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Synopsis

As of now, string theory is believed to be the most succesgfahtum theory of gravity and
a strong contender to be the fundamental microscopic trefdsverything”. It starts with
the idea that the world at its microscopic-most level is malef some tiny stringy objects,
which vibrate, do all kinds of funny acts and finally come uphithe macroscopic world
we see everyday. The different vibrational modes give og#fterent elementary particles
which we had so far been thinking of as the fundamental domestis of the universe. In
other words, the long term goal of string theory is to provedeomplete and universal
microscopic foundation to more macroscopic theories arehpimenologies, such as the
standard model of particle physics and Einstein’s theorgravitation, to name a few.
However, string theory is a framework that operates in suchltxa-high energy regime
that this is far beyond the reach of even the most moderncaedccelerators like RHIC
and LHC. But this is not really a matter to worry as such. Agkirhether string theory can
explain the real world is probably as irrelevant as to askttwreone can solve the problem
of the oscillation of a simple pendulum in quantum field tlyedVe need to remember,
just like quantum field theory, the theory of strings is alsibaanework, the justification
whereof would probably be found from the theories deriveadTit.

With this aim in view string theory has expanded its horizomther branches of the-
oretical physics where the possibility of having a derivedary with greater testibility
increases with a decrement in energy scale. AdDS/CFT camnelgmce is one such hypoth-
esis derived in the string framework that nurtures this jpigy. AAS/CFT, as we would
discuss in gory detail in due course, is an illustrativeiradion of the old holographic
principle which states that the degrees of freedom of qumamgftavity reside on the bound-
ary space-time. This in turn gives rise to a duality prineifilat maps the states in gauge
theory to solutions in string theory living in one higher @insion. Particular significance
and predictibility of such a miraculous hypothesis can betptest when the t'Hooft cou-
pling and the rank of the gauge group of the gauge theory istqprebecomes so high
that it becomes intractable by traditional methods in quientield theory. Even in this
case, the hypothesis ensures the “dual”’ theory to be a siolésical theory of gravity
with minimally coupled matter fields, namely the supergratieory that is also realized
as some consistent trancation of string theory at low enefdye advantage of working
in supergravity limit of string theory is that unlike the lfgtring theory which is a theory
with infinite degrees of freedom, here one has to deal witly tnite degrees of freedom.

Vi



Synopsis

From the perspective of the full supersymmetric string tir¢bis amounts to integrating
out massive string excitations by taking the limit — 0 where+v/a/ is a characteristic
small length scale- 10732 cm and is related to the string tensionAs= ﬁ = l% ls
being the string length scale. S

In this thesis, we will use AdS/CFT, or more broadly the piphes of gauge/ gravity
duality to understand some features of physics out of dauwilin. We will discuss various
non-equilibrium states and their gravity duals. We willegirize the constructions accord-
ing to the phenomena we would like to address through themgeieral, non-equilibrium
phenomena occur in many branches of physics. Most celebaateng these, are relativis-
tic heavy ion collision and cosmology. Many features of tielstic heavy ion collision
were revealed in recent experiments like RHIC, though ke Igtogress has been made to
understand the very essential quantum kinetic theory gawvgitheir dynamics. Cosmo-
logical data are abundant, most of them, of course beggin@ep explanatory theory.
Not only this, even some recent condensed matter expersnidteg tARPES where one
can see the non-equilibrium evolution of Fermi-surfacd,latk a proper theoretical jus-
tification. All these are excellent set ups to test the applity of gauge/ gravity duality in
non-equilibrium. In this thesis we would proceed towarddradsing some of those issues
in these directions by building up problem specific machjinar

In its weak form (i.e. in the limit when the rank of the gaugewy, N — oo with
a large 't Hooft coupling\ = ¢%,,N very large as well) AAS/CFT relates supergravity
theory inAdS; x S° background to a strongly coupled = 4 SU(N) SYM theory living
on the boundary ofidSs. For incorporating finite temperature, holographicallye antro-
duces black hole in thigldS space-time in a way that thédS nature of the space-time
is preserved asymptotically. The intuition follows fronetfact that stationary black holes
behave like thermodynamical objects in all respect. Thé&sargravity at the black hole
horizon can be identified with temperature while the mas#) thie total energy. Further-
more, in all dynamical processes known, the area of the flatkevent horizon can only
increase monotonically, justifying its identification wieéntropy. Also, for any dynamical
process the black hole horizon possesses uniform surfagégygmimicing the thermody-
namical equilibriation.

With this basic understanding of the holographic meaningafilibrium the tools of
holography enable us to develop methologies to deal witierdiiit non-equilibrium sce-
narios in holographic set-up. We will develop tools and prggions contemplating on
applications towards physically interesting probleme Iguantum quench, Fermi liquid

Vil



Synopsis

theory in non-equilibrium and cosmological evolution o tlniverse. We will argue some
of the methods developed might as well be very much usefulderstanding and improv-
ing upon existing tools to study ultra relativistic heavy imllisions. As mentioned before,
the methods we would use will be problem specific, but we waldlly categorize them in
two parts. Following our understanding of holographic megmf equilibrium, these are,

(A) Going to a temperature other than the Hawking temperatuth@black hole

As mentioned before, in any dynamical gravitational precesolving black holes,
attaining Hawking temperature at the horizon signals thaliegiation. Hence, at the level
of free-energy, if we somehow make the temperature offighebuld enable us to study
the dynamics of equilibriation. Motivated iBragg-Williams methoth condensed matter
physics [1] and its adoption in black hole physics and hapgy [2], we use this idea to
analyse, holographically, the phenomenon of temperatwgach in specific black hole set-
up [3]. Apart from the dynamics, we see, even the analysihagp transition particularly
of the first order, which otherwise is difficult to capture lnetframework of Landau theory,
becomes easier in this framework. We also show that this edetiorks even when we
take stringya’ corrections to gauge theory sector [4]. This method alsegsdandy in
analysing the system out of chemical equilibrium. We alsagppse an effective off-shell
potential in the gauge theory sector using out holographawwkedge of bulk gravity.

(B) Obtaining time-dependent backgrounds suitable to studyeguilibrium phenom-
ena

There are different ways to construct time-dependent backgls. The first method
among them is to obtain time-dependent bulk space-timetdusadecific non-equilibrium
states starting from the observables of the boundary thd&dng analysis is based on the
Fefferman-Graham construction dfAd.S spaces. We considered non-equilibrium fluctu-
ations on the top of equilibrium states which holograptycaiapped into incorporating
quasi normal mode fluctuations on tHel.S black hole in equilibrium. Upon construct-
ing the background, we use this to find the spectral functiospiecific non-equilibrium
states [5]. We further show the usefulness of the mechanereldped in understanding
Fermi liquid theory for non-equilibrium strongly couplegssems.

The other methods of constructing time-dependent geoesedre aimed at cosmolog-
ical applications. The first of them [6] is based on Verlirgiglea [7] that the time in the
AdS bulk and that of the boundary conformal field theory are déife and a dynamic
boundary space-time can in principle be obtained startmm & static bulk. This idea was
further extended with charged black holes in [8]. Motivabgdthese two, we used the
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techniques of holographic renormalization [9] with modifloundary conditions to come
up with cosmological evolution on the boundary.

The second one in this line starts with a dynamical bulk fits&éhe time-dependent
cosmological solution in supergravity is scarce in genevs, however, manage to find
explicitly time-dependent brane solutions ifi and 11 dimensional supergravity which
takes Kasner-like scaling in world-volume directions oe brane [10]. Such solutions in
near horizon limit reduces tddSs x S° andAdS,; x S* with Kasner scaling in transverse
directions for KasneD3 and M5 brane solutions respectively. Th&iS5 solutions with
Kasner scaling as solutions fedimensional Einstein’s equation with a negative cosmo-
logical constant was however studied in the literatureegittnthe context of understanding
gauge theory near cosmological singularity [11] or in thetegt of anisotropic expansion
of strongly coupled quark gluon plasma [12]. We, howevencemtrate on cosmology,
namely realizing cosmological evolution on probe dynannanes in these time-dependent
backgrounds and find interesting consequences like dym@mamnpactification of extra
dimensions.
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Introduction

1.1 Overview

As of now, string theory [1-6] is believed to be the most sestid quantum theory of
gravity and a strong contender to be the fundamental miopesc¢heory of “everything”.
It starts with the idea that the world at its microscopic-triegel is made up of some tiny
stringy objects, which vibrate, do all kinds of funny actsldmally come up with the
macroscopic world we see everyday. The different vibratiomodes give rise to different
elementary particles which we had so far been thinking ohagundamental constituents
of the universe. In other words, the long term goal of strimpty is to provide a complete
and universal microscopic foundation to more macroscd@ories and phenomenologies,
such as the standard model of particle physics and Einstiieory of gravitation, to name
a few. However, string theory is a framework that operatesuich an ultra-high energy
regime that this is far beyond the reach of even the most mqualatticle accelerators like
RHIC and LHC. But this is not really a matter to worry as suclkskihg whether string
theory can explain the real world is probably as irrelevanioeask whether one can solve
the problem of the oscillation of a simple pendulum in quanfield theory. We need to
remember, just like quantum field theory, the theory of gims also a framework, the
justification whereof would probably be found from the thesderived from it.

With this aim in view string theory has expanded its horizomwther branches of the-
oretical physics where the possibility of having a derivedary with greater testibility
increases with a decrement in energy scale. AdS/CFT camelgmce [7—-10] is one such
hypothesis derived in the string framework that nurtures plossibility. AdS/CFT, as we
would discuss in gory detail in due course, is an illusteatigalization of the old holo-



Chapter 1. Introduction

graphic principle which states that the degrees of freedioguantum gravity reside on the
boundary space-time. This in turn gives rise to a dualitp@ple that maps the states in
gauge theory to solutions in string theory living in one ld@gldimension. Particular sig-
nificance and predictability of such a miraculous hypothesin be put to test when the
t'Hooft coupling and the rank of the gauge group of the gabgety in question becomes
so high that it becomes intractable by traditional methadsuantum field theory. Evenin
this case, the hypothesis ensures the “dual” theory to hajlsiclassical theory of gravity
with minimally coupled matter fields, namely the supergratieory that is also realized
as some consistent truncation of string theory at low enefdye advantage of working
in supergravity limit of string theory is that unlike the fstring theory which is a theory
with infinite degrees of freedom, here one has to deal witly tnite degrees of freedom.
From the perspective of the full supersymmetric string the¢bis amounts to integrating
out massive string excitations by taking the limit — 0 where+v/a/ is a characteristic
small length scale- 10~ cm and is related to the string tensionAs= — = 4, [,
being the string length scale. S

In this thesis, we will use AdS/CFT, or more broadly the piphes of gauge/ gravity
duality to understand some features of physics out of dajuilin. We will discuss various
non-equilibrium states and their gravity duals. We willegirize the constructions accord-
ing to the phenomena we would like to address through themetral, non-equilibrium
phenomena occur in many branches of physics. Most celebaateng these, are relativis-
tic heavy ion collision and cosmology. Many features of tielstic heavy ion collision
were revealed in recent experiments like RHIC, though ke Igtogress has been made to
understand the very essential quantum kinetic theory gavgtheir dynamics. Cosmolog-
ical data are abundant, most of them, of course begging a&pexyplanatory theory. Not
only this, even some recent condensed matter experima&$ARPES where one can see

the non-equilibrium evolution of Fermi-surface, still kaa proper theoretical justification.
All these are excellent set ups to test the applicability aigge/ gravity duality in non-
equilibrium. We would proceed slowly towards addressings®f those issues in these
directions by building up problem specific machinery. In tast of this chapter we will
cover some basics that will be proven handy in course of aungy out of equilibrium.



Chapter 1. Introduction

1.2 Solitonic Solutions in Supergravity

In this thesis we will be mostly interested in type Il supexgty solutions. This is a low
energy effective theory of type Il (A or B) superstring thewrith following field contents:

e gravitong,,, antisymmetric tensaB,,,, and dilatony coming from (VS-NS) sector
of the theory.

e p + 1 form fields A, originating from the massless spectrum &f 2) sector. De-
pending orp is even or odd, the theory is type IIA or type 1B respectively

e space-time Fermions that belong #®-(V.S) and (V.S-R) sectors.

In Einstein frame, the action for the type Il supergravity te written as [11-14],

1 1 1 1
Ip = 1 -5 i — — WOE2 4. 1.1
167TG10/d VIR = 50,00%0 22];(p+2)!6 pr2te) (L)

E

with a, = —3(p — 3). The dots denote the\(S — NS) 3 form field strength and the
fermionic terms (G, is the Newton’s constant in 10 dimensions.
The equations of motion for graviton, dilaton and ghe- 2 form field strengths are,

respectively,

p+1

1
B =000t g (A AP g = T8 )
1 a
20 = wy P F2
V ¢ \/gau(\/gayqbg ) 2(p+2)' p+27
8M(\/§e“P¢F“”2"'”P”) =0. (1.2)

The field strengthf, , in the action is termed as electric. One can also define it1atay
dual
FlO—p—Q = % x Fyio (1.3)

and show that under the duality transformations,
&p¢ - _ap¢a (p + 2) - (10 —-—pP— 2)7 Fp+2 - Fl(]fpf?? (14)

the equations of motion (1.2) remain invariant [14].
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With a view to motivating our way towards AdS/ CFT correspemnck, we will con-
template on a particular solitonic solution of type Il B stgravity, namely theD3 brane
solution. From the perspective of string theory this can el$ me thought of as a dimen-
sional hypersurface on which an open string can end. They ft' stands for Dirichlet -
the string end points attached to the hypersurface can nmeglyfon the brane and hence
satisfy Neumann boundary condition aloBidprane directions # time direction. In the
remaining6 spatial directions, Dirichlet boundary condition is obeye

In Einstein frame thé>3 brane solution is given by

3
ds? = H7'2(—fdt* + 3" (da')?) + HV2(f7'dr? + r2(ds7)),
i=1

h 4 To 4
H_1+<;) g=1- (D),
QQ
h8+r§h4:1—6, ¢ = Constant (1.5)

where we have imposed the self duality condition, nami@}y= *F5.
Solution for five form field strength is,

2@
Ft’i1i2’i37“ - €’i1i2’i3H 2’]"_5‘ (16)
Herer is the radial coordinate in transverse directions of thendra) is an integration

constant which is related to thHe3 brane chargeys given by

Q. (1.7)

H3 = 7 )
(2m)213gs

whereg, is the string coupling constant given gy = e? and (s, the volume of thes-
sphere.¢ being a constant, can be set to zero. The metric, (1.5) hamalarity atr = 0
and a horizon at = r, where the metric functiory; vanishes. In the extremal limit,— 0,
the horizon sits on the singularity and this configuratioeserves half of the space-time
supersymmetries. Configurations with arbitragyhowever, break all supersymmetries.
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Near Horizon limit of Extremal Brane

In the extremal limity — 0, the metric, (1.5) takes the simple form

3
ds? = H 2 (~dt* + Y (da')’) + HY2(dr? + 12(d9s2)),

. fir)y=1, H—1+Q (1.8)

19
h_4 4rd

We now considerV-coincidentD3 branes. For a singl®3 brane the normalized flux is
given by
M3 = T3(27r)%ls4gs' (19)

For coincidentV number of branes it changes in a multiplicative way with
ui" = NTy(21)3 1 g, (1.10)
Using (1.7), this in turn fixes the integration constapis
Q = 16N7g,l,*. (1.11)

With all these considerations taken into account, the mébr N coincidentD3 branes
takes the form

ds*> = H Y% dt2+z (de')?) + HY2(dr? + r2(dQs2))

4 4
% = 1+l_ (1.12)

H o= 1+—3"=1+7

Whereli—44 = 4Nrgs.

[ is the characteristic length scale proportional to theigmtwnal field strength. In the
asymptotic limit,r > [, the metric takes the form of a flat Minkowski metric. In theane
horizon limit,r < [ the metric becomes-dimensional Anti de SittefAdS;) x S°.

2

d32AdS5><S5:_2 dt2+z (da") + d 24 12(dS)s?) . (1.13)
5
N _ S
Ad55
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Hints Towards a Duality :

e The isometry group ofidSs is SO(2,4). Additionally, theS® part has an isometry
group SO(6) ~ SU(4)g. This is, surprisingly, the same as the Bosonic subgroup
of the superconformal group @¥" = 4 supersymmetric Yang-Mills(SYM) gauge
theory PSU (2, 2/4).

PSU(2,2/4) € SO(2,4) x SU(4) g, (1.14)

corresponding to the conformal group and theymmetry group respectively.

e Looking at the supergravity spectrum, one can note a mapgfitige supergravity
tower of states to the single trace operators and their ddsogs in the conformal
field theory living on the flat asymptotic boundary of tHelS; space-time. The
matching also extends at the level of correlators of thoseadprs.

Motivated by the holographic principles, the afore-mem&id hints guide towards a pos-
sible duality principle that connects two apparently distisectors, namely a supergravity
theory in AdSs space andV' = 4 SYM theory inD = 4. This indeed is the AdS/CFT
correspondence which we will jot down in more precise mameet.

1.3 The AdS/CFT Conjecture

The AdS/CFT correspondence, in ggongest forms based on the open string-closed
string duality which states that the dynamics of open ssrizgntains that of closed strings.
As we know, closed string contains gravity whereas the opengsspectrum does not
contain graviton. This correspondence, in its simplegtrgeimplies a duality between
type IIB string theory on asymptoticallydSs x S® with constanb-form RR field strength
(generated by massless closed string modes)\ng 4 SU(N) SYM theory in3 + 1
dimensions (generated by massless open string modesgitmeters of the two theories
being related as :

2
9s = 9y m»

2 /!
GyuN = A=

4l

. (1.15)

A has a name -it is called 't Hooft coupling.
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The 't Hooft Limit

This verystrong formof the conjecture is physically intractable particularigce we do
not quite understand quantization of string theory in RRkgeaund itself. The 't Hooft
limit, namely, N — oo with A = g2, N fixed provides with the following simplifications :

e Inthe NV = 4 SU(N) SYM theory we can safely neglect non-planar diagrams as
they are suppressed by ordersgf, g being the genus of the surface.

¢ In the string theory side, it also becomes simple and in fasffices to work with
classical string theory inldSs x S° background which is much more well under-
stood. The justification lies in the fact that the pertunmgxpansion in string theory
is basically a genus expansion of surfaces. Correlatioctimmon a genug surface
usually scales ag¢~2. But in the 't Hooft limit, g, = % itself goes to zero resulting
in vanishing contributions from higher genus surfaces.

Simplifying further : the Large X Limit

AdS/CFT conjecture probably finds its maximum usefulnesernwive further send the 't
Hooft coupling to infinity. Two things happen :

e N =4 SU(N) SYM theory enters into a strongly coupled regime. Availgi#etur-
bative techniques therefore becomes invalid.

e However, the dual string theory simply reduces to supeitytavihis can be vi-
sualized on noting that perturbative expansion of the Lagjea in curvature in
this background is basically an expansion)(rn%, since the Ricci scalar scales as
iR~ 5 = *;—% In large A limit, we can therefore safely drop out higher order
curvature terms and end up in achieving a supergravity kihe full superstring
theory. This supergravity theory is classical type |IB sgpavity in AdSs x S°
space-time.

e This is the weak form of AdS/CFT correspondence but the nmastable one from
the gravity side of the story. Since it relates the weaklypted supergravity to a
strongly coupled quantum field theory, this formhslieved to beéhe most useful
version of all the three forms in taming otherwise quiteantable strongly coupled
phases of the boundary gauge theories. In this thesis, wéevidlealing with this
weak form of gauge/ gravity duality principle only.
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1.4 Setting up the Dictionary

In the supergravity limit, thé0-dimensional type 1I1B action, (1.1) reduces to

1 11
Isugra = 167Cro /dlox lg| (R— §§F52) . (1.16)

We are focusing on non-dilatonic solutions. Fo8 brane solution, as we have seen before,
the dilaton profile is constant and hence this can as well beossero. To get to a form
suitable for reduction ove$® we write the metric breaking it explicitly as :

ds® = g3, datda” + 12dQ2. (1.17)

Hered(); is the metric onS°®. Takingg’, as the metric ofAdSs, we end up in getting the
following 5-dimensional reduced action :

1
2 _ 5 5 ®) _
ds; = oG- /d z\/|g®] (R 2A) . (1.18)

Here G5 is the5-dimensional Newton’s constant related tolitsdimensional counterpart
asGs = % A is the cosmological constant and is given/by= —l%. The steps towards

obtaining thiss-dimensional reduced action with a negative cosmologicaktant,A are
the following :

e The metric being diagonal, the full-dimensional Ricci scalar completely decouples
into two parts - the Ricci scalar aAdSs which we denote a®(® and that onS®
which is a constant.

e The full 10-dimensionab-form field strengthF; has non-vanishing contributions in
form of constand-forms onAdSs.

e The constant contributions coming from the Ricci scalarS9nand that from the
constant)-forms add up and give the negative cosmological constgmeamg in
(1.18).

A more detailed discussion on this can be found in [15, 16].
From the5-dimensional point of view theldS; space-time can therefore be thought
of as a maximally symmetric solution of Einstein’s equationpresence of a negative
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cosmological constant :
1
Rap — 5RGAB = AG 4. (1.19)

This is a solution with constant negative curvature such:tha

1
Rapep = 2 (GacGpp — GapGae) . (1.20)
For future use, we will, at this point, introduce new cooedes known as the Fefferman-
Graham coordinates. The metric for thelS; space-time in this coordinates takes the
form: )

ds® = % (dp® + nyudztdz") . (1.21)
p is the radial coordinate here and satisfies 0, p = 0 being the boundary. But it is
worth noting that the metric having a second order po}e-at0, does not yield an induced
metric on the boundary. However, one is allowed to define dotoral structure at the
boundary through defining functionr(p, z) which has a first order zero at the boundary.
In the interior, however;(p, z) is positive definite everywhere. With this, one can define
boundary metricy® as

9 =G|, (1.22)

r(p, z) is otherwise arbitrary. We can therefore as well chaosep. With this choice the
boundary metric becomes flat Minkowski, nam@I,Si) = M-

Now we define asymptoticallyidS; (AAdS5) space-time as a spacetime having the
following form of the metric in Fefferman-Graham coordiesit

2

ds? = % (dp® + gw(p, 2)d2"d2") (1.23)

where we have replaced the flat Minkowski payt, in (1.21) byg,.(p, z). This metric is
free of coordinate and curvature singularities upto a firathal distance from the bound-
ary. Furthermorep — 0 limit of the metric, g, (p, z) is smooth and takes the following
expansion near the boundary:

g (p2) = g9(2) + 92 (2)p* + g5) (2)p* + 351) (2)log(p®) + ... (1.24)

It can be shown the above form indeed yields a solution oftEin's equation in the pres-
ence of a negative cosmological constant.
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Justification

The above form of asymptotically AdS metric gets its juséifion from the fact that one
can precisely draw a one-to-one map connecting the bulealifbrphisms preserving the
form of the metric given by (1.23) and boundary conformahgfarmations.

Under such bulk diffeomorphism thg,, of (1.23) transform infinitesimally as:

g (p; 2) = 20(2)(1 = p0,) gy (P, 2) + Vyuaw(p, 2) + Vua,(p, ). (1.25)

HereV is the covariant derivative in terms of the metgg, anda, = a”g,, is defined as:

1 P / v / /
a'(p,z) = 5/ dp'g" (p',2)0,0(p, 2). (1.26)
0

It can be easily checked that under this bulk diffeomorpkisthe boundary metric,
g,(g/)(z) is transformed as

g5 (2) = 20(2)g%) (=), (1.27)

pw
which is nothing but a Weyl transformation.

Therefore, in asymptoticallyldS; space-timeSO(4,2) conformal symmetry of the
boundary theory can be realized as the asymptotic symmedopg The lifting of symme-
try from boundary to bulk can be easily understood in ternsraple scale transformation.
A uniform scale transformation of the boundary coordinates- Az, A being constant gets
lifted to z — Az, p — Ap in the bulk.

Fields in AAdS5

Just like the metric itself, any fiel@#(p, z) in AAdS; space-time also assumes an asymp-
totic expansion near the boundary:

O(p, z) = p* (CD(O)(z) + 3D (2)p? + ... + OV (2)p™ 4 BV (2)log(p?) + ..). (1.28)

The job is now to impose the equations of motiondg(, =) which includesg,,(p, z)

as well. No matter whether the equations of motion are linedrperturbations around
the AdS; or the full non-linear equations of gravity, the field eqoas of motion will

be second order differential equationsgrand hence will have two independent series
solutions. Asymptotically these two solutions will gosandp®™2" in the leading order.

10
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Now we jot down the main features of the series solutions:

Expect the coefficientp®™)(z), all other coefficientsp@*)(z) for 0 < k < n are
algebraically determined in terms df?(z) and their derivatives up to ordei.
®(") (z) remains undetermined by equations of motion.

The coefficient®®)(z) is also determined b$® (z) and their derivatives in a sim-
ilar spirit.

We call ) (z) the non-normalizable modeb®™(z), the normalizable modend
®(")(z), the anomaly coefficientIn other words, though a bit misnomer (strictly
speaking, these are only coefficients of expansions, nduéi@oor mode!), thenon-
normalizableand thenormalizablemodes refer to the leading term in the asymptotic
expansion of the two linearly independent solutions of talke fequations of motion.

Once we invoke regularity in the interior of th&lS space-time, the normalizable
mode corresponding to any linearlized perturbation ardhedidS space-time gets
fixed in terms of the corresponding non-normalizable modeugh the normaliz-
able mode isota local functional of the non-normalizable mode. This is aaye
observation and it goes through even when we consider pattan around more
non-trivial backgrounds likeddS black holes. We will use these ideas later on in
this thesis.

The Dictionary

With the basic set up ready, we are now in a position to statditttionary of gauge/gravity
duality.

e Corresponding to every fieldp in the bulk gravity, there exists a gauge-invariant

operator which we will denote a94. For instance, the bulk metric corresponds
to the stress-energy tensor at the boundary whereas the galds in the bulk are
mapped to boundary symmetry currents.

The non-normalizable mod&© in the asymptotic expansion, (1.28) is identified
with the source that couples to the operafay,in the boundary gauge theory. As an
example, the boundary metrigﬁoy) is identified as the metric on the flat Minkowski
space on which the gauge theory lives. It couples to thessénesrgy tensor operator
of the boundary gauge theory.

11
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e The partition function on the bulk side with® specified as boundary condition,
gives the generating functional on the field theory side.

Zowws [@1ma= 89 ] = [ Doeap(-s[a])
N——— dad(0)

Dirichlet Boundary condition
<€a:p (— / c1><0>0¢)> . (1.29)
QFT

In the limit when 't Hooft coupling is large and so is the ranktloe gauge group,
as discussed earlier, the left hand side of (1.29) can beappated by supergravity
partition function with the action$ replaced by the supergravity actia®,, g,

e This, however, is not the end of the story. In order to end ugeiting finite corre-
lation functions for the local gauge-invariant operatorshe boundary theory, one
needs to get rid of the divergent parts of the supergraviigacThe methodology to
making the observables in gauge theory sector finite by gdajipropriate counter-
terms to supergravity action is well known in the literatarel goes by the name,
“holographic renormalization” technique.

e Finally, functional differentiations of the renormalizedtion with respect to the
source ®) give correlators of all the local gauge-invariant opersitor

e For AAdSs space-time, itis always possible to find a suitable renaeatdbn scheme
in which the normalizable mode of gravitqyﬁi)(z) can be identified with boundary
stress energy tensor.

1.5 Finite Temperature : Thermal Retarded Correlators
in AAS/CFT

In the thesis, we will mostly deal with finite temperatureteyss. The dictionary we just
gave is typically for zero temperature. In the bulk graviégter the most natural way of
introducing temperature is to consider black holes inAd& geometry. The intuition fol-
lows from the fact that stationary black holes behave lile@titodynamical objects in all
respect. The surface gravity at the black hole horizon calldéatified with temperature
while the mass, with the total energy. Furthermore, in allaiyical processes known, the

12
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area of the black hole event horizon can only increase monzly, justifying its iden-
tification with entropy. Also, for any dynamical process tilack hole horizon possesses
uniform surface gravity mimicking the thermodynamical #iQuation. Since we are in-
terested to study strongly coupled gauge theory on Minkogskce-time, we will fix the
boundary metric toy,,, by imposing Dirichlet boundary condition. We will focus amet
cases where the topology of the horizon is the same as thhedfdundary. Considering
all these, &-dimensional black hole metric which asymptotesliés; takes the form:

dr?

ds* = —r*f (r)dt* + 20

+ 72(dz® + dy® + dz?), (1.30)

with f (r) =1 — :—§ ro being the position of the horizon.

With proper coordinate redefinition, this metric can as welre-written in Fefferman-
Graham form, (1.23). In the asymptotic regiony~ oo, f () goes tol, reducing the form
of the metric to that ofdd.S; space-time.

In the thesis, we will also deal with a larger class of blaclketrswlutions obtained by
boosting the boundary coordinatés,z, y, z). The class of solution is obtained by replac-
ing dt — wu,dx*, u, being a time-like vector in Minkowski space, satisfyiagu,n,, =
—1. We further construct the projection vect8y, = u,u, + 7, that projects on the spa-
tial slice orthogonal ta,,. With all these ingredients, the metric for the class of beds
solutions, known as thieoosted black brands given by

r2f(r)

The boosted black brane metric can also be cast in the Feffe@raham form (1.23).
In this form, the metric shows no coordinate singularitytfadl way to the horizon. From the
Fefferman-Graham form of the above metric one can easily offathe boundary stress-
energy tensor. Whew* = (1,0, 0,0) we retrieve back (1.30). With this choice of, the
energy density; and the pressure densify,are given by = 37474 andP = #*T*. These
are exactly of the same form as that of black body radiati@htence establishes the fact
that (1.31) is indeed the holographic dual for CFT statekenrhal equilibrium.

ds* = —r*f (r) w,u,datde” + + TQPde“dx”. (1.31)

13
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Thermal Retarded Correlators

We will end this discussion with a prescription to thermaarded correlators that we will
use later on. In quantum field theories, retarded corredat@asure the causal response to
a source. It was argued in [17] that one way to ensure caugabnse in a theory of gravity
is to replace the regularity condition of the solution inithierior of AdS with the incoming
wave boundary condition at the horizon. This is causal insétrese that classically probe
waves can only fall into the horizon but never come out. One@woke this condition, the
two point function turns out to be the ratio of the normalieaéind the non-normalizable
modes.

Let us write the general solution of the bulk field as :

O(rt,z,y) = Alw, kK)exp(—iwt +ikx)r 2 (1 +...)
+ B(w, k)exp(—iwt + ik.x)r 2 (14 ...), (1.32)

whereA_ < A, andA, > 0. Since in the leading order the Fefferman-Graham coordi-
nate,p is related to the Schwarzschild coordinatgsy ~ % this leads to identifyingd
with the non-normalizable mode or the source #&hdith the normalizable mode or the
response.

The two point thermal retarded correlator then takes tha {&8, 19]:

B(w, k)
A(w, k)

(0$09) =C + Contact terms (1.33)
C is a scheme independent constant.

It can be shown that the retarded correlator has a pole onénwie non-normalizable
mode, A(w, k) vanishes. This vanishing of non-normalizable moedenfalling wave
boundary condition at the horizon gives a very special smiuor &(r, ¢, z,y). These are
called quasi-normal modes of the linearlized perturbaticound the black brane space-
time. Going by our earlier logic this means, the poles of #tanded propagator of the
boundary gauge theory can ocdfiithe dispersion relations corresponding to quasi-normal
modes are satisfied.

14
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1.6 Plan for the Rest of the Thesis

Upon understanding the basic notion and the tools of hopgrave will proceed further,
in subsequent chapters of this thesis, to develop metreddgi deal with different non-
equilibrium scenarios in holographic set-up. We will de®getools and prescriptions con-
templating on applications towards physically interggtmmoblems like quantum quench,
Fermi liquid theory in non-equilibrium and cosmologicabéwtion of the universe. We
will argue some of the methods developed might as well be wargh useful in under-
standing and improving upon existing tools to study ultlatreistic heavy ion collisions.
As mentioned in the overview, the methods we would use wilpbeblem specific, but
we will broadly categorize them in two parts. Following ouderstanding of holographic
meaning of equilibrium, these are,

(A) Going to a temperature other than the Hawking temperatuth@black hole

As we mentioned in previous subsection, in any dynamicaiigonal process involv-
ing black holes, attaining Hawking temperature at the loorigignals the equilibriation.
Hence, at the level of free-energy, if we somehow make th@éeature off-shell it would
enable us to study the dynamics of equilibriation. Motidabg Bragg-Williams methoth
condensed matter physics [20] and its adoption in black playesics and holography [21],
we will use this idea to analyze, holographically, the phieaoon of temperature quench
in specific black hole set-up. Apart from the dynamics, wd g8k, even the analysis of
phase transition particularly of the first order, which otise is difficult to capture in
the framework of Landau theory, becomes easier in this fwarie ThisBragg-Williams
methodand applications thereof involving different black holegeetries will be discussed
in detail in chapter 1 of this thesis.

(B) Obtaining time-dependent backgrounds suitable to studyaguilibrium phenom-
ena

There are different ways to construct time-dependent rackgls. In chapter 2 of this
thesis we will discuss how to obtain time-dependent bullcegane dual to specific non-
equilibrium states starting from the observables of thenblany theory. This analysis is
based on the Fefferman-Graham constructiod 4f/S spaces which we have already de-
veloped in section.4. We will consider non-equilibrium fluctuations on the topeojuilib-
rium states which holographically maps into incorporatjugsi normal mode fluctuations
on theAdS black hole in equilibrium. Upon constructing the backgrauwe will use this
to find the spectral function in specific non-equilibriumtesa We will show the useful-

15
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ness of the mechanism developed in understanding Fernd ligeory for non-equilibrium
strongly coupled systems.

The other methods of constructing time-dependent geoesedre aimed at cosmologi-
cal applications. The first of them is based on Verlinde'sif#?] that the time in theldS
bulk and that of the boundary conformal field theory are déffee and a dynamic boundary
space-time can in principle be obtained starting from acshatlk. This idea was further
extended with charged black holes in [23]. Motivated by ¢hiego, we will use the tech-
nigues of holographic renormalization with modified bouydzonditions to come up with
cosmological evolution on the boundary.

The second one in this line starts with a dynamical bulk fits&éhe time-dependent
cosmological solution in supergravity is scarce in genevs, however, manage to find
explicitly time-dependent brane solutions ifi and 11 dimensional supergravity which
takes Kasner-like scaling in world-volume directions oa brane. Such solutions in near
horizon limit reduces toldS; x S% and AdS,; x S* with Kasner scaling in transverse di-
rections for KasneiD3 and M5 brane solutions respectively. Th&lS; solutions with
Kasner scaling as solutions fedimensional Einstein’s equation with a negative cosmo-
logical constant was however studied in the literatureegittthe context of understanding
gauge theory near cosmological singularity [25] or in thetegt of anisotropic expansion
of strongly coupled quark gluon plasma [26]. We will, howewancentrate on cosmo-
logical implications, namely realizing cosmological exdn on probe dynamic branes in
these time-dependent backgrounds and find interestingggorsaces like dynamical com-
pactification of extra dimensions.

The third chapter in this thesis is fully devoted to such colemical applications.
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The Bragg-Williams Method

Prelude

Going by the plan chalked out in the introduction, we stathvaur first scheme to go
out of equilibrium through a construction of an effectivedrenergy which is off-shell in
temperature. This construction which goes by the name ‘@®#agliams Method” was,
however, originally proposed as an efficient mean field tephento study phase transition
phenomena in condensed matter physics. As we know, witkeimtdan field approxima-
tion, phase transition is primarily described via Landaeotty. Under the assumptions that
the order parameter is small and uniform near the transitios theory provides us with
a wealth of information about the nature of the phase tramsitt is based upon a power
series expansion of free energy in terms of the order pasmBte terms in this expansion
are normally determined by symmetry considerations of theesps. Furthermore, owing
to the smallness of the order parameter, only a few leadimgstare kept. The usefulness
of the Landau theory lies in its simplicity as most of its potidns can be achieved by
solving simple algebraic equations [1]. While this themymost suitable in describing a
second order phase transition, one needs to be somewhatl cargeat first order phase
transition within this framework. This is because, in a fosder transition, order param-
eter suffers a discontinuous jump across the critical teatpee. If this change is large, a
power series expansion of free energy may acquire amhegui®ne then requires a more
complete mean field theory. This is where the Bragg-WilligB¥/) method [2, 3] comes
in handy. Originally used to describe order - disorder titaos of alloys, it has a wide
range of applications [1, 4]. In this approach, one conssran approximate expression for
the free energy in terms of the order parameter and uses tititiom that its equilibrium
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value minimizes the free energy. In the following sectioreswill extend this novel idea to
study phase transitions involvingylS black holes. We will start with SchwarzschilttiS
black hole and later generalize it for charged black hole4ds. Going off-shell to study
black hole phase transition within the BW framework getspsupfrom a previous work
of Fursaev and Solodukhin [5]. We will discuss their apphokater in this chapter. In the
process we will propose one possible construction for aece¥e off-shell free energy of
the boundary gauge theory. Finally we will show, through acdc example, how this
method can be immensely helpful in understanding the phenomof quantum quench.
But even before going into its applications, we need to kna& ¢onstruction in a set up
where it was born. This chapter is primarily based on our wik7].

2.1 Bragg-Williams construction: a brief review

This section is a review of BW theory and is pedagogical imretlt has two subsections.
In the first subsection, we discuss Ising model and use BWyheacapture second order
paramagnetic to ferromagnetic transition. In the next satisn we describe how to gener-
alize this concept for Schwarzschild black hole in AdS sgawgreproduce the qualitative
features of the first order Hawking-Page transitions.

2.1.1 Paramagnetic to ferromagnetic transition

Bragg-Williams construction is perhaps best describedisingy model [1]. Let us consider
Ising model on a lattice where, on each site, the classicahgiables; takes values-1.
These spins interact via a nearest neighbour coupling0. The Hamiltonian is given by

H=-J]) oo (2.1)

Here the sum is over the nearest neighbloaind \’. The order parameter g8 =< o >,
the average of the spin. For spatially unifonmthe entropy can be computed exactly. The

total magnetic moment is
o Na - N

N )
whereN ., andN_, are the total number of 1 and—1 spins respectively. The total number
of lattice sites is denoted hy. The entropy is the logarithm of the number of states and is

(2.2)
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given by
S = ln(NCN+1) = ln(NON(ler)/Q) (23)

which, for entropy per unit spin, gives

1 1

s(m) = % =In2-— 5(1 +m)ln(l +m) — 5(1 —m)In(1l —m). (2.4)
In BW theory, the energy: H > is approximated via replacing by its position indepen-
dent average:. Thus

1
E=-J) m’= —iJszQ, (2.5)
<>

wherez is the number of nearest neighbours in the lattice. One thestaucts the BW free
energy per spin as

FTom) = E;VTS

1 T T
= —§J2m2 —TIn2+ 5(1 +m)ln(l +m) + 5(1 —m)ln(1l —m)(2.6)

The BW free energy (7, m) can be plotted as a function of for various temperatures. It
can be checked that, f@r > Jz, it has a single minimum at = 0. However, forl’ < Jz,

two minima occurs for non-zero values of leading to paramagnetic to ferromagnetic
transition. Critical temperatur@’,) for this second order transition can be found by setting
first and second derivative gfto zero with the resull,. = .Jz. More details about Bragg-
Williams mean field construction in the context of statigtimechanics and condensed
matter can be found in look at [1, 4].

2.1.2 Hawking-Page transition: AdS-Schwarzschild black ble

We can implement similar construction for AdS black holesvadi. Let us consider a
Schwarzschild black hole ifn + 2) dimensional AdS space. The metric is given by

ds* = =V (r)dt* + V (r)~'dr? + r*dQ2, (2.7)

with
(2.8)
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Here M is a parameter related to the mass or internal energy of tleeaind! is the inverse
radius of AdS space. We have $et+ 2) dimensional gravitational constaft, ., to one.
The black hole has a single horizon wherevanishes. We will identify the horizon radius
asr,. The dimensionless temperature, energy and entropy éenare give by

(n+ 1)+ (n—1)

T=IT = — ,
A7
n—+1 “n—1
o TR Ui i
167
_pn
—_— 2.
5=1 2.9)

Herelr = r,.. Before constructing the BW free energy, we will have to decon an
order parameter. Noticing the form of the entropy and thegnet is only natural to
considerr as the order parameter. We will see later that this ordempater has right
behaviour expected from the instability associated with hiole. We are now in a position
to construct the BW free energ¥(7, T') as

- n(rtt ey

F(r,T)=E—TS = - -7 (2.10)

A plot of the free energy in five dimensions as a functiom ébr various temperatures is
shown in figure (2.1). Note that in (2.10), the temperatur@ parameter. Its dependence
on 7 as given in (2.9) appears after minimizigigwith respect tar. At this minimumF
reduces to the on-shell free energy of the black hole. Ithismgby

N - 1)

F'= Fluin =~

(2.12)
We identify the AdS free energy with equals to zero. The first order transition appears
when o0
F—o0,ad 2L, (2.12)
or
are satisfied simultaneously. This happens for
_ — 3
r=1,and T, = —. (2.13)
2T
Below this temperature, black hole phase becomes unsta#decan be seen from the

dashed line of figure (2.1), the = 0 phase is preferred. This is identified as the AdS
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0.005:—

0,000+t b

Figure 2.1: BW free energy for five dimensional AdS-Schwarzschild blaokes plotted
against horizon radius for different temperature¥. The solid line has two degenerate
minima - representing co-existence of black hole phaseifmim atr = 1) and the thermal
AdS phase (withv = 0). This happens at a critical temperatdre = 3/(27). While
above this temperature black hole is stable (dotted ling} & a preferred phase belaw
(dashed line).

phase. This is a first order transition causing a discontiswbange in the order parameter
7. This instability is well known in the literature aéise Hawking-Page (HP) instability3],
where below a critical temperature, a AdS-Schwarzschddibhole becomes unstable and
crosses over to the thermal AdS space via a first order presstion.

Upon constructing the BW free energy for SchwarzschiléS black holes, we now
move onto incorporating charged black holeslihS space in this frame-work.

2.2 Charged black holes

As discussed in the introduction, fo(a+1+¢) dimensional theory of gravity compactified

on AdS,, 1 x X1, the dual field theory lives on a space whose topology is santieah of

the boundary ofAdS,,,,. The isometries ofX? becomes global symmetries of the field
theory. Now whenX? is a five-sphere, th€O(6) isometry allows one to introduce three
independent R-charges through rotatiostdirection. These three R-charges correspond
to the three Cartans ¢fO(6). Consequently, one can turn on three independent chemical
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potentials in\ = 4 SYM. At finite temperature, the gravity dual of this theonthe R-
charged black holes of/ = 2 gauged supergravity [9—11]. For the special case, when
the charges are equal, these black holes reduce to the Belsrdstrom black holes in
AdS space. Many features of these black holes and their ghegey duals were studied
in[12, 13].

Furthermore, it is also clear from the previous discusstbas working at the super-
gravity level corresponds to analyzing gauge theoriesifatiie coupling, with large num-
ber of colours. To see any finite coupling/finite colour eff@cgauge theory, one requires
studying string theory on AdS. However, since this is as yEi@ly understood area, many
authors have looked into the effects of addiigcorrections to supergravity. See [14-17]
for an incomplete list of references. In general, it is algspested that string theory will
introduce higher order gauge field corrections to supeityractions. These corrections,
in turn, would modify various equilibrium and non-equililom properties of the gauge
theory. The reader can look at [18] for work in this directioht finite temperature, the
gravity duals of these are the black holes in the presencegb&hderivative corrections.
Construction of such black holes becomes progressiveligulif as one introduces more
and more higher derivative terms in the action. In fact, imyeases, one relies on per-
turbative construction of the black holes. However, thetiste a rare example of exact
black hole solution which takes into account a specific sglanige field higher derivative
corrections to all orders. These are the black holes in thre-Bdeld (BI) theories in the
presence of a negative cosmological constant. Bl blackshe&e constructed in [19, 20].
Assuminghat there exists a dual gauge theory, equilibrium and munkbrium properties
of the finite temperature gauge theory were studied by matipasiby exploiting the black
hole solution [21, 22]. We have discussed previously thdtragla gauge field in the bulk
is equivalent to turning of a chemical potential in the gatlgory. Since Bl black holes
accommodate all order gauge field corrections, they incatpdarge chemical potential
contributions into the gauge theory. In this section we adldiress some issues along these
directions.

This section is structured as follows. In the next subsaatie review the Born-Infeld
black hole solutions iMdS space in(n + 1)-dimensions. In subsection 2 we compute
the Born-Infeld actions in two different thermodynamicakembles - namely the fixed
potential and the fixed charge ensembles. In the followirxgsation we compute differ-
ent thermodynamic quantities in the two ensembles dirdiiy the action. In subsection
4, we go into the study of phase structure of those black holgsand canonical (fixed
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potential) ensemble. Although those have already beensugdied [19, 23, 24], we use
Bragg-Williams technique to find an off-shell potential. \&&art with an easier system,
namely the Reissner-Nordstrom, which is the zeroth ordpaesion of Born-Infeld solu-
tion and study its phase structure using Bragg-Williamsstaction. This again shows a
first order phase transition corresponding to the Hawkiagedhase transition from black
hole phase teldS phase. We then repeat the same exercise for Born-Infeld ratbes next
subsection, we continue this study, but this time with Rrghalack holes whose phase
structure exhibit both the first and the second order phasesitrons. With this we move
on to proposing some possible gauge theoretic free energgtrewtion in the last subsec-
tion. We successfully construct off-shell boundary patdatdual to Reissner-Nordstrom
and Born-Infeld black holes.

2.2.1 Born-Infeld black holes in AdS space

We start by reviewing some essential features of Born-théettion and its black hole so-
lution. Let us consider the: + 1) dimensional Einstein-Born-Infeld action with a negative
cosmological constant of the form

1

5= TorG

/ Iy =g [(R “9A) + L(F)} , (2.14)

whereL(F) is given by

FWFW>

L(F) =482 (1= /1 + 3

(2.15)
The constant is called the Born-Infeld parameter and has the dimensionasfs. In the
limit 5 — oo, higher order gauge field fluctuations can be neglected hrdgfore,L(F)
reduces to the standard Maxwell form

L(F) = —F"F,, + O(F"). (2.16)

Thus the action, S, reduces to the standard form for whiclR#issner-Nordstrom in AdS
is the black hole solution. Thermodynamics and phase sireicf such black holes were
studied in detail in [12, 13}

YIn what follows, for simplicity, we will work in a unit in whie 167G = 1, G being the Newton’s
constant inn + 1) dimensions.
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Equations of motions can be obtained by varying the actidh mspect to the gauge field
A, and the metrig,,. For A, and forg,, those are respectively given by

v“<l> — 0, (2.17)
1+ 55
and N
Ry — %ng + Agy, = %gWL(F) T (2.18)

1+ B

whereR,,, is the Ricci tensor an®, the Ricci scalar. In order to solve the equations of
motion, we use the metric ansatz

dr?

Vi(r)

ds® = =V (r)dt* + + f2(r)gyda‘da?, (2.19)
The metric on the foliating submanifold,;, is a function of coordinates’ and spans
an (n — 1)-dimensional hypersurface with scalar curvatime— 1)(n — 2)k, k being a
constant which characterizes the afore-mentioned hygacsu Depending on whether the
black hole horizon is elliptical, flat or hyperbolic, k can tagen ast-1 and0 respectively
without any loss of generality. For the metric (2.19), wedaon-vanishing components
of Ricci tensor

V// V/R/
V// V/R/ VR//
, n—2 1 v\ e
L= — " A 2.22
Ry = (U5 s VT ) 8 222)

where the primed quantities denote the derivatives witheetstor.
Let us consider the case where all the component‘dfare zero except™. In that case
(2.17) can be immediately solved to yield

i N D253
V20222 4 (n = 1)(n — 2)¢?

(2.23)

Hereq is an integration constant and is related to the electroetagoharge. From (2.23)
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we can also find the electric gauge potential as

At:

1 ¢ n—2 13n—4 (n—1)(n—2)¢
C n—

2 _ 2.24
22 op =272 2n — 2 232202 } 2 (2.24)

whereg is a constant and can be interpreted as the electrostasintpadtdifference between
the black hole horizon and infinity ands a constant given by = ,/2"=2 We choose
in a way that makes\; vanish at the horizon.

1 gq [n—2 1 3n-4 (n-1)(n-2)¢
crm 22 Mo(n —1) 27 2(n — 1)’ 2321272

o= ]. (2.25)
Now if F" is the only non-zero component of all ti&*’s, one can easily check from
equation (2.18) thaR” = R! and hence, from (2.20) and (2.21) it follow&'(r) = 0
which has two solutionsf(r) = r and f(r) = Constant. We will consider the case of
f(r) = r here. With this, and setting = —n(n — 1)/2/%, we get the solution fob/(r)
as [20, 24]

43? 1
V(r) = k- TZQ + <n(n— 1 +l—2) 7

_(n 2\/7571 5 / V26222 4 (n — 1)(n — 2)¢3dr. (2.26)

m here is an integration constant. Later we will see that thiglated to the ADM mass of
the black hole. The integral can also be expressed in termgpargeometric functions:

_ m 482 1\ 5, 2V2828% 2+ (n— 1)(n — 2)¢?
V(T> = k- yn—2 <77,(77, — 1) 1—2) A n(n — 1)7””73
2(n—1)¢? n—2 3n—4 _(n_l)(n_Q)q2

1

- : 2.27
nrzn—4 2 1[2(77, —1)'22(n—1)’ 232y2n—2 ] (2.27)
It is worth mentioning here that there is an ambiguity in tbedr limit of the integral
in the RHS of egn.(2.26). In order to fix this up, one has to kavagain the fact that
V (r) should reduce to that of Reissner-Nordstrom [12] ofice> oo limit is taken. This
tells that the lower limit of the integral should be such tihatintegral vanishes at that limit.

1Actually A; atthe horizom = . cannot be chosen arbitrarily. The event horizon of the afoeationed
background is a killing horizon of killing vecta?; and therefore contains a bifurcation surface at r
where the killing vector vanishes. This in turn demands #r@shing ofA; atr = r if the one formA is to
be well-defined [25, 26]. A more detailed discussion regaydhis can be found in [27].
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Black hole horizon satisfiel () = 0. Denoting the solution as = ., one can express
m in terms ofr, as

B [ 452 1] n 2\/767‘—1- \/Qﬂg -2 +(n—1)(n—2)¢?

"+ nn "+~ n—l
—1)q n—2 1 3n—4 n—1 2)q?
; 2Ar 2) QFI[ ( Z(QH )q]. (2.28)
nrly n—2"22n—2 2634y

Next, to find the temperature of the black hole, we follow tkendard prescription and
expandV/ (r) in Taylor expansion around= r so that

oV
V(r) ~ W‘r:”(r —ry)

Using this and a redefinition of the variablethe radial and temporal part of the metric
reduces to the form )
T) (2.29)

r= 7’+2

oV
or

ds? = dp? —|—p2d(

7 being the Euclidean time. Now, to avoid conical singulaél%

g) should have a

T=r4

periodicity of 27 and the periodicity irr is therefore given by

47

ov
or

ﬁbh -

r=rq

This period is identified with the inverse of black hole temgpere,7;;, = ﬁﬁ.

can be easily found from egn. (2.26). Once again, one has to fix

the lower limit o?ztﬁe integral and regarding this, the dission at the end of eqn. (2.27)
still holds. Finally the temperature of the black hole cormesto be

1 [n—2k+{4ﬂ2 52} 2V23

Typ = — S e
™ n—1 (n—1)rn-2

V2P (=) - 208 |,

(2.30)
which matches exactly with the expression of temperatutainéd in [20, 24]. From now
on we will takek = 1 for all our computations.

r+
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There are normally two ways to calculate thermodynamic tjies. First, one assumes
that the black hole satisfies laws of thermodynamics and ths¢$o find thermodynamic
guantities. Second is to compute the action for a black hotewse it to derive various
state variables following standard prescription. Here wkfallow the second path.

2.2.2 Action Calculation

We will now calculate the black hole action in two differensembles. First, we will focus
on the grand canonical ensemble which is defined as a fixeafdtensemble. In the
language of thermodynamics, this can be thought of as ctingethe system to a heat
reservoir full of quanta at a temperatuf,,, the reservoir being identified as a pure AdS
background with charged and uncharged quanta which aredribectuate in presence of
a constant potential. The scenario is quite different in case of a fixed charge ahathe
canonical ensemble. Since AdS with localized charge is sotwion of BIADS equation,
pure AdS background cannot serve the purpose of a heat ogséirturns out that extremal
black hole background is a good candidate in this regancbrder to keep chargé) fixed,
we, in this case, retain only neutral quanta in the heat vese?

2.2.2.1 Fixed Potential

The action for this is the one given in (2.14) analyticallyntoued to Euclidean space
by takingt — 7. We then use the equation of motion given in (2.18) for theriméo
eliminate’R to obtain the on-shell action as:

OL(F)  4F? 1
T n—1 (n-1) F] (2.31)

4\
5= /d”“x\/—_g[
n—1

1+ £

It is worth mentioning in this regard that since the spaceysratotically AdS, there is no

contribution from the Gibbons-Hawking-York boundary ter&lso the surface term that
arises from the variation of the action with respect to theggefield vanishes in this case,
since, for this particular ensemble, the potential is keqgdiatoo. Furthermore, since we

contemplate on purely electrical solutions only (only remme component of’*” being

2This follows from an argument of [12] where the extremal klhole solution was used as a background
on which the free energy was computed for canonical ensedeexpect this to hold good for our finite
case as well.

3In grand canonical ensemble, an action calculation in fomedsions was performed earlier in [23]. We
generalize the computation for arbitrary dimensions.
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F'7), the possibility of having a Chern-Simons term does naeaais well.

Now we use the equation of motion for the gauge field given id{Rand get the full
on-shell action as

Bbh 00 2 2 —1 —2
Iy, = wn_l/ dT/ dr[l—?r”_1+ 86 17“”_1— 80 \/627“2”—2 + ¢2 (n=1)n )],
0 Ty -

n n—1 2
(2.32)
wn—1 being the volume of a unitn — 1) sphere. This integral is clearly divergent. This
is because of the infinite volume of the black hole spacetiiftas is where the idea of
introducing a heat reservoir in form of background pure Ag&cetime, as discussed in the
beginning of this section exactly fits in. What we would dodsstibtract from (2.32) the

pure AdS action,
Bads 00 m
Lads = o1 / dr / dr [l—Qr”—l}, (2.33)
0 0

which is also evidently infinity.

In order to implement this regularization scheme [28] prbpeve put an upper cut-ofR
on the radial integration, which we would eventually takenfnity. For the black hole
space-time to be smoothy, is given by the inverse of Hawking temperatufg,, given
in egn.(2.30).6445 can, in general, be anything. But there is one constraints should
have the value which makes the geometries of the AdS and #o& hble spacetimes the
same on the asymptotic hypersurface defined byR. This is done by setting

R2 432 R?
Paas [1+l_2} - ﬁbh[l_ RT*Q +n(n—1)R2+l_2
e APRTE G 1) 9
N 2(n —1)¢? | n—2 1 3n-4 _(n—l)(n—?)cf]]%
nR2=4 2 1N9(n — 1) 27 2(n — 1) 232 Rn—2

(2.34)
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After some algebraic manipulation, this becomes,

2 272 _ _
Bras = ﬁbhl—ml 2341 {1_\/ (n—1)(n 2)q2}

2Rn n(n — 1) 232 R2n—2
(n —1)¢*? n—2 1 3n—4 (n—1)(n —2)¢*
F = — . (2.
nR#-2 ° 1[Q(n —1)2°2(n—1)’ 232 R2n—2 I (239

Using this relation along with egn (2.28) and then takinglim& 2 — oo we finally get
the Born-Infeld action in the grand canonical ensemble as

n 2 _ _
oo = ]y A \/ (=D =2

2 n(n-— 1) 232722
2(n—1) 1 n—2 1 3n—-4 (n—1)(n —2)¢*
_ n QQTELF 52 1[2(n — 1) 5 2(n — 1)’ o QﬂQTin_Q ]] . (236)

As a consistency check of our result, we see that with oo limit,

Ige = Wp—1Bpn |7} " — i (2.37)

B—o0
which is exactly the same as the Reissner-Nordstrom aatiaihé grand canonical ensem-
ble as obtained in [12].
2.2.2.2 Fixed Charge

In this ensemble, we, instead of fixing the potential at itfirfix the charge of the black
hole. Then the action given in (2.31) is no longer the appatpione. Since the potential
is not fixed at infinity, the boundary term as obtained by theat@n of the gauge field,

unlike in the case of fixed potential ensemble, has a nornstaarg contribution given by

«/1—1—%2

which after some straightforward computation becomes

I, = —4 / A"z —h——n, A, (2.38)

q n—-2 1 3n—-4 (n—1)(n—2)¢
Is - 2 - 1 n— F X o
(n Jw 1ﬁbhr+n_22 I[Q(n —1)"2"2(n—1) 20627 i

I, (2.39)
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h being the determinant of the induced metric at the boundaaty.g, the radial unit vector
pointing outward. Not only that, we also have to subtractgbee AdS background as
before to ensure the convergence of the integral, the diffay with the previous case of
fixed potential ensemble being only that in the present cat® Background cannot be
interpreted as the metric background or heat reservoirgagdrbefore.

IS a1 2V20r .
I+ Iy — Taas = w1 B |17 — l;+42 }+ 6+\/2522 4 (n—1)(n—-2)¢

2(n—1)2q2F n—2 1 3n-— 4 (n—l)( —2)¢?
22 1[2( —1)2'2(n—1) 25222

1l. (2.40)

n
nry

The metric background in this case is the extremal black. hidie action for the extremal
black hole can be found by substituting in (2.40), the coaditor extremality withr, =
Texs Ter DEING the horizon of the extremal black hole.

The condition for extremality can be obtained by settipg= 0 as

n 43° ] n—1 _ i\/_if \/QQQTE}CL—Q +(n—1)(n—2)¢2 = 0. (2.41)

— 9)yn3 [_
(n )re:c + l2+n_1 ex

And with this the action for the extremal black hole becomes

2 (n—1)¢? n—2 1 3n—4 (n—1)(n—2)¢
Ie:c =2(n—1 n— = A0 y T .
(n=1)w 16’”[ n oz 1[2(n —1) 2 2(n—1) 9322 ]]
(2.42)
Subtracting the extremal background, finally, the full Bémfeld action for canonical en-

semble becomes:

o r 432%rm 2\/§ﬂr+ o
R e e e R 1)\/2627‘1 24 (n—1)(n — 2)¢?

2 n(n-1)
( 1)2 2 n—2 1 3n—4 (n—l)( 2)q2
- nr’? 2 1[2(77,—1)’5’2(77,—1)’_ 2322 ]
n 2
— 2(n— Dw,- 1ﬁbh{
(n—1)¢* n—2 1 3n—4 (n—1)(n-2)¢
+ nr?{? 2F1[2(7L . 1)7 57 2(7’L _ 1)7_ 262713572 ]}] . (243)
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As a check of our computation, if we take— oc limit of (2.43) we get,

rn on—3)¢> 2(n—1 20n — 1) ¢
Ic anlﬁbh[TiQ__Jr_( n— 2)q - ( )rm—gﬁ],(ZAQ

B—o00 [2 i n n n

which is exactly the same as the Reissner-Nordstrom actiobt@ined for the fixed charge
ensemble in [12]. Next, we calculate thermodynamic quiastdirectly from those actions.

2.2.3 Thermodynamical quantities

The state variables for the system can be computed from tlenag/,~ and - given in
(2.36) and (2.43) respectively.

2.2.3.1 Fixed Potential

The grand canonical free energy is givenBy. = E — TS — Q¢. Now F is also equal
to %GTS' Combining these two definitions we can find the state vaggmfdr the system as
follows:

P (52), -5 (55), 2459
s = ﬂbh(gﬁj) ~ Lo, (2.46)
0 - _i(%ﬁ:) (2.47)

Now for this ensembleg is a constant. Thus to find the partial derivatives keeping
constant, one has to substitute the condig’gn: 0, which we obtain from (2.24) keeping
in mind that in this case is no longer a constant, but a functionrof.

With all these, we get the state variables as:

_ n—2 T—Til- 4ﬂ2r+ 2\/76714- 2,.2n— 2 2
B o= bl =)+ (g + o) e 20 (= 1) 2)g
2(n —1)¢? n—2 1 3n—4 n—1)(n—2)q
P L )2(2“,2) 1), (2.48)
nrly (n—1)"2"2(n—1) 202

using (2.28), which can also write this as

E=w, 1(n—1)m, (2.49)
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and

S = 47Twn_17‘i_1, (2.50)
Q = 2v/2(n—1)(n—2)wu_1q. (2.51)

2.2.3.2 Fixed Charge

In the canonical ensemble, the free energy is giveahy- £ — T'S, which is again equal
to éﬁ. Then in a similar way as done before, one can find the correpg state variables
as:

E = <%)q =(n—1m—(n—1)me, (2.52)
_ 810 _ n—1
S = P <%)q —Io = 4mw, i, (2.53)

wherem,, is given by

r?;2+(n—1)q2 n—2 1 3n-—4 _(n—l)(n—Q)qz]}ZBAr)

ex = 2 ) )
" n nrn=2 ° 1[2(71—1) 2'2(n—1) 23%rn-2

This expression fofn,., can also be obtained by plugging in (2.28) the condition for e
tremality, (2.41).

Having obtained the thermodynamical quantities, we woikld to study various stable,
unstable and metastable phases associated with the bleckFuar that, we construct an
“off-shell” free energy, the saddle points of which dictatée (in)stability of the black

hole. The details of this construction is discussed in the sigbsection.

2.2.4 Construction of Bragg-Williams free energy & study ofphase
structure

In the case of — oo, i.e. for Reissner-Nordstrom black hole, we know from [123tt

there is a first order Hawking-Page (HP) transition. At ai@alttemperature, the black
hole becomes unstable. The system prefers the AdS phasetrdisition is of first order
in nature, marked by a discontinuous change in the gramitatientropy. Our primary
motivation would be to study the fate of this transition whers finite. So we would be
interested in constructing Bragg-Williams potential foorB-Infeld black hole. In order

34



Chapter 2. The Bragg-Williams Method

to do so, we have to first decide on an order parameter. To tloisvee note that a first
order phase transition is characterized by a discrete juntipeoorder parameter. Like in
the case of SchwarzschilddsS, in charged case also this jump shows up in the horizon
radius of the black hole. Indeed, at the Hawking-Page (HM)tpAdS phase (identified
with », = 0) crosses over to the black hole phase (with non-zejo So again, we find it
suitable to use, as the order parameter. Before we go on to discuss the plmastist in

the Born-Infeld theory, we find it instructive to first anagythe Reissner-Nordstrom case.
In a later sub-section, we generalize this for Born-Infdletk holes. We, further, stick to
the grand canonical ensemble for the rest of our discussions

2.2.4.1 Reissner-Nordstrom

The Bragg-Williams free energy for a Reissner-Nordstréacklhole in a grand canonical
ensemble is given bW = E —T'S — Q¢ with T and¢ treated as external parameters.
E can be found by taking — oo limit of (2.48) with the understanding that since we are
working in a fixed potential ensemble we have to wiitie terms of¢. In order to achieve
this we use the relation between charge and potential osReisNordstrom black hole,

_ 1

—929
criQ

(2.55)

which can be directly obtained by takimg— oo limit of eqn.(2.25).
With this, the Bragg-Williams free energy for the ReissNerdstrom black hole is given

by
Wiy = E-TS—Q¢
— w [(n — 121 — 2¢?) — dmr T + Z—;(n - 1)] (2.56)

The on-shell temperature can be computed by differengatif}} with respect to-, and
then setting it to zero. The temperature comes out tb be

(n—2)I*(1 = ?¢*) + nri
47Tl27“+

Thyn = , (2.57)

which is the same as the — oo limit of (2.30) and also matches with the expression

4In eqn.(2.56)r, should be treated as an unconstrained variable. Only oh shés related tap andT.
This can be found by inverting egn.(2.57) for.
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for the temperature of Reissner-Nordstrom black holesioétbin [12]. The behaviour of
WEN as a function of the order parameter for a fixednd for different temperatures is
shown in the figure 2.2.

1.5+
1.0F

0.5-

0.5 2.0

-1.0F

-1.5F

Figure 2.2: This is a plot of £} as a function of-, for fixed ¢. The phase structure
shown here is for, = 4 and for$=0.0003. The dashed line is for the critical temperature,
T = T., the orange one is the transition involving a metastabls@hanother feature of a
generic first order phase transition. The red, green, bldeéback lines are fol” > T, in

an increasing order.

We see from the phase diagram that tfieterm present in the free energy expression for
n = 4 brings in an asymmetry ii’}}} as a function of, and results in an emergence of
a secondary minimum at finite valueof. The value ofiV £y at this secondary minimum
is greater than zero whéh < T, but becomes zero at the critical temperatlire 7.. For

all T > T,, WEY is negative at the secondary minimum. Thus there is a phassition
from black hole to AdS as we tune the temperature bélpwvith a discontinuous change
inr, atT = T,. This is, clearly, the signature of a first order phase ttarsoccurring at
T="T.

An analytic expression fof, can be obtained on requiring thEtZ% is an extremum
with respect ta-, in equilibrium, i.e,(%) = 0 along with the condition that the free
energies of the ordered and the disordered phases matdyeadaihe transition, which,

in turn, implies, W5 = 0. From these two conditions, we obtain the critical valuehef t

order parameter,, .
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For Reissner-Nordstrom case,(im+ 1) dimensions, the requirement %} = 0 gives

AwlPT + /1614?72 — 412 (n — 1)2(1 — 2¢?)

. 2.58
T+ 2(n — 1) ( )
The other one, namelQ%) — 0 gives
Aml?T 160147272 — 412(n — 2)(1 — 2¢?
- T + /16 7T2 (n —2)( cgzﬁ) (2.59)
n

Equations (2.58) and (2.59) can be solved to yield the triansiemperature/,. in terms
of the corresponding critical value of

r- =Y A=agz (2.60)

27l

This is precisely the same critical temperatufeas obtained from th&/ZY vsr, dia-
gram, as expected.

Extremal Black Hole:
6=1/c

0.84F Non-Extremal Black
Holes

. . . Lo
005 0.10 015 020

Figure 2.3: The phase structure of Reissner-Nordstrom in fixed potesrisembles’” = 0
line corresponds to extremal black holes. The extremakidtates are unstable. This plot
is forn = 4 and we have sét= 1 here.

A similar exercise can also be done keepih@ixed and studying the phase structure vary-
ing the parameter). The resulting phase structure is shown in figure 2.4.

The behaviour shows, as expected, the features of first pttese transition ab = ¢...
The analytic expression f@r = ¢. can be obtained from egn.(2.60) as

1 Am202T2
e = 1— .
c (n—1)2

(2.61)
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0.6F
0.4r

0.2r

-0.2}

—0.4F

-0.6- NS

Figure 2.4: This is a plot of W/} as a function of-, for fixed . The phase structure
shown here is fon = 4 and forT = 0.47. The dashed line is for the critical value of
potential,p = ¢., the blue one is fop < ¢.. The black, orange, red and green lines are for
¢ > ¢. in anincreasing order.

The full phase structure in — T" plane is shown in fig.2.3. Having discussed the» oo
case, in the next sub-section we turn our attention to finite

2.2.4.2 Born-Infeld

It turns out, owing to the non-linear relation betwegandq as in eqn.(2.25), a complete
analytical treatment is difficult in this case. One way t@emvent this problem is to make
large 3 expansion and introduc%a correction order by order over the Reissner-Nordstréom
construction. However, this would not allow us to study thadg-Williams potential at
finite 5. So we restrict ourselves to a semi-analytic approach tetoact the free energy.
This is done as follows. First we define a new variablas

r=—d (2.62)

T+n_1

The horizon radius;, can now be rewritten as

oc
ri(z,¢) = — — o (2.63)
xQFl [2(71—21) ) %7 Q?En_lll) ) _( )2(132 ) ]

We can write down the grand canonical Bragg-Williams freergy for a Born-Infeld black
hole as
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WSS = E —TS — ¢Q, (2.64)

whereFE, S and( are given by (2.48) with the substitution (2.63) being takare of. To
see howV 5, behaves with change in the order parameter, we, therefora pdirametric
plot. The behaviour is shown in fig.2,5vhich again shows a first order phase transition at
a critical temperaturel...

Figure 2.5: WSS is plotted against, usingz as a parameter for = 4. We have fixed

¢ = 0.2 and have plotted for different values of temperature. Tladiree is for7T = T..
The blue and green lines are fbr> T, in an increasing order, whereas the orange line is
forT <T,

We would like to mention one point in this regard. For the Bee-Nordstrom, in grand
canonical ensemble, we would observe this phase structilyenhenopc < 1 [12]. For
Born-Infeld case also there is a similar critical value ferwhich can be determined by
plotting the on-shell free energy agaifistor different values of) [23].

Interlude | : From elliptical to planar horizon

Our notion here is to consider the limit where the boundaryd(¢he horizon) oAdS,, . is
R" (flat) instead ofR x S (elliptical). For Reissner-Nordstrom in an asymptotigafldS
space in(n + 1) dimensions, the metric ansatz is similar to the Born-Infedde, (2.19)

SThose plots go down smoothly g = 0 as in the case of Reissner-Nordstrom. But unfortunatedy, th
feature is not clearly visible in this phase diagram becafisiee fact that, the parameter, x, we have chosen
for plotting goes as%. However, this feature can be easily checked from the exfmedor free energy
directly.
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and the solution thereof is

m q2 7”2

V(r)=k— + +

rn — 9 71271—4 l2 ’

(2.65)

[12] where k is related to scalar curvature. For ellipticabhizon £ = 1, whereas for
k = 0, the horizon geometry will be flat. This solution can, in fdet obtained by taking
# — oo limit of (2.26). Thus fok = 0,

2 2 dr? r? — 2
= — : 2.
ds V(r)dt? + v T ;(d@) : (2.66)
with
7“2 m q2
V(r)=—= — (2.67)

12 7“”_2 7“2”_4 :
The limit in which one can go from the elliptic geometry of loeizon to a flat horizon is
termed as “ infinite volume limit 7, since the area of a flat hoon is infinite. This limit
can be obtained by introducing a dimensionless paramet&ith which we scale different
relevant quantities as [12]

r— )\%r,t — )\’%t, m — Am,q — A%q, (2.68)

and finally then taking. — oo. In fact, one can check, this is precisely the limit in which
V(r) for k = 1 reduces to that fok = 0. Furthermore, thgn — 1) volume has also to be
scaled as

n—1
P02 — A ) (day)?. (2.69)
=1
From (2.55), one can find the scaling for
b — A, (2.70)

In the same spirit, one can scale thermodynamic quantibes tTemperature, entropy,
Energy and thermodynamic potential scale as [9]

T — AT, S — S, E— M\ E,W — \nW. (2.71)
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The on-shell temperature, (2.57), on rescaling and themgpk — oo limit, becomes

m‘i — (n —2)A1%¢?

47Tl2lr'+

TrN |)\ﬂoo: (272)
which is the same temperature as obtained directly by eéiffigsiting (2.67) with respect to
r, and dividing by4r ( The Hawking temperature of a black hol&; = - wherex is
the surface gravity given by = —%%";t lr—r.. The physical reasoning behind this was
discussed before in the context of Born-Infeld black hof&se can repeat the same with

the V' (r) defined in (2.67) and come across the same expression foetatape. )

For Reissner-Nordstrom black holes in grand canonical entde, Energy, entropy and
the Bragg-Williams free energy are given by

E = ”T;T—l (n—1) [r;m + ) + :—;] (2.73)

g - . (2.74)

Qo = o ¢°c*(n — 1)r’ 2, (2.75)

Wp—1

167G

n
T+
l2

WEN [(n 11— ) —Anr T T+ (- 1] (2.76)

With the scaling defined above and taking the lilmit> oo thereafter, those become

E = A% fg;;é (n—1) [7‘1’%262 + :—S , (2.77)

S = A’%liw"éfgil, (2.78)
Q6 = N (n— 1, (2.79)
WEY = A% 1“2;;(1; [(n - 1)% — (n— 1) 2% — 4" 'T|. (2.80)

Thus on takingh\ — oo limit, all those quantities diverge. This is quite expeciedsult

because, for a flat horizon geometry, the horizon area isitgfi8o, instead of total energy,
entropy and charge, one has to consider the correspondimgities. From (2.69), the
(n — 1) volumew,,_; should also scale as,, ; — A*%wn_l. Then the energy density,
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entropy density and off-shell free energy density are gbyen

_ 1 ne2.22 T}
el el A (281)
S it
- - 2.82
T (2.82)
Q¢ 1 .
po = = geg? = (2.83)
QRN Wiy _ 1 (n — 1)£ (= )RR - 4m,n_1T]' (2.84)
o Wn1 167G 2 + ¥
?ﬁ = 0 gives the correct on-shell temperature, (2.72).
T+

Now following the discussion leading to eqn.(2.60), one daeck that there is no real
solution forT, in this case. This is consistent with the infinite volumetltaken, because
as we arrive at the flat horizon geometry, there will be onbcklhole phase and hence the
possibility of Hawking-Page phase transition from blackeno AdS does not arise at all.

2.2.5 R-charged black hole with spherical horizon: Instabilities

As mentioned in the beginning of this sectidi;charged black holes are asymptotically
AdS solutions to five dimensiondl” = 2 gauged supergravity [10]. These black holes can
carry three independent gauge charges and the stabilibesétblack holes were studied,
for example, in [29-31]. Here we will only focus on singly eged black hole with spher-
ical horizon. The reason to study those black holes are liegtexhibit even richer phase
structure consisting of both the first and the second ordesitions.

For singleR?-charged holes, the phase structure is shown in figure (R.i€)plotted in
theT — u plane whereu is the chemical potential conjugate to the charge. Theréhaee
distinct phases, namely, the thermal AdS, black hole and anjenown phase. At a low
temperature and small chemical potential, the system igysw thermal AdS phase. The
cross-over from AdS to the black hole phase is shown by thiedd&ite in the plot. This is
the usual first order HP transition. The black hole phase atlfismperature also becomes
unstable once the chemical potential is increased beyont@ktvalue. The correspond-
ing stable phase is unknown as%atowever, if a stable phase exists, this transition would
be a continuous phase transition marked by divergencesocffgpheat and susceptibility.

81t may also be possible that there is no stable phase at all.
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T
0.8+
0.6
________ black hole
0.4~ AdS unknowr
L T 1
0.2+ &
L | I L L L | . . . . | ) ) ) ) | —
0.5 1.0 1.5 2.0 a

Figure 2.6: Phase diagram for thB-charged black hole with single charge shown in tem-
perature, chemical potential plane. Line separating theAdS and black hole represents
the first order phase transition line given by equation (2)1®@n the other hand, the line
between black hole and the unknown phase is a second ordertlie equation of which

is given in (2.106). The dashed line is fbr= 1 /7 below which we can not extend various
phases.

The solid line in figure (2.6) represents this critical lingpon understanding, schemat-
ically, the rich phase structure éf-charged black holes with spherical horizon, we give
below the details of the phase structure.

The black hole metric with a singlé(1) charge is given by

ds? = —H" 3 fdi> + H ( e r%mg), (2.85)
where )
f=1-24m m=1+2L (2.86)
r [? r?

In the above equationi2; is the metric on unit three spherieand m are related to the
cosmological constant and the ADM mass of the black holeattiqular,/ has a dimension
of length. The zero of gives the location of the horizon and in the above paransgiag,
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the horizon appears at= r, where

]2 _ 2 2 4 Aml2 2
7‘+:< l “V(ZQW)* ml) . (2.87)
There is a non-trivial gauge field potential associated Witk geometry and is given by
] 2 1 2
T4 q

From the above we see thais related to the physical charge. More explicitly, the pbats
charge

Q= \/q(ri +q)(1+72). (2.89)

The chemical potential is defined as the valuelbht the horizon and is given by

q(1+7%)

) 2.90
ri +q ( )

It will be convenient for us to scale all the dimensionful gtites with appropriate powers
of [ and make them dimensionless. We write all these paramettérawar on the top. For
example, the dimensionless horizon radius and Hawking éeatpre of the black hole are
given by,

Ty g 2/ +q+1
F=— (=, T=1T="———.
l 12 2112+ q

Furthermore, we define the dimensionless Newton’s constaag G = [*G and set; =
7 /4. With this convention, energy and entropy are given by

(2.91)

_ 3 _
FE = 3+ S = 217%\ /72 + q. (2.92)

We would like to study the system in the grand canonical ebéemhere we treal’ and
i1 as external parameters. The free energy is given by
- (1) _

F=E-TS—jiQ= gz to =P (2.93)

Here P is the pressure. Let us note thiatchanges sign whert + 2> — 1 changes sign.
This is a first order transition and it leads to a crossovenfAdS phase to the black hole

44



Chapter 2. The Bragg-Williams Method

phase. For the gauge theory this represents the deconframgjtton. Given all these ther-
modynamic quantities, it is straightforward to computegpecific heat and susceptibility.
These are given respectively by

Y

- 08\ _ 2 (142 + )3+ 37 — @)/ +4
or| 2/t + 72 4 g2 — 2+ 2G5 — 1
n

Q 72 4+ q)(2F* + 72 + 52 + 67 — 2 — 1
v = [99) _(HQCr+T 457+ 6G—q — 1) (2.94)
of . 2+ 2+ g — P +2¢—1
We note that specific heat and susceptibility diverge at
2P+ P+ - +27—1=0. (2.95)

This represents the line of continuous phase transition.oe approaches this critical
line, correlation length diverges. This shows up, as abovéhe divergences of some
thermodynamic quantities. Near this critical line, theckl&oles are expected to exhibit
some universal features. These are encoded in a set ohteiponents normally called
a, 3,~v andé. Going close to this line witly fixed, we define exponents 3,y as

é ~ (T - Tc>7a7 Q - Qc ~ (T - Tc>ﬁ7 X ~ (T - Tc)i’y‘ (296)

HereT. is the value of the critical temperature for the chogefThe critical line can be
expressed in terms @&f andz and is given later, see (2.106)). Similarly, one defifes
The other static exponents defined as

Q—Qc~ (i —f1)3. (2.97)

Here one approaches the critical line with a trajectory oicvii’ is constant. For the black
holes in consideration, these quantities are easily cabbeiland are given by

<a,5/%5>::<%,%,%,2). (2.98)

Firstly note that these exponents are same as the one cairfputdack holes with planar
horizon [33, 34]. Secondly, they satisfy the scaling relasi

at28+y=2 ~=p(6—1). (2.99)
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Our main task is now to construct an effective potential dagitures all the phases that
we have just discussed. We will use the BW approach for thipgae. This approach re-
quires us to identify an order parameter. Noting the fadt, fioaa first order transition, the
change in order parameter is discontinuous and for secafet,at changes continuously,
we continue to use the horizon radiu®f the black hole as the order parameter. Once a
suitable order parameter is identified, one constructs tepBtential which depends on
the order parameter, the temperature and the chemicalt@btdrhis is given by

F(r T, i)=E—TS — Q. (2.100)
In our case, using (2.89) and (2.92), we immediately get

) 1 V1+72 2<3+ T )]

F(r. T, i) = =3 —4nT _— 2.101
(7“, 7:“) 27" T \/m—i_r 1+f2_ﬂ2 ( )

The saddle point of", namely )
oF _
or

gives the equilibrium temperature. Using (2.101), fron1(2) we get

VI+72(1 4272 — %)
o1+ — 2

Upon using (2.90), the above expression reduces to the d2edih). Furthermore, substi-
tuting (2.103) in (2.101), we get the on-shell free energyregsion as in (2.93). We now
proceed to studyr as we chang& andji. From the expression of temperature, it is easy
to note that it has a minimuffy, = 1/7 when# = 0 andz = 1. In what follows, we will
focus ourselves in the regidh > Tj, andji > 0. As noted before, the first order transition
line is given by the equation

0 (2.102)

T= (2.103)

M+t —1=0. (2.104)

Expressed in terms af andjz, this equation reduces to

T_2—|—\/1—ﬂ2

2.105
T (2.105)

"For a black hole with flat horizon a similar construction wasvided in [32].
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represented by the dotted line in figure (2.6). On the othed hizne second order instability
line (2.95) reads as

_ (AP +T+A) I'(T + 2A)
T — 2.106
At | BT -sAGE-1) (2109
where
A= —1D)i(a+15, T=p"+A-2@+A>—A+1. (2.107)

This is denoted by the solid line in figure (2.6).

To see thatF(r, T, i) captures the whole phase diagram, we firsfifiand plotF for
various temperatures starting with= T, = 1/7. We start withz = 1. The behaviour is
shown in figure (2.7). We note that&t= T, = 1/, F has a minimum at = 0. Its first
and second derivatives with respecttalso vanish at that point. In this sense, it is a point
of inflection for F. If we increasel” further, we get minima for increasing valuesiof
representing stable black hole phases with increasing $izis is in complete agreement
with the phase diagram in figure (2.6). Next, we analyze tis¢esy for0 < i < 1. From
figure (2.6), we expect tha should show a HP transition as we increase the temperature
beyond a critical value. We precisely see this in figure (28)ere we have plotted
for i = .5. While the pointr = 0 is identified with the AdS phase, any finite valuerof
represents a black hole wittbeing the horizon. As we increase the temperature, we note a
crossover from AdS to the black hole phas@'at Ty p = 1.433 /7. This is shown by the
dotted line in the figure. At this temperature the order patam changes discontinuously
from zero to a finite value - clearly a signature of a first-orttansition. Now as we
decreasg, HP transition temperature increases. In particularifer 0, Ty p = 3/(27) as
expected for AdS-Schwarzschild black hole. Finally, weé@ase: beyondl. For i = 2,

F is shown in figure (2.9). Plot is shown for different temparat starting with the critical
one (solid curve). Below this temperature, we reach the gkhawn phase and the black
hole is unstable. At higher temperatures (dashed and dotiee), minima of the curves
represent the stable black hole phases.

We can continue the same exercise Tofixed at any value abové/m and change
fi. ForTyp < 3/(27) andpn < 1, we first cross the HP line. Close to this poirf,
behaves similar to figure that of (2.8). Further increagirmit keepingl” fixed, we hit the
continuous phase transition line leading to figure (2.9)r Fa> 3/(2r), the first order
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Figure 2.7: F is plotted as a function of the order parametéor 2 = 1. The solid, dotted

and dashed curves are for=1/7,1.01/7,1.015/x.
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Figure 2.8: F is plotted as a function of the order parametedor i = .5. The solid,
dot-dashed, dotted and dashed lines ardfer 1/7,1.3/7,1.433/7,1.45/7.
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Figure 2.9: F for i = 2. Solid, dashed and dotted lines are for= 0.86,0.93,0.95
respectively. Solid line represernisat critical temperature. Below this temperature, black
hole becomes unstable. The minima in the rest two curves gt@stable black hole phase.

48



Chapter 2. The Bragg-Williams Method

transition is lost. Black hole is always a stable phase farjio However, as we takg to
a critical value, black hole ceases to be stable and we réacketond order line getting a
figure similar to figure (2.9).

Finally, let us now discuss about the procedure for obtgiriive critical exponents
from the mean field potentigf which has already been written in (2.98). We note that the
specific heat at fixed chemical potential can be obtained {&@01).

.
Cp= -T2 ~ (T T,

I

(S

(2.108)

which givesa = 1. If we approach the critical line along constant /i, then we see that
Q—Qc~ (T -T2, (2.109)

where(), is the critical value of the charge at fixgd. This shows that the critical exponent
f has the valug. Similarly, the susceptibility behaves near the critieshperature as

[N

~ (T —T) 3. (2.110)

This leads us to the critical exponent= % Finally, on approaching the critical line with
T =T, we get

So, this gives ug = 2.

Interlude Il : On geometric realization of Bragg-Williams
constructions

The Bragg-Williams construction owes its justification tpravious work by Fursaev and
Solodukhin [5]. In this work they studied space-time mddgavith conical singularities.
We discussed before in the context/fS Born-Infeld black holes that temperature of
the black hole comes as a consequence of ensuring that tlve-sip@e near horizon is
free from any conical singularity. Therefore the most natgeometric interpretation of
the “off-shellness” must arise from the space-time withicahsingularity at the horizon
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hypersurface.

According to the construction in [5], the Ricci tensor anahvature scalar of a manifold
M with conical singularity on the surfacé; (horizon in our case) can be expressed in
terms of the Ricci tensor and curvature scalar for singuiafiee regionM = M / &
respectively.

R, = Ry + nun, Asds. (2.112)

Here RW and R, are Ricci tensors ooV and M respectively.iy; is the delta function
and is defined a§M fos = [ f for any function,f. n,’s are components of unit vectors
orthogonal to¥. Ay is the conical deficit angle given by, = 27 — ﬁ%, Gy being the
periodicity of Euclidean time to get rid of conical singulgrat the horizon and3, an
arbitrary period.

One can then easily find the Ricci scalar for the full maniftidin terms of Ricci scalar
of M and plug back in the Hilbert-Einstein action. The first terhtilee action becomes:

/~ \/ER - / \/ER + ISingulm“ (2113)
M M

For all the static, stationary black holes we considefgg, ... iS proportional toAy Ay,
As, being the area of the horizonk; for a fixed cone. The constant of proportionality
depends on the number of unit vectors orthogonal to

One can evaluate these quantities for specific black holddiad the off-shell action.
Multiplying the off-shell action by3~! we get the off-shell version of free energy which
turns out to be identical to our Bragg-Williams free energy.

Similar idea was nurtured in a recent work [35], though in tentext of the BTZ black
hole, a2 + 1 dimensional asymptoticallfdS black hole. We have, however, checked that
the arguments of [5] go through in favour of the BW constiectof free energy, off-shell
in temperature, for any asymptoticalljdS black hole.

2.2.6 Proposal for effective potentials in the boundary thery

So far we constructed effective off-shell potential forfeliént supergravity solutions
and analyzed their rich phase structures. Let us now pause lbd and ask the follow-
ing question: Can we at least phenomenologically consanaffective potential in the
boundary gauge theory which describe its equilibrium anat@guilibrium properties? In
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particular if our bulk has electrical charges, gauge th@ouestion must also have asso-
ciated R-charges and corresponding chemical potentials.

Itis worth mentioning that direct computation of effectp@tential in terms of the order
parameter in gauge theory is difficult. However, it is pokestb use AAS/CFT conjecture
and our computations in the previous subsections to propoosdfective potential whose
saddle points represent various phases of the gauge thtmmever, we should emphasize
that the potential constructed this way may not be uniqueg@xperhaps close to the tran-
sition line.

In the following, we first deal with the simpler case of gaugedry dual of Reissner-
Nordstrém black hole. Finally we generalize it to the Bonfeld case.
2.2.6.1 Reissner-Nordstrom

While in the gravity theory the order parameter wasin the dual theory the corresponding
order parameter would be the physical cha@e- [~ F', which turns out to be the same
as the charge one derives from the action. In our c@se, wn,lﬁ\/(n —1)(n — 2)q,
whereg is the “charge” that appears in the action and,, then—1 dimensional transverse
volume.

The conjugate chemical potentialis the same as the electric potentialat the horizon
given eqn.(2.55). Im + 1 dimensions,

n—1 ArG
p=¢= . ©_ (2.114)
2(n —2)rY (n — 2)wy_177

We now use (2.114) to expreBs/y given in (2.56) in terms of Q and in the following
form

way N [W(n— D =) Q 2—W—T<%>

BT T gzt (n—2) b (n—2)i
2$7T%(TL —1) Q )
ERT <¢) ] (2.115)

where( is rescaled ag) = #fl N, being the number of colours. The motivation
behind doing this scaling is that in the deconfined phasefrdgeenergy and the charge,
both are of the order olV?. Therefore, the appropriate observable in laigelimit, is,
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Figure 2.10: Plots of W2 vs order parameteg (the left one) for small Q values and (the
right one) with relatively large range of values for Q foe= 4, show the signature of first
order phase transition. The dashed line isfoe T.. The orange and the black lines are
for T' < T, in decreasing order in temperature, and the red, the bluéhagteen lines are
for " > T, inincreasing order in temperature. For both the pfotskept fixed at the value
0.03. We have also takeM. = 1, w3 = 1 andl = 1 while plotting these.

2N.2
in the expression for effective potential, we have madenitatisionless by redefining as

-+, The plot of the boundary effective potentidl%? given in (2.115) against the new
order parametgp again gives a first order phase transition as shown in fig. Z&i3 phase
transition corresponds to the confinement-deconfinemansition in the strongly coupled
gauge theory as discussed in [28].

The temperature of the gauge theory can be found by extregiiZ{}}, with respect to the
order parametery) and this comes out to be

instead of@, limy, . %. We have also used the relatiGh= = and while using this

3n—5 3n—4

p o e 522)45):247252:;; (1 - 6)
nn—1) _n 20 Q n=2
e (e A (2110

which is exactly the same as the Reissner-Nordstrom teryseras in (2.57) once we sub-
stitute in it@ in terms ofr, and¢ through eqn.(2.114).
Following our previous discussion, we would now try to find tonfinement-deconfinement
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transition temperaturd,.. The conditionVAY = 0 gives

1 n—2
- 0= D= 860 (2775 (555) ™ )
T = orraerts () U] =
(—1)(2ﬁ 2 (9 %)
" n 7;527r2<( 2)¢> ] (2.117)

’BQ
can find an equation involving critical chargg, as

whereas, the other requiremeé%) = (0 gives (2.116). From (2.117) and (2.116), we

Onis e (L) - — P4+ =0. (2.118)
(n—2)¢ ‘

Substituting this relation in (2.117) or (2.116) we can widbwn the critical temperature,
T, for the confinement-deconfinement transition as

T, — (”2;l1) Ny (2.119)

which turns out to be exactly the same as that obtained i10)2.6

2.2.6.2 Born-Infeld

One can generalize the ideas mentioned in the previousexilms to the case of Born-
Infeld to find a gauge theory effective potential. But beeaafghe non-linear non-invertible
relationship between the electric potential at the horjzaand the charge) as in egn.(2.25),
it is not possible to write an exact expressioniforin terms of() and¢. However, a para-
metric plot suggests that our construction leads us to aidataeffective potential for
Born-Infeld dual. Following the case of Reissner-Nordstréve propose, in this case, the
gauge theory effective potential, in= 4 as

Tr3 3 /3t ot Br \/2527‘6 + 87()?
WwBl — N2 [__+_ _< + T+ 2 P+ 1
BT cws o Q¢+8W2 5 TRt Vo
27T4Q2 2F1 <l7 la é? _47F24TC£2)
+ A )] (2.120)
T+

53



Chapter 2. The Bragg-Williams Method

1 I I I I I I
2 4 6 8 10 12 14

Figure 2.11: Parametric plot of against-, for different values of the parameter,

along with the relation among chemical potentjglchargeg andr, from which one has
to express, in terms ofy andq.

2
wmo= Y[ g 5 -], @2121)
whereg is the “charge” appearing at the action which can be relaté¢de physical charge,
“@” through the relation given in egn. (2.51). One can solve #guation numerically to
find a relation between, andgq for a fixed value of the parameter,
Equation (2.120) is derived from (2.64) by first substitgtin it the expressions fok, S
and(@ given in equations (2.48), (2.50) and (2.51) with reinstaat of the gravitational
constant( for n = 4. We then use the relatiod = 2’;\% However, we maké&: dimen-
sionless by dividing it by® and scale Q ag% for the same reason as given in the previous
section in the context of Reissner-Nordsth‘jm.
In order to study the phase structure, we usdefined in eqn.(2.62), as a parameter and
carry out a parametric plot 6f 2 againstQ, the order parameter in the boundary theory.
The resulting phase structure [fig.2.48hows a first order phase transition at some critical

temperature]” = T, which turns out to be exactly the same as that in fig. 2.5.

To conclude, for Reissner-Nordstréom black hole, we are tbht®nstruct a candidate off-
shell potential in terms of R-chargé), which, on-shell, gives all the stable phases of
N = 4 super Yang-Mills theory oi$? at finite temperatures and finite non-zero chemical

8Again one expects the plots to go smoothly towagds- 0, which indeed is the case as can be checked
from the free energy. But by the same argument given beflisid not visible because of the choice of the
plotting parameter.
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Figure 2.12: WEI is plotted againsf) usingx as a parameter for = 4. We have fixed

¢ = 0.2 and have plotted for different values of temperature. Tlires is forT = T..
The blue and green lines are fbr> T, in an increasing order, whereas the orange line is
forT <T,

potentials. As for Born-Infeld black holes, an analytic swaction becomes difficult. Via
a semi-analytic approach, we showed that our constructiadd to an effective potential
with expected behaviour.

Now that we have a gauge theory effective potential, we cpeldhaps explore the de-

tails of the transition from the deconfining phase to the comdj phase as we reduce the
temperature.
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2.3 Towards Dynamics : Hairy to Reissner-Nodstrom Black
Holes

We end this chapter with a section where we give an attempttly gjuench phenomena
in the BW frame-work. This study necessitates similar caasion for certain hairy black
holes. The one which we consider here was found in [36]. Theselectrically charged
black hole solutions in four dimensional AdS space with &aonally coupled scalar. Un-
like previous examples, here, the horizon is a negativelyemitwo dimensional constant
curvature manifold.

In this section, we first review the main features of the hhlack holes [36] and their
instability [37]. We then characterize this instabilityaBW construction and argue that
this black holes undergo a continuous transition at higlpeyature.

We consider four dimensional gravity action in the prese@negative cosmological
constant where the matter content is given by a conformallypled real self interacting
scalar field and a Maxwell gauge field.

1 3\ E,F~ 1 1
S = /d4$\/—_g <16—7T (R+ z_2> — “167T — ig“ 0, 00" — EquQ — a¢4>. (2.122)

The black holes of this theory is described by the metric
ds* = =V (r)dt* + V(r) 'dr® + r*do?, (2.123)
with
M 2
V(r)= 7 (1 + —) . (2.124)

In the expression of the metrids? represents the line element of a constant negative
curvature two dimensional manifold. The scalar and the reno-component of the elec-
tromagnetic field are given by

_ /1! M __4
¢ = m<r+M>’ Ay(r) = o (2.125)
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It is important to note that the mass and charge are not imidkgre but related via

2
2= M —1) =M*(a-1). 2.12
q (Bm ) (a—1) (2.126)
Hereaq is defined as 5
T
= ) 2.127
“ 3%« ( )

In terms of appropriately scaled variables, the tempegatcinemical potential, internal
energy, charge, and entropy densities are given by [36]

1 g
T——@r—1), p=ZL
271'( r+ )7 :u r+7
_ 1 _ g
E = EH(H -1), Q= s
2 2
& i, alry—1)
S == (1 - ) (2.128)

Note that due to the conformal coupling of the scalar to threature, the entropy density
gets modified from standard form by an“effective" graviaaal constant [37]. We also
note that entropy remains positive only in the temperatange

! (ﬁ_1><T<i<\/5“>. (2.129)

am\Va+1) =" “2r\Va—1

We call the limiting values to b&,.;,,, 7. respectively.
There are additional black hole solution to the action (2)12NVe will call this the
Reissner-Nordstrom solution. The metric has the form [36]

ds* = =V (p)dt® + V(p)~'dp® + p*do”, (2.130)
with
Vi =2 (1420w (2.131)
p 12 p p2 . .
with
6=0, and A, =L, (2.132)
P

The event horizon is located &t(p) = 0, the solution of which we will calp,. Thermo-
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dynamic quantities associated with this black holes are

i = q—;. (2.133)

In the following, we will argue that the hairy black holestlve grand canonical ensem-
ble, are unstable and crosses over to the RN black holeslatdngperature. We will also
characterize this instability via BW analysis. First of @&l order to compare two different
black holes, namely the RN and the hairy one, we will have tkensaire that they have the
same temperature and chemical potential. That means

1,3 1 @

—(—P——_——%) ——(2ry = 1),

2w \2 2p  2p T
KL (2.134)
P T+

These two equations allow us to exprgssndp in terms ofg andr.. In particular, forp,
we get

1
The BW free energy density for both the black holes can nowasdyecomputed as

was done in the previous sections. For the hairy one it reads

47 Fraie = 4m(E TS — Qp)
—1)2\ =
= T+(T+—1)—7T7“_2|_<1—a(r+r72))T—7”+(7“+—1)\/&—1,&

+

= ry(ry —1)—mr? <1 - aM)T i 1)r+(r+ —1)(27T - 1).
T 2
(2.136)

In going from the first line to the second, we use the fact thiah&iry black holes; is not
independent, but related foand hence-, through (2.126). Similarly, the conjugatgss
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related tol" via

o= %\/a —1(27T - 1). (2.137)

We used this equation to get to the last line of (2.136). AsRbr black holes, we can
proceed similarly to get

47TﬁRN = 4W(E—T§—Qﬂ)

_3 —
P P 9o 27
= _— — — - T_
5 oty T Dok
73 — — —
- % - g + g(a D)y —1)? — 7T — g(a D)y — D)(2rT — 1),

(2.138)

where we need to substitufeusing equation (2.135) and furthgrby m and hence by
ro. In order to write (2.138), we have also made use of the semtardification given in
(2.134). Further, using (2.135) and (2.136), after somgfization, we can re-writeFzx
as

B _ 1 _
rFa(re T,3) = = [(1 + 1) (=1 = 74 + 8)(=5 + dry — 677T) + 3a(r, — 1){3+ 1212

6+ 307T — 670 + o (—21 + 46 — 187TT)}] Fry(ry — 1)

—mr? <1 - aM)T i 1)7‘+(r+ —1)(27T —1).

T 2
(2.139)
with
6 =+/3a(ry —1)2+ (ry +1)2 (2.140)
The saddle point of (2.136) and (2.139) occurs at
1 _
ry = 5(1 +277T), (2.141)

and at the minima,

_ 1
Fhair - _8_7T <Ti -+ CL(T+ — ]_)2),

_ 1
Fan = T6m (2 +6ry — 2175 +2r% —26(1+74)° —3a(—1+74)* (=3 +25 + 6r+)>.
(2.142)
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Figure 2.13: This figure is a plot of (2.136) and (2.139) fer= 25 and for different tem-
peratures. The solid lines and the dashed lines represehithy and the RN black holes
respectively. Green, magenta and black curves aré'fer0.11,1/(2x), 0.2 respectively.
We see that while at low temperature free energy is minimiethe hairy black hole, RN
black holes dominate at high temperature.7At= 1/(27), free energies are equal at the
minimum.

While for T < T. = 1/(2), Fuai Mminimizes the free energy, faf > 7., RN represents
the stable black holes. From (2.141), it follows that at thitoal temperaturel,, r, =
r.. = 1. NearT, it follows that

Ty —Tye NT—TC, F—fc ~ (T—TC)S, (2143)

where F. is the value ofF atr, = r,.. The derivative of specific heat with respect to
temperature has a discontinuity aroundf (2 + a)7*. This is thus a continuous phase
transition from hairy to RN black holes. The critical expaoh&llowing from (2.143) is

a = —1,3 = 1. In figure (2.13), we have plotted for different black holes at different
temperatures and scalar couplings. The behavioif obseT.. is shown in figure (2.14).

60



Chapter 2. The Bragg-Williams Method

0.5 - 0. 0.8 0.9 1.0 1 2

-0.21
~0.4F
-0.6

-0.8

Figure 2.14: This figure is the behaviour of the free energy function clusé = 7, =
1/(2r) for a = 30. Blue and red curves are far < 7. andT > T, representing hairy
and RN black holes respectively. At= T,, the minima for both are degenerate. Clearly,
the order parameter, at which the minima occur, changes continuously arourticati
temperature leading to a continuous phase transition.
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2.4 Summary and future directions

In this chapter our aim was to study black hole instabilitigthin the framework of BW
theory of phase transition. After providing a pedagogiesiew to this subject, we em-
ployed BW method in two cases. One involved charged blackswi five dimensional
AdS space. This included Reissner-Nordstrom and Borrdrfck holes and also gen-
eral R-charged black holes with spherical horizon. In the presasfcnon-zero chemi-
cal potential, thek-charged black hole undergoes both first and second ordesiticns
whereas in the case of Reissner-Nordstrom and Born-Infieickiholes only first order
transitions take place. We found that BW theory, with hanizadius as order parameter,
captures all these instabilities. We hope that, via AdS/€éifespondence, the constructed
BW free energy will be useful to study the phases of stronglypted N = 4 SYM theory
on R? at finite temperature and chemical potential.

The other example that we studied is the fate of four dimevadibairy black holes
with hyperbolic horizon. Again, via a BW analysis we argubdttwith the increase in
temperature, this black hole becomes unstable, losesats'‘@nd turns into a stable RN
black hole. This transition is analogous to a third ordersghtaansition with a singularity
in the derivative of the specific heat. The BW free energy isstwcted in (2.136). We
note that this function can also be expressed using the @l scalaky at the horizon
as order parameter. Inverting the equation (2.125), we xpressr.,;, as,

A Py = ——Y1 (MEwTebi + \/g (1+a—2(a—1)xT)op — 3\/5T> . (2.144)

(/% - 261)

Hereg,, is the value of the scalar at the horizon. This equation hasmamam at
1 _
On = 5\/@ —1(27T - 1), (2.145)

such that, fofl" = T, ¢ = 0. Within the AdS/CFT correspondence, in [38, 39], second or-
der instabilities associated with hairy black holes withHiarizon were used to understand
holographic superconductors at the boundary. We note tiperesonductors with possible
higher order transition (similar to the one we discusseg)ldeen reported earlier, see for
example [40]. We hope a construction like (2.144) (even giiduere it is a real scalar) will
be useful to analyze such holographic superconductorseVvewn hyperbolic space.
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The Holographic Spectral Function in
Non-Equilibrium States

Prelude

As discussed in the introduction, holography has given usva paradigm to deal with
strongly coupled systems [1]. One of the many attractiveurea of this paradigm is that
we can deal with phenomena at strong coupling in real time.

Though there has been substantial progress in using hplogri® study hydrody-
namics [2-5] and relaxation of strongly coupled system8]6we still lack a systematic
method for studying non-equilibrium Green’s functions oldgraphy. The latter turn out
to be extremely useful in many applications such as undwistg thermalizatiort and
obtaining strongly coupled generalizations of quantunetaitheories, to name a few. The
importance of pursuing this direction can be readily iltatd by two examples.

Modeling the space-time evolution of matter formed by ufehativistic collisions of
heavy ions at RHIC and ALICE is a great theoretical challedges equally challenging
to develop reliable methods of inference for deducing tpece-time evolution [10]. Ulti-
mately, it is important to not only understand how the mattermalizes incredibly fast in
time < 1 fm at temperature about 175 MeV (at RHIC) and subsequentligrgoes hydro-
dynamic expansion, but also how hadrons and resonancesoahgcpd and transported in
this so-called fireball before finally getting frozen cheatiig and thermally. Ultimately, we
do infer the expansion of the fireball from the emitted hadrdfthe expansion of the RHIC

'Holographic non-equilibrium Green’s functions as an aiddoderstanding thermalization have been
studied earlier in [9] using geodesic approximation, etc.
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fireball is indeed governed by strongly coupled physics) tive can expect that hologra-
phy will not only help us in modeling the space-time evolataf the fireball, but also help
us improve upon existing techniques like Hanbury-BrowrisBapion-interferometry used
to deduce the expansion of the fireball.

Quantum kinetic theories are already being employed tonstaied the dynamics of the
hadron gas after the chemical and thermal freeze-out inybdeodynamically expanding
fireball [11]. However, in order to understand the details@# the hadron gas comes to ex-
istence in the first place and its subsequent freeze-ouls@asarrelations in the emissions
of hadrons, one needs quantum kinetic theories construsiad non-equilibrium Green’s
functions. Therefore, to understand such questions atgtroupling using holography, we
need to develop formalism to systematically obtain nondagium Green'’s functions. The
second example pertains to holographic models of non-Feaymds [12—16]?. Hologra-
phy has been successful in reproducing some of the feat@ir@RIBES experiments in
cuprates and other strongly correlated electron systems sgectral function has a pole
on a momentum shell at zero frequency and also shows naatsoaling for low energy
excitations. These results may be interpreted as hologragproduction of Fermi surfaces
different from that in Landau’s Fermi liquid theory. In abse of a better way of dealing
with strongly interacting fermions at finite density, holaghic methods could provide us
with useful qualitative insights.

Nevertheless, to test such holographic models, we neecttib we can also reproduce
qualitative aspects of non-equilibrium dynamics in stignigteracting fermionic systems.
Ultimately, when the electrons are weakly interacting, dans Fermi liquid theory gives
a unified way of dealing with both equilibrium and non-eduwilim phenomena. It is rea-
sonable to expect that holography can do a similar job ahgtooupling. Once again, we
need to understand how to obtain quantum kinetic theory fiolagraphy, and therefore a
systematic method of obtaining non-equilibrium Greentschions.

There are two important issues associated with obtainingaguilibrium Green’s func-
tions in field theory [18].

1. There is no partition function which plays the role of gextieg functional of non-
equilibrium Green’s functions. As we will review briefly &t these are obtained
from a generalized effective action. The effective actiechhique guarantees the
full hierarchy is consistently solved and Ward identities preserved.

2For interesting holographic models of Fermi liquids se€].[1@ur comments are applicable to such
models as well.
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2. We cannot use conventional perturbation theory to oltkerbehavior in time, like
for instance, dependence of observables on hydrodynandicedaxation modes.
This is because usual time-dependent perturbation theveg gis the behavior in
time in the form of a Taylor series, which fails to capturesléitne behavior like
exponential decay.

Therefore, even at weak coupling non-equilibrium field tiyeis hard and typically we
need to make educated guesses, depending on the undergtahdi specific system. It
will be remarkable if, on the strong coupling side, holodrapan provide us with a good
perturbation theory for the non-equilibrium observableswill deal with here. The lack of
a generating functional for non-equilibrium correlatiamétions on the field theory side,
nevertheless, makes it hard to use the holographic dicidoaranslate such observables
to the field theory side.

The observables of primary importance are two-point cati@h functions. In the vac-
uum, once the Euclidean Green'’s function is specified, weasalytically continue to
obtain the Feynman propagator, the retarded and advanesth&function etc. at equilib-
rium. At finite temperature too, it thus suffices to know thiearded Green'’s function, from
which we can obtain other propagators like the Feynman giatpa At non-equilibrium
the situation is different - we cannot deduce from the retdr@reen’s function, for in-
stance, the Feynman propagator which will have indeperaigramics. Nevertheless, all
Green’s functions can be expressed in terms of two indepgndesal observables - the
spectral functiorand thestatistical functionwhich we briefly review now.

The spectral component (or spectral function) of bosonee@'s functions (inl spatial
dimensions) can be defined as the Wigner transform (i.e. theiér transform in the
relative coordinate and time difference,) of the commutator

A(w, k, x,t) = /ddrdtr e"(“’t’"’k'r)< [@(x—i— g,t+ %),CI)(X - g,t - %>]> (3.1)

Similarly in case of fermionic fields, we can define the sp@aomponent as the Wigner
transform of the anti-commutator

A(w,k,x,t):/ddrdtre“wtrk'r><{xp(x+g,t+%)@(x—g,t—%)}>. (3.2)

In both the equations aboye..) denotes expectation value in a non-equilibrium state. The

69



Chapter 3. The Holographic Spectral Function in Non-EQuilim States

fermionic spectral function is :
Alw, K, x, 1) = Tr<7tA(w, k,x, t)). (3.3)

The statistical function (also known as the Keldysh propag#s defined as the Wigner
transform of the anti-commutator of two bosonic fields

Gre(w, k, x, 1) = —%/ddrdtrei(“’trk'r)<{©<x+g,t+%),@(x—g,t—%)}>. (3.4)

or as the same of the commutator of two fermionic fields

7 , r t\ — r t
kx,t) = =2 [ dirdt, O [w(x 200 2), T(x- -7 )]). @5
GIC(W7 y X ) 2/ r € X+27 _'_2 ) X 27 9 ( )
All propagators can be expressed as appropriate linearicatiins of the spectral and
statistical functions. We will be interested in the retakrderrelation function in particular.
It is actually more convenient to define the Wigner transfofrthe retarded correlator. In
case of bosonic fields, this is defined as

Gr(w, k,x,t) = —i/ddr dt, e"(“’t’"’k'r)e(tr)< [CD <X + %,t+ %),@(X — g,t — %’)} >
(3.6)
Similarly for fermionic fields, the anti-commutator is usaobve.

It is clear from the definitions of the spectral functionsl{3and (3.3) respectively
that the bosonic spectral function is related to the rethterelator viad(w, k,x,t) =
—2ImGg(w, k, x, t), while for the fermionic spectral function, the relationigo, k, x, t) =
—2Im(Tr(v*Gr(w, k,x,t))). The retarded correlation function does not contain anyemor
information than the spectral function, since it is analytiw for a givenk for everyx and

t. Therefore,
Gr(w,k,x,t) :/d—M—A(WI’k’X’.t)
27 w—w' + i€
in both the bosonic and fermionic cases.
On the other hand the Feynman propagdigr is a linear combination of both the
spectral and statistical components. For both bosonicemaidnic fields, prior to Wigner

transform :

(3.7)

Grx,t,y,t) = Ge(x,t,y, 1) — %A(x, t,y.t') signt — t'). (3.8)
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Since the Feynman propagator involves the statisticaltiomavhich is unrelated to the
spectral function algebraically out of equilibrium, we oahdeduce this propagator from
the retarded function in non-equilibrium states.

At equilibrium, both the spectral and statistical funcgatepend only o andk, i.e.
they are homogeneous inandi, owing to translational invariance. Furthermore, they are
related by fluctuation-dissipation relations :

Crelw, k) = —i(% + ne(w)) Alw. ) (3.9)

for the bosonic case and

Gr(w, k) = —z(% — nFD(w)>A(w,k) (3.10)
for the fermionic case, withge(w) = (¢”* —1)~! being the Bose-Einstein distribution and
nep(w) = (e + 1)~ being the Fermi-Dirac distribution.

Away from equilibrium, the statistical and spectral fuocts follow a coupled set of
equations which were first found by Kadanoff and Baym [18]e3dequations are not so
easily tractable in field theory even at weak-coupling, h@veducated guesses lead us to
standard kinetic equations like the Boltzmann equatioh gitantum corrections. We will
skip issues involving renormalization etc. and simply n@nhere that they can be dealt
with efficiently at the level of the effective action.

The spectral function, especially for fermions, is dingetieasurable by ARPES like
experiments. Usually it is the equilibrium spectral funos that are measured experimen-
tally, so that we need be concerned with their dependenceegudncy and momentum
only. Recently however, there have been time-resolved AR&geriments in which non-
equilibrium time-dependent spectral functions have beeasured in approximately spa-
tially homogeneous situations and their dependence omidrezry, momentum as well as
time have been obtained (see, for example, time-resolvdeESRacross the metal-insulator
transition in [19]). Conceptually, when integrated ovexuency at a given momentum and
at a given point in space-time, the spectral function gitiesspace-time dependent density
of states. The spectral function thus reveals the non4ieguin structure of the effective
phase-space of quasi-particles (provided we do have witletbquasi-particles).

The statistical function, on the other hand, carries complgary information about
how quasi-particles (whenever they can be defined) areligtd in phase-space and time
and can be indirectly measured. For instance, in the caseiofyée species of fermions,
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the conserved current is
JH(x,t) = z’q/dwddkz Tr<7“G,c(w,k, X, t)) + constant (3.11)

wheregq is the conserved charge of the fermionic field, and the cohstandependent of
the state and required to provide an infinite subtractiorctviproduces a finite result. In
the so called quasi-particle approximation, we can assiaiethe statistical function is
peaked only whew is on-shell, so that it reduces to the standard phase-sjstcéuation
which follows the semi-classical Boltzmann equation irtaerlimits.

This completes our very brief review of the spectral andigtaal functions respec-
tively. In this chapter, we would like to describe the metblody to obtain the non-
equilibrium retarded function holographically. Our foausl be on the retarded function
because we can compute it using linear response theory eve@maon-equilibrium state.
The holographic dictionary enables defining the source apdaation value of an oper-
ator inany arbitrary state Therefore, we can avoid issues associated with the lack of a
generating functional for non-equilibrium correlatiométions.

To be specific, we would like to achieve the following :

1. to evaluate the retarded correlation function and thetsgdunction in non-equilibrium
states,

2. to find space-time dependent shifts in the energy and gipiggasi-particles in the
non-equilibrium medium, and

3. to obtain the space-time dependent shifts in energy péclesand spin orientation
at the holographic Fermi surface.

With respect to the last point, we will reproduce a strongtyged version of what is
expected from Landau’s Fermi liquid theory, as reviewedrlafThe second objective is
justified on the grounds that it is known that in non-equilibr states, the effective masses
of quasi-particles become space-time dependent (via ammaofeneous temperature dis-
tribution for instance, or an inhomogeneous distributibthe velocity field as discussed
later). We will succeed in all these objectives for scalat sammionic operators.

We only consider spectral function here and do not addresstbrmation contained
in the statistical function and how to obtain it hologragltiz Partial work in the latter
direction appeared in [20] and more work is in progress. &hesues will be complicated
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by the fact that we are dealing with composite operators Indraphy and we leave this

for future study. We note here that there has been previodswioere the equilibrium sta-

tistical function has been defined holographically in a cstest manner [21], based on the
correspondence between the generating functional of tiddretic correlation functions

and a suitable partition function of quantum gravity. Hoe®uhese cannot be readily
generalized to non-equilibrium states because of the laek generating functional for

non-equilibrium correlation functions as observed before

The key result we present in this chapter is the developmipeurbation theory
of scalar and fermionic fields in holographic duals of nomikigrium backgrounds. At
equilibrium, the incoming boundary condition mimics cduggponse in field theory and
suffices to define a well-defined linear response theory majpgcally [22, 23]. However,
the incoming wave boundary condition does not suffice to gek defined linear response
theory in non-equilibrium states. This can be briefly demi@ted as follows.

Suppose we have a non-equilibrium background in which addydramic mode with
momentunk g has been excited. Let the source of the operator at equitibbe./©) (x, ¢)
and the expectation value W@ (x,¢) which can be read-off from the profile of the
field ®© (r,x,t) in the bulk. The non-equilibrium bulk contribution can bendeed as
®W kg, 7, x,t) and this gives contribution to both the sourf®’ and expectation value
OW of the operator. The full retarded function can be obtaimeohf:

0O (X, t) + oW (k(h), T, X, t)

Gr(x, t;y,t')=C
r(X,ty, ) J(O)(y’t’)—|—J(1)(k(h)ar>Yat’)’

(3.12)

whereC is a constant which depends on the action and has been setytbere. However,
the general solution fob™ will have :

i) two homogeneous solutions which are incoming and outgatrihe horizon respectively
and,

i) a particular solution which will be completely deterreih by the hydrodynamic back-
ground perturbation and the equilibrium solutidfy) .

This particular solution will contribute to bot®) and J®, as will the homogeneous
solutions. The incoming boundary condition will set thef@omnt of the outgoing homo-
geneous solution to zero. The coefficient of the homogenegmasning wave solution is
left arbitrary. At equilibrium, this arbitrary coefficieotincels between the numerator and
denominator, but at non-equilibrium we have an extra caefficdrom @) and therefore
(3.12) is ill-defined.
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Later in this chapter, we show that careful treatment of l@gy of the solution at
the horizon implies that the coefficient of the homogenogsmming solution should also
be zero in presence of background quasinormal modes. THialleiv us to put forth a
well-defined prescription for obtaining the non-equiltbri retarded Green'’s function and
spectral function holographically. In fact, the presadptcan be precisely stated in a man-
ner which is independent of the non-equilibrium state. Thasography gives a very well-
defined perturbation expansion of non-equilibrium obsalesawhich can be understood in
an universal manner.

This chapter is based on our work, [24]. The organizatiorhefdhapter is as follows.
In section 3.1, we give a general review of holographic deélson-equilibrium states.
Though most of this section is a review, the explicit metfmscharged hydrodynamics
and homogeneous relaxation in section 3.1.4itb, are new as far as we are aware of
the literature. The key point in the discussion in sectidnZhowever, to the best of our
knowledge, is novel. Here we argue that in a non-supersynuriaeory with a gravity
dual, there may exist a window of temperature and chemidaiial at largeV, in which
a generic non-equilibrium state can be characterized hyajdisitely few operators with
low scaling dimensions even far away from the hydrodynammit! We also point out
that there are surprising similarities with solutions af 8oltzmann equation on the weak
coupling side, which we review in section 3.2.1.

In section 3.2, we develop the formalism for obtaining nguikbrium retarded Green’s
function and spectral function holographically in the apgmation where the background
fluctuation is linearized i.e. when the non-equilibriumtstes studied in the linearized
approximation. An interesting result is that we can readtlodf relaxation modes in the
background by measuring the non-equilibrium spectraltionc

In section 3.3, we compare our holographic approach wit fletory. We also make a
comparison with Landau’s Fermi liquid theory regarding +&guilibrium dynamics of the
Fermi surface. Furthermore, we obtain a holographic pigsan to calculate space-time
dependent non-equilibrium shifts in the energy and spimefjuasi-particles.

In section 3.4, we show that our prescription for the holpgraretarded Green'’s func-
tion readily generalizes when we take non-linearities endjznamics of the variables char-
acterizing the non-equilibrium state into account.

Finally, in section 3.5, we conclude by pointing out intéirgg issues that could be
addressed numerically.
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3.1 Onnon-equilibrium states, their holographic duals and
guasi-normal modes

An equilibrium state can always be characterized by a fewrosaopic variables related
by an equation of state. The distribution functions of gée8, density of states, expecta-
tion values of operators, Green’s functions, etc. depenthese macroscopic variables.
We also know, in principle, how to calculate the equationtafesrelating the macroscopic
variables of equilibrium states. Most importantly, we knwprinciple how to calculate
the dependence of the observables in the underlying fietayhan these variables charac-
terizing equilibrium states.

The most pressing problem in dealing with non-equilibridates is that, typically even
at the coarse-grained level, we need an infinite number ofesacopic variables to char-
acterize them. These variables also depend on space and?&ide from taking recourse
to a kinetic approximation, which is typically uncontralléut intuitively well-motivated)
from the point of view of the exact field theory, we usually dat Rnow how to obtain
the equations of motion of these macroscopic variablesgltyegeneralizing the notion of
equation of state applicable at equilibrium). It is also cletrr how to relate observables in
the field theory to the macroscopic coarse-grained nonkibgum variables.

Here, we will address these issues from the point of view ¢bdraphy. Firstly, we
will identify a special sector of non-equilibrium statesiaihcan be described in terms of a
finite number of operators of low scaling dimensions in kin#teories. These states exist
for any value of the coupling at least in the kinetic appraoaiion. Then we will argue
holographically that these states also exist in the exddttheory and are generic at strong
coupling and largéeV after a microscopic time-scale, irrespective of the ihit@ndition.
We will further discuss how solutions in gravity describelsmon-equilibrium states.

3.1.1 Conservative states in the kinetic approximation

Let us first look at the kinetic approximation in some detalts particular let us analyze
the Boltzmann limit which is valid typically Wheml;flfp is small, wheren is the typical
number density,,, s, is the mean free path antds the number of spatial dimensions.
Boltzmann equation describes the dynamics of particletdigions in phase space. It
can be reduced to local dynamics of the infinite number of nmisef the phase-space
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distribution of particlesf®)(x, p, ) of a given species. These moments are

: d’p '
F o (x,t) = /mepuz----punﬂ )(x,p, 1) (3.13)

wherep* is thed + 1-momentum withp® being on-shell energy for each species

A conserved current (for instance the baryon number cuyrregiven by :

. d'p
]M(Xa t) - qu / W puf( )(X7p>t)a (314)

whereg, is the charge (for instance baryon charge) ofd¢h¢h species.

The energy-momentum tensor is given by

dp s
x.) = 3 [ S8 puo £ p.0) (3.15)

Thus we see that the energy-momentum tensor and consemvedtsiare parametrized by
a weighted sum of first few moments of the quasi-particleitistion functions.

Three comments are in order here :

1. The Boltzmann equation has no dependence on temperatoo®equilibrium pa-
rameters. The latter parametrize the solutions. The tHeéBose-Einstein or Fermi-
Dirac distributions are exact solutions of the Boltzmanuoatopn. In absence of
external fields, Boltzmann’s H-theorem indicates all Sohs finally equilibrate into
thermal Bose-Einstein or Fermi-Dirac distribution.

2. The integrals involved in collision terms on the right daside of the Boltzmann
equation (see eq. (3.106) for weakly interacting elecirbase divergences coming
from phase-space volume. To regulate these divergencesameput a IR-cutoff
corrsponding to the thermal mass of the quarks and gluortstemperature being
the final equilibrium temperature [25]. The dispersiontielas are also accordingly
modified.

3. In the dilute limit the effect of the interactions is takaio account via an effective
thermal mass. Thus the energy-momentum tensor takes adreelg@pform with an
effective thermal mass.

It can be shown that the higher velocity moments parametinedlow of the flow, the
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flow of the flow of the flow, etc. of charge, energy and momentiior example, if we
define :

dp s
S;u/p(x> t) = Z / W pupuppf( )(X> P, t)a (316)

then the heat-current s, = S, ,n"".

The Boltzmann equation can have solutions where the padiaterved currents are
4 are all proportional to each other. This happens precisalgnachemical equilibrium
is achieved, and in fact any arbitrary solution achievesmsbal equilibrium after suffi-
ciently long time. In that case, we can define a four-velobéld «* and charge density
such that :

3 =, p=3"p9 =05 = puy. (3.17)

The energy-densityis :
€ =t,utu”. (3.18)

The hydrodynamic variables atgep andu”. We can define temperatu?eand chemical
potentialy fields in terms ofe andp by using the equation of state of the full system at
thermal and chemical equilibrium locally.

There are special solutions of the full non-linear Boltzmagquation, known asor-
mal solutionsn the literature, which are purely hydrodynamic [26]. Tée®lutions are
such that all the momen;féf),,,,un of the phase-space quasi-particle distributions of variou
species are algebraic functions of just the hydrodynami@bkesw,,, 7' and ., and their
spatialderivatives in the local inertial frame co-moving witH. The full phase-space dis-
tributions can thus be characterized uniquely by the hyghvachic variables. Furthermore,
any arbitrary solution of the Boltzmann equation can be @yxprated by an appropriate
normal solution after a sufficiently long time.

The hydrodynamic equations can be derived from the Boltzmegjuation; these are
the Navier-Stokes equation, charge diffusion equationfaoutier’s law of energy trans-
port with systematic higher derivative corrections. Theashviscosity, charge diffusion
constant, thermal conductivity and all the higher ordengprt coefficients can be ob-
tained from the relevant Boltzmann equation specified byldminant collision processes.

These solutions can be further generalized to what were thameservative solu-
tions[6]. In such solutions, the various momerﬁ;ﬁ?,,,un are algebraic functionals of,

u,, (or equivalently the conserved currej)) and the energy-momentum tensgy, and
their spatial derivatives in a local inertial frame co-muyiwith u#. Thus the full solu-
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tion can be specified by, andj,. In such solutions the energy-momentum tensor is
not necessarily hydrodynamic. Furthermore, any solutioth® Boltzmann equation re-
duces to an appropriatnservative solutioafter sufficiently long time, and the latter
reduces to an appropriat@rmal solutionafter the relaxational time scale. The first claim
follows from the fact that the independent dynamical paftsgher moments of the quasi-
particle distributions decay faster compared to the nardyynamic relaxational mode of
the energy-momentum tensor [27].

The energy-momentum tensgy, and the conserved currept (or equivalently the
charge density and the velocityu,) follow a closed system of equations in conser-
vative solutions of the Boltzmann equation. This gives aesystic generalization of
phenomenology beyond hydrodynamics to include procesisesdlaxation. These phe-
nomenological equations have been obtained in [6, 7].

Obviously, the existence of normal and conservative smhstof the Boltzmann equa-
tion can be seen at the linearized level and provides a mébhadatain good approximations
to the transport coefficients and relaxation parameters.

Thus,in the semi-classical kinetic limit captured by the Boltom&quation, an arbi-
trary non-equilibrium state can be approximated by a couagve state whose dynamics
is given by the conserved current and the energy-momentasort@ven away from the
hydrodynamic limit. This approximation is reliable after a microscopic timedsowvhich
is shorter than the leading non-hydrodynamic relaxatiodenae. the time scale of local
thermalization.

The quasi-particle distribution is said to have locallyrthalized when it can be charac-
terized well by space-time dependent parameters of equitibdistribution. Afterwards,
hydrodynamics takes over and the system equilibrates yobaa generic solution of the
Boltzmann equation, we thus have three time scales. Thdifitstscale is the time for
chemical equilibratiort..,, after which inelastic collisions effectively cease, thesal
time scale ist..,s after which an approximation by an appropriate consergagmlution
becomes valid, and the third time scale is after which thedgyghamic approximation is
valid and is also the time scale of thermalizatign,,,. The hierarchy is

tchem < tcons < ttherm-

The conservative solutions of Boltzmann equation desc¢hbalynamics of both thermal-
ization and hydrodynamics in an unified framework in the Bolann limit.
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We note that there is no scale which parametrically sepathgedynamics of the non-
hydrodynamic part of the energy-momentum tensor and ceedezurrents from that of
other relaxation modes. Thus we may argue that even if coaipes states exist beyond
the Boltzmann limit, they may not be typical non-equilibnistates after microscopic times
as in the Boltzmann equation. The typicality is just a sgéegture of the Boltzmann limit.

In fact, once we go away from the dilute limit necessary fa Boltzmann equation
to be reliable or consider genuine quantum dynamics (notusntum statistics), the typ-
icality of conservative states will no longer be preservéithe conserved currents and
energy-momentum tensor do not seem to capture generic dgméeyond the hydrody-
namic limit. Conservative solutions may exist beyond théBoann approximation, but
only in the purely hydrodynamic limit can they approximatgemeric state.

We will argue that if a theory has a holographic dual, thereirtain phases in the large
N limit, the dynamics can indeed be captured by just the cersecurrent and energy-
momentum tensor generically, after a microscopic timdesadich is much shorter than
the time-scale for local thermalization. In such cases,ctheservative state can indeed
capture generic non-equilibrium dynamics even far awamftioe hydrodynamic limit.

3.1.2 Holographic duals of non-equilibrium states and typtality at
strong-coupling

Holography maps a field theory to a quantum theory of gravitgne extra spatial dimen-
sion. It further states that in the largé and strongly coupled limit, the dual theory of
gravity reduces to a classical theory. Therefore, in tmstlstates of the field theory are
dual to solutions of the classical theory of gravity which exgular in an appropriate sense.
Furthermore, every operator is dual to a field and the expentaalue of an operator in a
state can be obtained from the asymptotic behavior of théfae in the corresponding
gravity solution.

The question of which operators matter in characterizirgestin the largeV and
strong coupling limit can be seen from the masses of the deldkfi The mass of the field
is related to the scaling dimension of the dual operator.

The largeN limitin the (D dimensional) field theory side is the limit when the sdale
corresponding to asymptotic curvature radius of the-( dimensional) space-time, is large
compared to the effective Planck scéle(in D + 1 dimensions) on the quantum gravity
(string theory) side of the holographic correspondences §thong coupling limit on the
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field-theory side is the limit when the length of the fundamtaéstring/, is small compared
to the asymptotic curvature raditien the quantum gravity side. The first conditign< <

[ allows us to consider the classical limit of gravity. The@®tcondition, << [ allows us
to ignore the massive stringy fields corresponding to higieitations of the fundamental
string.

Nevertheless, string theory is a theory in 10 dimensionstt&re has to be a compact
space ofd — D dimensions on top of th& + 1 dimensional non-compact coordinates.
The condiitond; << [ andlp << I, i.e. strong coupling and larg® limit in the field
theory side allows us to decouple the massive stringy modesemasses scale likg'
whenl, andlp are small compared tb Thus from the ten-dimensional viewpoint we are
left with just the massless fields which include the gravaod gauge fields. However, the
compactification over the compatt- D dimensions still creates a tower of Kaluza-Klein
fields which are dual to operators with possibly small sgatiimensions if the typical size
of the compact dimensions is of the same order as the asyimptovature radius.

In a supersymmetric set-up [28], the typical radius ofd@he D dimensional compact
space is indeed of the same order asfthe 1 dimensional asymptotic curvature radius
Therefore, in the strong coupling and laryefield-theoretic limit, the Kaluza-Klein spec-
trum still plays a role in characterizing states. In facest Kaluza-Klein fields are dual to
chiral primary operators and their descendants. Thergéopeediction of the holographic
correspondence is that at largyethe scaling dimensions of the chiral primary operators do
not deviate much from the weak coupling limit.

Despite the presence of the Kaluza-Klein spectrum, it issknthat almost all known
supergravity theories in 10 dimensions admit consistemictition at the classical level to
gauged supergravity i + 1 dimensions when dimensionally reduced over the apprapriat
9 — D dimensional compact space. Thet+ 1 dimensional graviton is dual to the energy-
momentum operator on the field-theory side andthe- 1 dimensional gauge fields are
dual to the conserved currents with the global symmetrygsdoeing gauged in the gravity
side.

One can also show that all solutionsiof+ 1 dimensional gauged supergravities which
thermalize to black branes with regular future horizons loarcharacterized uniquely by
the expectation values of the energy-momentum tensor amgkoged currents of the dual
states®. These solutions thus correspond to special non-equilibstates - namely the

3Despite these not being Cauchy data from the gravity poimiex, this holds if the geometry corre-
sponds to regular perturbations of a black brane at late [@®Je We also note that the consistent truncation
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strongly coupled version of the conservative states wheoh lse characterized by the
energy-momentum tensor and conserved currents alone.arampters of phenomenolog-
ical equations for the energy-momentum tensor and condeweents which generalize
hydrodynamics should now be obtained from gravity and ratfkinetic theories valid at
weak coupling [6-8]. Evidence that the solutions of pureviyan particular, which have
regular future horizons, can be interpreted as conseevatates has been presented in [7]
for the special case of homogeneous relaxation. It has bexeg that regularity at the
horizon gives an equation of motion for the non-hydrodyraemergy-momentum tensor
with precise coefficients for this case.

Furthermore, such conservative states should also exsgtaphically away from the
strong coupling and large N limit, since the dual solutiomgravity can be constructed
by perturbatively correcting the gauged supergravity tsmhs in /2//> and 1/N?. Nev-
ertheless, in the known supersymmetric cases these swui@ always special and not
typical even in the strong coupling and largelimit, because the intrinsic dynamics of
Kaluza-Klein modes are absent in these solutions.

The situation can be expected to be very different in noresymnmetric cases. There
is no analogue of chiral primary operators and typically wendt expect that quantum
corrections to scaling dimensions of operators will be $atatrong coupling, unless these
are suppressed because of symmetries.

In order to use our intuition obtained from well studied exées with the field theory
being conformal and supersymmetric, we will need to focuyg on a certain window of
temperatures and chemical potentials, such that :

1. the effective coupling is strong,

2. the beta function is vanishing or approximately so, he.dystem is close to a critical
point, and

3. there are no new emergent symmetries at the critical ol@r than the (exact or
approximate) full conformal symmetry.

Furthermore, we also require that the lafgeapproximation is valid, or useful for quali-
tative understanding. Probably, all these requiremenifddoe satisfied for the fireball at
RHIC near temperatures of 175 MeV and small baryon chargsitilemas supported by

to pure gravity does not involve separation of scales. Tihiply reflects the fact that the conservative states
are not typical states in these examples.
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lattice data [30]. We can also hope that the strange mefaiiase of strongly correlated
electron systems will satisfy these requirements in a wanaitemperatures and chemical
potentials.

We note that certain examples of non-supersymmetric hafbgr have been proposed
in the literature [31]. However, in these special exampl&®ite number of gauge sym-
metries appear in the bulk at largé implying infinite number of global symmetries in the
dual field theory. Our observations below will not be necalysaiue in such cases

In case of a typical non-supersymmetric theory with a gyashtal, at temperatures and
chemical potentials such that the system is close to a dyraogipled critical point, we
expect there will be a few operators whose scaling dimessiath be small. We observe
that the scaling dimensions depend on the scale throughotly@ing and hence also on
the phase of the theory being considered which is paramedtty the temperature and
chemical potential. The relevant operators with smallisgadimensions in the window of
temperature and chemical potentials considered here cexpeeted to be

1. the energy-momentum tensor,
2. the conserved currents, and
3. order parameters of spontaneous symmetry breaking.

Therefore, the operators dual to the Kaluza-Klein modesra¥ity are expected to have
large scaling dimensions very simlar to those dual to thegtmodes. If this expectation
is true, the typical scale of the compact dimensions shoeldftihe same order dsand
not/.

For instance, in the case of QCD, the relevant operatorssmiidll scaling dimensions
in the conditions of RHIC can be expected to be

1. energy-momentum tensor,
2. the baryon number current,

3. the approximately conservéd/(3),, x SU(3)r flavor symmetry of the light quarks,
and

4The examples [31] are also not stringy and so far well defimdgio the largeN limit, i.e. only when
the theory of gravity is classical.
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4. the order parameter of chiral symmetry breaking havimg baryon number, trans-
forming as(3;,3x) under the flavor symmetry group and with scaling dimension
approximatelys.

The dual massless fields on the gravity side should be
1. the graviton,
2. a U(1) abelian gauge field,
3. SU(3), x SU(3)r non-Abelian gauge fields, and

4. a neutral scalar field transforming in tf8,, 3z) representation of the non-Abelian
gauge group and with mass approximately givemiy= —3/1% °.

Such a holographic model for QCD has already been propos§8Rjn However, our
arguments above show that such models can be consideredenmesly in the conditions
of RHIC. In fact, for RHIC conditions we also do not need thedweall cut-off proposed
in these models to achieve confinement, as the mass gap istedpge become very mild
at temperatures close to 175 MeV and for small baryon numdresities.

Furthermore, if the temperature is higher than 125 MeVatlsymmetry is expected to
be restored, so that the profile of the bulk scalar field du#tiéachiral symmetry breaking
order parameter will be stabilized by a potential. Therefonly the conserved currents and
energy-momentum tensor can characterize non-equilibdymamics at largév and large
't Hooft coupling A for temperatures above 125 MeV. The other fields in the halagc
dual should have masses which grow liké, i.e. 1/)&, and thus are expected to be
effectively decoupled from the classical theory.

The correlation functions of the non-Abelian gauge fieldshim gravity backgrounds
which thermalize to a black brane are all we need to constughtum kinetic theories of
production and freeze-out of axial and vector mesons (asohnances) in the expanding
fireball holographically. The interpretation of poles ofr@ation functions of these gauge
fields in terms of mesons has been given in [32]. Using the oakstio be described later,
we can obtain the non-equilibrium corrections to these miegmles systematically.

SAs the chiral symmetry breaking order paramete(gg’), it has approximate mass dimension3of
Moreover, QCD being asymptotically free, the dual boundanydition will be approximatelyldSs-like as
well. Then we can use the standard relationAaiS; for mass of the fieldn and the scaling dimension of
the dual operatof which givesm? = —3/I?> whenA = 3.
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Let us estimate the relevant time scale at strong couplitey afhich the conservative
solutions become relevant. This in the dual gravity desiomgas given by the mass of the
lightest stringy field or Kaluza-Klein mode. According tcetldiscussion above, the time
scale should bé)()\*i) in a non-susy conformal theory at strong coupling. Afterhsac
time-scale, we may expect that the massive fields in gravillydecay and the relevant
dynamics will be described by the metric, gauge fields andigjin fields dual to order
parameters of symmetry breaking relevant at the criticaitporhus decay of a massive
field in gravity can be interpreted as transition to a core@rg state at strong coupling
where the dynamics is governed by the energy-momentumriesmeserved currents and
order parameters alone.

We concluden a typical non-supersymmetric theory which has a holograpgual, in a
window of temperature and chemical potentials such thadtmamics is strongly coupled
and approximately conformal, all non-equilibrium statesde characterized by just the
energy-momentum tensor and conserved currents (and oatf@aneters of spontaneous
symmetry breaking if any), irrespective of the initial carmhs, after a microscopic time-
scale which scales with the couplinglike 1/)& in the large N limit. In other words,
conservative states are typical states irrespective oniti@ conditions after a microscopic
time-scale much smaller than the time-scale of thermatizah the strongly coupled and
nearly conformal phase at largé.

If the above arguments are indeed relevant for QCD and strarggals in a window
of temperature and chemical potentials, we have a uniquertppty to understand non-
equilibrium dynamics with only a finitely few operators indlspecial phase of these the-
ories. As conservative states will be typical non-equilibr states, we can use general
phenomenological equations for non-equilibrium dynanaggroposed in [6, 7], and also
hope to construct a general theory of kinetics and fluctnatio connect to experiments as
we want to do here and more completely in the future.

If the above arguments fail, the reasons should certainlgdep. In that case, we
also need to know how to generalize non-equilibrium holpgyabeyond the sector of
conservative states sufficiently so that we can describpieaiynon-equilbrium state.

3.1.3 Quasinormal modes

The thermal states in the field theory at laryeand strong coupling are captured by
black brane solutions of classical gravity holographicdih the linearized limit, the non-

84



Chapter 3. The Holographic Spectral Function in Non-EQuilim States

equilibrium fluctuations are captured by the linearizedagigus of motion of gauge field

and the metric fluctuations about the black brane backgrolinese fluctuations are dual to
perturbations of the energy-momentum tensor and conseeents about thermal equi-
librium. Furthermore, these fluctuations should satiséitttoming boundary condition at
the horizon and Dirichlet boundary condition asymptotici2]. Thus they are quasinor-
mal modes capturing intrinsic fluctuations in the dual figlddry which can exist in ab-

sence of sources and provide good approximation to a typamalequilibrium state close
to equilibrium at strong coupling and largé.

There is, however, a significant difference between thahzed Boltzmann limit and
the quasinormal mode approximation of solutions of gravitgtead of a finitely few decay
modes on top of the hydrodynamic mode, we have an infinitertohguasi-normal modes.
The reason that we do not have an infinite tower of modes fogrnleegy-momentum tensor
perturbations in the Boltzmann equation is that it has omlg bme derivative (which in
a Lorentz-invariant language is the derivative along trealloselocity field). Quantum
corrections to the Boltzmann equation are known to resuétninnfinite number of time
derivatives, and it is not hard to see this will produce amitdinumber of decay modes as
well.

We will now obtain the phenomenological form of the non-éQuum energy-momentum
tensor and conserved cuurent. Instead of stating in a Lotewariant way, we will state
the form of the energy-momentum tensor in the frame wheraltizd thermal state is at
rest, i.e. the laboratory frame. It is convenient to defireew@locity perturbationu(x, t)
such that the velocity field is co-moving with the energy-flovetead of the charge-flow as
done usually in the Boltzmann limit. Thus the non-equiliibni energy-momentum tensor
thus takes the Landau-Lifshitz form in the global co-moWiragne :

9e(T, p) 9e(T, p)
or ol

toi = tio= (e(T, w) + p(T, ,u)>5u2-(x, t),

B Op(T, ) Op(T, 1)
tij = p(T,p)d;; + (T(FT(X, t) + T(Su(x, t))(S,J + m;(x,1). (3.19)

too = €(T,p)+ 0T (x,t) + p(x,t),

Aboveyp is the pressure and; is the shear-stress tensor. The shear-stress tensor sarethu
defined as the dissipative part of the energy-momentum temgtbe spatial components
of the energy-momentum tensor not in local equilibrium ie tto-moving frame. The
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conserved current takes the form :

. op(T, 1) Ip(T, )
Jo = p(T7 ,LL) + oT 5T(X7 t) + a,u 5M(X7 t) + VO(Xv t)7

gi = p(T, p)oui(x,t) + vi(x,1). (3.20)

Above y; is the dissipative part of the consevred current or the apedmponents of the
current away from local equilibrium in the co-moving frantédowever, as the co-moving
frame is aligned with the energy flow, the charge can have segaiiibrium part by itself.
This isvy.

In order to have conformal invariance, we should furtherehav

E(T7 :U/) = dp(T7 :U/)a de =d 5pa Wij(sij = 07 (321)

with d being the number of spatial dimensions in the field theoryov&de andép denote
change in energy density and pressure due to change in taetupeand chemical poten-
tial. From now onwards, we will be interested in the specifiseewhen the field theory
is conformal, so that on the gravity side we will be using agtatically Ad.S boundary
conditions.

The shear-stress tensor and the dissipative part of therdwran be split into hydrody-
namic partsr.? andv{"” respectively which are functions of the hydrodynamic figléisind
du, and non-hydrodynamic part$]” andv{"" respectively which cannot be parametrized
by hydrodynamic variables alone. On the other hagdjoes not have any purely hydro-
dynamic part.
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In the case of a conformal field theory, at the linearizedlleve

Tij = W,(?) + ng)’ v; = Vl(h) + Vz(nh),
2
h
n) = —n(T,p) <8i5uj + 0;0u; — (8- 5u)5ij) + ..
Op(T, 1) Op(T 1)
o _ _p(r <p7’a(5T Sl Lty )
Vl ( ’:U) 8T 1 "‘ alu 1 ,U "‘ )
75(;-“') — Z iy € X000 with a,,; 6, = 0 for all n,
n=1
n=1
= D e eI 000, (3.22)
n=1

Above, 7Y and{"” have been expanded in the derivative expansion, which isaane
sion in the scale of variation of hydrodynamic variablesrdatie mean free path. We also
requiredu; and d7" to be small uniformly for the linearized approximation to \edid.
Furthermore,n is the shear viscosity anf is the charge diffusion constant. On the
other handu,);;, b, andc(,) parametrize the dissipative non-hydrodynamic modes of
the energy-momentum tensor and conserved current. nTihere represents the various
non-hydrodynamic branches of quasinormal mode pertunhativhich dissipate because
their dispersion relations,,)(k), &, (k) andw,(k) have negative imaginary parts. We
requirea,);; /p, buyi/p andeg,)/p to be small for the linearized approximation to be valid.

We note the separation af; andy; into hydrodynamic and non-hydrodynamic parts
can also be done at the non-linear level. This is so becalese avthe non-linear level
the hydrodynamic parts{? and+{"” are solutions by themselves - from the perspective
of kinetic theories this follows from existence drmal solutionsas discussed before and
from the point of view of gravity they give regular metricaviuid/gravity correspondence.
For anyr;; and;, the non-hydrodynamic partg” andv{"" are just whatever remains
after subtracting out the purely hydrodynamic pai$ and»{" constructed algebraically
from the profile of the hydrodynamic variables in the fullgabn of the energy-momentum
tensor and conserved currents.

In order to obtain the hydrodynamic modes at the lineariesdl] we simply put all
amyi; andb,); to zero in (3.22) and impose the conservation of energy, mtme and
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charge :
o't,, =0, 0"j,=0. (3.23)

We then obtain three modes, the sound mode, the shear modéetiarge diffusion
mode. In the sound mode,

du(k) isparallelto k,

_ b (31 n(T, p 5
w - - K| ( d)ﬁ(TM+ AL
&&):d@&ﬁ:i¢M6MM\GGUQ+Mﬂm>+M
dp(k) B oe(k)
p a (T + () o9

Above (...) refers to higher derivative corrections in powerskofUsing thermodynamic
relations locally, one can obtaiT'(k) andou (k) from de(k) andop(k).
In the shear mode,

du(k) is orthogonalto  k,
w = —i——— |k |* +....,
p

de(k) =op(k) =opk)= 0. (3.25)

de(k) =0, opk) =0, oduk) =0,
w=—iD(T,p) | k|*. (3.26)

The quasinormal modes of the metric and gauge fields contiagse hydrodynamic
modes as the only branches in whiclandk can go simultaneously to zero. We can also
obtain the transport coefficients by using the incoming lolawy condition at the horizon.
We will be interested in the shear mode in particular. Theshescosity is given by [2]:

(T, 1) Tn(T,p) 1 (3.27)

s(Typ)  e(T,p) +p(T,p)  Ar

Above, s is the entropy density and we have used the thermodynamidiige = (e +
p)/T.
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In order to obtain the simplest non-hydrodynamic modes vesinie set the perturba-
tions of the hydrodynamic variablés;, 7" anddu in (3.22) to zero. Also we look for
spatially homogeneous perturbations so that the momektisraero. Nevertheless, unlike
the case of hydrodynamic modes, the frequengy do not vanish whetk goes to zero.

In such a configuration, for arbitrary,,);;, it is easy to see that energy and momentum is
conserved becausg#t,, vanishes identically. When the chemical potential is sefeto,
the quasi-normal modes in five dimensional gravitylihS; give [33] :

wey(k=0) = #T [i 1.2139 — 0.7775 4 + 2n(1 F i)], forlargen  (3.28)

Clearly, the conservation equations are not enough to deygmall the quasi-normal
modes. We need extra phenomenological equations. Suclopleaological equations
can be derived from kinetic theories like Boltzmann equasibweak coupling or gravity at
strong coupling. However, we can also write them on gendrahpmenological grounds.
At present, these will not be important for us, we merely nwnthese have been found in
the most general form in [6, 7].

We will be interested in the spectral function in this clagson-equilibrium states,
whose dynamics is determined by the non-equilibrium flugbna of energy-momentum
tensor and conserved currents only. If we want to obtairetepsctral functions holograph-
ically, we need the explicit metric and gauge field corresipog to the non-equilibrium
state. It will be important for us to write the metric and gadigld fluctuation about the
equilibrium black-brane background explicitly in termsdof, 67", oy, i7", vy andy{"™.
As we will show in the next subsection, the spectral functiothe dual states will depend
explicitly just on these non-equilibrium variables.

Later in section 3.4, we will discuss what happens when we tato account non-

linearities in the dynamics @¥u;, 67, wgfh), etc.

3.1.4 Explicit examples of backgrounds

We will be interested in strongly coupled conformal fielddhes in three space-time di-
mensions in the larg& limit. Therefore, as discussed earlier, we will be concémweh
solutions of Einstein-Maxwell equations which are asyrtipatly AdS, and are quasi-
normal mode fluctuations about a Reissner-Nordstorm blaakeowith both mass and
charge.
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As discussed earlier, on the gravity side we will need thestein-Maxwell action :
I?
- /d4 R + = — b FMN) (3.29)

Above [ sets the scale of asymptotic (negative) curvature via aafnex) cosmological
constant. This is required so that the asymptotic isomdth® spacetime is the same
as the conformal group in 3 dimensions. We will uséo denote the effective Newton’s
constant in four-dimensional gravity in lieu of Planck l&mgp.

The metric of the Reissner-Nordstorm black brangiit, is :

> dr? 12
ds® — ﬁm+r—2< f(p)dtQerx —|—dy> (3.30)
12
wheref is the so-called blackening function given by :
3 Ty 4
fls) = 1- (3— 1)5 +3lzst, (3.31)
To

To

In case of the gauge field, it is convenient to use the galige- 0. The only non-zero
component of the gauge field i and is given by :

At:

21/3r2 (1 rr0>

ZQTO [2

(3.32)

The boundary ofAdS, in these coordinates is at= 0 and the outer horizon is at

r = I /rq. The total masd/ and charge) of the black hole are given by :

7,4

Q=32 M=rj+3-=. (3.33)

To
Using the standard holographic dictionary we can relatewloeparameters, andr, of
the geometry and the Newton’s constanh to the energy density, charge density and
entropy density as below :

€=2p= 25;4(3—4—1—1), p-?(i—*y, s:ig;o. (3.34)
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The thermodynamic relation
de =Tds + pdp (3.35)

gives the temperature and chemical potential as below :

T 3ro (1 B (E)4>7 = 2\/57"3‘ (3.36)

~ Arxl? ro 127y

The first example of a non-equilibrium background we will ctése is that with a hy-
drodynamic shear-mode turned on. The velocity perturbatitl be denoted asu(k))
with k@) being the three-momentum of the fluctuation. We recallkiygt du (k) = 0, as
the shear wave perturbation is transverse.

It is a well-defined problem to find a given metric and gaugelfg@rturbation in the
bulk corresponding to a definite energy-momentum tensorcanderved current fluctua-
tion about the equilibrium at the boundary, when the Digtbloudary condition is imposed
for the bulk perturbations at the boundary. The latter isleéeso that the dual field theory
lives in flat space and is influenced by an externally fixed cbahpotential. Regularity at
the horizon fixes the transport coefficients appearing iretiergy-momentum tensor and
conserved currents.

This procedure can be readily implemented in Feffermarih@racoordinates [29]. A
similar procedure can be implemented in Schwarzchild-tigerdinates as well because
the Schwarzchild radial coordinate and the Fefferman-&rahadial coordinate are only
functions of each other when the temperature remains unped. Then it follows [29]
that :

dg;; will be proportional to  (kgy 0u; () + kg 0w (Kqy))e'Eo>=“o and
69 will be proportional to  du; (kg )e'kex—nh).

It can be also shown that in the radial gauge,= 0, the fluctuation in the gauge field is
also proportional to the fluctuation in the conserved currien proportional to :

ou; (k(h)) etk x—wmt)
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The explicit metric is given by :
2 dr? I?
ds® = " )—l——( f<rr0)dt2+d:1: + dy?

2 f (7“7“0 [2

-2(1- 7 (TZZO) )i i

207 2 o
—|——< — 11— k(h)z (5uj (k(h)) iy x—winyt) h (%) dIL’Zdl’j> + 0(62),(337)

r2 310
where,
s 5;2
h(s) = 3/ ds - , (3.38)
o (1+5+352—-3%54)(1-35)
and
2 7"(2]
W(h) = —Z4 T + O( ), n= 53] = 4ms. (3.39)

In the radial gaugel, = 0, the gauge field takes the form

2/3r2 7o )
A= T (1) o),
21/3r? T - t
; = — * - () X—w(nt)
& 121 <1 2 )5uz(k(h)) +O(€%). (3.40)

Abovee denotes the parameter of derivative expansion in hydradicg

Itis to be noted that we have written the full metric and gdfigjd in a global frame co-
moving with the equilibrium part of the energy-momentumst@nand conserved currents,
i.e. in the laboratory frame. We can readily make the metnid gauge field Lorentz-
covariant by boosting such that the unperturbed velocitg feea four-velocity vectom*
[5]. However, this will be unnecessary for the purposesisfiaper as we will be interested
in the results in the laboratory frame.

Also one can readily realize that the metric is singular atdbter horizon = 12 /.
This is however only an artifact of the coordinate system. dAfe systematically change
coordinates order by order in the derivative expansion abttie metric and gauge fields
are manifestly regular at the horizon [29]. In our coord&sathe radius of convergence of
the derivative expansion is of the order of the effective maigae path or the inverse of the
effective temperature at a given radius giveniby;(r) = 7'/ \/T/l2 Therefore, we
have a finite radius of convergence of the derivative exgaraifinite distance away from
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the horizon. Furthermore, we will be interested in calantaboundary correlators which
are independent of the choice of bulk coordinate system.

The metric (3.37) and gauge field (3.40) in manifestly regoterdinates are given in
appendix A.

The second example which we will be concerned with will be enbgeneous non-
hydrodynamic perturbation of the energy-momentum tensarwith onea,);; in (3.22)
turned on. The momentum of this perturbation is zero on agcouhomogeneity, but its
frequency is non-zero and complex like in (3.28). The metan be obtained following
[7] in the Fefferman-Graham coordinate and re-expressdaeifschwarzchild coordinate
used here by simply changing the radial coordinate. Agasrtha temperature remains
unperturbed, up to linear order the change of coordinatelveg transformation of one
variable. It can be shown that the metric perturbation ipprobonal to

—iw(
Amyie "

Explicitly the perturbed metric is :

2 dr? 12
ds> = ET%())JFT—Q(—f(%)dt?jtdx%Ldy?)

212 o o
+ =5 (amie™ 0" b (i ) da'da?) +0(6?), (3.41)

with § being the parameter of non-hydrodynamic amplitude expangiurthermore (s, Wn))
follows the equation of motion :

- riv.g a4\ -
d2h($>w(n)) . <2+ (1+3T§>S 6T§8 ) dh(s>w(n))
ds? sf(s) ds
n ‘*}(271)l4 1 A ) =0 (3.42)
B\ PE )T |

We will also require that :

h(s,wm) = s* + O(s") ass — 0. (3.43)

This is the asymptotic boundary condition and determimesmiquely as it puts the co-
efficient of the non-normalizable to zero and the coeffic@mnte normalizable mode to
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be unity so that the boundary energy-momentum tensor fltictugs as given by (3.22).
Though the equation fot cannot be analytically solved, the solution can be readily e
panded in a power seriesdn,,).

Furthermore, the gauge field remains unperturbed from gekldrane profile.

The metric above is also not manifestly regular at the horiboit once again it is just
an artifact of the choice of coordinates. One can again lanthe metric systematically
to Eddington-Finkelstein coordinates to see manifestlegy [7]. The regularity is man-
ifest only when we sum over all ordersdn,,). This is to be expected because, although
the amplitude of the non-hydrodynamic perturbatigy,; is small, it's rate of change in
time is not small (unlike the hydrodynamic modes) singg is of the same order as the
temperature.

Though we will not discuss the details here, we can constheexplicit metrics in
the case of both hydrodynamic and non-hydrodynamic peatiais even at the non-linear
level [5, 7]. The metric is regular at each order in the deneaexpansion for hydrody-
namic perturbations and for each order in the amplitude esipa for non-hydrodynamic
perturbations, provided all time-derivatives (or covatigspeaking convective derivatives)
are summed over at each order in the latter case [7].

3.2 The holographic prescription for the non-equilibrium
spectral function

As discussed in the Introduction, the spectral functionivery by the imaginary part of
the retarded propagator which can be obtained from causpbnse of an operator to it's
source. A convenient way to obtain the spectral functioo saculate the retarded propa-
gator using linear response theory first and then isolatemaginary part.

In this section, we will consider single trace scalar andnfenic operators in field
theory whose back-reaction to the metric is suppressed(byN?). As we have argued in
subsection 3.1.2, the possibly interesting scalar opesatcdhe strong coupling and large
N limit are order parameters of symmetry breaking. If we ara mange of temperature
and chemical potentials, where such symmetry breaking doesccur, the profile of the
scalar fields dual to these operators vanishes in the baskdrcassically. Therefore, the
backreaction is indeed(1/N?) suppressed. This observation may be applied to study pion
correlations in the quark-gluon plasma at RHIC.
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In popular holographic models of strongly correlated systethe electron is thought
to couple to a composite operator made out of strongly intera fractionalized degrees
of freedom (for a clear exposition please see [34]). The dmalphic dual is thought to
capture the dynamics of the fractionalized degrees of tedThe strongly interacting
fractionalized degrees of freedom a&éN?), but the coupling of the electron to the com-
posite operator of the strongly coupled theor@id ). The spectral function obtained from
photo-electron spectroscopy (ARPES) will receive coroexst from the spectral function
of the composite fermionic operator of the strongly couedtor. As the coupling of the
electron to this operator {9(1), we can ignore the backreaction of the fermionic field dual
to this operator on the geometry representing the dual, saatthe leading order. If this
picture is qualitatively viable, our set-up will be relevdar describing non-equilibrium
features of non-Fermi liquids described by such models.

Holographically, causal response implies the incomingioauwy condition at the hori-
zon. The event horizon separates space-time into two cpas@l, one that is inside and
ends at a singularity, and the other that is outside andchistall the way to the bound-
ary. No light ray can come out of the inside region to the al&segion, though light rays
can propagate from the outside to the inside. Thereforepéneirbations which respect
the causal structure of the space-time are those which aeéygncoming at the horizon,
having no component which propagates from the inside to titside.

The event horizon is not only a feature of the eternal stdtickohole, but also of the
perturbed black hole (for instance, the black hole with thasirnormal mode fluctuations
of the metric and gauge fields). The event horizons of theseegailibrium geometries
are also perturbed from their equilibrium location andtipeisitions can be calculated in a
perturbative expansion [35]. Equilibration in this coriteeans that the event horizon will
have uniform surface gravity (the gravitational analogiieemperature) everywhere and it
happens only far in the future.

Though the incoming boundary condition is insufficient favell defined perturbation
theory in non-equilibrium geometries as noted in the Inicdobn, we expect regularity at
the future horizon to be a sufficient condition. It turns duttit is sufficient to impose
the regularity condition only far in the future, that is irethsymptotic static black brane
geometry. This has been observed before in [5, 7] in anothreiext - while constructing
time-dependent non-linear solutions of gravity with regduture horizons perturbatively.
In such solutions it indeed suffices to impose regularitynaf perturbations at the final
equilibrium location of the horizon. In fact, the incomingundary condition is itself tied
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up to regularity [36F. In this section we will find a precise non-equilibrium geadeation
of the incoming boundary condition for bosonic and fermaoineld configuratons in non-
equilibrium geometries.

For purposes of illustration, let us consider the non-éguilm state which is the sim-
plest to analyze from the gravity point of view - it is the Adiadk brane with a linearized
hydrodynamic shear mode perturbation of spatial momerkym The advantage of this
geometry is that it can be shown that the event horizon do notudte up to first order
in the derivative expansion (i.e. up to first orderkip/7") essentially because the tem-
perature field does not fluctuate as discussed in sectioWM& Will first demonstrate how
we can develop a prescription for obtaining the hologragipectral function in such a
non-equilibrium state. Our aim will be to obtain the correctto the equilibrium spectral
function up to first order in derivative expansion, i.e. uffitst order inkg,)/7".

The explicit metric and gauge field of the black brane with tiydrodynamic shear
mode perturbation is given in (3.37) and (3.40) respctiwglyo first order in the derivative
expansion. We will work explicitly with four space-time damsions in gravity, as we will
be interested primarily in a three space-time dimensional skrongly coupled field theory.
This is because we are interested in applications to styarggtelated electron systems at
finite density living in two spatial dimensions. As arguedubsection 3.1.2, our analysis
may apply to the strange metallic phase in a qualitative reann

An elegant way to solve the equations of motion of scalar @nchibnic fields is by
using the Fourier transform in all the field-theory (i.e. hdary) coordinates. Obviously,
in order to express the equations of motion of the fields irrléospace, it is necessary to
do the Fourier transform of the background perturbatioh fies we need to do the Fourier
transform of the velocity field fluctuatiosw;. The dispersion relation for this fluctuation
is as given by egs. (3.25) and (3.27). We see that the freguginen by the dispersion
relation is strictly (negative) imaginary, while the freqey related to Fourier transform
is strictly real. Furthermore, the negative imaginary €reacy given by the dispersion
relation makegw; decay in the future but grow in the past as a function of tim&oérier
transform of such a function needs to be defined with care.rderao distinguish from
the frequency and momenta associated with the scalarfieraiiield, we will denote the
frequency and momenta 6f,; asw,y andk) respectively. The correct Fourier transform

6See also [7] for an explicit proof in a non-hydrodynamic et

96



Chapter 3. The Holographic Spectral Function in Non-EQuilim States

which reproduces the hydrodynamic dispersion relation is :

(5ui(w(h), k(h)) = — (—) #rz(zh) (344)

omi .
) Wiy + i

To check the above, one can try to reproduce the time depead®ndoing the inverse
Fourier transform. This needs to be done with a specific eomescription for integration

overwgy as shown in Fig.3.1. This contour is the usual contour aasettivith the retarded
propagator in field theory - it runs fromoo to co infinitesimally below the real axis and
then closes itself through the circle at infinity. This cantpicks up contribution only from

the negative imaginary pole reproducing the correct tinpieddence ofu; at givenk .

Im

Re.

Figure 3.1: Contour for integration over,, with pole at negative imaginary axis

It will be easier to solve the scalar/fermionic field equasiafter doing the Fourier
transform ofdw;, however we need to finally integrate ovef, with the above contour
prescription in order to obtain the observed behavior ihtreee.

For demonstrative purposes, we will analyze the scalar éigichtions first and then the
fermionic field equations. Finally, we will see how we can lgppur prescription for the
non-equilibrium retarded Green’s function when the backgd contains other quasinor-
mal modes of the metric and gauge field.
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3.2.1 Scalar field equation and the non-equilibrium spectrbfunction

We will be interested in the non-equilibrium holographiespal function for a scalar
operator first. This requires us to solve the equation of omotif the dual scalar field in
the non-equilibrium background; in particular we need tdenstand how the equilibrium
part determines the non-equilibrium part completely. \Wiitithis, as we have mentioned
before, the spectral function cannot be determined.

We will need to specify the equilibrium part of the solutiorsfi We can assume,
without loss of generality, that the equilibrium solutianin a specifiqw, k) mode and
obtain the non-equilibrium correction for each such modaing the fact that our field
equation is linear, we can then linearly superimpose thaisols with the non-equilibrium
correction for each equilibrium mode to obtain the most gairsolution.

The background in which the scalar field propagates is4ith&, Reissner-Nordstorm
black hole with the hydrodynamic shear-mode perturbatidhis hydrodynamic mode
is given by the velocity perturbatiodu; in a specific momenturk, but its dependence
on wpy is given by (3.44). We have to consider the background firsa mefinitewp,
perturbation and then integrate ovey, finally with the contour prescription discussed
before. The scalar field while propagating in the backgrowitidoick up a (w + wg), k +
k) mode. The profile of the scalar field, will therefore be of thkoiwing form :

O(x,t,7) = 0O (w,k, r)e %) 4 & (W, k, wiy, kg, r)e (Hem)i=tkn)>) (3 45)

The equilibium part of the solution 8 (w, k, ) and the non-equilibrium part Y (w, k, way, Ky, 7).
The non-equilibrium part does not depend on the combinatienvy andk + k¢, as the
space-time translational invariances of the equilibriokground are broken explicitly by
the hydrodynamic quasinormal modes.

If the scalar fieldP is minimally coupled to gravity, and its mass and chargenaend
q respectively, the equation of motion of the equilibriumtpaisimply

0. 6(w' — w)6* (K — k)2 (w, k,7) =0, (3.46)

WhereDj}ﬁN is the (gauge-invariant) Laplacian in the AdS ReissnerdStmrm background
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metric (3.30) and gauge field (3.32) as given by :

o = () -2 () + T (7)o
22 [(w +aqu (1- 7))
()
Again, f is the blackening function of the AdS Reissner-Nordstoracklbrane which
vanishes at the horizon locatedrat 2 /r.
With the metric and gauge field in presence of hydrodynameasperturbation given

by (3.37) and (3.40) respectively, the equation of motiortlie non-equilibrium part up to
first order in the hydrodynamic momeritg, is :

_ k2] +m2l2, (3.47)

D286 (w' — w — wry)6® (K — k — k) 2D (w, wipy K ke, ) = V{(w, wy, k, ke, 7)
PO (w, k,r), (3.48)

with
V = Vi+ Vs,
Vi = %(w <1 - f(%)) + qu <1 - %) >5u(w(h)> km) -k,
NER
V, = 2'2;22h<%)kikjkm5uj (i K- (3.49)

Above, h gives the hydrodynamic correction to the background methich is propor-
tional tok(ydu; + (i < j) asin (3.38).

The behavior of the general solution®f”) (w, k, ) near the horizon is well-known. It
can be split into an incoming and outgoing wave as below :

Y

rTo TTo

PO (w, k,r) ~ A™(w, k) (1 - l—2> + A%(w, k) (1 - l—2> (3.50)

l2
nearr = —.

70

In order to select the incoming wave, we should put

A% (w, k) = 0. (3.51)
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We can also normalize the overall solution by choosing
A"™(w, k) =C, (3.52)

with C being a numerical constant. This overall normalization plidy no role in the
Green’s functions.
The behavior of the general non-equilibrium part of the 8ofunear the horizon is :

.wtw(h)

BTy
; T
CI)(I) (w, Wihy, k, k(h), 7“) ~ Am(w, Wihy, k, k(h)) <1 - —0>

; #T(h)

Ly
ou To
+A t(w, W(h)s k, k(h)) (1 - l—2>

2 L

i ArTI? 2 wou(w, kpy) - k LT i

7 T )
ro 9 (1 - %)2 (2w + wiy)winy 2

O (3.53)

nearr = L.

The first two terms on the RHS above are the homogeneous ingoamd outgoing
solutions for frequency mode + wg,). The third term is the particular solution which is
determined completely by the equilibrium solution. Theabbehavior at the horizon is
exact up to first order ik(,. In fact the full general solution which reproduces the @bov
can be given elegantly in an integral representation asperaglix B.

Obviously, we need to impose the incoming boundary conudigeain. Therefore,

Aout (w, Wihy, k, k(h)) =0. (354)

We will now show that in order to impose regularity at the kon, we also need to
dispose of the ingoing non-equilibrium homogeneous smtuét the horizon. We recall
that finally we need to integrate ovef).

In order to be consistent with the derivative expansidtt(w, wn), k, kn) must take
the form as follows. It is proportional to components)af at the linear order as it should
vanish in absence of the background perturbation. It's degece onvy,y andky,) can be
expanded systematically in terms of rotationally invarigealars likeyu - k, k;k;knyidu;,
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wmykikjkmyidu;, etc. Up to first order in the derivative expansions only thst fivo scalars

will apear. The coefficients of these scalars should be fonstof w andk only, as the
depenedence angy andkg can be absorbed in coefficients of the scalars appearing at
higher orders in the derivative expansion. Thus, up to firdeoin derivative expansion,
we should have :

A™(w, wiy, K, k) = AT (w, k) Su(wpy, kpy) - k + AV (w, k) kik;knyiow, (wry, Kpy)-
(3.55)
We recall for the hydrodynamic shear modéie - k) = 0, so there is no more possible
terms up to first order iky,). When we integrate overy,, the Fourier transform ofu as
given by (3.44) will give a pole contribution. Taking thiganaccount the behavior of the
ingoing non-equilibrium mode at the horizon will be :

k2

B S ()
o 4T 167272
(1 - T?) . (3.56)

Therefore, we find the ingoing homogeneous non-equilibmuode diverges at the horizon
askg,/(167°T") is strictly positive. This divergence is not an artifact bétcoordinate
system because we are studying the behavior of a scalarTieédonly way this divergence
can be removed is by putting

Am(w, Wih); k, k(h)) =0, i.e. Ailn(w, k) = Aé"(w, k) = 0. (357)

The particular solution at the horizon as defined as the tieinch in (3.53) produces no
divergence after we do the integral ovgy. It is regular at and outside the horizon.
Summing up, the full solution with the non-equilibrium cection is the following :

T 9
; 4TI? 9
O(x,t,r) ~ C((l — %) oiwi—lex) | Z( m ) ( 2)
To rd
9 (1 — —Z>
To

—ig
W(SU((,«), k(h)) -k (1 . @) ei((w+w(h))t(k+k(h))-x)> : (358)

(2w + wim)wny 2

nearr = L.
The above behavior when specified near the horizon uniquely fine full non-equilibrium
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solution aside for an overall normalizatiGn
We can numerically extrapolate the full solution all the viayhe boundary = 0. As
the background is asymptoticallS, we should have the following behavior :

d(x,t,7) ~ J(xO)r* 2 +0(x,t)r® nearr =0, (3.59)

By the holographic dictionary] is indeed the source aridis the expectation value of the
dual operator in the dual non-equilibrium stateAlso, A is the scaling dimension of the
dual operator given by the mass of the scalar field as below :

3 9
=24,4/2 272
A 2+ 4—|—ml. (3.60)

The positivity of the Hamiltonian requires®/> > —9/4 [38].
Furthermore, near = 0, the equilibrium and non-equilibrium parts of the solution
individually have the same behavior, so

o) (w,k,r) =~ J© (w, k)r?’_A + 0O (w,k)r?,
(I)(l) (w, w(h), k, k(h), ’f‘) ~ J(l)(w, w(h), k, k(h))Tg_A + O(l) (w, w(h), k, k(h))’f‘A
(3.61)

Therefore,

J(x,t) = JO(w,k)e 0 4 / deom TN (w, wi, k, Ky )e " ((Hem)i=erim) ),

O(x,t) = 09w ke k) / O™ (w, wiy, k, ke (¢ Hemi=kn) )
(3.62)

The unique solution oft™ with our prescribed behavior near the horizon (3.58) gives
us the precise non-equilibrium contributions to both theramr and the source in the

"When—-9/4 < m?I?> < —5/4, we can do an alternate quantization wherean be interpreted as
the expectation value and as the source [37]. This requires the scaling dimension efiterator to be
A =3/2—+/9/4 + m?22. The partition functions of the two theories are related lhegendre transform.
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following form :

O (w, wey k k) = OF (w,k) Ju(w, k) -k + OF <w,k> kikjkwyiou; (wny, Kmny),

J(l) (w, w(h), k, k(h)) = Jil) (w, k) 511((,U(h), k(h)) . k -+ Jj(gl) (w, k) k:ik:jk:(h)iéuj (w(h), k(h)).
(3.63)

The explicit forms ofij), Og), JS) and ij) can be obtained as in appendix B. The
integration overtuy,) then will be given by the contribution from the poledn.
The non-equilibrium retarded correlatorfis
O(x1,t1) it —t) ik (3q —
G 7t 9 7t - —_ 7 — Zw(tl t2) Zk~(X1 X2)
R(Xl 1, X2 2) J(XQ,tQ) e e
OO (w, k) + 0W(w, k, k(h))e’k(h)"‘le’ﬁt1

2

JO(w, k) + JO(w, k, k(h))eﬂ‘(h)"‘%_rfr_hT)t2
)O(O) (wv k)
JO(w, k)

1 4 O(l) (CL), k’ k(h)) eik(h)~X1€—%t1
00 (w, k)

o '](1) (w’ k7 k(h)) e’ik(hyxge—%tg
JO(w, k) ’

e*iw(tl 7t2) e’ik- (X1 —X2

Q

(3.64)

where

O(l)(w, k, k(h)) = 01(41) <w, k) 5u(k(h)) -k + Og) <w, k) kikjk(h)iéuj (k(h)),

Tk k) = I (w,K)dulkg) -k + T4 (w0, k) kikihou; (k). (3.65)

The difference of the above from (3.63) is thatda which has no dependence dn,).
The latter has been integrated over. This integration preslthe contribution from the
diffusion pole and the residue has been obtained from (3.44)

Clearly, the choice of overall normalization of the solatigiven byC in (3.58) does
not matter as mentioned before. It cancels between the mtonemd denominator in the

8At equilibrium, this prescription has been proposed in [283 noted in the Introduction, we can apply
this prescription also at non-equilibrium using the vajidif linear response theory.
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retarded correlator. To readily compare with experimetiédid, we have to do the Wigner
transform of the retarded correlator, as discussed befdgedind

Gr(w,k,x,t) /dwo/d ko

_O(O (a)(], ko) L O(l ((,()07 kOa k(h)) 62 (k ke — @) 1
J(O) (u}o, k()) 271 O(O) (u)o, ko) 0 2 < ki )

w07 kO)

J— 2 J—
J(O u)O,kO) 5(w w0)6 (k k())

()
w — Wy ‘stT

(h)
W — Wy — Z87rT

T (wo, ko, k) oo LY0) 1
_ Y Y k k
J(O)(WO,ko) 0 < + 2 ) ( kG >

etk X o= 475% t] .

(3.66)

The first term above is just the equilibrium retarded propagaThe second and third
terms are the non-equilibrium contributions. The non-Bguim contributions have an
explicit space-time dependenadich is co-moving with the velocity perturbation in the
background.

The spectral function can be obtained from the imaginart/gfahe retarded propaga-
tor by usingA(w, k, x,t) = —2ImGgr(w, k, x, t).

3.2.2 Fermionic field equations and the non-equilibrium spetral func-
tion

We will now extend the prescription to obtain the non-edpitim fermionic spectral func-
tion. We begin by constructing the equation of motion for @abDispinor explicitly in the
same non-equilibrium background, whichAg.S, Reissner-Nordstorm black hole with a
hydrodynamic shear-mode perturbation.

We recall that the Dirac equation for a Dirac spinor of masswheharge q in curved
space is :

1
(eﬁfrf‘ (aM + éwﬁc[rB, Te] + quM) + m) U =0, (3.67)

where M are the space-time indices, add B andC' are the tangent space indices col-
lectively. We will denote tangent space indices with unidesd as in(r,z, z,y) or more
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compactly agr, p1) to distinguish from the space-time indices which will notuselerlined
asin(r,t,z,y) or (r, ).

In order to work with the holographic dictionary, itis coment to choose the following
representation for Gamma matrices [23]:

1 3
I — O e (O 7). (3.68)
0 -1 S

where~!s are the + 1 dimensional Gamma mtrices in a chosen representation. We wi
choose the latter in the following representation :

W =io®, AE =o', 4L =0 (3.69)

It is also useful to decompose the- 1 space-time dimensional Dirac spinor as eigenvectors
of I'y. defined as :

r, — %(1 + rﬁ), (3.70)

so that
UV=v,+v U, =1,V (3.71)

The advantage of this decomposition is that béth and ¥ _ transform as 3 space-time
dimensional Dirac spinors when the Gamma matrices are irefiresentation above.

It might be puzzling as to how a Dirac spinor in the bulk map$ato Dirac spinors
in the boundary, but we note unlike the scalar field equatibe,Dirac equation is first
order. Therefore, as in the case of the scalar field we havenhependent boundary data,
corresponding tal , andWV_ each. Eventually, we will see how these two boundary data
maps to source and expectation value of the dual operatfuatmer how they get related
to each other by regularity in the bulk giving us the dual frermc retarded propagator.

Just as in the case of the scalar field, the space-time prdftleedDirac spinor also
has an equilibrium and non-equilibrium part. We can firsuassthat the equilibrium part
is in a specific(w, k) mode and determine the non-equilibrium correction to thiater,
we can obtain the most general solution by superimposintuthgolutions corresponding
to various equilibrium modes. The space-time profile of the®spinor thus takes the
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following form :

\I/(X, t, 7‘) _ \II(O) (w’ k, T)e—z‘(wt—k-x) + ‘1/(1)((,(), k, Wiy, k(h), ,r)e_i((W+W(h))t—(k+k(h))~x)’

(3.72)

where¥(© is the equilibrium part¥ V) is the non-equilibrium part, an@y, k) corre-

spond to the frequency and momenta of the velocity field plestion in the background.

From now on, we will denotéw, k) collectively ask, and(wg), kny) collectively ask .
The equations of motion fob can be written as two coupled first order PDEs {or

It will be convenient for us to decouple these PDEs and wrige@nd order PDE fob , .

It will turn out that W _ will be then algebraically determined by, . For the equilibrium

AdS, Reissner-Nordstorm black brane background, this has beea id [14]. Following

this, we write the equations of motion fm‘f) as below :

0? 0 )
w"‘P(kZ T)ar +Q(k,r) | V' (k,r) = 0,

VO, r) = A (8 +A+> O (k1)

T: \ or
(3.73)
where
_ T - _To T
P(k,r) = AT+ A TkT2>
Qlk,r) = A+A+l—2A+/—;—§T;§’; AT T2, (3.74)
and
PR P S
2r 2f<7‘r0> . f<%)
10 = @[(—wMAEO))Vw £ k], (3.75)

with ” denoting differentiation w.r.t:rq/[?, Aﬁo) representing the equilibrium configuration
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of the gauge field an@? is 7', 7’,..

In order to obtain the equations of motion fbﬁﬁ) we need to obtain the non-equilibrium
first order corrections to the vielbeins and spin connestionthe derivative expansion.
These are given in details in appendix C with the metric bé&§7) corresponding to the
black brane perturbed by the hydrodynamic shear mode.

In order to simplify calculations, we will choose (withouwtsing any generality) the
momentum of the velocity field perturbatidqy in the background to be in the direc-
tion; therefore the velocity perturbatiom being transverse should then be in thdirec-
tion. Later, we can make the results manifestly rotatignadivariant by rotating, and also
Lorentz covariant by boosting to an arbitrary frame. The rantam of the equilibrium
part of U of course can have arbitrary components in boindy directions if we have to
retain full generality.

The equations of motion oF ") are as follows :

82 (1) 8 _ / Tk-i—k
<w + P( ) + Q( )) (k) \I’-l— (k, k(h)a 7“) = ar + A Tk:+k’(h) Tk2+k((:))
Sy (k, k)

T kg S— (s kg, 1),

(53(];3)‘1/(_1)(]{?, k(h), 7“) = Tkl (a’f‘ + A+> ( )

Y
‘1/(1)(/{3 /{Z(h),’f‘)
+§Z+k(h)8+(k: k), (3.76)
k+kn)
wherek = k' — k — kg and
Sk k) = =Xy (g, )0 (k1) = Ve, )@ (k, 7)
S_(/{Z, /{Z(h), ’f‘) = —X_(k}(h), 7‘)‘1/(,0)(]{?, ’f‘) - y(l{i(h), T)\I/(f)(k?, ’f‘) (377)
with
1 Y L Y
X (b, r) = ¥5 <5(7€(h), )y L — Flkw),r) TV—),
1
Vlkwyr) = 5 (Blhen,r) 7" = Clkey 1) 9592 + Gllkew, 1)+ Mk, )

(3.78)
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B,C, &, F,G,H are given in terms of the inverse vielbeins and the spin cctiores as

[ (1
B(kwny,r) = 7<2iquAy—|—27quZAt+e£wfg+2iwetg—2ikxe§>
(%)
[ z (1)
Clkpy,r) = 7<—6£w;g—ezwig+ezw?)
(%)
[ t yr tr r W t ot yyr()
E(kmy,r) = 7(—62%— —egwy——i—eﬁwr——eywt——eiwg)

Flhopr) = ——(qef ~ejur — ez el
i)

G(kmy,r) = M(ikyei/)(l)

Hlkenr) = ;@My‘fg)m (3.79)

Here (- -- ) means that we are extracting only those parts of the fullesgion which
is first order (i.e. linear) iky). Once again we mention that the exact expressions of the
inverse vielbeins (or einbeins) and spin connections appgeabove are given in appendix
C exactly up to first order ik .

The most important observation regarding the equation dfandor ¥ is that just
as in the case o), as evident from (3.76)\1153) can be determined first by solving a
second order ODE andt" can be determined algebraically in terms of the solution for
W, . Therefore to uniquely specif¥(!) it is sufficient to uniquely specif}ll(f). Moreover,
the differential operator on the LHS of the equation of mot(8.76) forllfﬁrl) is the same
as that fortIf(f) in (3.73) withk replaced by: + k). Therefore, the homogeneous solutions
of \I/(f) will be the same as those @ﬁo) with % replaced by + k).

The general behavior of the equilibrium part of the soluhbﬁﬁ) at the horizonr =
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l2/7"0 is

~igtr izer—4
T (w, k1) ~ AT(w,k)(l—@) ’ 4+A1ut(w,k)<1—@) ’

; ; (3.80)

Both A" and A% are arbitrary linear combinations of

1
and X :
0 1
The incoming wave boundary condition requires us to impose

A7 (w, k) = 0. (3.81)

Furthermore, the choice of’(w, k) will not matter in the final answer for the retarded

propagator, so we will choose
AT (w, k) = <I§> (3.82)

with K being a constant. The behavior " near the horizon can be obtained via the
second algebraic equation of (3.73) as below :

_iWL_l IC
U (w, k, ) ~ _Wz<1 _ %) e <0> . (3.83)

Thus ¥ is also incoming at the horizon andlléf) times a specfic function of the fre-
guency and momenta.

It is to be noted that the incoming wave solution of the femaldverges at the horizon
as well. That this divergence is not an artifact of choice @érdinates can be seen by
computing the scalab ¥ at the horizon. In fact, it is believed that the fermion baelation
at the horizon is strong enough to change the near horizanegy of the black brane [39].
As mentioned in the beginning of this section, we will assumaee that the backreaction is
suppressed by a factor 6f(1/N?) °.

We now turn our attention to the non-equilibrium part of tieduson. From, the first

At order O(1/N?) we cannot ignore the backreaction even in the linearized. lifthis is because the
scalar and fermionic fields have non-trivial profiles evethia background due to Hawking radiation. Par-
ticularly, the Hawking radiated fermions forms a Fermi-sethe near-horizon region of thédS Reissner-
Nordstorm black hole.
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equation in (3.76) we obtain that near the horiz@ﬂ‘,) behaves as :

wtwm) g

1 ; rro\ ‘oz 1
U (w, k,w ke, ) A AT(w’kw(h)ak(h))(l—l—Q)

‘w+wh)

( 1
TT‘0>ZW—Z

2
s W 3
rro\ ‘mr—i (K
+a(w,k, w(h),k(h)) <1 — l—2> ( ) s

+AY (w, k, wiy, k) (1 -

0
-
a(w, k, wny, k) = W_%
(wiy(BirT — w + wiy) — 2(7°T2 + w?)) ¢
Sty (K ) VEAVL.
8 (3rT + iw) (TrT + iw) y (k) 7y
(3.84)

when we have chosen the incoming wave boundary conditioroandormalization for
\I/(f). Thus we have again two arbitrary coefficients for the inaggréind outgoing ho-
mogeneous solutions at+ 1 momentak + k), and then we have a particular solution
completely determined by the source term.

We now apply a similar logic as in the case of the scalar fiele. pivt A in (3.84)
to be zero again to satisfy the incoming boundary conditibmorder to be consistent
with the derivative expansiond™ has to linear combinations @fu(wg), k¢) - k and
kikjkmyiou; (wry, key) with coefficients which are functions af andk only. The inte-
gration ovetw, in presence ofu will give contribution from the diffusion pole which will
cause a further singularity in the behavior of the fermidietd. This singularity involves
an extra factor of

So we putd™ to be zero too. There is however, a difference in the behagidye particular
solution near the horizon from the scalar case, as evident {8.84). It diverges at the
horizon with an extra factor of
TTo
(1 _ 7) |

The situation, therefore admittedly is confusing as boghititoming homogeneous solu-
tion and the particular solution are divergent by an extragyo Moreover, for sufficiently

[
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small hydrodynamic momeniay,, the divergence of the particular solution leads over that
of the incoming homogeneous solution.

Nevertheless, we can argue as follows. When we take thedeation into account, the
part of the non-equilibrium solution completely deterndry the source can be expected
to be regular, as the source involving the regular equiirsolution in the modified back-
ground will be regular in the next order in perturbation. Staature is observed in the case
of fluid/gravity correspondence or for more general timpatelent solutions in gravity - if
we make the solution regular up te-th order in perturbation theory, the source terms in
the equations fon + 1—th order perturbations are also regular, and the divergeaicthe
n + 1—th order can be removed by adjusting the homogeneous saéutialy [5, 29].

In the present case, we will argue that the divergence ofrtbenming homogeneous
piece coming from the integration ovey, is there as long as the backreacted background
has a horizon at the zeroth order. If indeed there is a horwwerncan define an incoming
wave also through geometrical optics approximation. Weceattainly construct an appro-
priate function ofr which we denote as,(r) such that the incoming radial null geodesic
at the (modified) horizon is :

v=1t—r.r).

Clearlyr,(r) has to increase indefinitely ammoves towards the horizon because of blue-
shifting. The incoming wave at the horizon will always behéike :

~ e—i(w—i—wm))v

as the geometrical optics approximation is always good athtbrizon due to the blue-
shifting. Therefore, as long as the backreacted geomelirigas$ a horizon, the integration
overw) Will produce a divergent factor :

(1. ()

Above we have used the result that the hydrodynamic digpersiation up to the leading
order remains the same in the presence of backreactigpsas universallyl /47 in Ein-
stein’s gravity minimally coupled to any form of matter [40Jherefore, this divergence is
not removable by backreaction as long as we do not get ridedithizon completely.
Getting rid of the horizon is generically impossible if wenaend that the solution
in gravity is well behaved, as that would expose the singylamnless the latter is also
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removed by the backreaction. The removal of singularity &gkiareaction is impossible in
Einstein’s gravity minimally coupled to well-behaved neattlt is also hard to argue that
solutions in gravity with naked singularities could be digedtates in thermal and chemical
equilibrium in the dual theory.

We conclude that the sensible thing to do is to proceed asercéise of the scalar
field and putboth A™ and A°*“ to zero in the non-equilibrium part of the solution. This
determineslfﬁf) completely and its behavior near the horizon is :

3T — w + wpy) — 2(m*T? + w?))
000 ko Kk _ o (e () S (k)i
+ (@, wey Ky, 1) T 8 (37T + iw) (TnT + i) ty (k)7

3

—igr—1 (K .
<1 — %) <0> + sub-leading terms. (3.85)

Once\11(+1) is completely specified as above, we can deterrﬂ'iﬂéreadily from the second
equation in (3.76) as it is algebraic. The behavior near trezbn is given by :

To
7T
(21T — 2w + wy) (197272 + 1linTw — 2w? + wey(2irT — w))
8 (31T +iw) (77T + iw) (w + wny)

‘If(,l) (w, k, w(h), k(h), 7”)

TTo

5uy(k;(h))7£<1 - Z—Q)ilmi1 <]§> + sub-leading terms. (3.86)

We can integrate numerically from the horizon and find thégufile of ¥ (both equi-
librium and non-equilibrium parts included) all the way apthe boundary.

At the boundary, the behavior df,. is specified completely by thadsS, asymptotic
nature of the background. Whem > 0, the behavior ofl', at the boundary is :

U, (k, kg, 1) ~ <J(0)(l<:) + IO, k(h)))r?’_A + (M(O)(k;) + MO, k:(h))>rA+1, (3.87)

with A being the scaling dimension of the dual operator and iseéltd the mass of the
fermionic field by :
A= g + ml. (3.88)

Clearly.J© andM© are determined by”, and.J® and M) are determined by ".
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Similarly, the behavior ofv _ at the boundary fom > 0 andm # 1/2lis:
W_@;hmﬂﬁzzQMka)+JV“KkJ%Q>f“A—%(Oka)+Cﬂ”G;hm»rA.(389)

Whenm = 1/2I, the leading powers of the homogeneous solutions abovenieetioe
same. The behavior df _ at the boundary is then given by :

\If,(]{, k(h), 7“) ~ <N(O)(]€) +N(1)(]€, k(h))>7“2|n T+ <O(O)(k) + O(l)(]{, k(h))>7”2. (390)

As ¥ _ is determined by, algebraically, we get

1y - k 1y - k
Ok k) = == (2m+ DMk k), Nk, ke) = mﬂ’ﬁ k),
vk o= P)/Hkm k= kukw (391)

whereO = 0 +0W, etc. Thus we have just two independent boundary data games
ing to the fermionic source and expectation value of the if@nio operator dual to the field.
The holographic dictionary indeed identifi¢ss the source and as the expectation value
of the operator whem: > 0 [23]. Both these are fixed up to an overall normalization
constant by the incoming boundary condition at the horizwh@ur regularity argument.

Changing the sign af: is equivalent to interchanging, with ¥_ [23]. Consequently
J gets interchanged witf?, and M gets interchanged with" *°. Whenm < 0, the scaling
dimension of the dual operator is given by :

3

A=5S—ml (3.92)

Once the solution in the bulk is determined, the source amé@xtpectation value of the
fermionic operator get related by a matfix:

J(w, k, Wh), k(h)) =D (w, k, Why, k(h)) O <w, k, W(h), k(h)) . (393)

Clearly D is independent of the choice of?" for the equilibrium solution as we have

®Wheno < |m| < 1/21 we can also do an alternate quantization in whikfs interpreted as the source
and J as the expectation value. This requires the scaling dimansi the dual fermionic operator to be
A = 3/2 — |m/|l. The partition functions of the two theories are related lhygendre transform.
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claimed earlier. The retarded propagator is given by [23]:
GR (w, k, Wihy, k(h)) =1D (w, k, Wih), k(h)) ’yt. (394)

Furthermore, as the non-equilibrium part of the solutionampletely determined by

the equilibrium part of the solution, we can compute thetiete :

oW (w, k, wehy, k(h)) = Ra (w, Wy, k, k(h)) 0w, k),

J(l) (w, k, Wihy, k(h)) = RB <w, Wihy, k, k(m) J(O) (w, k) (395)
AboveR 4 andR  are fully determined by our boundary conditionstbﬂ) at the horizon.
They take the form:
RA (w, Wihy, k, k(h)> == RAA <w, k) 5u(w(h), kh) -k + RAB (w, k) kikjk(h)iéuj (w(h), k(h)),
RB (w, Wihy, k, k(h)> == RBA <w, k) 5u(w(h), kh) -k + RBB (w, k) kik:jk;(h)iéuj (w(h), k(h)).

(3.96)

By going through the steps as in the case of the scalar fieldaweasily see that the
generalization of the form of the bosonic non-equilibritetarded propagator (3.66) to the
fermionic case is :

Gr(w, k,x,1) = i/dwo/d%o [D(O)(wo,ko)vté(w—w0)62(k—k0)

1

— (D(O) (wo, ko) VR A <w07 ko, k(h)> 0? <k —ko— —> ( :

Cor -k
w —wo + (s

2 _ i X
87T

k 1
%)

ikny-x —ﬁt
e (h) e 4ArnT (3'97)
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where

R (w, k, k(h)) = R <w, k) su(ky) - k + Rap (w, k) ik Ko (k).
R (w, k, k(h)) — Rpa (w, k) su(kn) -k + Rpp <w, k) ik Kot (Kqny). (3.98)

The first line in (3.97) denotes the equilibrium correlatod @he lines below are the non-
equilibrium contributions co-moving with the backgrourelacity perturbation. The dif-
ference between (3.98) and (3.96) is that the integrati@nwy, has kept only the residue
of the diffusion pole in the Fourier transform &f given by (3.44).

Once again the spectral function can be obtained by congthm imaginary part of
the retarded propagator above and usiig, k, x,t) = —2Im<Tr(wiGR(w, k, x, t))).

3.2.3 Generalization to backgrounds with other quasinormémodes

The prescription we have presented so far is for the nonlibguim retarded propagator in
the hydrodynamic shear-wave background. We will now shat tiis prescription with
its underlying logic can be readily generalized to any baskgd which is a quasinormal
mode fluctuation of the black brane geometry.

The key observations are as follows :

1. Even if the horizon fluctuates in presence of the non-daitiin energy-momentum
and charge current fluctuations in the dual state, i.e. thaeand gauge field quasi-
normal modes in the background, in the perturbation expansie need to apply the
incoming boundary condition and regularity only at the ahtbication of the horizon
at late time, which in our coordinates is always at /% /7.

2. The quasinormal modes always have a negative imaginatyrptheir dispersion
relation, so the pole in the complex frequency plane of thek@paound perturbation
will always be in the lower half plane.

The first point above makes sure that we can always write thesgailibrium part of
the solution as the incoming and outgoing homogeneousispéplus a particular solution
completely specified by the source at the horizon exactly #ee case of the hydrodynamic
shear mode. The second point will imply that integrationrdtie background frequency
will produce a divergence at the horizon unless we put théicents of both the incom-
ing and outgoing parts of the non-equilibrium part of theusoh to zero. Therefore, the
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non-equilibrium part of the solution is completely detemed by the equilibrium part of
the solution for any background quasinormal mode. We cas $iaply repeat the exer-
cise as we have done for the hydrodynamic shear-mode patitumiio obtain the retarded
propagator for any background quasinormal perturbation.

One may wonder if our prescribed solution at the horizonlwing the specific particu-
lar solution is itself regular at the horizon. We have chedkes is always so for the scalar
field. In case of the fermionic field, we can repeat the arguswe have made in case of
the hydrodynamic shear-mode.

For instance, let us consider a quasinormal mode for megritigation in the tensor
channel with momenturk,, = 0. The frequency will be complex with a negative imagi-
nary part as in (3.28). The explicit metric and gauge fielcstarh a spatially homogeneous
perturbation is as in (3.41). We can check that our presgnitma-equilibrium solution for
the scalar field dies down at the horizon due to the factors :

(-5 (= 0-))

multiplying the equilibrium incoming wave solution withandm being positive integers
11

The general dispersion relation for a quasi-normal mode Ineayritten as :

W) (kp)) = wrp)(K@p)) — iwip) (Kpy),  With  wie) (k) > 0. (3.99)

Also bothwg(p andwy admit Taylor expansion ik, (and do not vanish whekyy) = 0).

HThis can checked by expandiﬁgs,w(n)) in (3.41) inw(,,). Though this expansion as noted before is
dangerous for seeing manifest regularity of the metricpisigood job for analyzing the behavior of the
scalar field in the perturbed background.
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The bosonic retarded propagator will take the followingrion such a background :

Gr(w, k,x,t) /dwo/d ko

0O (1w, ko) QL (om(wo, ko k) o <k kg @)

w07 kO)

o, ko) — L5 (w — wp)0%(k — ko)

B J(O) (a)o,ko) O(O)(WO,ko) 2
1
(W —Wwo — %(WR(b)(k(w) - iwl(b)(k(b))»
Jm <w0, ko, k(b))

k
_ 52Kk — ko o —®
J(O)(u)o, ko) < o+ 2 )

1
(w —wo + %(CUR(b)(k(b)) — iw|(b)(k(b)))) )

eik(b).xe—i (wR(b)(kw) )—WI(t»(k(b))) t] . (3.100)

The non-equilibrium part of the source and expectationasbf the dual operatorg(V) (w, wiy), k, kb))
and OW(w, wp), k, kp)) can be determined from the non-equilibrium part of the solu-

tion. JW (w, k, k) andOW (w, k, kg,)) appearing in the retarded propagator above are the
residues off V) (w, wp), k, k) andOW (w, wiy), k, kep)) respectively invg, atwrp)(ke)) —

iwip) (kwy). These will be linear in the hydrodynamic fluctuations, 67", p and the non-
hydrodynamic quctuationéwZ.(fh , Vo and y( " and will have a systematic expansion in

k(b) 12

12The Taylor expansion &) always make sense near equilibrium as the perturbatiorsiawy varying
in space. However, all time derivatives need to be summea@updn-hydrodynamic perturbations at each
order in the amplitude arkly) as the variation of these modes in time is not small even ropalilerium.
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Similarly, the fermionic non-equilbrium retarded proptuyavill take the general form:
Grlw k,x,t) = Z'/OZWO / dko [D(O) (wo, ko)”YL(S(W - w0)52(k — ko)
1

k
™

1
(w — w3 <wR<b)(k(b>> - iwl(b)(k(b))»

Ry <WO7 ko, k(b)) DO (1w, ko)At 5 (k — ko + %)

1
(“’ —wo+3 <WR<b>(k(b>) - iwl(b)(k(b))>) )

eik(b).xefi <WR(b)(k<b> )*iwub)(k(b))) t] . (3.101)

R4 andR g can be determined from the non-equilibrium part of the sohutia the defin-
ing relations :

O(l)<wak>w(b)>k(b)) = RA<WaW(b)ak>k(b)) 0w, k),

J(l) (w, k, W(b), k(b)) = RB <w, Wby, k, k(b)) J(O) (w, k) (3102)

Ra(w, k, k) andR 5 (w, k, k(y)) appearing in the retarded propagator above are the residues
of Ra(w, wp), k, k) andR g (w, wp), k, k) respectively inug,) atwrp (k) ) —iwip) (Kp))-
Both R4 (w, k, k() andRp(w, k, kp)) will be linear in the hydrodyanamic fluctuations
du;, 6T, 5p and the non-hydrodynamic fluctuatiods.!", 1, andv,"", and will have a
systematic expansion iy,

Thus we indeed obtain an universal form of the holographiceguilibrium retarded
propagator (and hence the spectral function) in lineanmadequilibrium backgrounds at
sufficiently late time.
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3.3 Non-equilibrium Fermi surface and dispersion rela-
tions

We will show here that our prescription for obtaining the resquilibrium retarded correla-
tor gets a lot of support from field theoretic comparisons.Wwifebegin with a brief review
of how we obtain non-equilibrium correlation functions ielél theory. Then we will show
how our prescription reproduces the strongly coupled garsf non-equilibrium dynamics
at the Fermi surface in Landau’s Fermi-liquid theory, anel tlon-equilibrium modifica-
tions of quasi-particle dispersion relations expectedeld fiheory.

3.3.1 Comparison with field-theoretic approach

In field theory, there is no partition function which can ptag role of a generating func-
tional of non-equilibrium correlation functions. The wagwbtain these is to construct a
generalized effective actidn (O,(z), Gy (x, y)) whose arguments are not only the expec-
tation value of the operator but also the two-point correfatunctions of the operators.
Extremizing this leads us to obtain non-equilibrium caateln functions as functionals
of the expectation values of the operators in equilibriurd aan-equilibrium states. The
crucial point is that the generalized effective action haslependence on temperature or
other equilibrium/non-equilibrium parametéfs It is defined as a double Legendre trans-
form of a vacuum observable constructed over the Schwikgktysh closed real time
contour as briefly reviewed in appendix D. Both equilibriui@ngperature and chemical
potential dependent) and non-equilibrium dynamics of etqi@n values of operators and
their correlation functions can be derived by extremizimg generalized effective action.
At equilibrium, we can take an alternative route by congtngca generating functional of
thermal correlation functions as in vacuum, but in orderkitam non-equilibrium correla-
tion functions the use of the generalized effective actsindispensable.

We would like to mention here that the generalized effectietton not only allows us
to obtain the non-equilibrium two-point correlation fuioets, but it is also sufficient to
obtain the three, four and higher point correlation fune$i¢l8]. This is possible because
through the effective action, we know the two point correlatfunction as a functional

13This is also true for kinetic equations, like the Boltzmamuation. These equations do not depend on
temperature or non-equilibrium parameters, the lattesipetrize equilibrium and non-equilibrium solutions
of these equations.
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of expectation values of operators, i.e. we know them notne but in a manifold of
states. Furthermore, the effective action technique keadisures that we satisfy Ward
identities. In practice, we need to make an uncontrollecedutated approximation of the
effective action which allows us to obtain non-equilibridgmamics of expectation values
of operators and their correlation functions. This has mertessful for instance in the
case of dilute cold non-relativistic Bose gases in opticgbs [41], and in constructing a
guantum kinetic theory of hadrons for modeling their eviolutafter their chemical and
thermal freeze-out in the RHIC fireball [11].

The important point to note is that we can obtain the noni{dxjiwim correlation func-
tion by extremizing the effective action with respect to ttwerelation function first as

below : .
oL (O, G (Or))

0G (2, y)
Thus we obtain the two point correlation functions as fumis of expectation values of
the operators. Here the time contour is the Schwinger-K#lidjosed real time contour,
so this determines both the statistical function and tharded propagator (or the spec-
tral function). Further when we substitute the extrematf®iof the two-point correlation
functions in the generalized effective action, we obtasdidinary effective action, i.e.

~ 0. (3.103)

I (01, G(0) =T(Oy). (3.104)

Extremizing this further we obtain non-equilibrium dynasof expectation values of op-
erators.

It is certainly interesting to see if we can construct a gelerd effective action to
obtain non-equilibrium correlation functions in hologhggtoo. This will allow us to de-
termine the statistical function also and not the retardegggator alone as we have done
here. However, we note two crucial points of our hologragirescription for obtaining
the retarded correlator (equivalently the spectral fuumti

1. Our prescription obtains the non-equilibrium retardedppgator as a functional
of the expectation value of the energy-momentum tensor hacharged current
parametrized by, p, 5T, du, 6p, v,""), vy andr ™.

2. The non-equilibrium part of the correlation function etekrmined completely by the
equilibrium part through universal rules at the horizonethdo not depend on the
non-equilibrium state concerned. The rule simply involpeting the homogeneous

120



Chapter 3. The Holographic Spectral Function in Non-EQuilim States

pieces of the non-equilibrium part of the solution of thekdubsonic/fermionic field
to zero at the horizon.

Putting these together, we can see a parallel with field yhdorboth approaches, we do
not need a specific rule for each non-equilibrium state etiea universal rule which al-
lows us to extract the non-equilibrium correlation funosdrom observables defined at
equilibrium. In field theory the equilibrium temperaturésas as the boundary condition
appearing in the far future. The generalized effectiveoaicdis mentioned before is just
the double Legendre transform of an equilibrium observathierefore non-equilibrium
dynamics can be obtained from equilibrium observables Id fleeory as well. Further-
more, our holographic prescription has the same measum@\adrsality as the generalized
effective action to bring all non-equilibrium spectral tions under one fold at least in
perturbation theory.

The advantage of the holographic approach is that the leate biehavior of the non-
equilibrium spectral function is reproduced automaticalithout any need for resumma-
tion. Thus we can do conventional perturbation theory.

3.3.2 Non-equilibrium dynamics at the Fermi-surface

It might have been a bit surprising that the logic of regtyarequired that we put the extra
boundary condition needed to determine the non-equilibrpart of the solution com-

pletely, at the horizon instead of at the boundary. It migters that it would have been
more natural to suppose that the source does not fluctuareittsoequilibrium value, so a

Dirichlet condition at the boundary would have been moréfjed. As we have already ar-
gued, this is not the case - the source gets screened orditestiee collective excitations
present in the non-equilibrium state also. From the holggiaperspective, the horizon
determines the screening/dressing of the source.

We will here give another holographic interpretation of tien-equilibrium modifi-
cation of the source. This will further vindicate that we dde put the extra universal
boundary condition at the horizon and not at the boundaryat We have allowed the
source to fluctuate from it's equilibrium value, is what waling out the non-equilibrium
oscillation of the energy per particle at the Fermi surfawe @on-equilibrium shifts in the
guasi-particle dispersion relations.

A hallmark of Landau Fermi-liquid theory is that the colieetmodes as captured by
the Boltzmann equation leads to non-equilibrium dynamictha Fermi surface. This
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dynamics is characterized Ispifts in energy per quasi-particle at the Fermi surfaeeat
a given directiom and at a given point in space and time in response to a localfition
in occupation numbers of quasi-particles at the Fermi sarda. Landau postulated the
following phenomenological relation [42]:

Se(kpi, x, t) = e(kph,x,t) — €o(kpn) = Z F(h,0') on(kpi’, x, 1), (3.105)

wheree, (kpn) is the equilibrium energy of a quasi-particle at the Fernmfeste which is
justkz /2m* (T, u) with m x (T, 1) being the effective mass at the Fermi surface dependent
on temperature and chemical potential. The parametgiisn’) are phenomenological
inputs of the Landau model which can be obtained from fie@btétic two-point density
correlation functions. These phenomenological pararsetetermine all thermodynamic
and many non-equilibrium properties of Fermi liquids.

To obtain non-equilibrium properties one has to assumdiabf Boltzmann equation
for 6n. The equilibrium distributiom(©) is the Fermi-Dirac distribution at a fixed tem-
perature and chemical potential and is a trivial solutiothef Boltzmann equation. Using
(3.105) and the Boltzmann equation, it can be shown that ticeuthtions)n follows :

don(kpn, x,t) N ke Oon(kpn, x,1)
ot m*(T, 1) ox
onO (kpn, T, - 00n(kpn' x,t
DN EIE
- 1(n<0>(T, u),én(kFﬁ,x,t)) (3.106)

in the linearized limit. Abovel captures the so-called quasi-particle collision kernel.
Studying this equation we can extract all collective exmtss including the zero sound,
hydrodynamic shear-mode and non-hydrodynamic relaxatiotles. In order to obtain the
zero sound velocity, the collision kernel is not necessanyitids so in order to obtain the
viscosity and relaxation modes. Substituting a solutiordfoin (3.105) we can obtain the
oscillation of the energy per particle at the Fermi surface.

The crucial point is that the oscillation is related locatythe fluctuation in the occu-
pation number of the quasi-particles in (3.105). So, thdlason in energy per particle at
the Fermi surface is in sync with the propagating collectixeitation.

We note that in non-equilibrium, we cannot obtain the changergy at the Fermi-
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surface by looking at the spectral function alone. This isaose the non-equilibrium
change in the spectral function comes from both (i) the siifthe residue, and (ii) the shift
in the pole itself. We need to identify which part of the naquibrium contribution comes
from the shift in the residue and which part comes from thé shihe pole. Moreover, the
situation could be worse, as there can be non-equilibriuntritutions which are simply
analytic near the location of the equilibrium Fermi surfacel be neither the shift in the
residue nor shift of the pole.

In the holographic set-up, the Fermi surface(s) is relateti¢ existence of normaliz-
able mode(s) of the bulk fermion field at zero frequency on edfimomentum shell [13].
As the black brane retains rotational symmetry, the Fermiasa is spherical (circular for
a2 + 1 dimensional system). We will be working ih+ 1 dimensional system (i.e. in a
3 + 1 dimensional bulk) for the sake of concreteness.

It will be worthwhile for us to first define the Fermi surfaceldgraphically in a more
general background which may not preserve rotational symymé&his will help us to
readily understand non-equilibrium dynamics at the Feunfese.

A Fermi surface picks up an internal direction in spin spddeerefore, let us represent
first an arbitrary normalized complex 2-vector which picksaudirection in spin space by

two real angleg and¢ as below :
cos e’
. 3.107
(sin 0 e’¢> ( )

The vector above may still be multiplied by an overall phdm#,this will be unimportant
for us. We then note that the hermitian matfdefined as

29 9 : 9 i2¢
P(9,¢):< COS costvsinoe ) (3108)

cos 0 sin § e 120 sin? 6

iS a matrix such that

Pr_p P cos 6 e“% _ cos 6 e“% P sin@ei‘f" o (3.109)
sinf e~ sinf e~ —cosfe
ThereforeP is a projection operator, and it projects in the directiorl(3) and in the

orthogonal direction it has eigenvalue zero.
The holographic definition of Fermi surface at equilibriusvas follows. Let us choose
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a directionn in momentum space. Then there exits specifying a vector irspin space
andky for everyn such that :

[P(H, &), Gr(w =0,k = kFﬁ)} — 0,

P, qb)J(w — 0,k = k;Fﬁ) — 0. (3.110)

whereP is as defined in (3.108)and s the source obtained from the bulk solution. The
first equation above says th@; is diagonal in spin space in the following basis :

cos 0 e'? sin 6 e'?
s , 3.111
(sin 0 el‘z’) (— cos 6 el‘z’) ( )
which is the same basis in whidhis diagonal. Thus this definédsand¢. We note if we

replaced by 6 + 7/2, we merely exchange the eigenbasis. Thereforgjsfa solution, so
is® + /2. The second equation is equivalent to :

J<w —0,k= k;Fﬁ) = <X1> . cosfe ¥y, = sin Beys. (3.112)
X2

Thus we have one linear complex equation to defineThereforek - is complex (at finite
temperature) and associated with a specific direction mgmace. To get the Fermi surface
associated with the orthogonal direction in spin space lvisialso an eigenvector éf and

G r we need to solve above withreplaced by + 7/2, i.e.

J(w =0,k = kpﬁ) = <X1> . sinfe @y = — cos e ys. (3.113)
X2

As the AdS, Reissner-Nordstorm black brane background preservetsomdhinvariance,

0, ¢ andky will be independent of.

More generally, the holographic Fermi surfacetjsn) which solves (3.110) and is
associated with a specific direction in spin space in whiehrétarded propagator can be
diagonalized. The general definition stated here shouldgbgilin analyzing cases where
we have spontaneous symmetry breaking in the boundarycylarty when these order
parameters break rotational invariance [43]. We note thag@ temperaturgy is strictly
real and corresponds to the polewat 0, but for non-zero temperatures the polevat 0
is complex. The imaginary part of the pole is negative andasgnts smearing of the Fermi
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surface at finite temperature, and vanishes as the temperateduced to zero. Thus we
can think ofk» as a complex parameter whose imaginary part vanishes ateraperature
and has a small’ expansion. The real part éf- also has a small’ expansion and is
the Fermi surface. There is no dependencevas to find the Fermi surface is set to
zero. In the Reissner-Nordstorm black brane, the deperdeihthe negative imaginary
part of this complex parametéf- on the temperature is given by a power law for small
temperatures [44]. This power is controlled by the neardworiddS, x R? geometry.

It can also be shown that the retarded propagator and thé&rajpemction also have a
pole precisely when the source vanishes. Therefore, tloghaghhic definition of the Fermi
surface matches with the conventional definition which & this the location of pole of
the spectral function in momentum space at vanishing frecjueln holographic systems
we typically get a family of nested Fermi surfaces.

As an aside let us mention that the pole structure of the majpdgc spectral function at
equilibrium is different at small frequencies from that of@wventional Fermi liquid and
the scaling exponents are controlled by the near-horizég, x R? geometry [15]. This
means that holographic systems have generically non-Reyund behavior.

The full non-equilibrium source is :

J(X, t) _ /dBw (J(O) (w,k)+J(1) <w,k, k(b)) eik(b)'xe_i <wR(b)(k(b))—iwl(b)(k(b))>t itk

(3.114)
We recall that the full sourcd can be determined from the boundary behavior of our
prescribed solution fow , through (3.87). In fact we can explicitly write in case of the
hydrodynamic shear-mode up to first order in the hydrodynamumentunk, :

J(l)(w, k, k(h)) = J1(41) <w, k) 5u(k(h)) -k
+ J](31) (w, k) kikjk(h)iéuj (k(h)), (3115)
whereJ! and.J}} can be determined from the solution.
We will be interested in obtaining the energy oscillatborin, x, t) at the Fermi surface
by calculating shift of the frequency pole for a fixed Fermimentum. We have to solve

this perturbatively in the momentum of the collective backmd modék .
Perturbatively, the energy shift on the Fermi surfacein the directionn at a given
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point in space-time is thus obtained by solving :

Sw(i, x, 1) (P(H(O), 63, J© (w — 0,k = an)> 4 86(kpi, x, 1) (agp(e@, o)

JO <w — 0,k = k@))

+66(h, X, 1) (%P(@(O% )T (w =0,k = an)> S <P(0(0), )

J(l) <w = 0, k= kal, k(m))

ikpyx <wR(b)(k<b) )—iwl(b)(k(b))> t
e e ,

(3.116)

whered©) and¢® label the spin orientation of the equilibrium Fermi surfasediscussed
before andP is as defined in (3.108). The above amounts to two complextieqseand we
have four unknowns, namely re& andd¢ giving change in the orientation in spin space
and complexw. As we have mentioned earlier, the change in orientatiorpin space
cannot be directly read off from the change in retarded taoedue to the ambiguity in
identifying which change is due to shift in the pole and whebtlange is due to shift in the
residue. We can obtain the non-equilibrium shift in spincgpat the Fermi surface from
the non-equilibrium source directly.

The shift in the energy of the equilibrium Fermi surface vatthogonal spin orientation
can be obtained by solving the above equation Withreplaced by© 4 7 /2.

Clearly in the hydrodynamic shear wave backgrouadtakes the form :

S(h, x, 1) = (&m (8, o) ) - 12+ s (i, i ) daishindue (k) | €0e 1,

(3.117)
Therefore, we find that the holographic Fermi surface indestillates in space and
time in sync with the background collective excitation. HMefeless in order to obtain
the analogue of (3.105) in holography linking the spectnét sit the Fermi surface to the
statistical shift (i.e. shift in occupation number) we néedbtain the statistical function
holographically also. We leave this for the future.
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3.3.3 Non-equilibrium shifts in energy and spin of quasi-p#icles

Not only the energy per particle at the Fermi surface butrotieemalizable modes with
non-zero frequencies also receive space-time depend#tst ishenergy at a given mo-
mentum in sync with the background collective excitationhisTcan be interpreted as
the space-time dependent shifts of the dispersion retadrthe quasi-particles in the
non-equilibrium medium. This is certainly expected as gpasticles receive a thermal
mass and if the temperature oscillates for instance, thpedion relations indeed become
space-time dependent. This is usually a hard calculatiommequilibrium quantum field
theory, but we can readily generalize the holographic egsatliscussed above to obtain
non-equilibrium shifts in quasi-particle dispersion telas.

A particular quasi-particle branch can be identified viaftilwing steps at equilib-
rium.

1. Consider the equilibrium Green’s functi(ﬂﬂg) (w, k). This can be diagonalized at a
givenw andk and the eigenvectors can be labelled as in (3.111)Byw, k) and
#©(w, k). Furthermore, if9 is a solution, so is thé® + 7/2 as this merely
exchanges the eigenbasis.

2. The quasiparticle pole® (k) can be identified with a definite orientation in spin
space by solving :
PO©,$©) J© (w“))(k),k) ~0. (3.118)

The above amounts to one complex equation which determifigg) with 6() and
# determined in the previous step. The imaginary pat©f(k) is negative. To
obtain the quasi-particle branch with opposite spin odagan, we need to solve the
above withd(©) replaced by ® + /2.

Once again, if there is rotational symmetry in the backgdyue. if there are no order
paramaters of spontaneous symmetry breaking which brestsonal invarianceq®, ¢(©
andw(© (k) can depend only on the moduluslaf

The space-time dependent shift in dispersion relationasadterized by :

w = wO(k) + dw(k, k), X, t). (3.119)
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The shiftow can be obtained by solving :

dw(k, x, 1) (P(H(O),d)(o))@wj(o)(w:w(o)(k),k)> 80k, x, 1) (agp(9<0>,¢<0>)

5 (k, x, 1) <8¢P(9(0), 6©).J© <w — wO(K), k)) - (P(9<0>, o)

g (w = wO(k), k, k(b)) )

ko)X e_i (wR(b)(kw))—iwl(b)(k(b))) t

(3.120)

The above equation amounts to two complex equations whiolvalus to solve the real
unknownssé andde giving shifts in spin space and the complex unknawn To obtain
the non-equilibrium shift in the dispersion relation foetbther equilibrium branch with
orthogonal spin orientation, we need to solve the above flithreplaced by© + 7 /2.

The solution oféw will take the form in a hydrodynamic shear-wave backgrouad,
instance, clearly takes the form :

dw(k,x,t) = <5“’A(k) du(kpmy) -k + dwp(k) kikjk(h)ifSuj(k(h)))eik(h).xe%h%t' (3.121)

Therefore, we see that the shift in the dispersion relatiothe quasi-particle pole is
also in sync with the propagating collective mode. Furtt@enthough we have discussed
the fermionic case explicitly here, clearly the same sfyatzan be applied to the bosonic
field also. In fact, the source being a complex number instéacdcomplex 2-vector in the
bosonic case, the equations will be much simpler.

The shiftéw in the quasi-particle pole is generically complex. Intéregy the sign
of the imaginary part odw can be both positive and negative. Thus we can get both non-
equilibrium suppression or enhancement of quasi-padietays as indeed observed in the
RHIC fireball for various resonances (short-lived quastipkes) [10].
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3.4 Taking into account non-linearities in the dynamics of
the non-equilibrium variables

It is known that solutions of gravity which have regular fgtthorizons reproduce non-
linear phenomenological equations for irreversible psses in the dual field theory. The
best studied examples are related to fluid/gravity cornedence. The full non-linear
Navier-Stokes’ equation with higher derivative corresiacan be reproduced from grav-
ity and this success has also been extended to the case gédhardrodynamics [5]. As
we have discussed before, gravity is expected to reprochegeneral phenomenologi-
cal equations which describe the full evolution of energyrmentum tensor and conserved
currents which generalize hydrodynamics [6]. This has Istenvn explicitly for the case
of spatially homogeneous relaxation [7]. In all cases, gwularity of the future horizon
determines the phenomenological coefficients.

We would like to show that the prescriptions described scdarbe readily generalized
to include non-linearities in the dynamics of the energyameatum tensor and conserved
currents characterizing the non-equilibrium states. We systematically include these
non-linearities into the retarded correlator, the shift¢he dispersion relations of quasi-
particles, etc.

The key is to see how the solutions for the bosonic and ferimitglds get determined
in the perturbed background. Let us focus on the case of tdebynamic background.
If we take into account non-linearities nu(k¢) in the background, clearly these non-
linearities will also appear in the Laplacian of the bosdietd. Let us consider quadratic
dependence on two distinct velocity perturbationgk,)) and du(kq,) for instance, at
a given order in the derivative expansion (i.e. at themth order in the hydrodynamic
momentum). The solution fob will receive a correction quadratic in the amplitude of
velocity perturbation and atth order in the derivative expansion which can be represente
as:

d2m) <r7 k. k. /ffh)) et btk )@ (3.122)

The radial dependence above can be determined the equétiastion :
DN (k — K)O@™ (r, K, gy, ki) = S (r, ke, Ky, k() (3.123)

whereO{!#V is the Laplacian for a scalar witthmomentumk in the unperturbedids,
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Reissner-Nordstorm background a$id" is a generic source term. For = 1 the source
531 can contain terms likék - du(k)) (K - du(ky,)), etc. It also contains the solutions
at the lower order in the perturbation expansion for insgabié:!) d(10),

Clearly the general solution d@f near the horizon can again be separated into two ho-
mogeneous pieces, the incoming and the outgoing modes, @artieular piece which has
no arbitrary integration constant and is completely detesch by the source terrfi>™.

In order to satisfy the incoming boundary condition, we dtiquut the coefficient of the

outgoing mode to zero. Also as discussed before, the irttegraver the hydrodynamic

frequenciesy,) andw,, will produce a divergence at the horizon for the incoming mod
as for instance in the case above with dependence on two diyasimic shear wave back-
ground modes like :

(3.124)

Obviously the coefficient of the incoming mode has to depemdw and the hydrody-
namic momenta required by the order in the perturbationmsipa. The contribution from
the frequency pole ifu(wy, ke) given by the hydrodynamic shear dispersion relation
produces the above divergent behavior. In general thegbwee will always be there for
any quasinormal wave background as it's dispersion refatig (k) will have a nega-
tive imaginary part. Therefore, we should put the coeffitserf the incoming mode at the
horizon to zero too. We are just left with the particular giechich is completely deter-
mined by the source term containing the solutions at thelasders in the perturbation
expansion. Therefore, applying inducticat, each order in the perturbation expansion,
the non-equilibrium solution is uniquely determined by éogilibrium solution, i.e. the
solution at the zeroth order in the unperturbed black braaekground The consistency
of holographic duality requires the solution at each ordehe perturbation to be regular
at the horizon.

As the solution is uniquely fixed at each order in the pertiiobaexpansion, we can
obtain the non-equilibrium contributions to the source dr@dexpectation value of the dual
operator by studying the asymptotic behavior of the sotuséibeach order. This procedure
can also be applied for fermionic fields.

Once the source is obtained at a given order in the pertorbakipansion, it is straight-
forward to obtain the shift in the dispersion relation of gugarticles. For example,
sw®m (k, x,t) along with the non-equilibrium shift in the spin orientatigiven byso?™ (k, x, t)
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andé¢>™ (k, x, t) can be obtained froni>™ by solving :

S ®m) (P(Q(O),gb(o))ﬁwj(o) (w :w(o)(k),k>> + 002 (k, x, 1) (agp(e<0>,¢<0>)

JO <w = WO (k), k))

+8¢m™ (a(z)p(g(O), ¢(0))J(0) (w — w0 (k), k)) - (p(g(0)7 ¢(0))

J@zm) <w — O (k), k, k(b)) )

! (k) K () x
e~ {wri) (k) +wr) (k' 1)t

e~ (i) (k) +wie) (K@)t

(3.125)

A consistent perturbation theory for the solution in the +agpuilibrium background
thus suffices to take into account non-linearitiesiin, 67, 57r§fh) etc. in the retarded
correlation function, spectral function, non-equilibritshift in the dispersion relations,
etc.

3.5 Summary and future directions

In this chapter we have discussed how to develop a generagtaghic formalism for

determining non-equilibrium retarded correlator, spEdunction, shifts in dispersion re-
lations, etc. Needless to say, we would like to use this ftiemato numerically calcu-

late these space-time dependent quantities in the speetfigpsof charged bosonic and
fermionic fields minimally coupled to Einstein-Maxwell grgy in AdS, discussed here.
In particular, the following questions require attention.

1. Itis known that at equilibrium the temperature modifiesdpectral function only in
the infrared, while in the ultraviolet the spectral functi@mains as in the vacuum.
It can be expected that we have a similar feature even in gaiderium - the ultra-
violet behavior of the spectral function, quasi-partickepersion relations should be
independent of the state. It will be interesting to see 8 thireproduced in our case.
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Some of the background quasi-normal modes indeed can hayvbigé frequencies,
while high frequency dependent corrections can also bergeteby non-linearities.
Therefore, numerical studies can help us understand hoeffenet of high frequency
dependent background modes gets suppressed in the Uktaifithis is indeed the
case.

2. The non-equilibrium shifts in the dispersion relatiors have both positive and
negative imaginary parts. If positive it leads to suppm@ssind if negative it leads to
enhancement of the decay. It will be interesting to see ifaameuse non-linearities to
design a background in which a specific quasi-particle castdi@lized against decay
to a large extentin a certain range of energies. This cawaléto observe otherwise
short-lived quasi-particles. In particular, it will be @mesting to see if some bound
states of heavy quarks can indeed exist in the quark-glusnm at temperature 175
MeV.

3. The quasi-particle dispersion relations can changeamatytically with the tem-
perature particularly if there is level crossing. It will leteresting to design a
non-equilibrium background where the temperature vanespiace and time over
the range in which this non-analyticity can occur and studycdy how the quasi-
particles behave in such backgrounds. It will be intergstimlearn from such holo-
graphic examples how to describe such non-equilibriunestatfield theory.

Work is in progress to tackle such issues numerically [45]r @rescription here gives an
algorithm to tackle such questions in specific holographociets.

Another direction we want to pursue in the future is to studg-equilibrium spectral
functions in states corresponding to a plasma undergoingtbavariant hydrodynamic
expansion as in the RHIC fireball. This will give us insighit®ihow hadrons are produced
and transported in the medium, and finally get frozen chdiyiaad thermally.

Appendices

A. Eddington-Finkelstein vs Schwarzchild coordinates

In order to see regularity at the horizon manifestly in therro&3.37) corresponding to
hydrodynamic shear-mode perturbation of théS, Reissner-Nordstorm black brane, we
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can consider the following change of coordinates follow2@j :

t = v+ Fk(r;;‘)) + O(),

o= Pk(rzzo) ou’ (k) e/ Fem)
i) li by (52) 9 () @20 + O(e), (126)
where . X
k(a) = /0 B (127)
and . _
k:l(a):/o db< 0 )kz(b). (128)

These new coordinatesv andz’ are ingoing Eddington-Finkelstein coordinates.
In these coordinates, the metric assumes the form :

2 2 ) _ ] 2
i = -2 (4o <k<m>ez<km>-w—w<mv>dfz)dr+g(—f(

TTo

r2 [2

— 260, iy )€ KOrT) (1 - f(%) + i@f(%)k(rz;o))dv di'

)dv + di? —i—dy)

0

2

1 . .
—Z2l i 0u; ()’ oo (5%%) _k<rlzo>>djz -
+0(62). (129)

The bulk gauge field however no longer remains in the radiagjgand takes the form

A, = —i ! \/ggFT0<1__

V3grro 7 )
Av = 2 <1_l—2) +O(E ),
V3grrg T (k) wml? . rrr
o _’0 . ik Z—wmp) (1 _ ;200 0
A g (1 12 ) duik)e (1- o k(5 ; )) +o().

(130)
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It can be checked that the gauge field is also regular at thedmor4,,, A; vanish whileA,
is a constant at the horizon. We can bring the gauge field lmaddial gauge by a regular
gauge transformation.

Most importantly, the;j components of the metric is regular as

—h(a) — k(a) = terms which are regular at the horizon (i.eaat 1). (131)

So, the metric is manifestly regular up to the first order mdlerivative expansion in these
coordinates.

We can implement this change of coordinates order by orddrarderivative expan-
sion. Even beyond the fluid/gravity correspondence, suondogate transformations can
be implemented perturbatively to see manifest regularity [

B. The general solution for the non-equilibrium profile of
the scalar field

At the zeroth order, the equilibrium solution for a given raeazhn be written as an arbi-
trary linear superposition of two linearly independent log@neous solutions” (%, r) and
®8(k, r). Herek denoteqw, k) collectively. Thus

OO (k,r) = AO(k)dA(k,r) + BO(k)®P (k,7), (132)

whereA©) (k) and B (k) are arbitrary.
Using the method of variation of parameters, we can writegérgeral solution for the
equation of motion (3.48) for the non-equilibrium part canfbund and is as below :

OB (k + kg, ') <v1 + v2> (k, kg, 7")DO (k, 7)

O (k, ), r) = —CI)A(/{J + kny, T) / dr’ /
Iy W[(I)A(k -+ k(h), 7“’), (I)B(k + k(h), T/)]TIQf ’“120

DAk + kg, 1) (v1 + v2> (k, kg, ") O (k, 7)

‘|—(I)B(/€ + k(h), 7”) / dr’ ; .
l2 W[(I)A(k + kny, ), ®B(k + kg, T/)]Tl2f<rl;0)

Above k) denotegw), k) collectively, W denotes the Wronskian of the two homoge-
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neous solutions, and andi, are arbitrary setting the range of the two integrals.

One can readily verify that the above is independent of tlecehof 4 and & for
fixed!; andl,. To see the general behavior at the horizon given by (3.58)an se to
be " and®” to be®.

Furthermore, one notes that the above is consistent witll¢hgative expansion for
any/, andl, as the dependence én; andk, comes from; andV; directly. Comparing
(3.63) with (3.49) one gets that the explicit contributiorﬂﬁf) and Jﬁf) comes fromVj,
and the contribution td)g) andjg) comes fromVs.

C. Vielbeins and spin connections in the hydrodynamically
perturbed black-brane metric

We calculate here vielbeins, their inverses (or einbeind)spin connections for the metric
(3.37) which corresponds to a black brane perturbed by adlaytiiamic shear mode. The
notation we use here is the same as defined in subsection A&.8oted there, to ease
computations we will choose, without loss of generalityt thais in they direction. Asju
is transvere in the shear-modgy, will be then in ther direction. On the other harican
have arbitrary: andy components in order to retain full generality.

The non-zero vielbeins upto first order of derivative expamsire :

1 B f (TTO )
l l .
e% _ M f <TTO > , ez _ l 6uy (k(h)) ez(k(h)xz—wm)t) ,

z Lor '
ey = —, €, = —i— <—>k5(h)z Sy (k) i (ke —wnt) h<7‘7“0>7

r Y r \6r 2
Y [ I'To i(knxx—w(nyt)
£ = (-1 ity
Y . [ l2 1(khxx—w, TTo
ex = i <6—r(2)) e Oty (Kiqy) €00 h<l_2)
[ [ 1
&g = —, ef=————. (134)

L)

From this, one can also construct inverse vielbeins (orezig) which are as follows :
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In order to derive the equation of motion of the Fermions mdiven background, we
require the spin connections associated with the first oraric.
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The non-zero components of the spin connectigh; are as below :
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r

Here prime denotes derivative with respectia
It can be checked that the above spin connections satistaiCstructure equations up
to first order in the derivative expansion.

D. The generalized effective action

We will review the formalism for bosonic operators here. Bleaeralization to fermionic
operators is straightforward.

The starting point of the construction of the generalizéeatife action is to generalize
the partition function which is a generating functional b&tvaccum correlation func-
tions. Here on top of a sourck(x) for a single operato®;(x), we add a non-local source
Ky (x,y) for a pair of operator®),(x) andOy (y), and define:

Z(Jla Kll/) = eiW(leK”/)

= /’chsexp [Z <S[<I)S] +/dD$Jl($)Ol(x)
% / dPzdPy O (x) Ky (x, y>0p<y>>] - (137)

Above D is the number of space-time dimensions in field theory.
We then define the expectation value of the operétgr) and the Green’s function
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G”/(IL’, y) through .

W (J, Kiw)

W Ol(ZL’),

oW (J, Kw) 1

Ky (zy) 2 (Ol(w)Ol/ (y) + Gu(z, y)) . (138)

Eliminating J; and K, in favor of O; andG;,, we can now do a Legendre transform to
define the generalized effective action :

F(OZ,G”/) == W(JZ,K”/)—/dD$Jl($)Ol($)

L /dedDy Ky (z,y) <Ol(x)ol/ (y) + Gu (z, y)) (139)

2
Clearly,
5F(OZ,GU/) / D
-_— - - K ! !
(501(:5) Jl(x) d~y Ky (%y)Ol (),
6F(OZ,G”/) . 1
m = —iKll'(fLE ?/) (140)

Therefore, in absence of sources, extremizing the geredaéffective actiod'(O,, Gy)
gives the dynamics of both the operators and their Greenstins.

Such an effective action is usually considered for the etearg fields and their Green’s
functions in the literature. However, as discussed aboveameconstruct the same for the
set of gauge-invariant single trace operators in a noniAbegjauge theory.

There is one important point in the above construction. Tifeckve action is con-
structed over the so-called Schwinger-Keldysh real tinreéaar shown in the figure below,
which travels from—oo to oo infinitesimially above the real line and then back fromto
—oo infinitesimially below the real line. It is necessary to coles this "closed-time" con-
tour because the usual time-ordered Green’s function oFdyamann propagator do not
contain the full information about the operator in presesicgources in a non-equilibrium
state as mentioned in the Introduction. The closed-timéatorensures we propagate the
full information of the operator in presence of the sourcksfact, the full closed-time
contour ordered Green’s function can be written as a conmibmaf the commutator and
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the anti-commutator. For instance, if both operators asabic the

([Oi(), Ov(y)]) sign. (= — y”). (141)

Gawe, ) = 5({O(), Ovl)}) — 5

Above C denotes the closed-time contour, arfdandy® are the time coordinates of the
D-dimensional position vectar andy respectively.

C

>
<

[

The closed time Schwinger-Keldysh contour is as above. ®heard and backward di-
rected parts of the contour have been displaced slightlyeabod below the real axis just
to distinguish them clearly.

In fact, as discussed in the beginning, the spectral functig (z, y) is related to the
commutator and the statistical function (or Keldysh pragag G, (x, y) is related to the
anti-commutator in the following way (for bosonic fields):

Aw(z,y) = i{[O(z),Or(y)]),
Grw(z,y) = {0Oi(x),Or(y)}). (142)

N | —

The coupled equation of motion of the spectral and stasisticctions are obtained from
the generalized effective action.

The generalized effective action has no dependence on itatugeor non-equilibrium
variables, it is defined as a Legendre transform of the vacpersistence amplitude in the
presence of single and double operator sources. Howevemridl and non-equilibrium
propagators also can be obtained as solutions which ex#entiis generalized effec-
tive action. In order to obtain thermal propagators, we need to imposeshatonal in-
variance, so the Wigner transformed spectral and statidtinctions. A, (w, p, x, t) and
Gxuw (w, p,x,t) do not depend on the centre-of-mass coordinatesd¢. Furthermore,
they should be related by a temperature dependent fluadissipation relation.
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Cosmological Applications

Prelude

In recent years, understanding cosmology within the fraomkwf string theory, has been
an active and interesting field of study. Starting with [1ulbstantial amount of research
has been based on modeling the Universe by a 3-brane liviadpigher-dimensional bulk
space (brane world scenario). An incomplete list of refeesnis [2—13]. The Hubble
equation of cosmological evolution is thus reproduced leytthjectory of the brane. This
chapter in the thesis, as mentioned in the introductiongisotéd to such cosmological
studies.

This chapter is divided in two parts. Applying the gravigime theory duality to a
cosmological setting is not straightforward due to the thet the metric on the bound-
ary space in which the gauge theory lives must remain dyremictis was long thought
to be problematic due to the possibility of the fluctuatiohghe bulk metric correspond-
ing to non-normalizable modes [14-20]. In the first part o$ tthapter we will discuss
how one can get rid of this following the prescription givar{21] which shows that such
problems can be avoided by introducing appropriate locahdary terms needed to cancel
the infinities. Thus starting with a static bulk space-timewill end up in getting a dy-
namic cosmological boundary using this dynamic boundanditmn. This possiblity in
cosmological set up was first shown in [22].

In applications of the gravity/gauge theory duality (hotmghy) to cosmology and other
settings, one generally places the boundary at a finiterdistaand then takes the limit as
the cutoffr — oo. The removal of the cutoff introduces infinities, which aeaceled by
the addition of a local action on the boundary witdependent coefficients (counterterms)
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[23]. Unlike in quantum field theory, where countertermsiaterpreted as renormalization
of the (bare) parameters of the system, itis not clear if terberms have a similiar physical
meaning in a holographic setting.

In this part we generalize the holographic approach to césyydy placing the bound-
ary hypersurface at a finite distancand derive expressions for the various physical quan-
tities (e.g., the stress-energy tensor) which are valicgfbitraryr. This leads to a gener-
alized Hubble equation of cosmological evolution. We sitded to introduce the standard
counterterms to avoid infinities at largeWe show that these counterterms have the usual
field theoretic interpretation of renormalizing the (bgoayameters of the system, namely
Newton’s constant and the cosmological constant. Moreaverecover the brane-world
scenario by fine-tuning Newton’s constant. Thus we showliteate-world scenarios are a
special case of our generalized holographic approach.

This part of the chapter is organized as follows. In sectidrwe discuss the bulk space
concentrating on a time-independent solution (generalkbteole) of the field equations,
and define the boundary hypersurface. In section 4.2 wednt®the boundary conditions
and the counterterms needed to cancel infinities. We caéctife stress-energy tensor
and derive the Hubble equation of cosmological evolutionsdction 4.3 we discuss the
example of a bulk Reissner-Nordstrom black hole includimgrinodynamics. In section
4.4 we discuss various examples of cosmological evolutioparticular, we show that the
brane-world scenarios are a special case of our holograpgmmach. Finally in section
4.5 we conclude.

The second part of this chapter deals with explicit consimacof time-dependent su-
pergravity solutions. The main motivation in this part isuiederstand the physics near
cosmological singularity. As we knowdS/C F'T relates a strongly coupled theory with a
weakly coupled one. Consequently, it provides us with a wawgine the non-perturbative
region of one by performing computations on its dual. Duettong gravitational fluctu-
ations, physics around cosmological singularities is chat@d by non-perturbative effects
and one hopes that the AJdS/CFT correspondence would shed Iggithinto it. Indeed,
in recent years, we have witnessed several important igetsins where attempts were
made to find the signatures of these singularities in thaiggaheory duals. Expectation
is that the dual theory evolution might be able to provideressg#e quantum description of
these singularities. Successes have been varied, pleaeeseferences [24] - [28].

Inspired by this line of developments, in this part, we sk&oc D brane solutions in ten
dimensional type 1I1B theory where the world volume metrip@axds anisotropically and
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show instabilities within their supergravity descriptsoWe find that appropriately tuning
the five form field strength, it is possible to construct a D8nar with four dimensional
Kasner like world volume. Along with a time-like singulariat» = 0, the metric shows
an additional cosmological singularity &at= 0. Perturbation arountd = 0 generates an
analogue of Belinskii-Lifshitz-Khalatnikov (BKL) oscdtions. The near horizon geometry
of this brane reduces to that of a Kasner-universe in AdSesplais a five sphere along with
an appropriate five form field strength. In the next sectionowabe the geometry with a
dynamical D3 brane whose world-volume inherits anisott@gipansion/contraction along
with a BKL like oscillation. We show, in subsequent sectiadhat similar solutions can be
constructed even within eleven dimensional supergraviy.an illustrative example, we
discuss the case of M5 brane. The near horizon geometry isargwdimensional Kas-
ner space. A dynamical probe M5 brane in this space-timenagajuires an anisotropic
expansion in some directions and contraction along someusfgly, we find that it is pos-
sible to tune parameters in such a manner that three dinsatixpand and the rest contract.
Close to the cosmological singularities supergravity dpsons of all these solutions are
expected to break down. We hope that the gauge theory désonpould shed some light
on the physics near the singularities.

The first part of this chapter is based on our work, [29] while second part follows
our work, [30].

Part | : Static Bulk - Dynamic Boundary

4.1 The Bulk

We start with a non-extremal black hole irta- 1 dimensional bulk space in the presence
of a negative cosmological constant

We consider the metriansatz

dsz = —A(r)dt* + B(r)dr* + r*dQ} , (4.2)
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r being the radial direction, and= +1, 0, —1 depending on the geometry of the constant

(t,r) hypersurfaces (spherical, flat, or hyperbolic, respelstivélore general metrics are

also possible, but will clutter the notation unnecessalhilgection 4.3, we shall concentrate

on the special case of a Reissner-Nordstrom black hole fdrogxcalculations.
Asymptotically, we have AdS space of radilistherefore ag — oo,

A(r) ~ R — . (4.3)

We introduce a radial cutoff; = « and parametrise andt asa = a(7) andt = t(7) so
thatda = adt. Then the metric on the cut-off surface (boundary) takeddma
dt

ds? = —A(a)(E)Q + B(a)a®| dr* + a*(1)d$ . (4.4)

In order that the metric on the boundary take the FRW form,
dsi = —dr* + a*(7)dQ} (4.5)

the metric components should satisfy the relation

N> B
— | == = B(a)a® + 1. 4.6
() =5 B=B@i+ (@6)
This in turn fixes our choice of the time parameteiNotice also that il 5 is the Hawking
temperature, then the temperature on the boundary is festshi

VAB '

This kind of parametrization has been used before, e.g31ir33]. Note that, while treat-
ing 7 as a time parameter, we are effectively considering thearaaotion of the cut-off

surface in thel + 1 dimensional bulk. By adopting appropriate boundary coods, the

cut-off surface can be thought of as the location of a branmicking a moving brane
scenario.

4.7)
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4.2 Boundary Conditions

The heart of the construction we are going to elaborate oasedon the observation that
the afore-mentioned dynamics of the boundary hypersusaitée captured through the
boundary conditions we impose on the system. This approasHivst adopted in [22].

Let us consider a general five dimensional bulk action,

S5 = / d5.1'\/ —g£5 s (48)
M

where we keep the Lagrangian dendityunspecified. In the simplest case, this consists of
a five-dimensional Einstein-Hilbert action with a negatesmological constant (4.1) plus
the requisite Gibbons-Hawking surface term for a well-dsdimariational principle. If one
varies this action with respect to the metric, one obtaingumbdary term of the form

1
585 = - / d /=TT 6y, (4.9)
oM

2
where~# is the induced boundary metric andis its determinant.TﬁSFT) denotes the
(bare) stress-energy tensor of the dual conformal fieldrjhibat lives on the four-dimensional
boundary hypersurface = a. Generally in the context of the AAS/CFT correspondence,
Dirichlet boundary conditions are employed, which fix thesbdary metric and conse-
quently eq. (4.9) vanishes. While this leads to a well-defivariational principle, it does
not allow for a dynamical boundary metric. Since we are pritpénterested in obtaining
a cosmological evolution and hence a dynamical metric orbthendary, we seek differ-
ent boundary conditions that can be imposed without fixirggrttetric on the boundary.
It was noted in [22] that one could adopt appropriatexedboundary conditions, which
were shown to lead to valid dynamics in [21]. Their definitiomolves the addition of
an appropriate local actiow,..;, at the boundary. For cosmological evolution, this local
action will be chosen as the four-dimensional Einsteirbétit action on the boundary with
an arbitrary (positive, negative, or vanishing) four-dma@nal cosmological constant,

1
167TG4

|ty - 200 (4.10)
oM

Slocal -

whereR[v] is the Ricci scalar evaluated with the boundary metric whiiclour case, is the
FRW metric (4.5). Notice that the cosmological constant tmaylue, wholly or partly, to
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a brane of finite tension at the boundary.

Additionally, to cancel divergences in the limit— oo, it is necessary to introduce
counterterms [23]. These are of the same form as the loc@naahd renormalize the
four-dimensional physical parameté&rs andA,. We have

1

S =~ / /= (R[] + #2) | (4.11)
oM

which diverges as — oo. The parameters; and x, will be chosen so that physical
guantities such as the energy density and pressure remiggnifithis limit.
Putting these pieces together, defineour boundary condition as

CFT local c.t.)

TE™D + T 4 T =0, (4.12)
whereT 5™ is due to the variatiodS; (eq. (4.9)), and the other two terniEy“* and
T,E,, ) come from the variations

1
5510(:&1 _ _/ d4.1' / Tlocal)é‘,y,u,zz’
2 Jom
1
5S., = - / dha /T 5y (4.13)
2 Jom

respectively, with respect to the boundary metsig,. Similarly to Dirichlet boundary
conditions, the choice (4.12) leads to a well-defined viamat principle with

0S5 + 0S10cal + 0Scr. = 0. (4.14)

To see the explicit physical content of oomxed boundary conditions (4.12), we shall
derive explicit expressions for each of the three contiifguterms. The bare stress-energy
tensor on the boundary is given by

T(CFT) _ 1

e (K — Ky (4.15)

whereC,,, is the extrinsic curvature, and is its trace. The components of this tensor
can be evaluated by computing the veloeityand unit normakh” vectors on the boundary
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hypersurface; = a(7). For the metric (4.2), these vectors are given in comporent s

L (\/é,d,0,0,0) ; Uy, = (—VAB,Bd,0,0,0) . (416)

and

(o ()

respectively. The direction of the unit normal vector issiako be pointing inward, toward
the bulk. The extrinsic curvature can be written in termshaf anit normal and velocity

vectors as 1
IC.. = nk:ak%j Kr=—

1 - .
J 2 Tt

(4.18)

Explicitly, they are

/B 3 . R
Kij=a B K. = ~5 A5 (2ABi + (AB)'a+ A') (4.19)

wherei, j are indices for the spatial coordinates on the boundaryn(sghby(2;).
We deduce the explicit expressions for the components dfdhe stress-energy tensor

(4.15),
3 B
TFD = \/ = 4.20
i 87TG5(I B ’ ( )
) / /. . -2
TZ(CFT) _ 1 aA'B+ AlaB'a+ 2B (ad + 2a*) + 4] | (4.21)
167TG5 CLA\/ BB

where no summing over the indexs implied. Notice that the energy densify oFD)

obtained above is negative, however we should emphasizéhihas only abare quantity
and therefore not physical. It will be corrected by the addiobf counter terms resulting
into apositiveregularized (physical) quantity.

For the remaining two contributions in (4.12), we obtain stendard expressions one
encounters in Einstein’s four-dimensional equations,

1 1 1
T}Elyocal) — (ij — 5")//“,7?, — A4")//u,) , T;Ef/t) = —Ky (RMV — _PVMVR) —K2 Y

B 87TG4 2
(4.22)
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whereR,, (R) is the four-dimensional Ricci tensor (scalar) constrddiem the four-
dimensional boundary metrig,,. The counter terms diverge in the limit— oo, and the
parameters; andxs will be chosen so that they cancel the divergences in thedigess-
energy tensoﬂ”ﬁSFT). Notice that the counter terms are of the same form as thesterm
coming from the local action. Therefore, they admit the déad interpretation of inducing
the renormalization of the physical four-dimensional ¢antsG 4 (Newton’s constant) and
A4 (cosmological constant).

The regularized (physical) stress-energy tensor is
reg) __ CFT c.t.
T = T 4 7t (4.23)

We deduce the energy density and pressure, respectively,

k 3 /B
= 7ee) — H?> + — | — —
€= Lt 2 1 ( i &2) 87Gsa \ B’

4 o9
p:T‘Z‘z(reg) _ —52—51{(H2+—2—|——a)}
a a
N 1 aA'B+ AlaB'a+ 2B (ad + 2a*) + 4]
167G aAvVBB '

(4.24)

whereH = a/a is the Hubble parameter. The choice
L
K1 ’ ’ (4.25)

T 16nGs T T 8aGsL

ensures finiteness in the limit— oo. Unlike the bare energy density (4.20), the regular-
ized energy densityis positive.

The boundary conditions (4.12) now read

1
Ry = 57wR = My = 8TGATL® (4.26)

which are the four-dimensional Einstein equations in thesence of a cosmological con-
stant.

The cosmological evolution equation is the component of the Einstein equations
(4.26),

k Ay 8nGy

H?>+ — — = = 4.27
+&2 5 7 € (4.27)
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wheree is the energy density given in (4.24) under the conditioB%4. This is deceptively
similar to the standard equation of cosmological evolutiblowever, it differs in an es-
sential way, becausecontains contributions that involve the Hubble paraméier a/a,
leading to novel cosmological scenarios.

4.3 AdS Reissner-Nordstrom black hole

In this section we take up the example of an asymptoticallg Adarged black hole, namely
AdS Reissner-Nordstrom black hole for which the functignand B of (4.2) are

SR . (4.28)

The parameters/ and( are related to the mass and charge of the black hole, regplgcti
k can be+1, 0, or —1 depending on whether the black hole horizon is sphericdl,dfa
hyperbolic, respectively.
The Hawking temperature is
2% 4k
Ty = 220 (4.29)

27,

wherer, is the radius of the horizon satisfying

2 2
r? M Q
A(ry) = Iz +k— —Tgr + —ri =0. (4.30)
The entropy is
3
"y
= 4.31
S= 1% (4.31)

whereVj is the three-dimensional volume spanned y Notice that the entropy is inde-
pendent of:, and therefore constant in time, leading to an adiabatituéoo.
According to (4.7), the redshifted temperature on the baunis

po T (4.32)

NZEOR
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For largeuq, it is expanded as

3
po tnk  Tul <H2 k)+ (4.33)

a 2 a?

Similarly, we expand the regularized energy density andsunee (4.24), respectively,

313 EN\?  4M
= H?2 + — =
‘ 647G { < i a2) * L2a4}

3L5 E\®  4kM  8Q2?  4M H>
_ H? + = — 4.34
1287G5 {( * a2) T T e T (T (4.34)

L E\®  4aM kY
= H?> + — —4(H* 4+ = | =
b 647G {( i aQ) * L2a* ( N &2) a}

5 3 2 2 2 .. M
Sk {(H2+£) +4kM+8Q +4M£—2(H2+£) g—é—a}

- 1287G5 a? L2a5  L*%b  L? ot
+.... (4.35)

We deduce the conformal anomaly which is given by the trackestress-energy tensor,
Tl = e€—3p
B 3L3
B 167GH a2
3L° Joe ﬁ
647TG5 a?
The first term is the standard conformal anomaly one obtaittsa large: limit [22].

As an example, consider the case of a flat static boundary eha&zschild black
hole. Thenk = 0, Q = 0, andH = 0. The radius of the horizon is, = (M L?)'/4. The

1206 T Tha6 T IZ b 3

a
a
) ARM | 8Q° M B (H k;)2d 4Md}
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expressions for the energy density, pressure and tempesataplify to, respectively,
3 [ rd
- TTT - 1 - 11— —+ s
¢ 87TG5L ( &4>

_ TZ _ 1 3 — % 3
P T 8nGHL L ’
a?

'+

T = — (4.37)

7,4
mLay/ 1 — a—ﬁ

In the largen limit, we deduce the expansions

._ 3 (xLT)"  7(xLT)® N
- 8nGsL 2 8 )
B 1 (’/TLT)4 3(7TLT)8
p = SrGoL < 5~ 3 +..0 . (4.38)

Thus, at leading order, we have- 3p o T, as expected for a conformal fluid. Including
next-order corrections, we no longer have a tracelessssémsrgy tensor.
Returning to the general case, we obtain the law of thermaahycs

dE = TdS — pdV + ®dQ , (4.39)

whereE = ¢V, V = a3Vs is the volume, an@ is the potential

Q

O =——.
G5CL

(4.40)
This is easily verified, e.g., by differentiating with respéo 7, ., and @ (after using
(4.30) to expresd/ in terms of the other two parameters, and@).

4.4 Cosmological Evolution

Next, we discuss various explicit examples of cosmologesalution based on an AdS
Reissner-Nordstrom black hole. For simplicity, in whaidals we shall be working with
units in whichL = 1.
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The Hubble equation (4.27) can be massaged into the form

6<H2+£):i— H2+i“), (4.41)

a? L a?
where we introduced the convenient combinations of pararset

ﬁ_%_ i:1+w'

1
~C,. 2 T 5 (4.42)

The Hubble equation can be expanded for large

ko Ay G, L3 1\> 4M
H*+— - — = H? + —
+ a? 3 16G5 + a? + L2a*

G, LA 1\° 4M  8Q%* 4M
4 {<H2+ )+ + ¢ + H2}+....

T 16Gs5 a? L2a5  L*aS  L2a*
(4.43)

At leading order, it coincides with the result obtained i2][2
After squaring (4.41), we obtain a quadratic equationf8r However, only one of the
two roots is a solution of (4.41). Let us concentrate on tingesof parameters with > 0,
L’ > 0. We obtain
(= 0) 4
: (4.44)
%+§—%@2+\/§+§+(A(a)—k)f—j

H? =

This can be solved fot = a(7) to obtain the orbit of the boundary hypersurface. Once
a solution of (4.44) is obtained, we still need to verify thiatatisfies (4.41), because the
solutions of (4.41) in general form a subset of the solutmfi(gl.44).

The fixed points of the orbits are found by settiig= 0 in (4.41). They are solutions

of
1 k 1
=———=0——/A(a) =0. 4.4
Via)= 7 — 6~ —/Aa) =0 (4.45)
These fixed points are also fixed points of (4.44), but the em®vis not always true.

With the choice of parameters such tlvat 0 [34], eq. (4.44) simplifies to

H (1 N &) _Alg) (4.46)

6 a?
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which coincides with the results from a brane world scenafibus we recover the evo-
lution of a 3-brane in a five-dimensional bulk space if we fineet the parameters of our
system so that = 0.

The fixed points are solutions of

V(a) El—i—%—é\/fl(a) =0. (4.47)

Notice that no fixed points exist between the outer and inoeizbns (withA(a) < 0),
because of the square root in the poteritial). Notice also that’(a) ~ % asa — 00, SO
the sign of the potential is determined by the sigr\gfand at the horizor/ (r, ) = Li >

0. Up to two fixed points can be outside the horizon. Howeveratassical results likely
receive significant quantum corrections as we approachdtiedn. Therefore, our results
are reliable for orbits away from the horizon, which typigaand at infinite distance from
the horizon.

For A4, = 0, we recover from (4.46) the brane world scenario of [35].sldtenario is
depicted in figure 4.1afdk = +1, M =8, @ = 1. We notice here that we have only
one solution that is bouncing. Of the two turning points, @aside the inner horizon
and the other outside the outer horizon. There is no fixedtgm@tween the inner and
outer horizons, as noted earlier, because of the presernhe efiuare root in the potential
V' (a) (4.45). This can be explicitly seen from figure 4.2a where aedearly the position
of the inner fixed point as the point where the solid line chisd-axis. After crossing
the turning point outside the outer horizon, the square efHbbble parameter becomes
negative and hence unphysical. The orbit of the bouncingfiseol is shown in figure 4.3.
Although we reproduce the bouncing cosmology of [35], tiglothis, as argued in [36]
this kind of solution suffers from an instability. Indeet@igtinner horizon is the Cauchy
horizon for this charged AdS black hole and is unstable uhidear fluctuations about the
equilibrium black hole space-time. So when the orbit cresise inner horizon of the black
hole, it is not sufficient to consider only the unperturbedKgsound. The backreaction
on the background metric due to the fluctuating modes has talkdes into account. This
backreaction is significant and may produce a curvaturauganigy. It should be noted that
this pathology occurs only fof = 0. For 8 # 0, no outward crossing of the horizon
occurs. Thus, from our point of view, acts as a regulator; keeping it small, but finite, is
essential for the handling of quantum fluctuations.

If we now tuneA, to non-zero values, we obtain qualitatively different siolns. In the
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simplest case, when there is no chemical potentjaiH 0), for sufficiently smallA, > 0,
andk = 1 (spherical geometry) we recover the de Sitter brane saepéref. [37]. As an
example, sef\/ = 1, A, = 0.5. For 3 = 0, we obtain two fixed pointa = 1.13, 2.11,
outside the outer horizom ( = 1.03). As we increase (i.e., GG5, or equivalently, decrease
G4), the larger fixed point increases and the smaller one deesedfter it hits the horizon,
the smaller fixed point disappears and we only have one fixed.ddo fixed points exist
inside the horizon.

In the same set up and keeping all other parameters fixed &ddhementioned values,
if we now turn on the chemical potential, we obtain one moredipoint away from the
outer horizon. For) = 1 this is shown in figure 4.1b. Similarly to the, = 0 case, here
we also obtain one bouncing solution with two fixed pointse arside the inner horizon
(figure 4.2b) and the other outside the outer horizon. Thistiem for a(7) is plotted in
figure 4.4a. Additionally, ai = 7.09 there is another fixed point. We obtain an accelerating
solution from this point (figure 4.4b). In the region betwéleea first fixed point outside the
outer horizon ¢ = 3.06) and second one at= 7.09, the square of the Hubble parameter
is negative, hence there is no physical solution in thisoregi

Comparing the brane world scenario (4.46) with the genexrs¢ @ # 0, we observe
that there are no qualitative differences in the flat case (). In the case of curved horizon
(boundary)f = +1, in general one obtains fixed points other than the onesradstan the
brane world scenario. As an example, consider the choicarainpeters

k=+1, M=8, Q=1, Ay=0.05, 3=6. (4.48)

We have only one fixed point in this case,aat= 7.705 (figure 4.1d). The solution is
accelerating as shown in figure 4.5. There is no bouncingdisaltor any set of parameters
once we go away from the special case- 0.

For 3 # 0, if we setA, = 0, we do not obtain any physical solution. One such situation
is depicted in figure 4.1c. As we see, the square of the Hulablenpeter is imaginary for
all values of the cosmic scatein this case.
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Figure 4.1: Cosmological evolution scenarios for various values oépeeters. Solid and
dashed lines are plots af andi, respectively. Dotted lines denote the black hole potéentia
with its zeros indicating the positions of the inner and obai@rizons.
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Figure 4.2: Solid lines are plots ofi> whereas dotted lines are plots of the black hole
potential forG = 0 and (a)A4 = 0, (b) A, = 0.05. The inner fixed points and the position
of the inner horizon are shown.
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Figure 4.3: Plot ofa vs7 for 3 =0, A, = 0.
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(a) (b)
Figure 4.4: Plots ofa vs 7 for g = 0, A, = 0.05. In (a) we have a bounce. Initial conditions

are chosen ag(0) = 0.356. At 7 = 3.642, a reaches the second fixed poiat= 3.059. In
(b) we have an accelerating solution, with initial conditichosen ag(0) = 7.090.

L L L LT
5 10 15 20

Figure 4.5: Plot of a vs 7 for 3 = 6, A, = 0.05. The initial condition is chosen as
a(0) = 7.705.

4.5 Summary and future directions : Part |

Let us pause here for a while and summarize this part befong gato the next part of this
chapter. We discussed here the cosmological evolutionetefrom a static bulk solution
of the field equations with appropriately defimackedboundary conditions using the grav-
ity/gauge theory duality (holography). Such an approach fivat discussed in [22]. We
extended the results of [22] by considering a boundary tsypéace at arbitrary distance.
We calculated the general form of the stress-energy temsbauaived at a generalized form
of the Hubble equation of cosmological evolution. We coastd various explicit exam-
ples in detail based on an AdS Reissner-Nordstrom bulk datk solution. Interestingly,
we obtained the brane-world scenario as a special case, dyuining the parameters of
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the system, setting = 0 (eq. (4.42)). However, keepingsmall but finite is important in
order to avoid scenarios in which the boundary crosses that &orizon from within [35].
Thus, 5 acts as a regulator for such problematic solutions for whigéntum fluctuations
introduce instabilities [36]. Moreover, the counterterom& normally introduces to cancel
the infinities were shown to have the usual field theoretierprietation of renormalizing
the bare parameters of the system (Newton’s constant arab#meological constant).

It would be interesting to explore the parameter space oftisenological system fur-
ther to obtain scenarios of cosmological evolution of ies¢rsuch as understanding infla-
tion, and phase transitions in general, in a holographtmgetVarious extensions are also
possible, such as addition of matter fields on the boundaith@wt gravity duals). Also,
anisotropic cosmologies are possible from a static bulkdpazind, if the boundary hyper-
surface is chosen with a different geometry than the hor{ean, flat boundaryi(= 0) in
a bulk black hole background of spherical horizén= +1)). Work in this direction is in
progress [38].

Part Il : Dynamic Bulk - Dynamic Boundary

As mentioned in the prelude, in this part of the chapter wé dahll with time-dependent
brane solutions in supergravity and their cosmologicalicagions.

4.6 D3 brane with anisotropic time-dependent world vol-
ume

Besides the static D branes of odd space dimensions, thetrilig) sheory admitdime
dependenbranes. Consider, for example, the case of D3 brane. Thdiegsi@f motion
following from the relevant part of standard 11B supergtgwction

1
167TG10

/ d"Vz\/—g <R — %8“9258“925 — 2%@5) . (4.49)

SIIB -
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has the following forms:

1
o Ak
1 28 ¢ay¢+2x5!

8M(\/§F“52"'55) =0,
V¢ = 0. (4.50)

1
(5F!L§2“.§5Fl’§2m§5 - 555F52>7

These equations are solved by

Y B
ds® = <1 + —4) [ — dt* + 12%da® + PP dy® + tQdeQ] + <1 + —4> [er + r%mg],
r T

AJAotB+7 3
Ft:cyzr = T4 a9
(I + )2
¢ =0, (4.51)
provided
a+B+y=1 anda®+ B> +~* = 1. (4.52)

The numbersy, 3, can be organized in an increasing ordex 3 < ~ and they vary in
the range
1 2 2

These numbers can also be parametrized as

—u 1+u u + u?

- = = 4.54

a(u)
where the Lifshitz-Khalatnikov parameter> 1. Further, values < 1 lead to the same
range as

a(=) =a(u), B(=)=0w), v(=)=(u). (4.55)

The five form charge can be calculated by integratifg over the transverse space and it
turns out to be time independent.

In our convention, the extremal D3 brane is represented by 5 = v = 0 and is
not continuously connected to the above solution. Unlikesewal D3 brane, this solution
breaks all the supersymmetries of 1IB theory due to its exptime dependence. The
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Kretschmann scalar for the metric is given by

16(—a(I* +71)° + (1 +r*)® = 5157 (1° +12r°)t%)

RuupaRWPU = r4(l4 + 7"4)5154

(4.56)

In writing the above equation, we have used the conditiob24.It has a time-like singu-
larity atr = 0 at any finite time. It, further, has a cosmological singwjeai t = 0.

In the larger limit, equations in (4.51) reduce to a four dimensional Kassolution
plus a flat six-dimensional part. Within the Bianchi classifion of homogeneous spaces,
the Kasner metric corresponds to choosing all three of thetsire constants to be zero.
A generic perturbation near the singularity breaks thesestcaints generating Belinskii-
Lifshitz-Khalatnikov (BKL) oscillations [39]. To brieflyliustrate the BKL oscillation,
appropriately generalized to our context, we replace theédumlume metric on the brane
by type IX homogeneous space.

To this end, let us consider the brane configuration of thefor

l4 _% . .
ds®> = <1 + ﬁ) [ —dt* + (a(t)’Ll; +b(t)*mym; + c(t)Qninj)dx’dxj]

l4 1
+ (1 v T—4) ’ [er + 7‘2ng] . (4.57)
with the anti-symmetric five form field and the scalar

Frayor = 4r3l4a(t)b(t)c(t2) sin(x) | (4.58)
(rt 4 14)

¢»=0. (4.59)

Herel;, m;, n; are frame vectors. For IX metric, all the three structurestants are 1 and
the simplest choice for the frame vectors is

l; = (sinz, —cosz sinz, 0), m; = (cosz, sinz sinz, 0), n; = (0, coszx, 1). (4.60)

The coordinates run through values in the ramgesz < 7, 0 < y < 27, 0 < z < 47l
The above configuration (4.57 - 4.59) is a solution providexytsatisfy 11B equations of

YIn all our discussion, we will closely follow [40]. [42] alswas a lucid review of BKL oscillations for
types VIII and IX spaces.
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motion (4.50). This requirement leads to the following eliéntial equations fat, b andc.

(&;Zz)t - 2&22202 (" =) — ],
(&;Ii)t B 2&22202 [(62 —a) - b4] ’
(acflfé)t h 2a22202 (@ =% =T
%+%+%:o, (4.61)

where the subscript indicates derivative with respect toThese are exactly the equations
responsible for generating standard BKL oscillations. $amuently, the brane world-
volume metric will oscillate with negative powers tbscillating from one direction to
another. In the next paragraph, for the sake of completenwesgive a brief analysis of this
oscillation.

To proceed, first we notice that if all the expressions onitt& hand side of (4.61) are
small in some region, the system will have a Kasner-likemegivith

a~tb~tP e~ t, (4.62)

wherea, (3, v satisfy constraint as in (4.52). However, now siacé negative, close to
t = 0, a* term in the right hand sides of (4.61) will start dominatirigis useful to write
these equation in terms of new variables defined as

a=eP, b=¢l c=¢e® ePTI3dr = dt. (4.63)

In the vicinity oft = 0, (4.61) reduces to

1
yQrr = Srr = 56417’ (464)

where the subscripts indicates derivative with respect to The solution of these equa-
tions should describe the evolution of world-volume meftrgen the initial state of Kasner
metric. In terms of the new variables, this is equivalent to

br =0, gr = ﬁa Sr=7. (465)

2For type | spaces, in which Kasner metric belongs, the rigimdhsides of all the equations in (4.61)
would have been zero. This is due to the fact that all the &traconstants are zero for type | spaces.
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Note that the first equation in (4.64) can be interpreted agtécie moving in the presence
of an exponential wall-like potential. Due to the reflectioom this barrier, particle will
move withp, = —a. However we see from (4.64) that + ¢, andp, + s, are constants.
So we get

¢ =0+ 2a, s; =7+ 2a. (4.66)

These lead to

(B+2a)T

P =e el=e o7 =027 and ¢~ (2007 (4.67)

In terms of the original variables, we can re-write the abave

a = {7 b= {1me | ¢ = {iael, (4.68)

Therefore the action of the perturbation results osatlaibetween one Kasner regime to
another with negative power shifting fromto b to ¢, inducing BKL oscillations on the
world-volume of the D3 brane. We should however note that tieacurvature singularity,
string action receives higher derivative gravitationatreotions. Consequently, the nature
of the singularity and behaviour of its perturbation may gdistantially modified. Solu-
tions may also get modified when one introduces other mattiessfinto the theory. If they
are represented by a perfect fluids on the world-volume, priéissure and energy density
related ap = wp, it can be argued that far < 1, BKL oscillations still persist. However,
situation changes drastically for= 1, namely for the stiff-matter (a massless scalar field
for example). A general discussion on these issues can Ingl fiol41, 43]. Indeed it is
easy to check that in our previous solution, one can intre@udilaton with a profile

¢ = \logt. (4.69)

The metric and the form field remains same as before. Howtheeexponents now satisfy
new constraint relationsa + 3 +~v =1, o*+ 3* +~* = 1 — A% The changes in these
relations allow BKL oscillation for a finite time and the sgst finally reaches an attractor.

We now proceed to study the metric in the near horizon limit 0. In this limit, the
metric reduces to

7”2

l2
ds® = —l—thQ + —dr? + (e + P dy? 4+ 177d2) + PdQE, (4.70)
T
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with 4t L
r .. ) T
Fiayor = i giving potential Ct,, ., = e (4.71)
The Kretschmann scalar is,
1602 (a0 — 1)I1*
R}WPURMVPU — 60‘(0‘—) 80 (4_72)

ratd A

We call it a Kasner-AdS space. This Kasner-AdS solutionisgply satisfies five dimen-
sional Einstein equation in the presence of a negative clogjcal constant and was found
in [44] in the context of brane-cosmology.

4.7 Probing with a D3 brane

In this section, we will probe the geometry (4.51) with a Da@re. Distance of the probe
brane from the source now behaves as a scalar whose explieitdependence can be
determined via a dynamical equation. We take the world+weldirections of the D3 brane
as¢ = (t,x,y,z). The world-volume action of the D3 brane in background geoyme
(4.51) takes the form :

S:T/#@ﬁdaGM+T/ﬁ%a, (4.73)

HereG,s is the induced metric on the world-volume afgis the pull-back of the back-
ground4-form potential. 7" is the brane tension. We turn off all other fields on the brane.
The Lagrangian can be cast in the form :

L=+/A(t,r) — B(t,r)i* —C(r), (4.74)

where,

7"4
AN
B(t,r) = t* (1+ﬁ)
tI
clr) = 14+ rd

(4.75)
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The equation of motion for(¢) is the Euler-Lagrange equation derived from (4.75) :

r (1 + 7‘4)2[157'"' + 7] = (U + )P e = 2000 [3(1 + r)r? — 2]
3
—4tlr [rt = (' 4+ r*) 7] =0 (4.76)
Here dot represents derivative with respect.t®©nce this equation is solved with appro-
priate boundary conditions, the metric on the probe braneiguely determined. We will
carry out this computation in this section. However, owinghte explicit time dependence
in the background geometry, we find that the dynamical eqoatn not be solved analyti-
cally. Fortunately, it is not hard to find numerical solutemd a typical behaviour is shown
in the figure 4.6.
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2000 400C 6000 800C

Figure 4.6: Plot of r as a function of time.

The functions that govern the anisotropic expansions iaethgpatial directions are
t* f(r), t f(r),t” f(r), where

flr) = <1 + —)_ . 4.77)

In order that the near horizon geometry isA&dS, as mentioned earliet, 3,y must satisfy
the constraint o + 3% + v = a + 8 + v = 1. This means, once we specify one of the
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three, saygq, the other two are automatically fixed :

1
B = §<1—a+\/—3a2+2a+1>

vo= %(1—04—\/—3a2+2a+1> (4.78)

Ideally, in cosmology, one defines cosmological timayith which the metric on the
probe brane takes the form:

4

ri(n)

dn 14 -3 14
E—W”ﬁ) ‘(”ﬁ)

The behaviour of time, as a function of; is depicted in figure 4.7.

-3
dSE one = —dn* + <1 + ) (t2*(n)dz?® 4 t*° (n)dy? + 12 (n)d2?). (4.79)

with

I

<d:i(tt))2. (4.80)
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Figure 4.7: Plot of ¢ as a function of;.

At this, we plot the functiong* f(r), t° f(r),t” f(r) as functions of) parametrically.
Here f(r) is defined through (4.77). One can tune the values, ¢f, v consistent with the
Kasner constraints so that one of them goes down to zerolétatiag) while two of them
go up (accelerating) with cosmic time and vice versa. Oné glat is given in figure 4.8.
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10 20 30 40 50

Figure 4.8: The functions.f, = t*(n) f(r), fo = t°(n) f(r), fs = t'(n) f(r), with f(r)
given in (4.77) are plotted as functionsmf«, § and~y are 0.7, .632, -0.332 respectively
The plot of f; is in red, and that of, and f; are in green and black respectively.

4.8 The dynamic M5 Brane

Our previous discussion can easily be extended to eleveandiions. Here we discuss the
case of a M5 brane. We start with= 11 supergravity action

1 11 | —
_ /= R——_F 4.81
Si1d 2@1 /d z 9( 48 4) ) ( 8 )

which is a generic action for the bosonic partiof 11 supergravity so long as we concen-
trate on static, flat translationally invariant p-braneusions.
The equations of motion arising from (4.81) admits a sofutibthe form :
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l3 ’%
ds® = (1 + —3) [—dt2 + 2T da? + 293 da? + t2°‘§dx§ + 2 dx? + tQO‘gdxg]
T
lg s 2 2 2
+ (1435 [0+, (4.82)
along with

3013¢tr?

E$1$2$3$4$57’ - m (483)

provideda; + ag + az + ag + a5 = 1 anda? + a2 + a2 + a2 + o = 1.
In the near horizon limit, i.er — 0, the metric and the non-zero component of the
form field reduce to the forms :

ds? = % [—dt2 + 1208 de? 4 293 a2 4 1298 da? + 12 da? + 23 da?
l2 2 2 2
+ ﬁ[dr +r2d]
3tr?
thlxgxgx4x5r - I3 s (484)
and hence the potential is given Y, ., 140,05 = tl—’f’
We now make the following change of coordinates :
w? = lﬁg (4.85)
With this, the metric in (4.84) takes the form :
s W 72 | 7202 52 | 7202 3-2 | 7202 3-2 | 7202 3-2 | 7202 5-2 pdw? 5o
ds :E<—dt + 200472 + 25 da2 4+ P25 dad + Pida? + 1 sdx5>+4z g,
(4.86)

wherez; andt are suitably scaled versions of the coordinaiesandt respectively. It is
worth mentioning in this regard that the scaling of the comates will not be the same
because of the presence of different powersioffront of dz?. This is a consequence of
anisotropy.

Following our nomenclature, (4.86) is a metric of seven disienal Kasner—AdS space
plus a four sphere. Far; = 0 fori = 1, ..., 5, this reduces to our knowadS; (2L) x S*(L)
solution.
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4.9 Probing with a M5 brane

In the same spirit as we considered the case of probe D3 branepw consider a probe
M5 brane in the background (4.82) and (4.83).

In PST formalism [45], the world-volume action of M5 branegisen in terms of a
gauge invariang-form field strengthH® = d.A® + C®, where A® is world-volume
2-form andC®, target spac@-form. The world volume action in this formalism is written
as:

Swms = Ts / d°¢ [Lppr + Lxp + Lwz], (4.87)

where

Lppr = \/—det <Gij + ﬂij) is the Dirac-Born- Infeld Lagrangian,

1 _ o
Lxp = We”’“lm"Hlmnijpqu@ia&qa is the kinetic piece for thg-form,
a
1 .. . .
Lz = S [ijﬁlzlmn + 10 Hiji Cl(jl)n} is the Wess-Zumino term.

(4.88)

HereS,; is the induced metric on the world-volun®&?) andC® are the pull-backs of the
3-form and6-form background potentials respectively.is defined as
1

HY = RIE @ Hippmn. 4.89
3IV_delG /(@ (4.89)

“a” is an auxiliary scalar field introduced in PST formalism taintain manifest covari-
ance.

If we now take the world-volume directions of the M5 bran€ as (¢, 1, xo, 23, 4, T5),
it can be explicitly checked that, in this “static gaugegiawill be no component ¢f® in
world-volume directions. We further simplify the systemtoyning off the world-volume
2-form, A, With all these taken into account, the full Lagrangian salkes simple form :

L= +/A(t,r) — B(t,r)i2 —C(r), (4.90)
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where,

r3
2 BN
B(t,?“) =t <1+ﬁ)
t3
C(r) = e

(4.91)
Here dot represents derivative with respect.tbhe Euler Lagrange equation foft) is :

2 (1P 7Y [t + 7] — 2 (1P + )% = 3% [3 (1 + %) 72 — 207
—6t13r3 [ — (1P +)i%]? = 0. (4.92)
In order to draw a cosmological interpretation of the solusiwe obtain from (4.92), as

usual, we go to the “cosmic time” coordinatg,in which the metric on the brane assumes
aform:

3 \—3 /.5
42 = —dn(t)* + (1 ; rj(n)) (Z {20 (n)dx?> , (4.93)

i=1

dn 3\ 5 B\S [dr(t)\?
b)) () (90

The functions that govern the expansion of the universearsgiatial world-volume direc-
tions of the brane are in this case f(r), where

with

wWino

fr) = (1 + —)_ . (4.95)

We can choose;’s so that three of them are the same and mimics isotropicrestpa
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in three directions. The other two are anisotropic. Sucluason can be parametrized as :

p = Q=03 =7p
1
ay = §<\/—15p2+6p+1—3p+1>
1
a5 = 5(—\/—15p2+6p+1—3p+1). (4.96)

Interestingly there exists a narrow window of parametriigdor p, in which o; for ¢ =
1,2, 3 are positive andvy anda; are negative. An illustrative plot is shown in figure 4.9
for a particular value op.

8,

Figure 4.9: The functions¢®(n) f(r), fori = 1,2,--- ,5 are plotted as functions offor
p = 0.52. This corresponding values faf’s are :a; = ay = a3 = 0.52, ay = —0.15 and
a; = —0.41. The isotropic expansion correspondingatg «s, oy is plotted in red. The
contraction corresponding tey, a5 are plotted in green and black respectively.
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4.10 Summary and future directions : Part I

In this part we have presented a class of time-dependeng leanfigurations of0 and11
dimensional supergravity. In particular, we showed prghsertain brane configurations
with appropriate choice of parameters with another braneanycally compactifies the
extra dimensions on the brane world-volume and hence mitmécsosmological evolution
of universe. Furthermore, near their cosmological singfigs, this class of configurations
shows BKL oscillation. It will be worthwhile to look for thegnatures of these oscillations
in their dual gauge theory descriptions as well.
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In Lieu of a Conclusion

Physics out of equilibrium is a huge field of study in itselfiayoverns most of the interest-
ing real-life and real-time phenomena. Unfortunately,ftekl theory tools to understand
non-equilibrium phenomena are not well-developed. Thiimarily because of the lack
of a reliable perturbation technique which in other brasabidield theory has been proved
to be immensely helpful a tool. In this thesis we have chosegrafew non-equilibrium
phenomena, that too in a strongly coupled regime and hawersti@t machineries can be
derived from the AdS/CFT conjecture to handle such sitnatioNVe discussed phenom-
ena like temperature quench, non-Fermi liquid and earlyarse cosmologies and in each
case we got some success. Successes are varied, howexiag Eame still unanswered
guestions, here and there, but in conclusion, we can saguiteesses, even if partial, in
building up the problem-specific mechineries that we hapemned in the chapters of this
thesis, definitely, hint at the point that AAS/CFT might be tery framework in which one
can do further studies in non-perturtive phenomena, inqudat, the otherwise intractable
non-equilibrium scenarios.
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