgsl
4
sN. (1.11)

Thus the final metric solution for the extremal N D3-brane is

ds2 = H− 1
2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+ H
1
2

(

dr2 + r2dΩ2
5

)

,

where H = 1 +
4πgsl

4
sN

r4
= 1 +

l4

r4
, and

l4

l4s
= 4πgsN. (1.12)

In the asymptotic region, this metric approaches Minkowski space, i.e, H ∼ 1. How-

ever in the near horizon limit, r << l, we can neglect the factor 1 in H of (1.12) and

the metric reduces to

ds2 =
r2

l2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+
l2

r2
dr2 + l2dΩ2

5. (1.13)

This is an Anti de Sitter (AdS) × S5 geometry, where both the radii of the two

spaces are given by l. This five dimensional AdS space can also be obtained from the

universal covering space of a surface obeying [1]

−X2
0 + X2

1 + X2
2 + X2

3 + X2
4 − X2

5 = −l2, (1.14)

By construction, the space has SO(2, 4) isometry, and it is homogeneous and isotropic.

To get the form of the AdS space of (1.13), we make the coordinates transformation

as

r = (X5 + X4)

τ = − iX0l

r
and xα =

Xαl

r
where α = 1, 2, 3. (1.15)

Then the metric (1.14) reduces to

ds2 =
r2

l2

(

−dτ 2 + dx2
1 + dx2

2 + dx2
3

)

+
l2

r2
dr2 (1.16)
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We note here the isometry group of AdS5 × S5 is SO(2, 4) × SO(6), the two factors

are coming from AdS5 and S5 respectively. Having discussed the near horizon limit

of extremal D3-brane, we now focus our attention to the non-extremal one and its

near horizon limit.

1.3.2 Near horizon limit of non-extremal brane

The non-extremal solution is obtain by considering r0 finite. The solution is

ds2 = H− 1
2

(

−fdt2 + dx2
1 + dx2

2 + dx2
3

)

+ H
1
2

(

f−1dr2 + r2dΩ2
5

)

, (1.17)

where

H = 1 +

√

r8
0 + Q2/4 − r4

0

2r4
,

f = 1 −
(

r0

r

)4

. (1.18)

Note that the metric approaches Minkowski space in the asymptotic limit. In the

near horizon limit, we get

ds2 =
r2

l′2

(

−fdt2 + dx2
1 + dx2

2 + dx2
3

)

+
l
′2

fr2
dr2 + l

′2dΩ2
5, (1.19)

which is AdSbh × S5, with same radii for the two spaces. Here {bh} means that it

is a black hole in five dimensional AdS space. In (1.19) we have defined l
′

as l
′4 =

(
√

r8
0 + Q2/4 − r4

0

)/

2. Notice that at r0 = 0, the metric reduces to the extremal one.

We can associate thermodynamic quantities like entropy, temperature and free energy

with this non-extremal black hole. All these quantities can explicitly be computed

from the metric and the action. Here we briefly discuss all these quantities. For details

we refer the reader to the next chapter and reference [24]. The Hawking temperature

can be calculated from the metric solution by using the standard relation [27]

TH = − 1

4π

dgtt

dr

∣

∣

∣

r=r0

. (1.20)
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From which it follows that

TH =

√
2

π
r0

(

r4
0 +

√

r8
0 + Q2/4

)− 1
2

. (1.21)

Note that because of this nonzero temperature, AdSbh × S5 breaks all the space-time

supersymmetries.

The entropy follows from the Bekenstein area law [28] as,

Sbh =
Ah

4G10
=

2πAh

κ2
. (1.22)

Here we have defined κ2 = 8πG10 and Ah is the horizon area of the black hole which

is

Ah = L3π3r3
0

(

r4
0

2
+

1

2

√

r8
0 + Q2/4

)
1
2

. (1.23)

Here L3 is the volume of the xi space. The ADM mass, which is also equal to internal

energy of the black hole, can be written from the action as [24],

M =
L3π3

κ2

[

3 r4
0

2
+
√

r8
0 + Q2/4

]

. (1.24)

Note that in the extremal limit, temperature and entropy are zero and the ADM mass

reduces to the extremal mass, which is

M0 =
L3π3

2κ2
Q. (1.25)

One can easily verify that these thermodynamic quantities satisfy the first law of

thermodynamics dM = THdS. We now define a quantity

δM

M0
=

M − M0

M0
=

[

3 r4
0

2
+
√

r8
0 + Q2/4 − Q

2

]

Q/2
. (1.26)

If we consider the radius r4
0 to be very small, then it means that we slightly perturb

the solution away from its extremality. Then the equation (1.26), written in the

lowest power of r4
0, turns out to be

δM

M0
= 3

r4
0

Q
. (1.27)
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Similarly entropy may be recast as

Sbh =
L3π4Q5/4

κ2

(

r4
0

Q

)
3
4

. (1.28)

In terms of δM
M0

, entropy can be rewritten as

Sbh =
L3π3Q5/4

κ233/4

(

δM

M0

)
3
4

. (1.29)

Finally the free energy with respect to AdS becomes

Fbh = E − THSbh =
L3π3

κ2

[

−r4
0

2
+
√

r8
0 + Q2/4

]

(1.30)

and the perturbative form is

Fbh =
L3π3

2 κ2
Q

[

1 − r4
0

Q

]

=
L3π3

2 κ2
Q

[

1 − 1

3

(

δM

M0

)]

. (1.31)

Then using (1.25), we see that the free energy of this black hole with respect to the

extremal one is

Fbh = −L3π3

6 κ2
Q

(

δM

M0

)

. (1.32)

This relation will be useful in later discussion.

Having discussed the brane geometry and thermodynamics, in the next section we

consider gauge theory that resides on the brane world volume.

1.4 Gauge Theory on the Brane

In D-brane picture, to describe the near horizon solitonic solution of the previous

section, we consider a set of N parallel D3-branes. These are stuck together or very

close to each other in ten dimensions [29]. The end points of open strings live on the

(3+1) dimensional plane of the brane, while the closed strings live in the bulk. Due

to the presence of the brane space-time will be curved. The total action of the whole

configuration is described by S = Sbrane + Sbulk + Sint. In the brane action there are
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gauge fields and massive fields, and in the bulk action there are graviton, dilaton,

higher form fields and massive fields. Sint describes the interaction between the brane

and the bulk.

In the low energy limit, that is α
′ → 0, κ ∼ gsα

′2 → 0 (where α
′

= l2s), the bulk and

brane are fully decoupled and they do not contain any massive mode. Furthermore,

since we are dealing with N coincident D3-branes, the end point of open strings can

attach branes in U(N) number of different ways. Therefore, the gauge group must be

U(N) with 16 super charges. This ten dimensional theory reduces to four dimensional

N = 4 super Yang Mills theory, when we compactify all the transverse coordinates.

So we conclude from here that the effective quantum theory on N coincident D3-

branes is N = 4 super Yang Mills with gauge group U(N). In passing, we also note

that isometry group of the theory is SO(2, 4) × SO(6). The first factor represents

super conformal symmetry and the other one is due to the R-symmetry which comes

from the dimensional reduction. In this case, half of the super charges of IIB theory

is preserved and it gives unbroken U(N) gauge theory.

1.5 Statistical Mechanics of Non-extremal 3-brane

In the D-brane picture the excitations are described by a gas of massless open string

states moving along the brane in arbitrary directions. The mass of the excited 3-brane

is [15, 30]

M = M0 + δM =

√
π

κ
L3 +

k
∑

i=1

2π

L
|ni| + O(g). (1.33)

Here k is the number of open strings and n is the excitation label. The term O(g)

takes care of the interaction among the strings.

Following [30], we may alternatively consider the statistical mechanics of massless

open string states in the grand canonical ensemble. Consider a system with N1
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massless bosons and fermions degrees of freedom. The partition function is

Z =
∏

n

(

1 + qn

1 − qn

)N1

, (1.34)

where we have defined q = e−2π/LT . Here T is the temperature of the system. Now

the thermodynamic quantities like free energy F and internal energy E (with respect

to extremal brane) and entropy S of the system can easily be calculated from the

partition function and these are

F0 = −π2

48
N1L

3T 4,

E =
π2

16
N1L

3T 4,

S0 =
π2

12
N1L

3T 3. (1.35)

Using this method it is easy to calculate these quantities for N number of D3-branes

stacked on top of one another. The massless open string can now be attached to any

two of the branes. Thus there are N 2 states for each state we had before. Therefore,

in the partition function Z of equation (1.34), we have power N1 N2 instead of N1.

So, the thermodynamic quantities take the form

F0 = −π2

48
N1N

2L3T 4,

E =
π2

16
N1N

2L3T 4,

S0 =
π2

12
N1N

2L3T 3. (1.36)

The last two equations give the entropy as

S0 =
2

3
N

1/4
1

√
πNL3/4E3/4. (1.37)

Setting E = δM in equation (1.37), one can obtain the entropy of N number of

non-extremal 3-branes in terms of δM
M0

as

S0 =
2

3
N

1/4
1 π7/8N5/4κ−3/4L3(δM/M0)

3/4, (1.38)
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where

M0 =

√
π

κ
NL3, (1.39)

is the mass of N number of extremal D3-branes [15]. If we include all eight bosonic

and fermionic modes in the statistical treatment i.e for N1 = 8, we get the entropy as

S0 =
27/4

3
π7/8N5/4κ−3/4L3(δM/M0)

3/4. (1.40)

Now we would like to compare this entropy formula with the entropy formula of

non-extremal black hole in equation (1.29). By comparing the mass of the extremal

black hole of equation (1.25) with the extremal brane of equation (1.39), one can

write down Q in terms of N as

Q = 2κπ−5/2N. (1.41)

Then the black hole entropy in terms of δM
M0

is

Sbh =
25/4

33/4
π7/8N5/4κ−3/4L3(δM/M0)

3/4. (1.42)

Hence the two entropies are related as

S0 =
(

4

3

)1/4

Sbh. (1.43)

Next we consider the temperature of the two theories. In the statistical method we

know that dE = TdS and dE = dM . Also using dM = THdSbh for black holes we

immediately get

TH =
(

4

3

)1/4

T. (1.44)

Now coming back to the free energy of the statistical system and it can similarly be

written as

F0 = −
√

π

3 κ
NL3

(

δM

M0

)

(1.45)

and black hole free energy of equation (1.32) with respect to extremal black hole can

be rewritten by using equation (1.41)

Fbh = −
√

π

3 κ
NL3

(

δM

M0

)

. (1.46)
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Thus the relation between these two free energies is

F0 = Fbh. (1.47)

Notice that here we have calculated the entropy and the free energy for both sides in

the weak coupling limit at different temperatures. The gauge theory is on S1 × S3

which is the boundary of thermal AdS where the thermal circle is denoted as S1. We

should, therefore, calculate these two quantities at the same temperature [31]. Let

us call this temperature TH . Then we replace T of (1.36) in terms of TH by using

equation (1.44). Now if we do the similar computation as earlier to get relations

analogous to (1.43) and (1.47), these would be changed as

S0 =
4

3
Sbh and F0 =

4

3
Fbh. (1.48)

Thus except numerical factor there is a matching of thermodynamic quantities be-

tween the theory of AdS space and the boundary gauge theory in the weak coupling

limit. It is argued in [31], that if we compute these quantities in the strong coupling

limit of boundary gauge theory, this discrepancy may not appear. In fact, in the ’t

Hooft large N limit, the entropy and free energy of the boundary theory are given

respectively [27, 31] as

S = S0f(g2
Y MN) and F = F0f(g2

Y MN). (1.49)

The function f is not a constant, rather it has a perturbative expansion in weak

[32, 29, 31] and strong coupling limits [27, 29] respectively as

f(g2
Y MN) = 1 − 3

2π2
g2

Y MN +
3 +

√
2

π3

(

g2
Y MN

)3/2
+ .. for small g2

Y MN

=
3

4
+

45

32

ζ(3)

(g2
Y MN)3/2

+ ... for large g2
Y MN. (1.50)

So, at the strong coupling limit, entropy and free energy of both side exactly match.
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1.6 AdS/CFT Correspondence and Implications

In the previous sections we have shown that there are precise matchings of thermody-

namic quantities between the weak coupling theory of AdS bulk space and the strong

coupling boundary gauge theory of AdS bulk. We also noticed that the isometry

group of AdS5×S5 was SO(2, 4)×SO(6), the two factors are coming from AdS5 and

S5 respectively. These symmetries are exactly the conformal group and R-symmetry

group of N = 4 Super Yang-Mills theory on the D3-brane as we mentioned in section

1.4.

Following these observations, Maldacena conjectured an equivalence between these

two different theories. This is known as AdS/CFT correspondence. According to this

conjecture [1], type IIB superstring theory on asymptotically AdS5 × S5 is dual to

U(N), N = 4 SYM (CFT) on the boundary 3+1 dimensional Minkowski space. More

generally a p + 1 dimensional quantum theory of gravity is dual (which we explain

at the end of this section) to p dimensional quantum gauge theory. In the large N

limit, this duality is between the weakly coupled gravity theory and strongly coupled

gauge theory.

Due to the absence of a formulation of string theory on AdS space and lack of

adequate techniques to study strong coupling regimes of gauge theories, quantitative

check of this conjecture is difficult. Nevertheless, encouraging agreements of the

qualitative features between the bulk and the boundary theories have accumulated

over the last few years [1, 2, 3, 4, 29, 26]. One of the remarkable checks [4] in this

direction is the identification of the crossover from the thermal AdS phase to black

hole phase, (known as Hawking-Page transition [33]), with the large N deconfinement

transition of the gauge theory on the boundary. In the next chapter we discuss this

identification in more detail. We end this section by noticing that the supergravity

description of the bulk is only valid at α
′ → 0 limit. Now recall from (1.12), that we
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have
l4

l4s
= 4πgsN = g2

Y MN = λ, (1.51)

where l is AdS length scale, ls =
√

α′ and λ is ’t Hooft coupling. In the limit ls → 0,

for fixed gs, N → ∞. Consequently, the gauge coupling λ is very large in this limit.

In order to study the supergravity limit, it will be useful for us to analyse IIB

supergravity under S5 compactification. We review this compactification in the next

section. The results of this section will be used in the next chapter.

1.7 Type IIB Supergravity Action

The ten dimensional type IIB action in (1.4) in supergravity limit (α
′ → 0), reduces

to

I10 =
1

16πG10

∫

d10x
√

|g(10)|
[

R(10) − 1

2

1

5!
F

(10)2
5

]

. (1.52)

Since we will be focusing on D3-brane only, the dilaton will be constant. Hence action

in (1.52) does not carry any explicit dilaton dependence. To get the five dimensional

action in AdS5 × S5 geometry we consider the spontaneous compactification of the

ten dimensional action on S5 [34, 35]. Separating the metric as

ds2 = g(5)
µν dxµdxν + l2dΩ2

5. (1.53)

Here g(5)
µν is the metric of AdS5 and dΩ2

5 is the metric on S5, which can be represented

by five angular coordinates θ1, θ2, θ3, θ4, θ5. Since the metric is diagonal, ten dimen-

sional Ricci scalar will be totally decoupled in two components, one coming from

AdS5 part and another from S5 part respectively. We denote them by R(5) and R(S).

Since we are interested to get five dimensional action in AdS5, we keep first compo-

nent as it is and evaluate the second one from S5 metric. Then the value of R(S)

is 20/l2. Similarly the five form field strength F (10) has nonvanishing components

F (10)
µ1µ2µ3µ4µ5

= F (5)
µ1µ2µ3µ4µ5

and F
(10)
θ1θ2θ3θ4θ5

= F
(5)
1 εθ1θ2θ3θ4θ5 , where F

(5)
1 is a zero-form

field strength on the AdS5. To write down the both components of the form field in
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terms of zero-form field in the action, we use the Hodge dual transformation for the

first component which is F (5)
µ1µ2µ3µ4µ5

= 1
l5
F

(5)
2 εµ1µ2µ3µ4µ5 . Here F

(5)
2 is also a zero-form

field strength on the AdS5. After rearranging the all fields and integrating over the

S5 the ten dimensional action reduces to the five dimensional form as

I5 =
1

16πG5

∫

d5x
√

|g(5)|
[

R(5) +
20

l2
− 1

2

1

l5

(

F
(5)2
1 + F

(5)2
2

)

]

, (1.54)

where G5 is the five-dimensional gravitational constant related to G10 as G5 =

G10/π
3l5. The Bianchi identities for the zero-form field imply that they are con-

stant and the self-duality of the five form field demands that they are same. The

equation of motion of form field gives the value of the zero-form field. Thus the value

of the last term of the above integral can easily be calculated. This comes to (8/l2)

(see [34] for more detail). Therefore, the final form of the five dimensional action is

I5 =
1

16πG5

∫

d5x
√

|g(5)|
[

R(5) +
12

l2

]

. (1.55)

With this brief introduction, in the next section we discuss the structure of the thesis.

This section also serves as a summary of the work done in this thesis.

1.8 Plan of the Thesis

Assuming AdS/CFT conjecture, in the subsequent chapters we study different types

of bulk theories as well as their corresponding boundary gauge theories.

In chapter 2, we consider bulk space consisting of AdS-Schwarzschild black hole.

In particular, we discuss the thermodynamic features of AdS-Schwarzschild black

hole. We then study the Hawking-Page (HP) transition and identify that with the

deconfinement transition of the boundary theory. Finally, following [36] we construct

a phenomenological effective Lagrangian for the strongly coupled boundary theory

which reproduces the qualitative features of the bulk theory. As we will discuss in

detail, this Lagrangian consists of two terms in power of eigen values of the Wilson
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loop operators. The coefficients of these terms depend on the temperature and the

’t Hooft coupling λ. We numerically analyse the dependence of these two coefficients

on T for fixed λ.

In the next chapter, we study the behaviour of this phenomenological Lagrangian

as we perturbatively decrease λ. This is done by adding higher derivative terms in

the bulk action. Adding higher derivative terms imply that we are increasing the bulk

coupling constant. Consequently, the dual nature of the correspondence suggests that

the boundary theory becomes weaker. In this chapter, we introduce Gauss-Bonnet

term in the bulk supergravity Lagrangian. As before we study thermodynamics of the

bulk theory and their corresponding boundary duals. We compute how two parame-

ters of the above model behave as a function of λ at fixed temperature. This is done

by comparing the bulk and boundary theory near the HP point. Furthermore, we

notice that in order to reproduce the complete phase diagram of the bulk, we need to

introduce suitable higher order operators in gauge theory. This involves introduction

of more parameters which also depend on λ and T .

In chapter 4, we study the bulk phases of R-charged black hole in the presence

of higher derivative terms. These charges appear due to rotation of internal S5. In

gauge theory, it corresponds to introducing chemical potential µ. We study how our

previous model captures qualitative phase structures of the bulk. Here we study the

theory in both canonical and grand canonical ensembles.

In chapter 5, we end with a summary of our results.
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Chapter 2

AdS-Schwarzschild Black Holes

and Boundary Gauge Theory

2.1 Introduction

In the previous chapter, we briefly discussed the AdS/CFT correspondence. Due to

the dual nature of the correspondence, any quantitative check of this conjecture be-

comes difficult. When the bulk is in the weak coupling phase, it is well described by

supergravity. However the dual boundary gauge theory is then strongly coupled. At

this moment, lattice gauge theory is perhaps the only way to analyse these theories.

On the other hand, when the gauge theory is weak, we can reliably do perturbative

computations. Unfortunately then the gravity becomes strongly coupled. Supergrav-

ity approximation is no longer valid and one needs a string theoretic description.

However, string theory in AdS space is not yet well understood. Consequently, most

of the features supporting the conjecture are qualitative in nature. In this chapter

we first discuss supergravity/gauge theory correspondence from a somewhat differ-

ent perspective. We will assume the validity of AdS/CFT conjecture. Using this

correspondence we will try to construct a phenomenological Lagrangian which may

describe the strongly coupled gauge theory. As we will discuss, we do not expect this

22
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Lagrangian to be unique unless perhaps when we are sufficiently close to the critical

points. The Lagrangian was first proposed in [1] and in this chapter we will briefly

review this work.

In the next section, we start by focusing on the bulk supergravity. More specifi-

cally, we analyse the AdS-Schwarzschild black hole. In section 2.3, we review thermo-

dynamic quantities associated with AdS-Schwarzschild black hole [2, 3, 4, 5, 6, 7, 8].

We then take a fresh look at the HP transition. In section 2.5, as in thermodynamics

of first order phase transition, we construct the Landau function by identifying black

hole horizon as an order parameter. On shell, this function reproduces the free energy

of the black hole. In section 2.6, we turn our attention to the boundary gauge theory.

Here we review the work of [9, 10, 11, 1]. In these works effective strong coupling

gauge theory action was phenomenologically constructed. This action is constructed

in terms of Wilson loop operators. The coefficient of various terms are expected to

depend explicitly on the coupling λ and the temperature T . We end the section

by discussing the variation of these coefficients as a function of temperature T (at

λ → ∞) near the HP point.

2.2 AdS-Schwarzschild Black Holes

We start by considering five dimensional gravitational action in the presence of a

negative cosmological constant Λ

I =
∫

d5x
√−g5

[R

κ5
− 2Λ

]

, (2.1)

where R is Ricci scalar and κ5 is related with gravitational constant G5 as κ5 = 16πG5.

As we noted in section 1.7, this action arises when we compactify IIB supergravity

on S5. By varying the action with respect to metric gµν, the equations of motion are

κ−1
5 (Rµν −

1

2
gµνR) + Λgµν = 0, (2.2)
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where Rµν is the Riemann tensor. We solve these equations by considering a metric

ansatz

ds2 = −Udt2 + V dr2 + r2dΩ2
3, (2.3)

where dΩ3 is the metric on 3-sphere and U and V are unknown functions of r. By

comparing components of Rµν from metric ansatz and substituting in the equations

of motion, one can easily show that

U =
1

V
and U(r) = 1 − m

r2
+

r2

l2
. (2.4)

Thus the metric is

ds2 = −
(

1 − m

r2
+

r2

l2

)

dt2 +

(

1 − m

r2
+

r2

l2

)−1

dr2 + r2dΩ2
3, (2.5)

where l is related to the cosmological constant as l2 = −6/κ5Λ and m is the integration

constant, related with the ADM mass of the black hole, M via the relation

M =
3 ω3 m

κ5
, (2.6)

where ω3 is the volume of the unit 3-sphere. In the asymptotic limit, r → ∞, the

metric reduces to the AdS metric

ds2 = −
(

1 +
r2

l2

)

dt2 +

(

1 +
r2

l2

)−1

dr2 + r2dΩ2
3. (2.7)

The metric has a curvature singularity at r = 0 and the horizon is located at r+,

where r+ is a real positive root of the equation

1 − m

r2
+

r2

l2
= 0. (2.8)

If we expand the Euclidean version of metric (2.5) around r+ the metric behaves as

ds2 ∼ dr2

A(r − r+)
+ A(r − r+)dτ 2 + r2dΩ2

3, (2.9)
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where A =
2l2+4r2

+

r+l2
. It has a removable coordinate singularity if the Euclidean time τ

has a particular period β. To see this, let us consider 2-dimensional space with polar

coordinates ρ and θ. Metric is given by

ds2
p = dρ2 + ρ2dθ2. (2.10)

To get a regular geometry, polar angle θ has to be periodic with period 2π. Otherwise

at ρ = 0, there will be a conical singularity. Defining ρ as r = A ρ2

4
+ r+, we see that

the metric (2.9) reduces to

ds2 = dρ2 +
(

ρA

2

)2

dτ 2 + ...... (2.11)

Therefore to remove the conical singularity at the horizon, τ has to be periodic with

periodicity

β =
4π

A
=

2πr+l2

2r2
+ + l2

. (2.12)

Now we identify this period with the inverse temperature. In statistical mechanics

of a quantum system in the state |q〉, the canonical partition function for inverse

temperature βst is

Z =
∑

q

〈q| e−βstH |q〉 , (2.13)

where H is the Hamiltonian of the system. In the path integral approach, one may

derive this quantity by considering system is in a state |qi〉 at time ti. The probability

that the system will be found in the state
∣

∣

∣qf
〉

at a final time tf

〈

qf
tf

∣

∣

∣qi
ti

〉

=
〈

qf
∣

∣

∣ e−i(tf−ti)H
∣

∣

∣qi
〉

. (2.14)

By identifying this probability with the partition function, one may write

Z =
〈

qf
∣

∣

∣ e−i(tf−ti)H
∣

∣

∣qi
〉

=
∫

Dq(t) eiS[q(t)]. (2.15)

The two formulas (2.13) and (2.15) are identical, provided the following changes are

made in the last formula:



AdS-Schwarzschild Black Holes.... 26

• set i(tf − ti) = β = βst or ti = 0, and itf = β = βst, since the origin of time can

be arbitrary.

• set qi = qf = q, so that the initial and the final states are the same; the fact that

the two states differ by an Euclidean time β, requires that the configurations

be periodic so that

q(β) = q(0), (2.16)

in the functional integrations. Thus periodicity of the Euclidean time of the space-

time is identified with the inverse temperature of the system and equilibrium condition

demands that the temperature of black hole should be same with the inverse of β.

We would now like to calculate the Euclidean action. This will be used to compute

various thermodynamic quantities. Following Witten’s approach [4], we note that

from the equation of motion that the Ricci scalar R can be written in terms of AdS

length scale l as

R = −20

l2
. (2.17)

Then the action is

I = − 8

κ5l2

∫

d5x
√−g5 = − 8i

κ5l2

∫

d5x r3 √γ =
8

κ5l2

∫ β

0
dτ
∫ R

r+

dr r3 ω3. (2.18)

Here γ is the determinant of the metric on the 3-sphere. In the large volume limit

(r → ∞), the action diverges. However this divergence can be removed if we calculate

this action by considering thermal AdS as1 the reference background. This requires

the two geometries to be identical at asymptotic boundary. In particular periodicities

in Euclidean time directions of these two geometries must be the same. Thus from

equations (2.5) and (2.7) it follows

√

1 +
r2

l2
βads =

√

1 +
r2

l2
− m

r2
β, (2.19)

1Thermal AdS is given by the Euclidean version of AdS metric 3.5 with any periodicity along
Euclidean time.
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where βads is the period of the thermal AdS back ground. Now the action is

∆I = Iblackhole − IAdS,

=
8 ω3

κ5 l2

[

∫ β

0
dτ
∫ R

r+

r3dr −
∫ βads

0
dτ
∫ R

0
r3dr

]

,

=
ω3 β r2

+

κ5

(

1 − r2
+

l2

)

. (2.20)

In getting the last expression we have used the boundary condition (2.19).

2.3 Thermodynamics

Thermodynamic properties follow from ∆I in (2.20). Before we do so, let us first

define some dimensionless quantities as

r̄ =
r+

l
and m̄ =

m

l2
. (2.21)

In terms of these quantities, the Euclidean time period β, or the inverse temperature,

can be written as

β =
2π r̄ l

2r̄2 + 1
. (2.22)

Figure 2.1 shows the nature of inverse temperature β vs. horizon radius r̄. It starts

with zero at r̄ = 0 and reaches maximum value (or minimum temperature Tmin =
√

2
πl

)

at r̄ = l√
2
, and finally goes to zero for large r̄. Therefore, unlike Schwarzschild black

hole in flat space, in AdS space black hole exists only beyond a critical temperature

Tmin. At this critical temperature black holes start to nucleate and above this value,

for a given temperature, there are always two black hole solutions. Depending on

their sizes, we call them small and big black holes. As we will see later in this section,

the small hole has negative specific heat, while the large hole has positive specific

heat. Since in thermodynamics, system with negative specific heat is unstable, we

call the small black hole unstable.
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Figure 2.1: Inverse temperature β vs horizon radius r̄.

The mass of the black hole be calculated by interpreting e−∆I as a statistical

average e−βE. We know I = ω3 β r̄2l2

κ5
(1 − r̄2). So

E =
∂∆I

∂β
=

∂∆I

∂r̄

∂r̄

∂β
, (2.23)

=
3 ω3 l2 r̄2

κ5

(

1 + r̄2
)

=
3 ω3 m̄ l2

κ5

= M.

The specific heat can be calculated via the relation

Cp =
∂E

∂T
=

∂M

∂r̄

∂r̄

∂T
=

6 ω3l
3(r̄ + 2r̄3)

κ5(
2
π
− 1+2r̄2

2 πr̄2 )
. (2.24)

Notice that, specific heat is positive if r̄ > l√
2

which is the solution of the denominator

( 2
π
− 1+2r̄2

2 πr̄2 ) = 0. Otherwise it is negative.

The entropy S of the black hole can be calculated from the Euclidean action by

identifying βF as I where F is the free energy. Then the entropy is

S = β E − ∆I =
4 π ω3 l3 r̄3

κ5
, (2.25)

and

F =
∆I

β
=

2π2r̄2l2

κ5

(

1 − r̄2
)

. (2.26)
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Note that the free energy is computed by subtracting the thermal AdS. So we expect

that, when free energy is positive, the black hole is unstable and will decay to AdS

by loosing its entropy via radiation of massless matter. This happens when r̄ < 1.

However, the free energy becomes negative for the black hole size greater than 1 in

dimensionless unit and it becomes stable. From equation (2.22), we see that for r̄ = 1,

T = Tc = 3
2πl

. Thus a transition occurs from the thermal AdS phase to the black

hole phase as we increase the temperature beyond Tc. Notice that for the thermal

AdS r̄ = 0. If we identify r̄ as an order parameter, around T = Tc there is jump

in the order parameter from r̄ = 0 to r̄ = 1. This can therefore be identified as a

first order phase transition. In literature, this is known as Hawking-Page transition

[2]. A plot of free energy vs. horizon radius for the AdS-Schwarzschild black hole

is shown in figure 2.2. In figure 2.3, we have plotted the free energy as a function

0.2 0.6 1 1.2
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1
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Figure 2.2: Free energy F vs. horizon radius r̄.

of temperature T . To summarize, we therefore have the following scenario. At low

temperature there is no black hole phase. If we increase the temperature, at Tmin,

two black hole solutions appear. Both of them have positive free energies with respect

to the thermal AdS. Hence they are both metastable phases. However above Tc one

has always positive free energy for the small black hole while the other has a negative
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free energy. The later is the stable big black hole phase. There is a crossover from

thermal AdS to the large black hole phase at Tc.
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Figure 2.3: Free energy F vs. temperature T .

To understand the behaviour of the dual gauge theory, in the next section, we

briefly review the Wilson loop computation of [12, 13, 14, 15, 16, 17].

2.4 Wilson Loop Computation

We consider a SU(N), N = 4 SYM gauge theory on the boundary in the limit

of N → ∞. Note that the boundary has the geometry of S1 × S3, S1 being the

compactified Euclidean time. It is believed that low temperature phase is in a confined

phase of mesons and glueballs. On the other hand, at the high temperature phase,

because of asymptotic freedom, the gauge theory is in the deconfined phase [18, 19]. In

general, to study this phase transitions we need to look for a proper order parameter.

The order parameter here is the Wilson loop operator, the one which wraps the

Euclidean time circle S1. It is defined by [12]

W (C) =
1

N
TrPexp

[

i
∫

C
dxµAµ(x)

]

(2.27)
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where
∫

C denotes the line integral along the closed Euclidean time circle S1 and P

denotes path ordering. Aµ is the gauge field on S3. To evaluate the expectation value

of this Wilson loop, we consider a rectangular loop (RT ) in the Euclidean space. Here

R is along one of the spatial directions x1 and T is along the Euclidean time direction.

A pair of infinitely heavy quark and anti-quark are at the end points of R. Then the

expectation value of this Wilson loop for large value of time T will behave as [20]

〈W (CRT )〉 |T→∞ ∼ e−KRT . (2.28)

We can interpate the exponent as −E(R)T , where E(R) is the potential between a

pair of heavy quark and antiquark. The coefficient K is the force between the pair

and this is independent of the separation between them. In the confining regime, pair

of quark antiquark behaves as if they are connected by a string of tension K. In the

confined phase E(R) → ∞. This is because to bring a single quark inside the confined

phase, one has to do infinite amount of work. However, in the deconfined phase E(R)

is finite. Thus in confined phase expectation value of the Wilson loop operator is zero

and in deconfined phase this has a finite value. Therefore, there is a discreate change

in the order parameter between these two phases. This is a requirement of the first

order phase transition.

One can calculate the expectation value of this Wilson loop for the bulk side. For

that the value of the Wilson loop is calculated from the area of the worldsheet ending

on the boundary Euclidean time circle S1 [13, 14, 15, 16, 17]. This area is the action

of the worldsheet in the corresponding background. Thus the expectation value of

the Willson loop is ∼ e−I . In the thermal AdS geometry, there is no contractible

circle wrapping in the thermal circle S1. So the area of this worldsheet is infinite

and expectation value is zero. On the other hand, for the black hole geometry, at

r = r+, the thermal circle contracts to zero size at the horizon and consequently there

is a finite expectation value of the Wilson loop. This leads to the identification of

the thermal AdS and black hole phases of the bulk with the confined and deconfined

phases of the boundary gauge theory respectively. HP transition in bulk is then the
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confinement/deconfinement transition in the boundary.

2.5 Landau-Ginsburg Potential

Keeping our future analysis in mind, in this section, we try to understand the HP tran-

sition from a slightly different perspective. We know, from standard thermodynamics,

that near the critical point of a phase transition, the system can be represented by

a Landau function. Construction of this function goes as follows. Let us consider a

function G which depends on order parameter η and temperature T in the following

way [21],

G(T, η) = α0η
0 + α1η

1 + α2η
2 + α3η

3 + α4η
4 + ....... (2.29)

Here αi, in general, are functions of T . We urge the function G to satisfy following

criterions:

• At η = 0, G should be zero. Consequently α0 must be zero.

• At low temperature, G has only one minimum at η = 0. This gives a condition

∂G
∂η

∣

∣

∣

η=0
= 0. This will not allow first power of the order parameter in the

expression of G. Thus α1 has to be zero.

• Above a certain temperature Tmin, one more minimum appears at η > 0. Min-

ima at η = 0 and η > 0 must be separated by a maximum. For a global stability

of the second minimum at high temperature, we need at least a quartic power

of order parameter. Higher powers can be neglected if we are sufficiently close

to the critical point. This leads to the following form of the Landau function

G(T, η) = α2η
2 + α3η

3 + α4η
4 + ....... (2.30)

• Furthermore, at the extrema of this function, that is at ∂G
∂η

= 0, we should

get back the expression of the temperature. If we then plug in the expression

of temperature in the Landau function, it should reduce to the free energy of
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the system. From these three conditions, remaining constants (α2, α3, α4) can

easily be calculated and the final expression for the Landau function can also

be written in terms of order parameter and temperature of the system.

If we apply this method for AdS-Schwarzschild black hole, we get the Landau function

as

G(T, r̄) =
ω3l

2

κ5

(

3r̄4 − 4πlT r̄3 + 3r̄2
)

. (2.31)

Here we have identified horizon radius r̄ as the order parameter. Note that ∂G
∂r̄

= 0

gives back the expression of temperature of equation (2.22) and then if we substitute

back the expression of temperature in (3.17), G(T, r̄) reduces to free energy of equation

(2.26). A plot of this Landau function G vs r̄ has been given in figure 2.4. It shows
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Figure 2.4: Landau free energy G vs. order parameter r̄.

that at a very low temperature, there is only one minimum at r̄ = 0, representing

the thermal AdS. If we increase the temperature, at Tmin, two more extrema appear.

Black hole nucleation starts here. However, below critical temperature Tc, the new

minimum has always higher energy than that of thermal AdS. At temperature Tc,

the two minima are degenerate suggesting a coexistence of both the black hole and

the AdS phases. Finally, above Tc only the black hole phase becomes stable. We

note that the discrete change of the order parameter at Tc represents a first order
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transition.

Witten, in [4], identified this transition with the confinement/deconfinement tran-

sition on the boundary. In the next section we elaborate this by constructing a phe-

nomenological matrix model. Here we follow [9, 10, 1].

2.6 Dual Matrix Model

It is a very hard problem to study various phases of gauge theory at strong coupling.

However, if we assume AdS/CFT correspondence, it is possible to construct a phe-

nomenologically motivated matrix model. Such a model is constructed in [1]. This

model qualitatively reproduces the bulk behaviour expected from AdS/CFT. Though

uniqueness of such model is always questionable (except perhaps near the critical

points), it is encouraging to find atleast one simple model of strongly coupled gauge

theory near criticality. In this section we discuss this model. We will call this as (a, b)

model for the reasons that will be obvious later.

Since the asymptotic boundary is S3, (a, b) matrix model represents gauge theory

on S3 × S1. At zero temperature, it is N = 4 supersymmetric SU(N) gauge theory.

Supersymmetry is broken when we consider the system at finite temperature.

In the next subsection, we first discuss the boundary theory at weak coupling.

Next, we review the proposal [1] of phenomenological (a, b) model for strongly coupled

gauge theory. This model has two parameters namely a, and b. On generic grounds,

one expect them to depend on the temperature T and the coupling λ. We end this

section with a discussion on temperature dependence of a, and b at fixed large λ.

Though the results are obtained in [1], we follow an approach which is suitable for

our purpose.
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2.6.1 Weak coupling

N = 4, SU(N) gauge theory at weak coupling has been analyzed by various authors

(see for example [9, 10]). For large N , when the ’t Hooft coupling λ = g2
Y MN is small

or zero, some of the results are explicitly known. Specifically, when λ = 0, it was

shown that the boundary gauge theory at finite temperature on S3 × S1 undergoes

a phase transition that can be identified as the“deconfinement” transition. S3 × S1

is a compact manifold and thus allows only colour singlet states by the Gauss law

constraint. Though non singlet states are never possible, there are various indications

that this transition mimics the deconfinement transition in gauge theories. One of

the indications comes from the fact that there is a jump of the free energy from order

N0 to order N2 [18] while the other is a discrete change in expectation value of the

Wilson loop.

We now start by considering the partition function of N = 4 free (λ → 0) super

Yang-Mills theory on S1 × S3 at a finite temperature T .

Z(λ, T ) =
∫

S1×S3
DAe−SY M (A). (2.32)

Kaluza-Klein reduction of the N = 4 theory on S3×S1 leaves only one massless mode,

namely, the zero mode of A0. Here A0 is the time component of the gauge field. One

can thus write down an effective action by integrating out all the massive modes. The

resulting model with the gauge fixing conditions, ∂iAi = 0 and ∂tα(t) = 0, is a zero

dimensional matrix model given by,

Z(λ, T ) =
∫

[DU ]eSeff (U),

where, U = eiβα , α =
1

ω3

∫

S3
A0, (2.33)

U is a unitary matrix and [DU ] is the measure. Gauge invariance requires that the

effective action has to be a polynomial of TrUn. Here n is an integer, allowed by the

Zn symmetry. The explicit form of the partition function is then given by [10],

Z =
∫

[DU ] exp

[ ∞
∑

n=1

1

n
z(xn)

(

Tr(Un)Tr(U−n)
)

]

, (2.34)
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where, z(xn) = zV (xn) + zS(xn) + (−1)n+1zF (xn) ; x = e−β,

and zV (xn), zS(xn) and zF (xn) are the partition functions of vector, scalar and fermion

respectively. This model can be rewritten in terms of the eigen values of the unitary

matrix by diagonalizing the matrix. Consider these eigen values as {ei θi} where θi

runs from (−π to π) and lie on a unit circle. One can write down the partition

function in terms of eigen values by replacing [10]

∫

[DU ] →
∏

i

∫

[dθi]
∏

i<j

sin2

(

θi − θj

2

)

; Tr(Un) →
∑

j

einθj (2.35)

Introducing the density of eigenvalues for U in the large N limit as

%(θ) =
1

N

N
∑

i=1

δ(θ − θi), −π ≤ θ < π, (2.36)

and defining Wilson loop as

1

N
Tr(U) = ρn =

∫ π

−π
dθ%(θ)ei n θ, (2.37)

partition function can be written as (see [10] for details)

Z =
∫

[dρ]e−N2V [%], (2.38)

where V [%] to leading order in 1
N

has the form

V [%] = −P
∫

dθ dφ ρ(θ) ρ(φ) log

(

2 sin
θ − φ

2

)

− S(ρ2
1). (2.39)

Here P denotes the principle part. Assuming that z(xn) contains only positive powers

of n, we have neglected all higher powers except n = 1 [1]. In the following analysis,

to simplify the notation, we will write ρ1 = ρ. The saddle point equation of motion

of the above equation is

P
∫

dφ %(φ) cot
θ − φ

2
= 2S

′

(ρ2)ρ sin θ. (2.40)

To get this equation we have used U † = U . In (2.40), prime represents the derivative

with respect to ρ2. The solution of the saddle point equation can easily be written
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down with the help of the results in [22, 23]. In the following, we discuss that and

then come back to (2.40).

Consider the partition function [22, 23]

Z =
∫

[dU ]eS(U) with S(U) =
1

g2
Tr(U + U †). (2.41)

The equation of motion is

P
∫

dφ %(φ) cot
θ − φ

2
=

2

λ
sin θ. (2.42)

The solution of this equation of motion is given by

%(θ) =
2

πλ
cos

θ

2

[

λ

2
− sin2 θ

2

]1/2

λ ≤ 2 |θ| ≤ 2 sin−1

(

λ

2

)1/2

,

=
1

2π

[

1 +
2

λ
cos θ

]

λ ≥ 2 |θ| ≤ π. (2.43)

Then the corresponding Wilson loop turns out to be
∫ π

−π
dθ%(θ)eiθ =

1

λ
λ ≥ 2,

= 1 − λ

4
λ ≤ 2, (2.44)

and the free energy is

F =
1

λ2
λ ≥ 2,

=
2

λ
+

1

2
log

λ

2
λ ≤ 2. (2.45)

We see a third order phase transition from gapped phase to ungapped phase at λ = 2.

This is known as Gross-Witten phase transition.

Now we go back to our original equation (2.40). Equation (2.40) and (2.42) are

same if we replace 1
λ

= S
′

(ρ2)ρ. Then one can find out the solution of saddle point

equation of (2.40) from (2.44). This is

S
′

(ρ2)ρ = a ρ = ρ for 0 ≤ ρ ≤ 1

2
,

=
1

4(1 − ρ)
for

1

2
≤ ρ ≤ 1. (2.46)
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In terms of the density of eigenvalues, the above transition is reflected by a jump of

ρ from zero to a nonzero value below and above Th respectively, where Th is given by

a = z(x) = 1. A plot of an effective potential of equation (2.46) is shown in figure

2.5.

0.2 0.4 0.6 0.8
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Figure 2.5: Effective potential V (ρ) vs. ρ. Blue and pink lines are for a = .8 and
a = 1.2 respectively.

These features are somewhat modified when a small value of the coupling λ is

turned on. It is possible to write Seff only in terms of powers of Tr(U) by using the

saddle point equations. An effective action containing only the quartic interactions

may be written as 2,

Z(λ, T ) =
∫

[DU exp

[

a(λ, T )Tr(U)Tr(U †) +
b

N2
(λ, T )

(

Tr(U)Tr(U †)
)2
]

. (2.47)

The equations of motion resulting from (2.47) are,

aρ + 2bρ3 = ρ 0 ≤ ρ ≤ 1

2
,

=
1

4(1 − ρ)

1

2
≤ ρ ≤ 1. (2.48)

2This model is obtained by keeping terms upto O(λ2) in the effective action. In the large N limit
such terms come from three loop computations. It also determines the sign of b. In [10] the phases
for both the signs of b have been studied. An explicit computation for pure Yang Mills theory on
a three sphere at finite temperature shows that b is positive, implying that the transition is of first
order at weak coupling [6].
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The matrix model (2.47) undergoes two different phase transitions as a function of

temperature. One is a first order transition similar to the zero coupling case, when

b > 0. The other is a third order transition for which the eigenvalue distribution goes

from the gapless phase for 0 ≤ ρ ≤ 1
2
, to a phase with a gap for 1

2
≤ ρ ≤ 1.

2.6.2 Strong coupling and comparison to gravity

If we assume the validity of (2.47) in the strong coupling regime (where a and b

are some complicated functions of λ and temperature), we surprisingly find that the

model replicates, almost completely, the phases of gravity obtained in the supergravity

approximation. To check that we first construct the effective potential that follows

from (2.47). It is given by,

V (ρ) =
1 − a

2
ρ2 − b

2
ρ4, 0 ≤ ρ ≤ 1

2

= −a

2
ρ2 − b

2
ρ4 − 1

4
log[2(1 − ρ)] +

1

8

1

2
≤ ρ ≤ 1. (2.49)

The constant 1
8

is added to make the potential continuous at ρ = 1/2.

Before getting into the comparison betwen theories of the bulk and the boundary,

we would like to recall some thermodynamic behaviour of the bulk which has been

studied in the previous section. At low temperature thermal AdS phase is stable.

However if we increase temperature gradually, above temperature Tmin, two more

black hole solutions appear. Smaller one is unstable and big one is stable. Finally,

at temperature Tc there is a crossover from thermal AdS to the big black hole phase.

Witten identified this transition with the confinement/deconfinement transition in

the boundary gauge theory. A natural order parameter that characterizes phases of

the boundary theory is Wilson loop operator, which is the density of eigen values in

matrix model.

Now, to compare bulk and dual gauge theory, we plot equations of motion (2.48)

and effective potential (2.49) in figure 2.6. The main figure is the plot of the left

(dashed lines) and the right hand side (solid line) of the saddle point equations for
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Figure 2.6: The main figure is the plot of left (dashed lines) and the right hand side
(solid line) of the saddle point equations. Tmin is the point where the two roots of
(2.48) merge. Tc is the curve corresponding to the Hawking-Page transition temper-
ature. The insert is the potential corresponding to these temperatures

the parameters a < 1 and b > 0. The insert figure is of the effective potentials for

the corresponding values of the parameters of the equations of motion (2.48). The

main figure shows that ρ = 0 is always a solution that represents the thermal AdS.

For particular values of the parameters, two more roots appear at ρ > 0, those can

be identified with stable and unstable black holes and the values of the parameters

may be related to the black hole nucleation temperature Tmin. Then, if we increase

the values of parameters in the same direction, there is a phase transition between

ρ = 0 phase and ρ > 0 phase. This can again be compared with the Hawking-Page

transition of the bulk. Thus, this simplified model indeed qualitatively reproduces

the thermodynamic behaviour of the gravity when a < 1 and b > 0 [1]. It is indeed

surprising that this simple model falls in the same universality class as that of the

gauge theory at strong coupling. A new feature that is not visible in the supergravity

approximation is the appearance of a third order transition that was mentioned in the

earlier paragraph. It was conjectured that this should correspond to black hole/string

transition [24]. It should however be noted that the matching is only qualitative and

the validity of the effective action (2.47) in the strong coupling regime is perhaps only

limited to the regions around the critical points.
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2.6.3 Temperature dependence of the parameters

The following part of this section is devoted to the study of the (a, b) model numer-

ically. In this analysis we take N → ∞ and the limit λ → ∞. The main aim is to

compute a and b as functions of T for fixed λ. This will be done by comparing the

matrix model potential with the action on the gravity side.

The comparison between matrix model potential and the action of the bulk the-

ory is valid as long as we can neglect the string loop corrections. The corresponding

temperature at which the supergravity description breaks down is identified as the

Gross-Witten transition point on the matrix model side [25]. Let Tmin be the tem-
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Figure 2.7: Plots of a(T, 0) and b(T, 0)

perature at which the black hole nucleation starts. For T > Tmin, it is well known

that for the gravity theory, one gets two solutions for the black hole.

Consider T > Tmin, for which we have3

2aρ2
1,2 + 2bρ4

1,2 + log(1 − ρ1,2) + log(2) − 1

2
= −I1,2, (2.50)

where the I1,2 are the actions for the large and small black-holes respectively and ρ1,2

are the corresponding solutions in the matrix model. Since the values of ρ1,2 are those

3We set l, ω3, κ5 to 1 in the numerical computations.
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at the extremum of the left hand side of (2.50), we have two more equations that are

given by (2.48).

For a given temperature, T , I1,2 are known from the gravity side, so the problem

now is to solve the above equations for a(T ), b(T ) and ρ1,2. We do this numeri-

cally. The solutions are plotted in figure 2.7. Note that a(T ) and b(T ) increases

monotonically with temperature.

2.7 Discussion

In this chapter we have reviewed five dimensional bulk theory in the supergravity

limit. The bulk has two configurations with same asymptotic geometry. One of them

is a black hole and the other is the thermal AdS. Black holes exist above a critical

temperature but AdS exists at any temperature. At this critical temperature, two

black holes nucleate. The big one has positive specific heat and small one is unstable

with negative specific heat. At any temperature free energy of the small black hole is

always positive. But only below Hawking temperature Tc free energy of the big black

hole is greater than AdS. Thus AdS is the stable configuration up to Tc. However,

above Tc free energy of the large black hole is less than that of AdS. Therefore beyond

this temperature, the big black hole is globally stable. At Tc, the two phases coexist

with same free energy and a first order phase transition takes place with an expected

discrete change in the order parameter. This phase transition is known as Hawking-

Page transition in literature. We studied this transition by constructing a Landau

function. Witten identified this phase transition with the confinement/deconfinement

transion in the strongly coupled boundary theory.

Finally, we have reviewed the phenomenological (a, b) matrix model on S1×S3 to

study strong coupling gauge theory. For certain range of parameters, this model qual-

itatively reproduces all the features of the bulk theory. This matrix model however

shows one more phase transition, where eigen value distribution goes from gapless
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phase to a gapped phase, similar to the Gross-Witten third order transition. This

has no analog in the bulk theory. Parameters of this model are expected to depend on

temperature and gauge coupling. We have analysed their dependence on the temper-

ature for fixed λ. We found that they are always increasing function of temperature

for fixed gauge coupling λ → ∞. However, to get their behaviour for different values

of λ, one has to increase the gravitation coupling in the bulk. This can be effectively

done by adding higher derivative term (we will call this as α
′

corrections in the the-

sis). In the next chapter we include such terms and discuss the phenomenological

Lagrangian of dual theory.
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Chapter 3

Higher Derivative Gravity and

Dual Matrix Model

3.1 Introduction

In this chapter, we analyse the response of the Hawking-Page transition [1] and the

corresponding matrix model as we perturbatively increase the gravitational strength.

Our study is partly motivated by the recent works in [2, 3, 4, 5, 6, 7]. In these papers,

authors have argued in different ways that a version of HP transition occurs even at

weak coupling gauge theory. By AdS/CFT dictionary [8, 9, 10, 11, 12, 13], this would

show up as a transition in strongly coupled gravity theory in the bulk. Noting the fact

that string theory in AdS space is as yet poorly understood, we study a much simpler

system in this chapter. We add higher derivative terms in the supergravity action and

study their effects on HP transition. We note here that higher derivative terms would

arise in gravity action due to α′ corrections in underlying string theory. While a study

with a general class of higher derivative terms would be desirable, in this thesis, we

consider only the effects due to Gauss-Bonnet(GB) terms. One advantage of working

with GB correction to the gravity action is that the black holes can be constructed

explicitly. It is known that GB corrections arise in Heterotic or K3 compactification

47
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of type IIA theory (see for example [14]) but not in type II theories with maximally

supersymmetric compactification. The lowest correction in type IIB theory on AdS5

is of order α
′3. The thermodynamic phases of the perturbative supergravity solutions

as well as their boundary duals have been studied by various authors [15, 16, 17, 18].

However the qualitative phase structures in this case is quite similar to that of gravity

with GB (α′) correction. In the case with Gauss Bonnet terms we do not expect the

boundary theory on S3 × S1 to be N = 4 Yang Mills theory. However in the limit

α
′ → 0 the boundary theory should reduce to the strongly coupled SYM theory.

With the R2 corrections turned on, the gravity theory should correspond to some

deformation of N = 4 SYM.

In section 3.3, we analyse the black holes in GB theory with a particular focus on

their phase structures in five space-time dimensions. The phase structure depends

crucially on the GB coupling. For certain range of coupling, there exists three black

hole phases. We call them small, intermediate or unstable and big black hole phase.

It turns out that there are two first order phase transitions. One of them is from small

black hole to the big one at a temperature scale much lower than that of inverse AdS

curvature. The other one is similar to that of usual HP transition where a crossover

occurs from thermal AdS to the big black hole phase. We compute the change in HP

temperature in powers of the GB coupling at the crossover.

In Section 3.4, we study this effective theory by using phenomenological matrix

model which has been discussed in the earlier chapter. Just to recall, this model is

characterised by two parameters which we call, following [19, 20], a and b. Generally,

(a, b) depend on the gauge theory temperature and the ’t Hooft coupling λ. Following

AdS/CFT, the effect of adding higher derivative terms in the bulk translates to λ

corrections to the boundary gauge theory. Assuming a universal nature of the (a, b)

model around the critical points, we analyse the λ dependence of parameters (a, b)

around the HP points. We do this numerically.

Finally, in section 3.5, we construct a toy model which captures the whole phase
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diagram of the bulk. However, this requires introduction of four parameters in the

matrix model potential. These four parameters again depend on the temperature as

well as the gauge coupling. We then study the qualitative behaviour of this model.

This chapter ends with a discussion of our results.

3.2 Gauss-Bonnet black holes

We start by considering (n + 1) dimensional gravitational action in the presence of a

negative cosmological constant Λ along with a GB term.

I =
∫

dn+1x
√−gn+1

[ R

κn+1
− 2Λ + α(R2 − 4RabR

ab + RabcdR
abcd)

]

. (3.1)

This action possesses black hole solutions which we call GB black holes [14, 21, 22,

23, 24, 25, 26] . In the above action, α is the GB coupling. As the higher derivative

corrections are expected to appear from the α′ corrections in underlying string theory,

we will often refer to such corrections as α′ corrections in this thesis. The metric of

these holes can be expressed as

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

n−1, (3.2)

where V (r) is given by

V (r) = 1 +
r2

2α̂
− r2

2α̂

[

1 − 4α̂

l2
+

4α̂m

rn

]
1
2 . (3.3)

We first define various parameters that appear in the above equation. dΩ2
n−1 is the

metric of an n − 1 dimensional sphere. l2 is related to the cosmological constant as

l2 = −n(n − 1)/(2κn+1Λ).

Furthermore, we have defined α̂ = (n − 2)(n − 3)ακn+1, where κn+1 is the n + 1

dimensional gravitational constant. The parameter m in (3.3) is related to the energy

of the configuration as

M =
(n − 1)ωn−1m

κn+1
, (3.4)
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where ωn−1 is the volume of the n − 1 dimensional unit sphere. Asymptotically, the

metric (3.3) goes to AdS space, since in this limit

V (r) = 1 +
[ 1

2α̂
− 1

2α̂

(

1 − 4α̂

l2

)
1
2
]

r2. (3.5)

We see from here that the metric is real if and only if

α̂ ≤ l2/4. (3.6)

In our discussion, we will always consider α̂ satisfying the above bound. The metric

(3.2) has a central singularity at r = 0. The zeros of V (r) correspond to the locations

of the horizons.

In five dimension, for which n = 4, there is a single horizon at

r2 = r2
+ =

l2

2

[

− 1 +

√

1 +
4(m − α̂)

l2

]

. (3.7)

We note here that for a black hole to exist m > α̂.

3.3 Phases of GB Black holes

Thermodynamics of these black holes can be obtained via standard Euclidean ac-

tion calculation which is already discussed in the previous chapter. Following these

computations, the free energy and temperature can be written down as

F =
ωn−1r

n−4
+

κn+1(n − 3)(r2
+ + 2α̂)

[

(n − 3)r4
+(1 − r2

+

l2
) − 6(n − 1)α̂r4

+

l2

+(n − 7)α̂r2
+ + 2(n − 1)α̂2

]

,

T =
(n − 2)

4πr+(r2
+ + 2α̂)

[

r2
+ +

n − 4

n − 2
α̂ +

n

n − 2

r4
+

l2

]

. (3.8)

The black hole entropy is given by

S =
∫

T−1
(∂M

∂r+

)

dr+ =
4πωn−1r

n−1
+

κn+1

[

1 +
n − 1

n − 3

2α̂

r2
+

]

, (3.9)
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and the specific heat is

C =
∂M

∂T

=
4π(n − 1)ωn−1r

n−3(r2 + 2α̂)2[α̂l2(n − 4) + r2(l2(n − 2) + nr2)]

κn+1[α̂r2(6nr2 − l2(n − 8)) + r4(nr2 − (n − 2)l2) − 2(n − 4)α̂2l2]
. (3.10)

Many interesting features of the GB black holes, related to local and global stabilities,

can be inferred from a detailed study of the thermodynamic quantities. In the rest of

the section, we proceed to do so by considering the holes in five dimensions (n = 4).

Let us first introduce two dimensionless quantities

ᾱ =
α̂

l2
, and r̄ =

r+

l
. (3.11)

We would like to express various thermodynamic quantities in terms of these dimen-

sionless constants. The free energy given in (3.8) can be written as

F = − ω3l
2

κ5(r̄2 + 2ᾱ)

[

r̄6 + (18ᾱ − 1)r̄4 + 3ᾱr̄2 − 6ᾱ2
]

. (3.12)

It then follows from (3.12), that within the range of allowed value of the coupling ᾱ

(see (3.6)), F starts being positive at r̄ = 0 and changes sign only once as we increase

r̄. The number of extrema of the free energy, however, crucially depends on ᾱ. In

particular, when ᾱ is in the region

0 < ᾱ ≤ 1

36
, (3.13)

F has three extrema. At these points, F takes non-zero positive values. However, for

1

36
≤ ᾱ ≤ 1

4
, (3.14)

F has no extremum for any non-zero r̄. It starts with a nonzero value at r̄ = 0, then

decreases monotonically and becomes negative at large r̄. Typical behaviour of the

free energy as a function of r̄ is shown figure 3.1. We will refer back to this plot when

we analyse the stability of these holes.
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Figure 3.1: Free energy as a function of r̄ for different values of ᾱ. The pink line is for

ᾱ = 1/40 and the other one ᾱ = 1/32.

For now, we turn our attention to the temperature of the black holes. It follows

from (3.8) that the temperature is given by 1

T =
r̄ + 2r̄3

2πl(r̄2 + 2ᾱ)
. (3.16)

At r̄ = 0, temperature starts out from zero and, regardless of the value of ᾱ, it

increases for small r̄. However, at larger r̄, the number of extrema depends on ᾱ. In

the region given in (3.13), there are two of these extrema. Both of these disappear as

we increase ᾱ to region (3.14). A plot of the temperature as a function of r̄ is shown

in figure 3.2.

To examine the phase structure of these black holes, it is instructive to consider the

behaviour of the free energy as a function of temperature (for different values of ᾱ).

1In the limit l → ∞ (Λ = 0) this solution reduces to the asymptotically flat Gauss Bonnet black
hole. The temperature is then given by

T =
r+

2π(r2
+ + 2α̂)

(3.15)

For finite value of α̂, temperature begins with zero value at r+ = 0 and gradually increases for small
r+. Finally it reaches a maximum value at r+ =

√
2α and then again goes towards zero at large

r+. Since the temperature has a maximum, above this critical value there is no black hole solution.
At any temperature below there are two black hole solutions, small and large. The small black hole
has positive specific heat and is locally stable. The larger one is unstable due to its negative specific
heat. This is to be contrasted with the Schwarzschild black hole solution without R2 correction,
where we have only one unstable solution existing at all temperatures.
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Figure 3.2: Temperature as a function of r̄ for different values of ᾱ. The red line is for

ᾱ = 1/50 and the other one ᾱ = 1/30.

From (3.12) and (3.16), it is possible to construct the temperature dependence of the

free energy. However, the analytical expression is not very illuminating. Therefore,

we plot the nature of the free energy as a function of temperature in figure 3.3. This

plot is for two different values of ᾱ belonging to the two different regions given in

(3.13) and (3.14). Note that, as we increase ᾱ from region (3.13) to region (3.14),

nature of F changes at a critical value ᾱ = ᾱc = 1/36. We therefore study these two

regions separately.

3.3.1 Phase structure for ᾱ ≤ ᾱc:

When ᾱ ≤ ᾱc, the free energy is shown by the red line in figure 3.3. At low temper-

ature, it has only one branch (shown as branch I in the figure). However, when the

temperature is increased beyond a certain value (which we call T1), two new branches

appear (II and III). One of these two branches (II) meets branch I at a temperature

beyond, say T3, and they both disappear. On the other hand, branch III continues

to decrease rapidly, cuts branch I at temperature, say T2, and becomes negative at

a temperature which we will call Tc in the future. While computing specific heat

using (3.10), we find that it is positive for branch I, and III. Therefore, these phases
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Figure 3.3: Free energy as a function of temperature. The red one is for ᾱ = 1/50 while

the other one is for ᾱ = 1/30.

correspond to stable black holes. They, however, differ in their sizes; branch I rep-

resents smaller sized black holes than that of branch III. Going back now to branch

II, we find that the specific heat is negative. We, therefore, conclude that branch II

represents an unstable phase of the black hole.

The above picture is similar to that of the van der Waals gas. In particular, the

Gibbs free energy of van der Waals gas, for an isotherm, behaves in a similar manner

as we vary pressure. A thermodynamic equilibrium state is reached by minimising

the Gibbs free energy. Likewise, in our case, equilibrium state would correspond to

branch I of the free energy all the way up to temperature T2 and then branch III from

temperature T2 and above. The free energy curve then remains concave as expected

for a thermodynamical system. We, however, note that since there is a discontinuity

of dF/dT at T = T2, one has a first order phase transition at T2. Two black hole

phases would differ from each other at this point by a discontinuous change in their

entropies. We will call these as the first Hawking-Page (HP1) transition for reasons

that will be obvious later.

This phase structure can be nicely described by constructing a Landau function
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around the critical point. By identifying the dimensionless quantity r̄ as an order

parameter, we can construct a function Φ(T, r̄) as

Φ(T, r̄) =
ω3l

2

κ5
(3r̄4 − 4πlT r̄3 + 3r̄2 − 24πᾱlT r̄ + 3ᾱ). (3.17)

At the saddle point of this function, that is when ∂Φ
∂r̄

= 0, we get back the expression

of the temperature given in (3.16). If we then substitute back the expression of

temperature in to (3.17), Φ(r̄) reduces to the free energy given in (3.12). As can be

seen from figure 3.4, for temperature T < T2, Φ(T, r̄) has only one global minimum.

This corresponds to the small black hole phase. However, at T = T2, appearance

of two degenerate minima suggests a coexistence of small and big black hole phases.

Finally for temperature beyond T2, only the big black holes phase remains (as this

phase minimizes the Landau function). Clearly, there is a discrete change in the order

parameter r̄ at T = T2. This is what we expect for a first order phase transition.
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Figure 3.4: Landau function Φ as a function of order parameter r̄ for different temperatures.

We have taken ᾱ = 1/50. The blue curve is for temperature T2, pink curve for temperature

T > T2 and the green one for temperature T < T2.

3.3.2 Phase structure for ᾱ > ᾱc:

For ᾱ > ᾱc, the free energy curve is shown by the green line in figure 3.3. Unlike the

previous case, free energy and its derivatives do not show any discontinuity. Therefore,
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there is no HP1 transition. Only a single black hole phase is found to exist at any

temperature.

3.3.3 Global phase structure of GB black holes:

As discussed earlier, for black holes with ᾱ = 0, there is a crossover from AdS to AdS

black holes at a critical temperature 3
2πl

. What happens to this transition as we turn

on ᾱ? In this situation, we note that we still have two geometries to consider. First

one is again a thermal AdS with metric being the Euclidean continuation of (3.2).

The function V (r) is given in (3.5). We identify this thermal AdS space, having ᾱ

dependent effective cosmological constant, with zero free energy. Now, from figure

3.3. we see that above a critical temperature, the free energy of the GB black hole

becomes negative, making it more stable compared to the effective AdS geometry.

We identify this as a HP2 point. This crossover temperature can be computed as a

power series in ᾱ and is given by

Tc =
3

2πl
− 33ᾱ

4πl
+ O(ᾱ2). (3.18)

We notice here that the GB correction reduces the transition temperature. Similar

phenomenon was noticed earlier in many AdS-gravity theories with higher curvature

terms [15, 16, 17, 18]. The global phase structure is shown in figure 3.5.

To this end, we would like to point out that the above picture of GB black holes

is quite similar to that of the five dimensional charged AdS black holes [27, 28]. The

stability properties of the charged black holes depend on whether we are considering

fixed potential ensemble or fixed charge ensemble. For the case of fixed charge en-

semble, various phases of black holes resemble that of the red line in figure 3.3. As in

our case, small black holes and large black holes are separated by a first order phase

transition point. However, a major difference is that for the charged black holes, in

fixed charge ensemble, thermal AdS is not a solution. Consequently, these holes are

globally stable. This is unlike GB black holes, where there is a HP2 transition. Below
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is for ᾱ = 1/30.

HP2 temperature, they are unstable.

3.4 Matrix Model :

In the previous sections we have analysed the phase structure of the gravitational

theory in the presence of a higher derivative correction. We would now like to con-

struct an effective Lagrangian for the gauge theory on the boundary. Like previous

chapter, the effective theory on the boundary can be described by a unitary matrix

model. Coefficients of this model depend on the ”t Hooft coupling λ (that is related

to α
′

by, α
′
√

2λ = l2 from the AdS/CFT correspondence) and temperature T .

The phase structure in the bulk theory that we have discussed in Section 3.3

contains various distinct qualitative features depending on the value of the correction

parameter α
′

. For nonzero α
′

, the phase diagram is modified in the regime where

r+ is small compared to
√

α′ (see figure 3.6). However as long as r+ (the solutions

corresponding to the black holes at a particular temperature) are greater than α′, the

phase diagram is qualitatively the same as that of the bulk theory without higher

derivative corrections. There are two possibilities.

• We can ignore this small black hole solution in the supergravity approximation,
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so that we only concentrate on solutions r+ >
√

α′. In this domain, it makes

sense to compare the bulk physics with that of the boundary (a, b) matrix model

discussed in the earlier chapter.

• If we include the small black hole solution in the supergravity approximation,

then in order to reproduce the bulk phases, the boundary matrix model needs

to be modified. In the next section we will propose a modified matrix model

potential that captures the bulk physics including the solution r+ which is less

than
√

α′.

Following the first possibility, this part of the section is devoted to a numerical study

of the (a, b) model incorporating the corrections due to the finite ”t Hooft coupling

λ. In this analysis we consider N → ∞. We first work in the limit λ → ∞ and

then by taking λ large but finite. The main aim is to compute a and b as of λ (to

the first order in 1/
√

λ) at fixed temperature T . This will be done by comparing the

matrix model potential with the action on the gravity side with α′ corrections as in
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subsection 2.6.3.

Having known the variations of a(T, 0) and b(T, 0) with respect to the temperature

we now incorporate the α′ corrections to I1,2 of equation (2.50) to get the first order

dependence on 1/
√

λ. We have

a(T, 1/
√

λ) = a(T, 0) +
1√
λ

∂a(T )

∂(1/
√

λ)
|1/

√
λ=0 +O(1/λ3/2), (3.19)

b(T, 1/
√

λ) = b(T, 0) +
1√
λ

∂b(T )

∂(1/
√

λ)
|1/

√
λ=0 +O(1/λ3/2).

The first order variations of equation (2.50) with respect to 1/
√

λ gives,

2
∂a(T )

∂(1/
√

λ)
ρ2

1,2 + 2
∂b(T )

∂(1/
√

λ)
ρ4

1,2 = −
√

λδI1,2(T ). (3.20)

In the above equations, δI1,2(T ) are given by,

δI1,2(T ) = α
′

β(δF1,2)

= − β√
2λ

(3r4
1,2 + 24r2

1,2 + 9). (3.21)

Where F is given by eqn(3.12). From these we get the values of ∂a(T )

∂(1/
√

λ)
and ∂b(T )

∂(1/
√

λ)

shown in figure (3.7).

At this point some comments about the sign of b are in order. In the limit when

the ’t Hooft coupling λ goes to infinity numerical computations show that b indeed is
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positive. However as we move from λ → ∞ to finite λ (that is obtained by including α
′

corrections in the bulk) we see that at any particular temperature ∂b(T )/∂(1/
√

(λ))

is negative. Though this numerical calculation shows that b decreases from a positive

value as we move down towards weak coupling, it is not clear whether the sign of

b will turn out to be negative or positive at weak coupling. In case it turns out to

be positive, we presume that the results for the gravitational side should correspond

qualitatively to those of the weakly coupled gauge theory.

The above analysis shows that the behaviour of the coefficients as functions of

temperature and λ are indeed the ones that we expect from the phases of the bulk

theory as long as we concentrate on the black hole solutions with r+ >
√

α′. The

expansions are carried out about λ → ∞ as it was argued in [19] that the effective

theory that is computed in the weak coupling falls in the same universality class as the

one in the strong coupling limit. The addition of higher derivative term in the bulk

does give information about 1/
√

λ corrections, however this (a, b) model is unable to

capture the phases including the small black hole solution. In the following section

we will analyse this issue, in detail, by proposing another model which qualitatively

reproduces various bulk phases of section 3.3.

3.5 A modified Matrix model

In this section we propose a modified (toy) matrix model which incorporates some

of the additional qualitative features on the gravity side arising due to the GB term.

We find, the minimal action that would reproduce these features needs to be quartic

in ρ2 and can be given by

S(ρ2) = 2N2[A4ρ
8 − A3ρ

6 + A2ρ
4 + (

1 − 2A1

2
)ρ2] , (3.22)

where Ai’s are the parameters, which depend on the temperature as well as on the

coupling constant. In the limit where the A4 and A3 vanish we get the (a, b) model

[19].
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The equations of motion ensuing from the action in (3.22) are given as follows.

We write

F (ρ) =
∂S(ρ2)

∂ρ2
= N2[8A4ρ

6 − 6A3ρ
4 + 4A2ρ

2 + (1 − 2A1)]. (3.23)

Then the equations in two different regions are

ρF (ρ) = ρ , 0 ≤ ρ ≤ 1
2
,

= 1
4(1−ρ)

, 1
2
≤ ρ ≤ 1. (3.24)

The potentials that follows from the above action is given by

V (ρ) = −A4ρ
8 + A3ρ

6 − A2ρ
4 + A1ρ

2 , 0 ≤ ρ ≤ 1

2
,

= −A4ρ
8 + A3ρ

6 − A2ρ
4 + (A1 −

1

2
)ρ2 − 1

4
log[2(1 − ρ)] +

1

8
,

1

2
≤ ρ ≤ 1

(3.25)

Let us analyze the solutions of equations of motion given by (4.29). The fact

that there are four parameters instead of two has made the analysis technically more

involved than (a, b) model[19]. For various ranges of parameters the model shows

different qualitative behaviour. As we will see we need to impose necessary restrictions

on the parameters so that the model reproduces the features that we found on the

gravity side. Before analyzing the solutions one comment is in order. In the following

we will find the analog of small stable black hole appearing as a minimum of the

potential but it always comes with an additional maximum of the potential. We do

not have on the bulk side a solution corresponding to this maximum. We interpret

this solution as a possible decay mode of the small stable black hole which may be

due to some stringy mechanism.

The behaviours of the solutions are encoded in the polynomial F (ρ) given in (4.30).

We begin with the coefficient of the lowest order term A1. From (3.22) we see in order

to make ρ = 0 tachyon-free we need 0 < F (0) ≤ 1 i.e. 0 ≤ A1 < 1/2. Once that is

imposed we consider the next coefficient A2. As we see on the bulk side our action
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should admit ( in one phase) 3 solutions that correspond to a small black hole, an

intermediate black hole and a big black hole. A necessary condition for the existence

of three solutions is A2 > 0. Though we get this constraint from a different argument

it agrees with [19]. Thus our model at a vanishing limit of higher coefficients reduces

to (a, b) model.

Restrictions on the higher coefficients are slightly more cumbersome and depends

on the positions of the turning points of the polynomial F . In that context it is useful

to consider the quadratic polynomial in ρ2: f(ρ2) = (1/ρ) ∂
∂ρ

F (ρ). This is given by

f(x) = 48A4x
2 − 24A3x + 8A2. The zeroes of f determine the non-trivial turning

points of F . In terms of this polynomial f the two different ranges of ᾱ correspond

to the following constraints:

• ᾱ > 1/36: For f(1) = 48A4 − 24A3 + 8A2 < 0 there is one turning point at

some 0 < ρ− < 1. With parameters in this range we can have either two solutions

(one maximum and one minimum of potential) or no solution. There is no way

we can obtain three solutions in this phase. Moreover, from the restriction on the

parameters it is clear that the range of parameters is not continuously connected

with the corresponding range where (a, b)-model is valid (i.e. A4 = A3 = 0). We

identify this phase with the range of ᾱ which corresponds to ᾱ > 1/36 on the gravity

side. However, that is not sufficient to ensure that there is always one minimum that

correspond to the single black hole on the bulk side. For that we need to impose a

further restriction on the coefficients such that, the turning point satisfies ρ− < 1/2

and F (ρ−) > 0. Then we always get a maximum for ρ < 1/2 ( that is in the region

with no cut) and a minimum of the potential. As the parameter varies the position

of this minimum changes from the ρ < 1/2 region to the ρ > 1/2 region. So this

phase corresponds to the restrictions: f(1) = 48A4 − 24A3 + 8A2 < 0, ρ− < 1/2 and

F (ρ−) > 0.

• ᾱ < 1/36: Again we look for turning points in the range 0 < ρ ≤ 1. For

f(1) = 48A4 − 24A3 + 8A2 > 0 either we get two turning points which we call ρ−
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and ρ+ (ρ− < ρ+) or none of them. That gives rise to 3 possibilities: the number of

solutions could be 4 (consists of two maxima and two minima), or 2 (consists of one

maximum and one minimum) or 0. This phase is continuously connected with that

of the (a, b) model and we identify this phase with the range of ᾱ given by ᾱ < 1/36

on the gravity side. The more detailed structure of the solutions depends on the

positions of the turning points ρ− and ρ+ and the values of the polynomial F (ρ) at

the turning points. Let us first consider F (ρ−) > 0 with 0 < ρ− < 1/2. There are

two possibilities: (i) If F (1/2) < 0 we have two solutions, one maximum and other

minimum in ρ < 1/2 range. The minimum corresponds to the stable small black hole.

We may or may not have two more solutions in the range ρ > 1/2. If we have two

solutions they would correspond to intermediate and big black hole. (ii) If F (1/2) > 0

we have one solution (maximum) in ρ < 1/2 and the other (minimum) in ρ > 1/2.

This minimum corresponds to the big black hole. The remaining possibilities are (iii)

ρ− < 1/2, F (ρ−) < 0 and (iv) ρ− > 1/2, F (1/2) < 0. In both of these cases there

is no solution in the range 0 < ρ < 1/2. Finally if there is no turning point and

F (1/2) < 0 there will be no solution in the range 0 < ρ < 1/2. Since the analysis on

the bulk side then requires that there is a solution for 1/2 < ρ < 1 we need to impose

the following constraint, namely, there should exist some value of ρ, ρ− < ρ0 < 1

such that 4ρ0(1 − ρ0)F (ρ0) > 1. That will give one maximum and one minimum in

the range 1/2 < ρ < 1 that corresponds to the small and the big black hole.

Thus we see for both the phases we need additional restrictions which shows there

are regions of parameters that does not agree with the features of gravity phase. This

suggests the fact that in the strongly coupled gauge theory there are restrictions on

various parameters. It may be interesting to calculate these parameters from field

theory set up (for weakly coupled gauge theory) and compare the values with the

restrictions obtained above.

In order to discuss the variation of potential with parameters it is useful to give
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a graphical description. We have four parameters, so for the sake of graphical de-

scription we restrict number of parameters to 2. We consider only the phases that

corresponds to the ᾱ < 1/36. We take fixed values of A1 and A4 and study the

features with the variation of two other parameters. We have chosen the values to be

A1 = .025 and A4 = 2.083. We have given plot of the potential against ρ in figure

3.8 and 3.9. In order to make the extrema explicit we choose different scales for the

potential for two different ranges of ρ, namely, 0 ≤ ρ ≤ 1/2 and 1/2 ≤ ρ ≤ 1. The

values of A2 and A3 are decreasing from the curve in bottom to that in top in figure

3.8 and from the curve on top to that in bottom in figure 3.9. There is always one

minimum at ρ = 0 where the potential vanishes. As we will see in figure 3.10 we need

to choose values of A2 and A3 restricted within a particular region outside which the

features that we get from the bulk will be absent. In the following, we give V (ρ) vs.

ρ plots for different values of A2 and A3:

• (A2, A3) = (.45, 2): Here we get two solutions: one maximum and one local

minimum in the range ρ ≤ 1/2 (i.e where there is no cut) and no solution at

ρ ≥ 1/2. We identify the minimum with the small stable black hole. This

corresponds to low temperature behaviour of GB black hole where we get only

one small black hole solution.

• (A2, A3) = (.4, 2): Here we get four solutions: In addition to the above maxi-

mum and minimum in the range ρ ≤ 1/2 we get one more local maximum and

one more local minimum appearing in the range 1/2 ≤ ρ ≤ 1. These latter

maximum and minimum can be identified with the intermediate black hole and

the big black hole. We identify this with the nucleation of the big black hole

and intermediate unstable black hole in the gravity picture.

• (A2, A3) = (.385, 1.9375): For further decrease of the parameters, the heights of

the local minimum in the range 0 ≥ ρ ≥ 1/2 (fig. 3.8) increases and the height

of the local minimum in the range 1/2 ≥ ρ ≥ 1 decreases (fig. 3.9) . At this
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value of the parameters the heights of the two minima become equal. We can

identify this point with a transition from small black hole to big black hole on

the gravity side which is termed as HP1 transition.

• (A2, A3) = (.38485, 1.93688): (Due to close proximity this plot appears on the

top of the earlier plot and not distinguishable in the present scale.) The height

of the minimum in the range ρ ≥ 1/2 becomes zero and thus equal to the

potential at ρ = 0. On the gravity side this corresponds to energy of big black

hole reaching zero and becoming equal to that of thermal AdS triggering HP2

transition.

• (A2, A3) = (.25, 1.5): Here we get two solutions because in the region ρ ≤ 1/2

the local minimum and local maximum is on the verge of disappearing. However,

the two solutions in the range ρ ≥ 1/2 will remain with the height of the

minimum in ρ ≥ 1/2 keeps on decreasing. This corresponds to the point beyond

which the small black hole on the gravity side disappears.

• (A2, A3) = (.248, 1.25): As we decrease A2 and A3 further, the solutions in the

range ρ ≤ 1/2 cease to exist (fig.3.8). The minimum in the range ρ ≥ 1/2 (fig.

3.9) becomes more and more deeper. This is in keeping with the fact that, at

high temperature on the gravity side the only stable configuration remains is

the big black hole.

As we see from the above analysis the coefficients decrease with temperature,

unlike the behaviour of the coefficients in the (a, b)-model. This can be interpreted

as the temperature gradient of the coefficients at the first order of inverse ’t Hooft

coupling has a negative sign relative to that at the zeroth order. At this range,

where appreciable 1/λ correction is taken into account, the contribution at first order

dominates over that at zeroth order.

Here we give a graphical presentation of the behaviour of the solutions using a

parametric plot of different critical points in the A2-A3 plane in figure 3.10 keeping
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Figure 3.8: Potential as function of ρ for the range 0 ≤ ρ ≤ 1/2 for increasing values of

A2 and A3. The different values of (A2, A3) are given above. The plots associated with

(.38485, 1.93688)and (.385, 1.9375) are not distinct in this scale.

A1 and A4 fixed as above. As we vary the parameters we encounter a curve IV in the

A2-A3 plane, above which the saddle point associated with the small black hole has

energy negative. From the analysis of black holes on the gravity side, it follows that

the small black hole energy is always greater than thermal AdS ensuring the stability

of the latter. So, in what follows, we restrict ourselves to the region below curve IV.

In the region bounded by IV, III and I, there are three saddle points. One is ρ = 0

which corresponds to the thermal AdS. There are two more saddle points: a local

maximum at ρ = ρ1 and a local minimum at ρ = ρ2. The latter corresponds to the

small black hole that we obtain on the gravity side. There is no solution analogous

to ρ1 in the gravity side. In the region bounded by II, III, IV and I, there appears

two more saddle points. One of them ρ = ρ3 is a local maximum and the other one

ρ = ρ4 is a local minimum. They correspond to the intermediate, and the stable

big black hole respectively. In the region on the left hand side of curve I, the saddle

points ρ = ρ1, ρ2 cease to exist. In the region above the curve IV, as we have already

mentioned, the potential of the saddle point ρ = ρ1 becomes negative showing the

energy of the associated small black hole on the gravity side becomes less than that

of thermal AdS.
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Figure 3.9: Potential as function of ρ for the range 1/2 ≤ ρ ≤ 1 for increasing values of

A2 and A3. The values of (A2, A3) used in the plots are given above. The plots associated

with (.38485 , 1.93688) and (.385 , 1.9375) are not distinct in this scale.

Similarly, the thermal history (for this choice of parameter) can be obtained from

figure 3.10 as follows. As we mentioned earlier, A2 and A3 will decrease with tem-

perature along the curve C. As we follow the curve C from right to left, we find the

ρ = 0, ρ1, ρ2 are the solutions on the right of curve III. As we cross curve III, we

encounter two additional saddle points ρ = ρ3, ρ4. Crossing the curve II corresponds

to the Hawking-Page transition. As we cross curve I, the saddle point corresponds to

the small black hole disappears.

Like the general case, here also as we see in the region bounded by the curve

I, along with a local minimum ( at ρ = ρ1) we always obtain a local maximum ( at

ρ = ρ2 ). We interpret this maximum, as we said earlier, as a bounce solution through

which the small stable black hole decays. It will be interesting to understand this

instability on the gravity side.

3.6 Discussion

In this chapter, we have discussed phase transition of asymptotically AdS black hole

solutions in presence of Gauss-Bonnet term. As long as ᾱ, strength of the coupling to



Higher Derivative Gravity.... 68

1.25 1.5 1.75 2 2.25 2.5 2.75 3
A3

0.25

0.3

0.35

0.4

0.45

0.5
A2

PSfrag replacements

I

I

I

II

II III

IIIIII

IV

IV

C

C

Figure 3.10: Parametric plots of different critical points in the A2-A3 plane. We choose

A1 = 0.25 and A4 = 2.083. In the region which is below or on the left side of curve I the

saddle points ρ± cease to exist. In the region above curve IV the potential of ρ+ vanishes.

Curve II corresponds to HP transition and on curve III the saddle points ρ1 , ρ2 merge.

GB term remains above certain critical value ᾱc, one gets a single black hole phase at

any temperature. However, as the coupling comes down below the critical value two

additional black holes appear. We called them small and intermediate black holes.

The intermediate black hole is found to have negative specific heat. It turns out that

this small stable black hole is a local minimum below a critical temperature. Beyond

this temperature small black hole disappears. We have studied the associated phase

diagram and find that the phase structure resembles that of van der Wall’s gas. In

addition to the the standard Hawking-Page transition, we have identified one more

phase transition where the two branches of the phase diagram meet. We find the

specific heat diverges at this new critical point.

Five dimensional theory of gravity usually corresponds to some gauge theory on

the boundary and the analysis on the gravity side has natural implications about the

gauge theory. In absence of Gauss-Bonnet term, the gravity theory on Euclidean AdS

( along with S5) is known to be dual to be pure N = 4 SYM on a three sphere at
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finite temperature and the phase diagram associated with the gravity theory captures

thermal history of N = 4 SYM on S3. In a similar spirit, we expect, dual of this five

dimensional gravity theory in presence of Gauss-Bonnet term is some deformation

of the above gauge theory and the phase diagram captures its thermal history. In

[19], qualitative features of N = 4 SYM on S3 was studied from the perspective of a

matrix model. This model is phenomenological in nature and is charecterised by two

parameters (a, b). On generic ground, one expects these parameters to be λ and T

dependent. Appealing to the universal nature of this model near the critical points,

we find out λ dependence of (a, b). This is done by mapping the bulk α′ correction

to the boundary. This method can easily be used to find similar 1/λ dependence

of matrix model coefficients in the case of other higher derivative corrections of the

gravity action, such as, R4 term in IIB theory.

We have also proposed a modified matrix model that captures the qualitative

features of the phase diagram of the bulk theory. Unlike (a, b) matrix model this

model is non-universal and the phase diagram is reproduced only in a selected region

of the parameter space. In addition the temperature dependence of the coefficients

turn out to be different from usual linearly increasing function. We also find that

there is an extra maximum, that always comes with the minimum corresponding to

small black hole and which has no analog in the bulk side. This could be related to

some state in string theory. At this point it may be mentioned that appearance of

string state in boundary theory occurred in [19, 20]. This corresponds to the Gross-

Witten transition [29, 30] and can be identified as a crossover from supergravity black

hole solution to string state [31]. Thus we keep this extra maximum in the region

0 ≤ ρ ≤ 1/2. In the bulk side, this stringy phase may act as a bounce via which the

small black hole can decay to AdS solution.
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Chapter 4

Higher Derivative Gravity and

Dual Matrix Model: R-charged

Black Holes

4.1 Introduction

In continuation with our previous chapter, we study the effects of Gauss-Bonnet

(GB) corrections to charged black hole in the AdS/CFT set up. Our aim is to

identify some of the universal features of the boundary matrix models at strong

coupling. The charged sector of the GB action contains a Maxwell term besides

the GB corrections. Maxwell term typically comes in type IIB theory on AdS5 ×
S5 from angular momentum along S5 direction, or in other words, from the SO(6)

gauge symmetry arising from the group of isometries of S5. We focus our attention

to those black hole configurations which have equal U(1) charges for all the three

commuting U(1) subgroups of SO(6). These black holes and their phase structures

were considered in [1, 2] (see also [3]). We study the changes of phase structures due to

GB corrections in canonical and grand canonical ensembles. On the gauge theory side,

in order to describe the charged sector, we use the same model as in previous chapter
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except we allow the coefficients of the model to depend on appropriate parameters of

the ensemble as well along with the temperature (T ) and the t’Hooft coupling (λ).

In this direction we first focus our attention on the phase structures of this black hole

in canonical and grand canonical ensembles.

Grand canonical Ensemble (Fixed Potential):

In the grand canonical ensemble, the black hole is allowed to emit and absorb charged

particles keeping the potential fixed till the thermal equilibrium is reached, which,

in this case, is governed by a fixed chemical potential. Here the phase diagram is

characterized by the chemical potential Φ and the GB coupling which we call ᾱ in

this chapter.

(Φ 6= 0, ᾱ = 0) : On the gravity side, the phase diagrams have been analyzed in

[1, 2]. If the potential Φ is below a critical value, various phases are similar to that

of AdS-Schwarzschild black hole while for Φ large enough, the black hole free energy

becomes negative compared to that of the thermal AdS at any fixed temperature. On

the gauge theory side, at zero and small λ, the phase structure was analysed in [4, 5],

while for large λ, a phenomenologically motivated matrix model can be constructed

and we will have occasion to elaborate on it at a later stage of this chapter.

(Φ 6= 0, ᾱ 6= 0) : This case is studied in section 4.2.1 where we find the critical

value of Φ depends on α. For small Φ, there are three different black hole phases;

one of them being unstable. Identifying the rest two as a small and a big black hole,

we find that there is a first order phase transition from the small to the big black

hole. However, once thermal AdS is included in the phase diagram, we find both the

small and big black hole phases are metastable at low temperature and big black hole

becomes stable only at high temperature. In order to clearly illustrate the various

phases in this range of Φ we construct a Landau function with black hole horizon

radius as the order parameter. When Φ is above the critical value, phase diagram

shows a single black hole phase which is stable beyond certain temperature while a

crossover from black hole phase to thermal AdS occurs for temperature lower than
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that. If we increase Φ even further, the black hole phase is always found to be stable.

All these phases can be summarized in a (Φ2 − ᾱ) diagram; see figure 4.1. We also

note that, in all the above cases, wherever there is Hawking-Page transition from AdS

to the black hole phase, the transition temperature is found to decrease with ᾱ.

We study the grand canonical ensemble of the dual theory in section 4.3.1 and

4.3.2. Here the parameters of the matrix model depend on the chemical potential

(µ). We find for the chemical potential less than the critical value the analysis is

similar to that of previous chapter. As earlier, the matrix model has an extra saddle

point that has no analogue in supergravity. We interpret this saddle point with some

phase in string theory. Beyond the critical potential we encounter different possible

situations depending on the position (expectation value of the Polyakov loop) of the

extra saddle point.

Canonical ensemble (Fixed Charge):

In the canonical ensemble, the black hole is allowed to emit and absorb radiation,

keeping the charge fixed till the thermal equilibrium is reached and the phase diagrams

are characterized by the charge of the black hole, q and the GB coupling ᾱ.

(q 6= 0, ᾱ = 0) : The phase structure is discussed in [1, 2] in great detail. There

exists a critical charge qc above which, at all temperature, only one black hole phase

exists. Below qc, there can be at most three black hole phases. We call them small,

intermediate and large. While the intermediate one is unstable, the small and big

black holes are stable. It was also noted that thermal AdS is not an admissible phase.

When we increase the temperature, there is a crossover from a small black hole to a

large black hole phase via a first order phase transition.

(q 6= 0, ᾱ 6= 0) : This part of the analysis is given in section 4.2.2, where, we find

the phase structure depends on two parameters q and ᾱ. In particular, in (q2 − ᾱ)

plane, we identify two distinct regions (see fig. 4.5) where region I consists of three

black hole phases, while in region II, only one black hole phase exists. Thermal AdS

continues to be non-admissible phase. As before, there is a transition from small to
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big black hole at a critical temperature. This temperature decreases as we increase

ᾱ.

Study of the canonical ensemble of the dual theory is discussed in section 4.3.3.

Since the explicit dependence of the coefficients of the matrix model on the chemical

potential is very hard to determine at strong coupling, we assume the the zero coupling

result is valid there or at least the universality class of the theory does not change

once we tune up the gauge coupling. We find that this dependence is consistent with

one of the possible scenarios. For this scenario, we write down the matrix model for

the fixed charge and find that this model correctly reproduces the phases of the black

holes with fixed charge.

The chapter is structured as follows. We begin with the thermodynamics of

charged sector in presence of GB coupling in section 4.2. Subsections 4.2.1 and

4.2.2 are devoted to discussion of canonical and grand canonical ensembles. The dual

theory is discussed in section 4.3. The grand canonical ensemble of the dual theory

is considered in subsection 4.3.1 and 4.3.2 while the canonical ensemble is discussed

in subsection 4.3.3.

4.2 Gauss-Bonnet black hole with electric charge

We start with n + 1-dimensional (n ≥ 4) action

I =
∫

dn+1x
√−gn+1

[ R

κn+1
− 2Λ + α(R2 − 4RabR

ab + RabcdR
abcd) − F 2

κn+1

]

. (4.1)

This action possesses black hole solutions which we call charged GB black holes [3].

These solutions have the form

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

n−1, (4.2)

where V (r) is given by

V (r) = 1 +
r2

2α̂
− r2

2α̂

[

1 − 4α̂

l2
+

4α̂m

rn
− 4α̂q2

r2(n−1)

]
1
2 . (4.3)
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The parameter q gives the charge

Q =
2
√

2(n − 1)(n − 2)ωn−1q

κn+1
, (4.4)

of the electric gauge potential

At = −
√

n − 1

2(n − 2)

q

rn−2
+ Φ, (4.5)

where Φ is a constant which we will fix below. Denoting r+ as the largest real positive

root of V (r), we find that the metric (4.3) describes a black hole with non-singular

horizon if
( n

n − 2

)

r2n−2
+ + l2r2n−4

+ ≥ q2l2. (4.6)

Finally, we shall choose the gauge potential At to vanish at the horizon. This fixes Φ

to be

Φ =

√

n − 1

2(n − 2)

q

r+
n−2

. (4.7)

This quantity is the electrostatic potential between the horizon and infinity. Asymp-

totically, the metric (4.3) goes to AdS space, as in this limit,

V (r) = 1 +
[ 1

2α̂
− 1

2α̂

(

1 − 4α̂

l2

)
1
2
]

r2. (4.8)

Hence we notice that the metric is real if,

α̂ ≤ l2

4
. (4.9)

We shall restrict ourselves to α̂ which satisfy the above bound. In this chapter, we

will primarily consider black holes in five dimensions (n = 4). However, it is easy to

extend the results of this section to higher dimensions.

The thermodynamic properties of the black hole will depend on whether we con-

sider the canonical ensemble (fixed charge Q) or grand canonical ensemble (fixed

potential Φ). The equilibrium temperature T can identified from the period β of the

Euclidean time of the metric (4.3), which in five dimensions is given by

β =
2πr+(r2

+ + 2α̂)

r2
+ + 2r4

+/l2 − q2/r2
+

. (4.10)
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As it will be useful for us to write thermodynamic quantities, as before, in terms of

dimensionless quantities, we define

r̄ =
r

l
, ᾱ =

α̂

l2
, q̄ =

q

l2
, m̄ =

m

l2
. (4.11)

In terms of these quantities, (4.10) can be expressed as

β =
2πlr̄(r̄2 + 2ᾱ)

r̄2 + 2r̄4 − q̄2/r̄2
. (4.12)

4.2.1 Grand canonical ensemble

In the grand canonical ensemble, with fixed potential Φ, the free energy can be

computed from the Euclidean continuation of the action (4.1). We obtain the action

(subtracting the AdS background) as

Igc = − ω3l
2β

κ5(r̄2 + 2ᾱ)

[

r̄6 + (18ᾱ − 1 + 4Φ2/3)r̄4 + 3ᾱ(1 − 8Φ2/3)r̄2 − 6ᾱ2
]

, (4.13)

where β is inverse of T expressed in terms of potential

β =
2πl(r̄2 + 2ᾱ)

r̄(1 − 4Φ2/3 + 2r̄2)
. (4.14)

It will be important for us to find out the number of turning points of β(r̄) as we

vary ᾱ and Φ. First of all, the nature of β(r̄) depends crucially on the value of Φ2.

For Φ2 > 3/4, β(r̄) blows up at r̄2 = (4Φ2/3 − 1)/2. Consequently, the temperature

is zero. Following [1, 2], we would like to identify this with an extremal hole. For r̄

less than this value, β(r̄) becomes negative. It can easily be checked that as long as

Φ2 > 3/4, regardless of the value of ᾱ, there is no turning point of β(r̄). If, on the

other hand, Φ2 = 3/4, β diverges at r̄ = 0 and goes to zero for large r̄. Now, to have

turning points, ∂β/∂r̄ = 0. This gives

r̄2
1,2 =

1

12

(

3 − 36ᾱ − 4Φ2 ±
√

(−3 + 12ᾱ + 4Φ2)(−3 + 108ᾱ + 4Φ2)
)

. (4.15)

From here, it follows that in order to have real roots, ᾱ should not lie within the

window
1

36

(

1 − 4Φ2

3

)

≤ ᾱ ≤ 1

4

(

1 − 4Φ2

3

)

. (4.16)
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Figure 4.1: The curves in the (ᾱ-Φ2) plane separating various regions with different
behaviours of black holes.

However, it is easy to check that for ᾱ ≥ 1
4
(1 − 4Φ2

3
), r̄2

1,2 are negative while ᾱ ≤
1
36

(1− 4Φ2

3
), r̄2

1,2 are positive. Hence, we have the following picture. For Φ <
√

3/2, β

has two turning points only if

ᾱ ≤ 1

36
(1 − 4Φ2

3
). (4.17)

The above features of β(r̄) can be nicely summarized is a (Φ2 − ᾱ) diagram. This

is shown in figure 4.1. The region satisfying (4.17) is the region I in the figure. So,

here β(r̄) has two turning points. However, note that for Φ2 < 4/3 and α = 0, β(r̄)

has only one turning point at non-zero r̄. In the rest of the regions namely II, III and

IV, there are no turning points of β(r̄). However, as in I, in region II, β(r̄) diverges at

r̄ = 0 while in regions III and IV, β(r̄) blows up at finite non-zero values of r̄. There

are other differences in these four regions (particularly when the free energies of the

black holes are considered). This is what we discuss in the next paragraph. Various

representative plots of the β versus r̄ for all these regions are shown in figure 4.2.

Free Energy: The free energy can be obtained from (4.13) as W = Igc/β. For

different values of the parameters, W has been plotted as a function of temperature
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ᾱ = 0.02

(a) (b)

(c) (d)

r̄

r̄

r̄

r̄

β

β

β

β

Figure 4.2: Plots of β vs r̄ for various values of (Φ2, ᾱ).

in figure 4.3. In this figure, (a) corresponds to the parameter values where we have

only one stable black hole solution. This is also the situation in the case of (d).

However, there is a distinct difference in their phase structures as is evident from the

plots. While the black hole phase has lower free energy than thermal AdS in (a) for

all temperatures, there is a Hawking-Page transition at Tc in (d). This difference can

easily be located in (Φ2−ᾱ) diagram in figure 4.1. In the region IV of this figure, black

hole at T = 0 has less energy than the thermal AdS and hence is stable. However, in

regions II and III, a hole at T = 0 is in a metastable phase while AdS is the stable

one. Hence this hole would decay to AdS by radiating away its energy. The line

separating III and IV represents hole with zero free energy at T = 0. The equation

of this line as a function of ᾱ and Φ2 is obtained by setting W (r̄, ᾱ, Φ2) = 0, where

r̄2 = 1/2(1 − 4Φ2/3). Note that this also means that on this line the Hawking-Page
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of Φ2 and ᾱ of figure(4.2)

temperature vanishes.

Now returning back to figure 4.3(b), we see that at low temperatures there is

no black hole phase. Two black hole phases appear as we increase the temperature.

The small one turns out to be unstable and the large one undergoes a Hawking Page

transition at Tc. Note that figure 4.3(c) is similar to the one we found in our previous

chapter (i.e for Φ2 = 0, ᾱ 6= 0). As in earlier chapter, we have therefore the following

scenario. At low temperature, free energy has only one branch (branch I). However,

as temperature is increased, two new branches (branch II and III) appear. Branch II

meets branch I at a certain temperature (T3) and they both disappear. On the other

hand, branch III continues to decrease, cuts branch I at a particular temperature

(T2) and becomes negative at temperature Tc. These three branches represent small,
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intermediate and large black hole. Out of these three, the intermediate black hole

is unstable with negative specific heat, while the rest are classically stable. As in

previous chapter, we get two first order phase transitions (HP1, HP2). HP1 is a

transition between small and large black hole at temperature T2 and the other (HP2)

is the usual transition between AdS to large black hole as Tc.

It is easy to construct a Landau function which represents the behaviour of the

free energy around the critical points. Identifying r̄ as the order parameter, this

function can be written as

W(r̄, T ) =
ω3l

2

κ5

[

3r̄4 − 4πlT r̄3 + (3 − 4Φ2)r̄2 − 24πᾱlT r̄ + 3ᾱ
]

. (4.18)

Notice that this expression reduces to the one in [6] when we set ᾱ to zero and to the
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one in previous chapter as we set Φ to zero. It can be checked that at the saddle point

of this function, we get the temperature (given by the inverse of the expression in

(4.14)). Substituting back the temperature in W, we get the free energy W . We have

plotted the Landau function in figure 4.4. Consider (c) in figure 4.4 in particular.

This is for Φ2 = 0.2, ᾱ = 0.01. Clearly, for T < T2, the global minimum occurs for

small r̄, representing a stable small black hole phase. At T = T2, small and big black

hole co-exist. At even higher temperature, big black hole represents the stable phase.

However, all these phases are meta-stable below T < Tc if we include thermal AdS

(representing the horizontal line with W = 0). Big holes then are only stable beyond

Tc. Note, that for (a) in figure 4.4, black hole is always the stable phase while for (b),

there is a crossover from thermal AdS to black hole at Tc. Finally, figure (d) is similar

to (a) except that the r̄ = 0 hole has more energy than the thermal AdS. To this end,

we note that since W = E − TS − ΦQ, we get the energy, entropy and charge as

E =
(∂Igc

∂β

)

Φ
− Φ

β

(∂Igc

∂Φ

)

β
= M

S = β
(∂Igc

∂β

)

Φ
− Igc =

4πl3ω3r̄(r̄
2 + 6ᾱ)

κ5

Q = − 1

β

(∂Igc

∂Φ

)

β
, (4.19)

where expressions for Q, M in terms of q, m respectively were defined earlier. It can

be checked that the first law of thermodynamics dE = TdS + ΦdQ is satisfied.

4.2.2 Canonical ensemble

We now consider the system in canonical ensemble where the charge q is kept fixed.

We first note from the expression of the temperature (4.10) that T is non-negative if

r̄2 + 2r̄4 − q̄2

r̄2
≥ 0. (4.20)
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When the equality is saturated, the temperature is zero and we call this an extremal

black hole. Denoting mass and the scaled horizon radius as m̄e and r̄e respectively,

we see that the following relation is satisfied:

m̄e = ᾱ +
r̄2
e

2
+

3q̄2

2r̄2
e

. (4.21)

Like in the previous case of fixed potential, we now identify the relevant regions

in the (ᾱ-q̄2) plane. The curve separating the regions for various number of positive

solutions for r̄ is given by the following parametric equations in r̄:

q̄2 =
1

15

(

6r̄6 − r̄4
)

, (4.22)

ᾱ =
5

3

(

r̄2 − 3r̄4

18r̄2 + 2

)

.

The curve is shown in figure 4.5. It can easily be checked that for any point in region

II, there is one real positive root for r̄ at any temperature. Below this, that is in

region I, there is a maximum of three. Furthermore, unlike the fixed potential case,

the vertical q̄2-axis i.e. for ᾱ = 0 we also have a maximum of three real positive

solutions as long as q̄2 < q̄2
c (= 1/135). We also notice that thermal AdS exists only

when q̄2 = 0. The corresponding β-r̄ plots for these regions are shown in figure 4.6.



....R-charged Black Holes 86

0.5 1 1.5 2

1

2

3

4

5

0.5 1 1.5 2

1

2

3

4

5

0.5 1 1.5 2

1

2

3

4

5

0.5 1 1.5 2

1

2

3

4

5

PSfrag replacements
q̄2 = 0.013
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Free Energy: We now compute the action (4.1) in the fixed charge ensemble. After

properly adding a boundary charge and subtracting the contribution to the extremal

background, we get

Ic =
ω3l

2β

κ5

[

r̄2 − r̄4 +
5q̄2

r̄2
+

8ᾱ(q̄2 − r̄4 − 2r̄6)

r̄2(r̄2 + 2ᾱ)
− 3

2
r̄2
e −

9q̄2

2r̄2
e

]

, (4.23)

where β is

β =
2πl(r̄2 + 2ᾱ)r̄

r̄2 + 2r̄4 − q̄2/r̄2
. (4.24)

The free energy can therefore be obtained as F = Ic/β. Behaviours of free energy

for different values of (q2, ᾱ) are shown in figure 4.7. We first of all note that, in

fixed charge ensemble, black holes with negative free energies are always the stable

compared to thermal AdS. Secondly, in (a) and (d), we see that given any temperature,

there is a single black hole phase, while in (b) and (c), there can at most be three
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phases. We call them small, big and intermediate black hole phases. We find that at

a certain temperature, which we call T̄ later, there is a first order phase transition

from small to big black hole phase. On the other hand, the intermediate black hole

is an unstable phase with negative specific heat. It can be shown by comparing (b)

and (c), that T̄ decreases as ᾱ increases.

Finally, the Landau function can be constructed as before. It is given by

F(r̄, T ) =
ω3l

2

κ5

[

3r̄4 − 4πlT r̄3 + 3r̄2 − 24πlᾱT r̄ +
3q̄2

r̄2
− 9q̄2

2r̄2
e

− 3r̄2
e

2

]

. (4.25)

It can be checked that, at the saddle point, it reproduces correct temperature T and

the free energy F . A plot of this function for different temperatures is shown in

figure 4.8. As can be seen in (a), for high q̄, there is a single black hole phase for

all temperatures. As we reduce q̄ beyond certain value, two new black hole phases
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appear in (b) for a certain range of temperature. Above and below this range there is

only one black hole solution. When the temperature is within this range, for T < T̄ ,

the small black hole is favoured. Otherwise, big black hole is the stable one. There

are degenerate minima at T = T̄ representing phase co-existence.

Now as we turn on ᾱ, we get (c) for low values of q̄, ᾱ. This is similar to (b) except

that the critical temperature T̄ reduces with ᾱ. Again, for large ᾱ, we get (d) which

is qualitatively similar to that of (a).

Finally, since F = E − TS, we have

E =
(∂Ic

∂β

)

Q
= M − Me

S = β
(∂Ic

∂β

)

Q
− Ic =

4πl3ω3r̄(r̄
2 + 6ᾱ)

κ5
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Φ =
1

β

(∂Ic

∂Q

)

β
=

√

3

4

( q̄

r̄2
− q̄

r̄2
e

)

. (4.26)

It can be checked that they satisfy the first law of thermodynamics dE = TdS +(Φ−
Φe)dQ.

In the next section, we study the matrix model representing the bulk at finite

temperature.

4.3 Dual Matrix Model

The dual matrix model, as we will see, has the same structure as before, except that

the parameters depend on the chemical potential µ besides λ and T . In the next

two subsections we discuss this model in grand canonical and canonical ensemble

respectively.

4.3.1 Matrix model with fixed chemical potential

Once we turn on a non-zero chemical potential the coefficients of the matrix models

will depend on the chemical potential. At zero coupling, i.e at λ = 0, this dependence

is easy to determine. As we mentioned in the introduction of this chapter, since three

equal U(1) charges come from the the rotational symmetry of SO(6), the vector part of

the partition function of equation (2.34) will not have any contribution from chemical

potential. However the scalar and fermionic parts will contribute. To include this

contribution, we consider scalars and fermions have ±1 and ± 1
2

charges respectively

with respect to U(1) ⊂ SO(6). The partition functions in these two parts modify as

zS(xn, µ) =
[

exp(+µ) + exp(−µ)
]

zS(xn)/2 = cosh(µ)zS(xn),

zF (xn, µ) =
[

exp(+µ/2) + exp(−µ/2)
]

zF (xn)/2 = cosh(µ/2)zF (xn). (4.27)

Then the total partition function in this case is given by (2.34) with

z(xn, µ) = zV (xn) + zS(xn) cosh(µ) + (−1)n+1zF (xn) cosh(µ/2). (4.28)
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This matrix model was studied in [4] and it happens to be similar to the case with

µ = 0, where there is first order deconfinement transition at temperature TH . Here

TH is given by z(x) = 1. There is a discontinuous change in ρ from zero to a nonzero

value. Above TH , the deconfined phase is preferred and has free energy O(N 2). Below

TH , the preferred confined phase has free energy O(1).

When a small λ is turned on, to the quadratic order in λ one gets a term of

the form (Tr(U)Tr(U−1))
2
. One may thus be inclined to propose a matrix model

corresponding to the black holes with chemical potential as was done earlier with the

(a, b) model for the black holes zero chemical potential. However, the dependence of

the coefficients, (a, b) on the chemical potential, though obvious in the λ = 0 case, is

not easy to determine when λ 6= 0. As was mentioned, the lowest correction is O(λ2)

that involves a three loop computation1. On the other hand, an alternative approach

is to write down a model in the strong coupling regime by comparing with gravity.

Though we do not hope to determine the exact dependence of the parameters on the

chemical potential, the restrictions on them so that the matrix model reproduces the

qualitative features of gravity can be inferred.

Let us begin with the case without α
′

corrections first and then include the effect

of α
′

corrections in the next subsection 4.3.2. We will consider the equation (2.48),

where now apart from λ and T , a and b are also functions of the chemical potential

µ.

When comparing with gravity, a(λ, T, µ) and b(λ, T, µ) will be assumed to be

positive for all values of µ. We have seen in section (4.2.1) that there exists a critical

value of the potential (µc) above which there is only one solution. Below this there

are a maximum of two solutions. The phase structure below the critical potential is

same as that of the uncharged case. This is reproduced by the (a, b) model [9] when

a < 1 and b > 0 as described in second chapter of this thesis.

From equation (4.14), we see that the radius of the small black hole at and above

1To our knowledge this computation is not available in the literature.
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Figure 4.9: Plots of the matrix model potential vs. ρ above µc showing the two
possible situations at finite temperature. At T = 0 the extremal black hole decays
into AdS, shown as a saddle point at ρ = 0.

the critical potential, becomes zero and negative respectively. The black hole with

positive radius approaches an extremal limit at T = 0. We know that thermal AdS

exists for all temperatures and at T = 0 the gauge theory is in the confined phase. We

thus have two solutions in gravity corresponding to the confined phase. However the

extremal black hole being nonsupersymmetric will ultimately decay into AdS at zero

temperature [1, 2]. We do not expect to capture the dynamics of this decay with the

static potential given by the (a, b) model. In fact the zero temperature configuration

with only the AdS is not continuously connected to the finite temperature (a, b) model

as we will see below.

At finite temperature, we always need to introduce an unstable saddle point (a

maximum). This follows from the observation that the smooth potential given by the

(a, b) model which gives two minima (corresponding to thermal AdS and the large

black hole in gravity) always includes a maximum in between. For µ > µc this maxi-

mum corresponding to the unstable black hole ceases to show up in gravity above. In

the matrix model, we interpret this phenomenon as follows. As µ increases beyond

µc this unstable saddle point in the matrix model enters the ρ < 1/2 region from

ρ > 1/2 region. Thus the region beyond µc corresponds to the values of a and b when
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the unstable small black hole of the (a, b) model has already undergone the third

order Gross-Witten transition [7, 8]. This imposes a constraint on the values of a

and b. Another constraint comes from the fact that the energy of the large black hole

in this region is lower than thermal AdS for all temperatures. At any finite temper-

ature, the theory is thus always in the deconfined phase. Both of these constraints

are satisfied if we set b > 2(1 − a). However, in light of these remarks, it is not

possible to tell whether the unstable saddle point has energy less or more than that

of AdS or whether it is at ρ = 0 or away from it. Thus it gives rise to two possible

scenarios depending on whether the unstable saddle point is at ρ = 0 or in the region

0 < ρ < 1/2 as shown in figure 4.9. In the following we discuss these two scenarios

separately .

(A) Unstable maximum is at ρ = 0 (a(µ ≥ µc, T ) ≥ 1): In this case we define

the critical potential µc by a(µc, T ) = 1. Here the unstable saddle point at ρ = 0

does not correspond to thermal AdS but to the unstable configuration not visible in

gravity as mentioned above. Thermal AdS does not feature in the plot. It has energy

higher than the black hole. The condition b > 2(1− a) is automatically satisfied as b

is assumed to be positive.

(B) Unstable maximum is at 0 < ρ < 1/2 (a(µ ≥ µc, T ) < 1): In this case the

saddle point at ρ = 0 is thermal AdS. The unstable saddle point has energy higher

than AdS. Since the black hole has energy less than AdS, a and b correspond to values

above the Hawking-Page transition. Also the saddle point for the maximum is at

ρ < 1/2. The critical potential in this case is given by, b(λ, T, µc) = 2 [1 − a(λ, T, µc)]

or by the curve in the parameter space of a and b that gives the Hawking-Page

transition, depending on whichever satisfies both the above conditions.

Finally we draw a diagram in the (a − b) parameter space to show the various

regions which depend on the number of saddle points. This is shown in figure 4.10. For
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µ > µc we have the following situation: At T = 0 the only solution which is thermal

AdS, is given by the region below line I. At any finite temperature the parameters

jump to values in regions (A) or (B).

PSfrag replacements
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Figure 4.10: The a − b parameter space for µ > µc. The zero temperature region is
below I and the finite temperature region is beyond III or II. Below I there is only
one saddle point at ρ = 0 corresponding to thermal AdS. On II the Hawking Page
transition occurs. III is the Gross-Witten transition line. IV is the line, a = 1

4.3.2 Including α
′

corrections : Fixed potential

As mentioned before, now we include α
′

corrections along with nonzero chemical

potential, the coefficients in the action (3.22) depend also on α′. The equations of

motion are of the same form as given in the µ = 0 case:

ρF (ρ) = ρ , 0 ≤ ρ ≤ 1

2
,

=
1

4(1 − ρ)
,

1

2
≤ ρ ≤ 1, (4.29)



....R-charged Black Holes 94

where we have defined

F (ρ) =
∂S(ρ2)

∂ρ2
= N2[8A4ρ

6 − 6A3ρ
4 + 4A2ρ

2 + (1 − 2A1)]. (4.30)

The potentials that follows from the above action are given by

V (ρ) = −A4ρ
8 + A3ρ

6 − A2ρ
4 + A1ρ

2 , 0 ≤ ρ ≤ 1

2
(4.31)

= −A4ρ
8 + A3ρ

6 − A2ρ
4 + (A1 − 1/2)ρ2 − 1

4
log[2(1 − ρ)] +

1

8
,

1

2
≤ ρ ≤ 1.

As seen from (4.29) ρ = 0 is always a solution. The action (3.22) evaluated at ρ = 0

vanishes. For zero chemical potential and ᾱ this solution corresponds to the thermal

AdS on the bulk side [9].

In the analysis of phase structure we saw as the chemical potential Φ and tem-

perature T vary we arrive different regions having different thermodynamic features.

Similarly in the matrix model as chemical potential and temperature vary the coeffi-

cients of the matrix model action vary as well. Thus if we consider a four dimensional

space corresponding to the four coefficients of (3.22) it is sectioned into various re-

gions which are analogous to the regions in the phase diagram. This is essentially

same as what we did graphically in figure 4.10 for two coefficients. Analogously, here

we will identify different regions in four dimensional space of the coefficients with

various ranges of temperature and chemical potential.

Let us begin with the various regions in the (Φ2-ᾱ) plane depending on the number

and nature of the solutions, as discussed in subsection 4.2.1 (see fig. 4.1). In particu-

lar, there is a line in the (Φ2-ᾱ)-plane that separates region with three solutions and

that with one solution. Let us consider constraints imposed on the coefficients Ai that

corresponds to these regions or in other words, regions above and below the critical

potential µc at fixed λ. For that purpose it is useful to consider the quadratic poly-

nomial in ρ2: f(ρ2) = (1/ρ) ∂
∂ρ

F (ρ). This is given by f(x) = 48A4x
2 − 24A3x + 8A2.

The zeroes of f determine the non-trivial turning points of F . We will see below that

the parameters at T = 0 are continuously connected to the finite temperature ones
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for µ < µc but they are not so for µ > µc as we saw in absence of α′ correction.
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Figure 4.11: For µ < µc, Potential as function of ρ for the ranges 0 ≤ ρ ≤ 1/2 and

1/2 ≤ ρ ≤ 1. The values of (A2, A3, A4 ) used in the plots are given above. A1 = 0.02.

Sub-critical Potential (µ < µc): This corresponds to the region I in figure 4.1.

In this range the behaviour is very similar to the case of zero chemical potential.

As is evident from the plot in figure 4.2(c) obtained on the gravity side we have

two characteristic temperatures, among others. One is T = TN2 where the stable big

black hole and unstable intermediate black hole nucleates. Another is T = TN1 > TN2

where the intermediate unstable black hole combines with stable small black hole and

beyond that temperature they cease to exist as solutions. This leads to three qualita-

tively different ranges of temperature and in the following we discuss them separately.

TN2 < T < TN1: Here on the gravity side we have three black holes and so we expect

at least three solutions of the saddle point equation (4.29) obtained from the Matrix

model. The small black hole has a size of the order of α′. In addition, as we have

already seen in the analysis of µ = 0 case, we have an (unstable) solution which is

a maximum of the potential. Since this solution does not appear in the gravity that

is beyond an analysis of order α′. So we expect these two solutions occur generically

in the range 0 ≤ ρ ≤ 1
2
. The other two solutions, which are analogues to unstable
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intermediate black hole and stable big black hole, and having bulk analogue, are

expected them to appear generically in the range 1
2
≤ ρ ≤ 1. Therefore we get four

solutions for this region. So this region corresponds to the range of the coefficients

Ai for which (4.29) has four solutions within the domain of ρ. From (4.29) we see

this requires f(ρ2) = 0 has two positive solutions 0 ≤ ρ2
− ≤ ρ2

+ ≤ 1 where ρ− is a

maximum and ρ+ is a minimum of F (ρ). That f(ρ2) = 0 has two solutions requires

4 = 3A2
3 − 8A2A4 > 0, A4.A2 > 0, (4.32)

where the second condition is to ensure that both the solutions ρ2
± are positive. That

ρ± are minimum and maximum of F respectively implies F ′′(ρ−) < 0, F ′′(ρ+) > 0

from which we obtain

ρ2
± =

A3

4A4

±
√

(
A3

4A4

)2 − A2

6A4

, A2 > 0. (4.33)

Other conditions that we need to impose so that (4.29) admits four solutions are

F (ρ−) > 1 and F (ρ+) < 1, which when written in terms of Ai’s become

A2 · A3

3A4
> 2A1 + 16A4

[

(
A3

4A4
)2 − A2

6A4

]

ρ2
− , (4.34)

A2 · A3

3A4
< 2A1 + 16A4

[

(
A3

4A4
)2 − A2

6A4

]

ρ2
+ . (4.35)

The above conditions (4.32,4.33,4.34, 4.35) ensure that there exist a minimum (ρmin)

corresponding to the small black hole and a maximum (ρmax) that does not have a

gravity analogue. These solutions are in general different from ρ± and since F is a

cubic polynomial in ρ2 the expressions are complicated. In addition, on the gravity

side we saw that stable small black hole have positive energy. So we expect the

solution of the saddle point equation that correspond to this stable small black hole

should have positive energy. So we need at the minimum

V1(ρmin) > 0 . (4.36)

whose explicit form is not very illuminating.
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In addition as we said from gravity analysis we expect two solutions should appear,

generically, in the first half of the domain of ρ while two other in the second half.

We consider two halves of the domain of ρ separately. Let us begin with the range

0 ≤ ρ ≤ 1
2
. That we have two solutions of the saddle point equation (4.29) in this

range imposes two further conditions:

ρ− <
1

2
, F (

1

2
) < 1. (4.37)

( In this form it is easier to obtain the restriction on the parameters. Otherwise

we could write 0 < ρmin, ρmax < 1
2

which are more direct but the expressions are

cumbersome.) These conditions, when written in terms of the parameters, reduce to

the following two equations:

A3

4A4

−
√

(
A3

4A4

)2 − A2

6A4

<
1

4
, (4.38)

2A1 +
3A3

8
> A2 +

A4

8
. (4.39)

These conditions (4.32,4.33,4.34,4.35,4.36) are real inequalities in four parameters.

Each of them will give rise to one (or more) codimension 1 wall(s) in the four di-

mensional parameter space described by A1, A2, A3, A4. Since this involves four pa-

rameters it is difficult to have a graphical representation of it. As we see each of

the inequalities corresponds to wall(s) which we cross when we go beyond this range

of temperature and chemical potential. However, crossing the wall corresponding to

(4.36) will take us to some unphysical region as that implies the stable small black

hole has energy less than that of AdS which implies on the gauge theory side absence

of confinement in low temperature. The equations (4.38,4.39) also give rise to codi-

mension one walls but a more elaborate analysis is required to understand the correct

significance of them.

We expect the other two solutions to appear in the other half namely 1
2
≤ ρ ≤ 1.

On this part the situation is pretty much similar to that of (a, b)-model. This requires
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we have one solution 1
2
≤ ρ1 ≤ 1 such that it satisfies

F (ρ1) =
1

4ρ1(1 − ρ1)
, F ′(ρ1) >

1

4
(− 1

ρ2
1

+
1

(1 − ρ1)2
), (4.40)

where this ρ1 will appear as the analogue of the unstable intermediate black hole

solution that we got on the gravity side. Actually, this condition is sufficient to

ensure that there is the analogue of stable big black hole too. This condition (4.40)

along with (4.32,4.33,4.34,4.35) completes the list of necessary and sufficient condition

to have four solutions of the saddle point equations. As temperature increases, ρ1

will decrease. At the Gross-Witten temperature [7, 8] T = Tg this reaches the lower

boundary of this region ρ = 1
2
. At T = Tg the restriction on the parameters can be

written as

2A1 +
3A3

8
= A2 +

A4

8
, 3A4 + 8A2 > 6A3. (4.41)

This corresponds to a third order phase transition.

T ≤ TN2: In this range of temperature the conditions that we obtain on the first

half of the domain of ρ remains the same. On the second half of the domain the two

solutions will merge at T = TN2. This implies in the four parameter space we are on

the wall that corresponds to (4.40). The following equations corresponds to TN2:

F (ρ) =
1

4ρ(1 − ρ)
, F ′(ρ1) =

1

4
(− 1

ρ2
1

+
1

(1 − ρ1)2
). (4.42)

As temperature decreases the value of F (ρ) will monotonically decrease and there

will be no solution in the second half.

T ≥ TN1: Here we have no solution in the first half of domain of ρ at T > TN1. But

that can happen in two possible ways and we discuss them in the following. One

possibility is the two extrema of V1(ρ) merge at T = TN1 which implies we cross the

wall corresponds to (4.34). In terms of the parameters this means at T = TN1

A2A3

3A4
= 2A1 + 16A4

[

(
A3

4A4
)2 − A2

6A4

]

ρ2
−. (4.43)
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This is a consistent possibility that can occur in the matrix model. Another signif-

icance of this equation is this corresponds to the bound beyond which we get the

features of (a, b)-model and so this region sits in the same universality class of that

of (a, b)-model.

The second possibility is crossing the wall corresponding to (4.35), where the

minimum of V1 meets the maximum of V2. However, In terms of the coefficients,

then, at TN1 we have

A2A3

3A4
= 2A1 + 16A4

[

(
A3

4A4
)2 − A2

6A4

]

ρ2
+. (4.44)

This possibility seems more plausible as it matches with what we saw on the gravity

side. There at T = TN1 the unstable intermediate black hole merges with the stable

small black hole. At this point we should comment on the relative values of TN1

and Tg. If TN1 < Tg this merging occurs before the system reaches it Gross-Witten

point and therefore there will be no Gross-Witten transition. On the other hand for

TN1 > Tg the intermediate solution has already undergone the GW transition and

becomes a black hole of the order of α′. The other possibility is if TN1 = Tg where the

small black hole merges with the intermediate black hole exactly at the Gross-Witten

point or the two walls corresponding to (4.35) and (4.38) merge.

Super-critical Potential (µ > µc): This region corresponds to the parameter space

above region I in figure 4.1 and therefore should have a single minimum of the po-

tential. In the matrix model like the µ < µc region here also we have an additional

unstable maximum of the potential that does not have any bulk analogue and so it is

beyond the gravity analysis of the α′ order. Once again we restrict this in the region,

ρ < 1/2 so that this corresponds to some stringy phase as suggested in [9]. Therefore,

similar to the analysis for α′ = 0 ( and unlike the µ < µc case ) we consider two

possible scenarios depending on whether the unstable maximum lies at ρ = 0 or it

lies away from ρ = 0. In the following we discuss the two scenarios separately.



....R-charged Black Holes 100

0.1 0.2 0.3 0.4 0.5

-0.01

-0.008

-0.006

-0.004

-0.002

H.29, 2, 5.6LH.28, 1.35, 2.88LH.28, 1.3, 2.71LH.26, .9, 1.64LHA2, A3, A4L
0.5 0.6 0.7 0.8 0.9

-3

-2

-1

1

2

3

H.29, 2, 5.6LH.28, 1.35, 2.88LH.28, 1.3, 2.71LH.26, .9, 1.64LHA2, A3, A4L

Figure 4.12: For µ > µc, A1 < 0,4 < 0: Potential as function of ρ for the range 0 ≤ ρ ≤ 1/2

and 1/2 ≤ ρ ≤ 1 .The values of (A2, A3, A4 ) used in the plots are given above. A1 = −0.02.

(A) Unstable maximum is at ρ = 0 (A1 < 0): If we have (A1 < 0) the unstable

maximum will always be at ρ = 0. In addition, in the matrix model we expect to

have one and only one stable minimum for ρ > 0 (The energy of this black hole could

be greater or less than that of thermal AdS depending on the values of µ and λ (see

figure 4.3). The condition A1 < 0 alone does not ensure this and we need to impose

additional constraints on A2, A3 and A4. We note that there are two ways in which

one can ensure that there is only one stable black hole solution. We discuss them

separately in the following:

One possibility is, at µ = µc the three solutions merge into one at some value of

ρ = ρ+ > 0. A similar merging occurs on the gravity side when the chemical potential

reaches its critical value. Since the corresponding solution is manifested in the gravity

limit we expect that ρ+ > 1/2. Then, at µ = µc, apart from the condition A1 = 0,

A2, A3 and A4 satisfy,

V
′

(ρ+) = 0 ; V
′′

(ρ+) = 0 ; V
′′′

(ρ+) = 0 for
1

2
≤ ρ+ ≤ 1. (4.45)

Thus we obtain the parametric solutions of A2(ρ+), A3(ρ+) and A4(ρ+) from (4.45)

which corresponds to the line separating the number of solutions in gravity in figure

4.1. We do not write these parametric equations here as they are not compact enough.

For, ρ+ = 0.8 we have, A1 = 0, A2 = 0.583, A3 = 1.481, A4 = 1.293.
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Examining the equation of motion (4.29), one can find an indirect way to obtain

a (slightly more general) constraint in compact form. This ensures there is exactly

one solution at some point ρ > 0 in addition to the one at ρ = 0. However, that the

three solutions merge at this point is not guaranteed. If we relax the first inequality

of (4.32) by making the discriminant 4 negative so that there is no turning point of

F then we are left with only a single solution. This can be thought of as identifying

the wall corresponds to the first condition of (4.32) with µ = µc. The merging of the

three solutions at this point appears as a special case of it and so that condition is

more ramified. We have plotted the associated potentials in figure 4.12.

The other possibility that one can consider to obtain a single minimum is setting

A4(µ = µc) = 0 and A4(µ > µc) < 0. This amounts to relaxing the second inequality

of (4.32) so that one of the turning point becomes imaginary. This corresponds to

identifying µ = µc with the second condition of (4.32). For this choice, as µ increases

beyond its critical value, one of the turning point comes down to ρ = 0 and then

disappears. This possibility is not continuously connected with the above mentioned

constraint, which gives rise to merging of three solutions. However, this possibility

can give a simple form for the fixed charge case. We have plotted the related poten-

tials in figure 4.13.
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Figure 4.13: For µ > µc, A1 < 0, A4 < 0: Potential as function of ρ for the range 0 ≤ ρ ≤
1/2. The values of (A2, A3, A4 ) used in the plots are given above. A1 = −0.1.
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(B) Unstable maximum lies at 0 < ρ < 1/2 (A1 > 0): In this scenario for µ > µc

the unstable maximum is in the range 0 < ρ < 1/2. The usual saddle point ρ = 0 is

also there but this time it corresponds to the thermal AdS. In addition, there exists

only one minimum. (The energy of this minimum is either greater or less than that

of AdS at low temperatures. If the energy is greater than that of AdS energy, at high

temperature, the black hole undergoes Hawking Page transition.) In order to make

sure that this is the one and the only one minimum, once again we identify µc to be

the limit where three saddle points merge. However unlike the previous case where

the small maximum was at ρ = 0, here it lies in 0 < ρ < 1/2. This configuration

satisfies,

V
′

(ρ+) = 0 ; V
′′

(ρ+) = 0 ; V
′′′

(ρ+) = 0 for
1

2
≤ ρ+ ≤ 1.

and V
′

(ρ−) = 0 for 0 ≤ ρ− ≤ 1

2
. (4.46)
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Figure 4.14: For µ > µc and A1 > 0: Potential as function of ρ for the range 0 ≤ ρ ≤ 1/2

and 1/2 ≤ ρ ≤ 1. The values of (A2, A3, A4 ) used in the plots are given above. A1 = 0.298.

Apart from being functions of ρ+ the Ai’s are now also functions of ρ−. With

ρ− = 0.5 and ρ+ = 0.8 we get, A1 = 0.418, A2 = 1.561, A3 = 2.501 and A4 = 1.691.

In this case the energy of the merging point (ρ+) is positive. This gives rise to a stable

minimum with positive energy as we move beyond µc. We now vary the parameters

with increasing temperature and see that the minimum crosses zero corresponding to



....R-charged Black Holes 103

the Hawking-Page transition in the bulk. The plots for µ > µc are shown in figure

4.14.

One can similarly derive the parameters for which the energy of the merging

point (ρ+) is less than zero. This is given by, ρ− = 0.4 and ρ+ = 0.72 which gives

A1 = 0.006, A2 = 0.06, A3 = 0.291 and A4 = 0.535. Note that for ρ− = 0 we get

(A1 = 0), which is the possibility (A). As we move away from the critical potential,

this gives rise to a minimum with energy less than AdS. With further variation of the

parameters this saddle point goes deeper as shown in figure 4.15. This can be mapped

to the variation of the minimum with temperature as it happens for the black hole

in gravity.
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Figure 4.15: For φ > φc, A1 > 0: Potential as function of ρ for the range 0 ≤ ρ ≤ 1/2 and

1/2 ≤ ρ ≤ 1. The values of (A2, A3, A4 ) used in the plots are given above. A1 = 0.002.

In the above discussion we consider, on the matrix model side, the various possibil-

ities, which can reproduce the bulk behaviour that we obtained in the analysis on the

gravity side. The different possibilities gives rise to different ranges of the parameters,

of which some are mutually exclusive. With this amount of input it is not possible

to decide which one is the correct behaviour. We need the explicit dependence of

Ai’s on µ in the strong coupling regime. Perhaps a weak coupling calculation of the

associated terms in the model can serve as a clue.
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4.3.3 Including α
′

corrections : Fixed charge

We have seen in the last section that, when restricted to various values of the param-

eters Ai, the matrix model (3.22) reproduces the features of gravity below and above

the critical potential, µc. In general thus Ai will depend on the chemical potential. In

the fixed charged case, since chemical potential can take any value, the matrix model

for the canonical ensemble is obtained by integrating over the chemical potential. For

this, the explicit knowledge of the dependence of Ai are necessary in this strong cou-

pling regime, which we do not have. Out of the cases studied in the earlier section,

there is one that allows us to construct a toy model for the fixed charge consistently.

This is given by the second possibility of (A), when both A1 and A4 become negative

above the critical potential. This implies that we can consistently assume A1 and A4

are dependent on chemical potential and others are independent of µ.

In the following, we will assume the result from the zero coupling regime to be

valid in the strong coupling. In the free theory, the partion function is given by [4, 10]

Z(x, Q) =
∫

dµe(−iµQ)
∫

[dU ]e(
∑

zn[x,iµ]
n

Tr(Un)Tr(U−n). (4.47)

The second integration looks like the partition function of the grand canonical system

with chemical potential iµ. Equation(4.28) shows the exact dependence of A1 on µ

in the free theory. In this case, including only the charged scalars, A1 is given by,

[1 − 2A1(λ, T, µ)] = [c(λ, T ) + d(λ, T ) cos(µ)], where c and d are zV (xn) and zS(xn)

respectively. Since we are only interested in the qualitative features of this model, for

simplicity we will take, A4 = a4(λ, T ) cos(µ) with A2 and A3 functions only of λ and

T . The action with this dependence on the potential is,

S(ρ2) = 2N2

[

a4 cos(µ)ρ8 − A3ρ
6 + A2ρ

4 +

(

c + d cos(µ)

2

)

ρ2

]

. (4.48)

In terms of unitary matrix U , we recast the action in the form as

S(U) = 2
[ a4

N6
cos(µ)

(

Tr(U)Tr(U)†
)4 − A3

N4

(

Tr(U)Tr(U)†
)3

+
A2

N2

(

Tr(U)Tr(U)†
)2

+

(

c + d cos(µ)

2

)

Tr(U)Tr(U)†
]

. (4.49)
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Hence following [10], the partition function is

Z(Q, T, λ) =
∫

dµe(−iµQ)
∫

[dU ]eS(U). (4.50)

The partition function for the canonical ensemble is obtained by integrating over the

chemical potential. This in terms of ρ is

Z(Q, T, λ) =
∫

dρ exp{−N 2V (ρ)}, (4.51)

where, the potential is,

V (ρ) = − 1

2N2
Seff (ρ

2) +
1

2
ρ2 , 0 ≤ ρ ≤ 1

2
,

= − 1

2N2
Seff (ρ

2) − 1

4
log[2(1 − ρ)] +

1

8
,

1

2
≤ ρ ≤ 1, (4.52)

with,

Seff(ρ
2) = N2

[

cρ2 + 2A2ρ
4 − 2A3ρ

6
]

+ log
[

IQ

(

N2(2a4ρ
8 + dρ2)

)]

. (4.53)

Here IQ(x) is a Bessel Function. We are interested in the the large N limit. This is

obtained by keeping in mind that Q2 ∼ O(N2) so that Q2 = N2q where q ∼ O(1).

The resulting effective action in the large N limit is thus,

Seff(ρ
2) = N2

[

cρ2 + 2A2ρ
4 − 2A3ρ

6
]

+ (4.54)

+ N2q





(

1 +
ρ4(d + 2a4ρ

6)2

q2

)
1
2

+ log





ρ2(d+2a4ρ6)
q

1 + {1 + ρ4(d+2a4ρ6)2

q2 } 1
2









+ O
(

1

N2

)

.

Defining, F (ρ) = ∂S(ρ2)/∂ρ2, the equation of motion is given by (4.29).

The phase structure is qualitatively the same as when there are no α
′

corrections.

Unlike the fixed potential thermal AdS is not a solution. It is easily seen from (4.54)

that ρ = 0 is not a solution of the equation of motion. We have seen in section 4.2.2,

that there exists a critical charge for a fixed ᾱ beyond which there is only one solution.
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Figure 4.16: Coloured curves: Potential for various temperatures corresponding to
the variations of A1, A2, A3, a, c and a4 for q < qc Black curve: Potential for q > qc.

Below this critical charge there are a maximum of three solutions. See equation (4.22)

and figure 4.5. In the matrix model, this critical charge (qc) is given by the merging

of the three saddle points of (4.52).

Figure 4.16 shows the thermal history for the canonical ensemble. The coloured

curves are for q < qc for some fixed λ. This corresponds to region I in figure 4.5.

At low temperatures, there is a single minimum in the range 0 < ρ < 1/2 (curves in

pink). This corresponds to the small black hole. Two new saddle points appear at

T = T1 with the new minimum in the range 1/2 < ρ < 1 (shown in blue) . These

correspond to the intermediate (unstable) and large black holes. The small black

hole has lower energy upto T̄ (the green curve), beyond which the large black hole

phase is favoured (yellow). Thus there is a phase transition at T̄ corresponding to the

one in the bulk. The small and the intermediate black holes disappear at T3 and at

high temperature, the large black hole (the phase with the saddle point in the range

1/2 < ρ < 1) remains (shown in purple).

The black curve in figure 4.16 shows the single saddle point when q > qc. This

corresponds to the single large black hole that exists above the critical charge for

fixed ᾱ, in the region II of figure 4.5.
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4.4 Discussion

In this chapter we studied GB gravity with R-charge and also the corresponding

boundary theory. We first studied the gravity theory for both grand canonical and

canonical ensembles. We focused on the gauge theory on the boundary.

In the grand canonical ensemble, without GB correction, the phase diagram is

characterized by the chemical potential Φ. For large Φ, there is only one black hole

solution which is always stable with respect to thermal AdS. However for small Φ,

there exist two solutions. The smaller one is unstable due to negative specific heat

and the large one is stable with positive specific heat. It goes through Hawking-Page

transition from AdS to the black hole phase at Hawking temperature Tc. Once we

incorporate GB correction in the theory, the phase diagram is characterized by the

chemical potential Φ and the GB coupling α
′

. Depending on the thermodynamic

behaviour of the black holes, (Φ − α) plane is divided into four regions. In the first

region, where Φ is below the critical value Φc (which depends on α
′

), there are three

different black hole solutions; we call them small, intermediate and big black hole.

Small one is unstable and the other two are stable. At low temperature only small

black hole exists and at temperature T2 there is a first order phase transition between

small and big black hole. However, with the inclusion of thermal AdS in the phase

diagram, it is found that both the small and the big black hole phases are metastable

at low temperature and the big black hole becomes stable only at high temperature.

In the second region, where Φ is less than a critical value, there is only one black hole

solution and the extremal black hole with positive free energy appears at r = 0. Black

hole goes for HP transition at temperature Tc. In other two (III & IV) regions where

Φ is greater than the critical value, there is also one black hole solution, but extremal

black hole has a finite radius. For region III, extremal black hole has positive free

energy, while in region IV, it has negative free energy. In order to clearly illustrate

various phases, we construct a Landau function with black hole horizon radius as the

order parameter. It is worth noting that in every case where there is Hawking-Page



....R-charged Black Holes 108

transition, the transition temperature is found to decrease with α
′

. From here we

conclude that as we perturbatively increase the gravitational strength, the critical

temperature reduces its value.

Now, coming back to the canonical ensemble, from thermodynamic point of view,

there is no qualitative difference between theories with and without GB coupling.

The phase diagrams are characterized by the charge of the black hole and the GB

coupling. Depending on the values of charge q and GB coupling α
′

, there are two

distinct regions. In region I, where q is less than the critical value qc (which depends

on coupling α
′

), consists of three black hole phases, while in region II, where q is

greater than qc, only one black hole phase exists. Thermal AdS continues to be a

non-admissible phase. As before, there is a transition from small to big black hole

at a critical temperature. This temperature decreases as we increase α
′

. Here also

we construct a Landau function which represents various phases around the critical

points.

Assuming AdS/CFT correspondence, we studied corresponding phase transitions

on the dual gauge theory at the boundary. This is done by constructing a phenomeno-

logically motivated two (a, b) or four (A1, A2, A3, A4) parameter matrix model for

both (canonical and grand canonical) ensembles. For the grand canonical case, we

first studied without α
′

correction. In this case, we need only a two-parameter model

to capture all the features of the gravity theory. The parameters here are functions of

λ, T and chemical potential µ, but the explicit dependence of the parameters on them

is very hard to determine. For µ < µc, it is possible to get the whole phase diagram

of the gravity side by considering them to be positive. However, for µ > µc, there is

an extra maximum that always comes with the minimum. This has no analogue in

the bulk theory. We interpret this extra maximum with some stringy phase. Thus

we always keep this point in the region 0 ≤ ρ ≤ 1/2 by imposing restrictions on the

parameters. In particular, to get maximum at ρ = 0, a has to be negative. Otherwise
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a and b are always positive for all values of µ. Thus, we expect b is positive for all val-

ues of µ and a is related to µ in such a way that it becomes negative when the above

condition is satisfied. At zero coupling, this dependence can easily be calculated.

Once we incorporate α
′

correction in this theory, we need a four-parameter model

to capture all the features of the gravity theory. In this case we also have an extra

maximum, independent of whether µ is greater or less than µc. This does not show

up in the gravity side and, once again, we restrict this to the region, 0 ≤ ρ ≤ 1/2.

Here also to get maximum at ρ = 0 for µ > µc, either A1 or both A1 and A4 have to

be negative. Otherwise A1, A2, A3 and A4 are always positive for all values of µ. We

again expect A2, A3 are always positive for any µ and A1and A4 are related to µ as

before.

Finally, in the canonical ensemble, we have studied the same four-parameter model

with α
′

correction. Since in this case, µ can take any value, we have to sum over all

the values. For that, we need to know the explicit dependence of the parameters on

the chemical potential. At zero coupling, it is easy to determine the dependence of A1

on µ. However, as we already mentioned, the explicit dependence of the parameters

on µ is very hard to determine at strong coupling. As a toy exercise, by assuming

that the zero coupling result continues to hold in the strong coupling limit, we take

only A1 and A4 to be explicitly dependent on µ and others are independent. This is

consistent with one of the cases in the grand canonical ensemble. In this scenario,

we write down the matrix model for the fixed charge. Amusingly, we find that this

model correctly reproduces all phases of the black holes with fixed charge.
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Chapter 5

Summary

According to the AdS/CFT correspondence, type IIB string theory on AdS5 × S5 is

dual to the four-dimensional N = 4, SU(N) gauge theory on the boundary. In the

weak coupling and large curvature limit, the string theory can be approximated by

the supergravity description. However, because of the dual nature of the AdS/CFT

correspondence, this corresponds to strongly coupled regime of gauge theory. The

study of gauge theory in this regime is very difficult due to lack of systematic formu-

lation. In this thesis, we systematically exploit this correspondence in order to gain

understanding about the strongly coupled regime of gauge theory by studying the

weakly coupled gravity theory. In particular, we have obtained a phenomenological

description of the thermodynamic behaviour which can be encoded in a matrix model.

Such a construction is by no means unique but our main interests are restricted to

the behaviour near the critical point where qualitative behaviours are believed to

be universal in the sense that, it does not depend on precise details of the theory.

Therefore, the effective model presented here belongs to the same universality class

as that of the gauge theory. In addition, wherever possible we have pushed the cor-

respondence further to make semi-quantitative analysis and obtain the behaviour of

effective action under variation of different thermodynamic quantities.
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In chapter 2, we discussed the thermodynamics of five dimensional bulk theory

in the supergravity limit and reviewed the formalism to construct an effective La-

grangian for the strongly coupled dual. The bulk has two configurations with same

asymptotic geometry. One of them is the thermal AdS and the other is the black

hole. Though thermal AdS can exist for arbitrary temperature, the black hole nucle-

ates only above a particular temperature Tmin. Above this temperature Tmin, there

are two black hole solutions. Depending on their horizon sizes, we call them big and

small. Bigger one is the stable one, and has a positive specific heat. From the free

energy calculation one can see even in the presence of the black holes, thermal AdS

remains the preferred phase for T < Tc. While for T > Tc, it is the big black hole

phase that takes over. This phase transition at T = Tc is a first order transition and

is known as Hawking-Page (HP) transition. The small black hole remains unstable

at all temperature due to its negative specific heat and acts as a bounce for the de-

cay of big black hole at T > Tc . Witten identified this phase transition with the

large N confinement/deconfinement transition of the boundary gauge theory in the

strong coupling regime. In the boundary theory, which is a gauge theory on an S3,

one can show all the degrees of freedom got massive except a Wilson loop operator.

One can integrate out the rest and write down an effective Lagrangian which has the

Wilson loop operator as its degree of freedom. For low enough temperature it can be

approximated by a simple matrix model known as (a, b) matrix model as it has two

parameters a and b1. For certain ranges of these two parameters, the matrix model

captures complete thermodynamic behaviour of the bulk theory. These parameters

depend on the ’t Hooft coupling λ and the temperature T . Both turn out to be

monotonically increasing functions of temperature for fixed λ.

In chapter 3, we incorporate Gauss-Bonnet (GB) correction to the gravity action

and study various phases of the bulk geometry with AdS asymptotics. These phase

1This is done by assuming that the weak coupling results are valid in the strong coupling regime
mainly for ’t Hooft coupling λ → ∞
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structures depend crucially on GB coupling α
′

. Except within a certain range of this

coupling, there is only one black hole phase, otherwise there exist three black hole

phases. We call them small, intermediate or unstable, and big black hole phases.

It turns out that there are two first order phase transitions. One of them is from

small black hole to the big one at a temperature much lower than that of inverse AdS

curvature scale. The other one is similar to that of the usual HP transition where a

crossover occurs from thermal AdS to the big black hole phase. We then study the

dual gauge theory at the boundary by the same two-parameter matrix model. We

find the λ dependence of these parameters. By introducing higher derivative terms

in the bulk, we study corrections of order 1/λ in the gauge theory. This essentially

allows us to find the λ dependence of (a, b) for large but finite λ. We find that a is

an increasing function of λ while b decreases with λ.

Furthermore, we find that the simple (a, b) model fails to capture all the phases

(small, intermediate and large black hole phases) in the bulk. To incorporate all

the bulk phases, we constructed a toy model which requires introduction of higher

dimensional operators in the matrix model. This model has four parameters which

depend on the temperature as well as the gauge coupling. Besides reproducing all

the qualitative features of the bulk, this model also gives an extra saddle point. We

interpret this saddle point as a phase in string theory which has no analogue in the

supergravity. This stringy phase arises at the Gross-Witten transition point. This

Gross-Witten transition may be identified as a crossover from supergravity black hole

solution to string state in the bulk side. In the bulk side, this stringy phase may also

serve as a bounce for the decay of the small black hole to the thermal AdS.

Finally in chapter 4, we include the effects of electric charge with the above theory.

On the gravity side these charges come from the rotation of the internal S5. We first

focus our attention on the phase structures of this bulk theory in both canonical and

grand canonical ensembles. In the grand canonical ensemble, the phase structure
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crucially depends on α
′

as well as chemical potential Φ. For a certain range of the

chemical potential Φ and α
′

, there exist three black hole phase and have two HP

transitions. Outside this range, only one black hole phase survives and unlike simple

GB theory, we get a HP transition. For the canonical ensemble the number of black

hole phases are similar to the GB theory but here thermal AdS is not an allowed

geometry. Therefore, there exist only one first order phase transition between small

and big black hole (in the certain range of α
′

and fixed charge q). We then construct a

matrix model for the gauge theory dual. This model is similar to the one discussed in

the previous paragraph. However the four coefficients are now not only function of λ,

and T , but also depend on the chemical potential. In the grand canonical ensemble,

like GB theory, matrix model has an extra saddle point that has no analogue in

the gravity side and we interpret this as a bounce. In the canonical ensemble, since

chemical potential can take any value, one has to sum over all the values. To do

that it is necessary to know the exact dependence of parameters on potential. This

is very hard to determine in the strong coupling limit. For simplicity, we write down

the model where only two parameters are explicitly dependent on chemical potential

and other two are constant. This is consistent with one of the possible scenarios of

the grand canonical case. Amusingly we find that the model correctly reproduces the

corresponding bulk behaviour.


