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Synopsis

Carrying out reliable computations in strongly coupled systems are generally very difficult.
This is largely due to the fact that, till to date, there does not exist a systematic formula-
tion of theories with large coupling constants. Consequently, a need to search for indirect
rutes becomes essential. Consider, for example, a strongly correlated condensed matter
system. It can have descriptions in terms of quasiparticles. These are the collective exita-
tions which are weakly interacting in free space. Similarly, some field theories may have
a large number of internal degrees of freedom (N ). It is then possible to use a perturba-
tive 1/N expansion to explore certain strong coupling phenomena in these theories. One
may also look for duality symmetries which generally relate a strongly coupled theory to
another with a weak coupling. Indeed in late last century, such duality symmetries were
conjectured to exist in string theory. The very fact that these symmetries relate strong and
weak coupling, a direct proof of its existence becomes difficult. However, various indirect
checks suggest that string theory is in fact endowed with such a symmetry. Inspired by
these developments, in 1997, Maldacena proposed a dual description between a string the-
ory defined in anti-de Sitter (AdS) space and a non-gravitational field theory defined on a
conformal boundary of this space. Depending on the context, this is known as gauge/string
duality, gauge/gravity duality or the AdS/CFT correspondence. This immediately opens
up a door to study strongly coupled string theory (however in AdS) via computations in the
dual weakly coupled gauge theory and vice versa. The main aim of this thesis is to use this
correspondence to carry out a set of computations to explore certain features of strongly
coupled gravity as well as that of strongly coupled gauge theory. We first briefly review
some aspects of the AdS/CFT correspondence and then provide a summary of our work.

The simplest and maximally explored example of AdS/CFT correspondence involves
the type IIB string theory. It states that IIB string theory formulated on a five dimensional
AdS space times a five-sphere is dually related to a four dimensional Yang-Mills SU(N)
(YM) theory with four supersymmetries. Supersymmetries can be broken by turning on a
temperature (T ). On the gravity side, this is achieved by introducing a black hole in the
AdS space. When the super-YM is strongly coupled, the dual has a description in terms of
type IIB supergravity where many computations can be explicitly carried out. For example,
through this duality, calculations of correlation functions in the gauge theory get mapped
to the computations of amplitudes in the supergravity theory. There are several ways to
generalize this system. For example, turning on a chemical potential (µ) in the gauge the-
ory is equivalent to adding some gauge charges to the black holes and so on. AdS/CFT
correspondence can also be generalized for non-conformal gauge theories arising from the
gravitational description of Dp branes for p 6= 3. However, in spite of all these advances,
till to date, the gravity dual of QCD remains elusive and though there are some similar-
ities, gauge theories with gravity duals are very different from QCD in several aspects.
Nonetheless, there is still considerable interests among researchers to further explore the
consequences of this correspondence. One of the main reasons perhaps is to get an answer
to the following question. Can we identify some universal features of these strongly cou-

v



Synopsis

pled gauge theories with gravity duals? One may then hope that these results will be useful
if a dual of QCD is discovered. Indeed there is a remarkable progress in this direction – a
discussion of which follows in the next paragraph.

In [1], [2], gauge/gravity duality was used to show that the shear viscosity to the entropy
ratio of four-dimensional SU(N) YM theory with N = 4 supersymmetries is ~/(4πkB)
where kB is the Boltzmann constant. Besides the fact that this low viscosity is expected
from the estimation of RHIC data for quark-gluon-plasma (QGP), to which we will shortly
come back to, this ratio was found to be universal for all the strongly coupled gauge the-
ories, in the N → ∞ limit, having a gravity dual [3]. Subsequently, it was found that
there are various other quantities which show universal behavior too. Ratio of R-charge
conductivity to the charge susceptibility is another quantity of this nature [3]. Further, at
finite µ, certain combination among the thermal conductivity, temperature and the chemical
potential is expected to be universal [4].

With the heavy ion experiments running at RHIC and LHC, it becomes important to
have progress in our theoretical understanding of the QGP phase. It is believed that such
a thermalized state of matter, exhibiting the deconfined phase of quarks and gluons, have
been created in these experiments. Notwithstanding the earlier expectation that this is a
weak coupling phase of QCD, large amount of evidences have, by now, accumulated which
point towards the dominance of large coupling non-perturbative effects. One of the main
evidence perhaps is that the medium can be described by ideal hydrodynamics leading to
a low shear viscosity of the fluid. Possibility of having a large jet quenching factor with
considerably high energy loss per unit length of moving partons in this medium is also
believed to be an artifact of the strong coupling effects. While none of these arguments
are definitive, we will proceed assuming that strong coupling effects are important and it is
necessary to improve our understanding of heavy ion collision. Though studying QCD at
large coupling is beyond the scope of our present knowledge, in the light of our previous
discussion, we may wish to start searching for the strong coupling effects in the theories
with gravity duals. One may hope that some of the predictions arising from such analysis
may be universal for strongly coupled theories including QCD. The work in the first part
of this thesis follows this spirit. Here we consider two models. First is a holographic QCD
(hQCD) model discussed in [5]. Gravity dual of this model is the asymptotically AdS
(aAdS) black hole in Einstein-Maxwell-Dilaton (EMD) system. We then calculate drag
force, jet quenching parameter, screening length and binding energy of external quark-
antiquark (qq̄) pair for this model. In the second model, we consider N = 4 SYM plasma
and the motion of an external heavy quark in this medium. This has been well studied in
the literature [6], [7]. Gravity dual of N = 4 SU(N) SYM is the standard AdS black hole.
However, if one introduces large number of heavy quarks in the gauge theory, the bulk gets
deformed. We explicitly construct this back reacted geometry and use this geometry to
calculate the drag force on one of those heavy quarks while in motion [8]. In the next few
paragraphs, we elaborate upon different aspects of these two models.

We start with a discussion of the hQCD model specially focusing on our computations
of different dynamical observables. They are important in the context of real time dynamics
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of high energy partons in QGP medium. The hQCD model, that we consider, can reproduce
various aspects of thermal QCD, such as: equation of states, confinement/de-confinement
phase transition, etc. Spectrum of this model contains both quarks and antiquraks in fun-
damental representation. As mentioned earlier, the dual gravity theory is realized as an
aAdS black hole solution in EMD system. In this work [9], we use this aAdS black hole
background to accomplish the holographic computation of drag force on a heavy probe
quark moving in the thermal medium of hQCD model. Along the way, we also calculate
jet quenching parameter q̂, screening length (Ls) and binding energy of a quark-antiquark
pair (qq̄).

To elaborate further, first we discuss about the drag force acting on the probe quark. It
originates from the strong energy loss of a high-energy parton probing through the medium.
In our calculation of drag force, probe quark represents the high energy parton. The gravity
dual of this probe quark is well known [6]. In our aAdS black hole geometry, it is described
by an infinitely long fundamental string. One of its ends is attached to the boundary of the
bulk spacetime. The body of the string extends along the radial direction and the free end
of the string goes parallel to black hole horizon. The AdS/CFT duality suggests an iden-
tification between the end point of the string and the probe quark. Furthermore, the body
of the string represents the gluonic field in the thermal plasma. In this dual gravity picture,
the string trails back and imparts a drag force on it’s endpoint that is attached to the bound-
ary. This drag force is obtained by calculating rate of change in string momentum. The
qualitative study of the drag force shows that it increases with the velocity of the quark for
fixed chemical potential and temperature. It also increases with temperature while chem-
ical potential and velocity are kept constant. All these results are consistent with the fact
that the study of drag force is meaningful only in the de-confined phase of hQCD model.
Another important quantity that we analyse is the jet quenching parameter. It is conceived
as a measure of suppression of heavy quark spectrum with high transverse momentum due
to medium induced energy loss. The holographic method to compute this quantity needs
a consideration of Wilson loop(C) traced out by a qq̄ pair [10]. The Wilson loop is taken
to lie along the light cone in the gauge theory. The gravity dual of this qq̄ pair is repre-
sented as the two end points of a fundamental string, attached to the boundary of the bulk
spacetime. Body of the string hangs along the radial direction and up to the horizon of
aAdS black hole. The Wilson loop is mapped, in the dual theory, as the string world sheet.
The jet quenching parameter (q̂) is related to the thermal expectation value of the light-
like Wilson loop operator, 〈W(Clight−like)〉 [11]. The holographic correspondence between
thermal expectation value of the light-like Wilson loop operator in fundamental represen-
tation 〈Wfund(Clight−like)〉 and the exponential of the worldsheet action, e−S leads us to
obtain a working formula of q̂ in dual gravity theory. Here, S stands for the worldsheet ac-
tion of the fundamental string. The study of the qualitative behavior of q̂ with respect to T
and µ shows that, if µ is higher than a certain critical value, q̂ decreases monotonically with
all T whereas if µ is lesser than the same critical value, q̂ is a multi-valued function of T in
the lower T region and it decreases monotonically for with respect to T in higher T region.
The multi-valued behavior of the jet-quenching parameter in low T region is related to the
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first order phase transition between confined phase and deconfined phase of hQCD model.
Finally, we study the screening length (Ls) of qq̄ pair in the frame work of hQCD model.
It is defined as the maximum separation between a qq̄ pair moving with a constant velocity
in the plasma. If the separation between them exceeds Ls, they break off with no binding
energy between them and thus they become screened in the QGP medium. As was pointed
out in [12], the study of Ls requires the consideration of a time-like Wilson loop(Ctime−like)
as a world line of a qq̄ pair. The computation of this quantity becomes simpler in the rest
frame of qq̄ pair. In this frame, the plasma flows with a constant velocity. Correspondingly,
in the dual theory, the aAdS black hole background is boosted by a rapidity parameter. The
holographic duals of the qq̄ pair and the time like Wilson loop are constructed in a sim-
ilar way as considered in the case of q̂ parameter. However, in this case the body of the
string hangs along the radial direction up to a certain position between the boundary and
the blak hole horizon. When the q and q̄ are separated beyond Ls, isolated strings are fa-
vorable energetically in the dual theory. Binding energy of q and q̄ is related to the thermal
expectation value of the time like Wilson loop operator, 〈W(Ctime−like)〉. Thereby, using
the holographic mapping between 〈Wfund(Ctime−like)〉 and e−iS , we calculate the binding
energy in dual gravity. We obtain Ls from the boundary condition on radial coordinate
of the background geometry. Subsequently, we study the behaviors of Ls and the binding
energy. For a certain value of the chemical potential of the system, Ls varies with temper-
ature in a definite way, consistent with result arising from the lattice QCD computations.
In particular, for µ = 0.1 our computation shows Ls behaves as 0.45

T
whereas from lattice

calculation it is 0.5
T

[13]. The variation of Ls with respect to rapidity parameter indicates
that the quark-antiquark pair dissociates at a lower temperature as it is moving with higher
velocity [14]. If this qualitative behavior holds for QCD, it will have the consequence for
quarkonium suppression in heavy ion collision. Additionally, our results show that for a
smaller chemical potential the system allows for a larger Ls. The observation of binding
energy reveals that for all values of quark-antiquark separation length less than Ls, there
exists two separate branches of the binding energy. It is very important to note that the
aAdS black hole geometry dual to hQCD gauge theory is too complicated to allow for a
pure analytic approach. For all our results we had to use both numerical and analytical
means.

The other model we consider is thermal N = 4 SU(N) SYM plasma. A large num-
ber of heavy, static quarks are uniformly distributed over this hot plasma. In this set up,
we calculate drag force on a heavy probe quark moving through the medium. Like other
drag force calculations [6], we compute it holographically by constructing the appropri-
ate gravity dual [8]. First, we construct the gravity dual of the quark distribution. In the
dual theory, this represents large number of fundamental strings uniformly distributed over
the bulk geometry. These strings are assumed to be non-interacting, static and infinitely
long. One of the end points of each string is attached to the boundary and the body of the
string is aligned along the radial direction. The bulk space time gets deformed due to the
backreaction of the string distribution. We explicitly compute this backreacted geometry
without doing any approximation. It turns out to be a deformed black hole in AdS space
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parametrized by it’s mass and the density of strings and is stable under tensor and vector
perturbation. As a result of the holographic computation, the drag force is expressible in
terms of two parameters, e.g, density of heavy quarks and the temperature of the gauge the-
ory. We find that the magnitude of the drag force increases with these parameters. We note
that, in the study of the drag force on a heavy quark (say charm) passing through the QGP
medium, the back-reaction of the plasma is usually neglected. In the context of N = 4
SYM, our work [8] can perhaps serve as an attempt to compute such back-reaction effects.

The second part of this thesis includes our investigation which explores the AdS/CFT
correspondence. Namely, here, we probe the strongly coupled bulk via computations in
their weakly coupled boundary dual. In particular, by exploiting this strong-weak cou-
pling duality, the transition probability among the states of the string theory on non-trivial
background is studied. These states are the spherical brane like objects wrapped inside the
sphere of eitherAdS5 or S5 of theAdS5×S5 geometry. In order to study transitions among
string states using the weakly coupled gauge theory, we need to identify the states of the
string theory with the gauge invariant operators of the dual theory. Once this is done, the
gauge theory correlator with proper normalization gives the transition probability of the
corresponding states. Following this idea, in this thesis we are particularly interested in
a class of gauge/string duality, known as AdS4/CFT3 duality. According to this duality,
the M theory on AdS4 × S7/Zk is equivalent to N = 6, U(N) × U(N) Chern-Simons
gauge theory on the 3-dimensional boundary of theAdS4 space. The gauge theory is called
ABJM following the work of Aharony, Bergman, Jafferis and Maldacena [15]. As a fur-
ther generalization, another theory was proposed by Aharony, Bergman, Jafferis, which is
known as ABJ theory [16], by modifying the ABJM gauge group U(N)k × U(N)−k into
U(N1)k×U(N2)−k for the same Chern-Simons matter fields, with N2 ≥ N1. The states of
our interest in M-theory are either spherical M2-brane growing in the AdS4 or M5-brane
wrapping on S5 ⊆ S7 and we like to study transition probability among them by using
the AdS/CFT correspondence. Therefore in our work [17], we first extend our study to
construct the correct gauge invariant operator in the ABJ theory by generalizing the Schur
polynomial constructed for ABJM theory. We then find out the realization of the duality
between giant gravitons and the Schur polynomials as the gauge invariant operators for
both ABJ(M) theory. Further, we study the transition probabilities among giant gravitons
as well as between giant gravitons and ordinary gravitons by analyzing the corresponding
gauge theory correlators. Finally, we consider a particular non-trivial background produced
by an operator with an R-charge of O(N2) and find, in presence of this background, due to
the contribution of the non-planar corrections, the large (N1, N2) expansion is replaced by

1
(N1+M)

and 1
(N2+M)

respectively, where M is the number of columns in the representative
Young diagram of the operator and is of order N.

In the limit N = 2 , one finds some extra symmetry due to the fact that the 2 and 2̄
representation of SU(2) are equivalent. This extra symmetry enhances the supersymmetry
of ABJM theory from N = 6 to N = 8. Finally, in the special limit N = 2 and k = 2,
ABJM theory becomes equivalent to another independent world volume theory of two M2
branes known as BLG theory, named after Bagger, Lambert, Gustavson [18], [19]. The
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gauge field as well as the matter fields in BLG theory are valued in a completely anti-
symmetric ternary product satisfying the so-called fundamental identity and a Euclidean
metric. This ternary product is also known as 3-algebra. Although this 3-algebra plays
an important role in the formulation of multiple M2 brane theory, its rich mathematical
structure makes the algebra very important to its own right. The consistent generalization
of Kac-Moody and (centerless) Virasoro 2-algebras into respective 3-algebras motivates us
to construct a further extension. In this work [20] we explicitly construct a classical w∞ 3-
algebra and show that our relation satisfies the 3-algebra “Fundamental Identity condition".
We start with commutation relation defining W1+∞ algebra which is basically a higher
spin generalization of Virasoro algebra. We define a star-product among the generators
and using both of them we construct a 3-bracket. There is an explicit dependence scaling
parameter q in this bracket. Finally we multiply all the generators with an arbitrary scale
factor β and take the double scaling limit q → 0 and β → ∞ such that qβ2 = 1. By
this method we obtain w∞ 3-algebra which is completely anti symmetric in all the mode
indeces of w∞ generators and satisfies Fundamental Identity condition. We also figure out
the geometric realization of the w∞ 3-algebra. It turns out that the 3-algebra generators can
be identified with the modes of the deformations of a geometry which is a direct product of
2-torus with a point.
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1
Introduction

1.1 Overview
Our understanding of strongly coupled gauge and gravity theories has increased consider-
ably following Maldacena’s proposal of AdS/CFT correspondence. This conjectured cor-
respondence aims to establish an equivalence between a field theory and the string theory
formulated in a curved background by relating a strongly coupled theory with a weakly
coupled one. It is this dual nature of the correspondence that has opened up an avenue to
probe strongly coupled theories via computations in their weakly coupled duals. Though
the dual of the QCD is yet unknown, the theories for which this correspondence has been
developed do share some similarities with the QCD. Consequently, one hopes that some of
the universal features of these strongly coupled theories may also shed some light when the
dual of the QCD is discovered.

In this thesis, we apply the AdS/CFT correspondence to address some issues in the
strongly coupled gauge theories as well as in the string theory. The first part of our in-
vestigation is inspired by the recent results of the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven. It is believed that a strongly coupled quark-gluon plasma phase of matter
has been discovered in this experiment. One of the main evidences favoring this is that the
medium can be described by an ideal hydrodynamics leading to a low shear viscosity of the
fluid. Possibility of having large jet quenching factor with considerably high energy loss
per unit length of moving partons in this medium is also believed to be a consequence of
the strong coupling effects. While none of these arguments are definitive, in this thesis, we
will take a view that the strong coupling effects in the plasma are important and we need
to improve our theoretical understanding. Following this spirit, in the first part of the the-
sis, we introduce a holographic QCD model discussed in [178]. The dual of this model is
described by an asymptotically anti deSitter (AdS) black hole in Einstein-Maxwell-Dilaton
system. This model has some similarities with the QCD. We will have occasions to discuss
this in detail in the later chapters. By employing the holographic techniques, we calculate
the drag force, the jet quenching parameter, the screening length and the binding energy of
an external quark-antiquark pair within this model. We hope that some of the predictions
arising from our analysis may be universal in strongly coupled theories including the QCD.
We subsequently investigate a model within the well studied N = 4 super Yang-Mills
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Chapter 1. Introduction

(SYM) plasma. This admits a gravity dual which is an AdS-Schwarzschild black hole.
We further introduce, instead of a single probe quark, a quark cloud of constant density.
Our motivation here is to first calculate the dual back-reacted geometry. Using this new
geometry, we holographically calculate the drag force on a single quark (from the cloud)
when it is in motion. We note here that, generally in the study of the drag force on a heavy
quark (say charm) passing through the QGP medium, the back-reaction of the plasma is
usually neglected. Our work serves as an attempt to capture such effects at least for the
SYM plasma.

In the second part of this thesis, our aim is to exploit the other side of the duality conjec-
ture. Here we investigate some non-perturbative features of the gravity by looking at their
weakly coupled boundary duals. It is well known that the type IIA string theory (or M-
theory) contains non-perturbative semi-classical objects called the giant gravitons. Within
the AdS4/CFT3 duality, we consider the transitions among the giant gravitons and also
between the giants and the normal gravitons. This is done by mapping these computations
into a set of equivalent computations on the boundary. The boundary gauge theory is now
given by the U(N1) × U(N2), N = 6 Chern-Simon-matter theory proposed by Aharony,
Bergman and Jafferis. We first identify the giant gravitons with the Schur polynomials in
the gauge theory and further study the transition probabilities by considering correlators
involving the Schur polynomials. Finally, we consider a particular non-trivial background
produced by an operator with large R-charge and find that, in the presence of this back-
ground, due to the contributions of the non-planar corrections, the large N1, N2 expansions
get appropriately modified. For a particular choice of the gauge group, N1 = N2 = 2
the supersymmetry of the Chern-Simon-matter theory enhances from N = 6 to N = 8.
Further in this theory, the matter and the gauge field take values in a 3-algebra [130]. Moti-
vated by the consistent generalization of Kac-Moody and (center-less) Virasoro 2-algebras
into respective 3-algebras, we end this thesis with a construction of the w∞ 3-algebra. In-
terestingly, this w∞ 3-algebra satisfies the “Fundamental Identity condition” which can be
thought of a generalization of the Jacobi identity of ordinary 2-algebra.

Before we go on to present our results in the later chapters, in the next section we give
a brief introduction to the string theory and the Dp branes. Subsequent sections contain an
elaboration of Maldacena’s conjecture mainly focusing on the AdS5/CFT4, various tests
and generalizations of the correspondence. We also provide some selective applications
of this conjecture to prepare ourselves for the later chapters. This chapter ends with a
discussion on giant gravitons of M-theory/type IIA theory and the AdS4/CFT3 version of
the conjecture. A plan of the rest of the thesis has been provided at the end of this chapter.

1.2 D brane

1.2.1 A brief description of strings and D-branes
The notion of string theory is based on a radical idea that the elementary particles are
actually different vibrational modes of an one-dimensional extended objects called strings .
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They can be either open or closed depending on the boundary conditions [1–6]. Strings are
characterized by a parameter, energy per unit length of the string, known as string tension
(Ts)

Ts ≡
1

2πα′ with α
′ ≡ l2s . (1.1)

Here ls is the string length and hence α′ has a dimension of (length)2. Excitement in this
subject is primarily due to the fact that along with the other mediators of the interactions,
string theory contains a spin two massless excitation in its spectrum. This massless ex-
citation, known as the graviton, mediates the gravitational interaction. To reconcile the
correct strength of this interaction,

√
α′ has to be of the order of 10−33cm which sets the

length scale of string theory in a quantitative way. The interactions among the strings are
determined by another parameter gs which is dimensionless and related to the expectation
value of a field which appears with the massless spectrum of the strings, known as dilaton.
Physical consistency requires the five different types of superstring theories in 10 dimen-
sions, namely the typeI , typeIIA, typeIIB, SO(32) heterotic and E8 × E8 heterotic. It
has been shown that these five different string theories are, in fact, connected with each
other via the S, T , U dualities [7, 8]. The main emphasis of this thesis lies on the typeII
theories. The worldsheet of the typeII theories contain eight scalars (eight transverse coor-
dinates of the string) and eight Majorana fermions. Eight Majorana fermions can be further
considered as sixteen Majorana-Weyl fermions. Eight of them have left handed chirality
(left-moving), and the rest of the fermions have right handed chirality (right- moving). Both
of these right-moving and left-moving fermions enjoy periodic and anti periodic boundary
conditions. We refer to the periodic boundary condition as the Ramond (R) sector and the
anti-periodic boundary condition as the Neveu-Schwarz (NS) sector [9–11]. Based on the
boundary conditions imposed on two different types of worldsheet fermions, we have four
independent sectors of the spectrum, namely (R-R), (NS-NS), (R-NS), (NS-R). The
(R-NS) and (NS-R) sectors give spacetime fermions. The massless spectrum of the (NS-
NS) sector consists of spacetime boson, such as the graviton gµν , the antisymmetric tensor
Bµν , the dilaton φ. The massless spectrum of the (R-R) sector also contains the spacetime
boson such as the p+1 form fields Ap+1. To remove the unphysical tachyonic ground state
from the spectrum, GS projection [12] is implemented in two different ways in the R − R
sector, and this procedure gives two different typeII theories, called as the typeIIA (even
p) and the typeIIB (odd p).

Besides the one dimensional strings, string theory contains p dimensional solitonic ob-
jects which are charged under Ap+1. These solitons can be thought of as a p dimensional
hypersurface embedded in the space time on which the open strings can end. They are
known as Dirichlet p-branes (Dp-branes) [13,14]. The string end points attached to the Dp
brane satisfy the Neumann boundary condition along the p + 1 space-time directions and
the Dirichlet boundary conditions along the (9 − p) spatial directions. Dp brane interacts
with the open and the closed string. The minimal coupling of the Dp-branes with the form
fields can be written as

µp

∫
Ap+1, (1.2)
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Chapter 1. Introduction

where µp is the charge of the brane and is related to the tension Tp of the brane as

µp = Tp(2π)
7
2 ls

4gs, (1.3)

where,

Tp =
1

(2π)pgsl
p+1
s

. (1.4)

Tp is determined from the string amplitude of a process describing the exchange of closed
strings between a pair of Dp-branes [13, 14]. There are two complementary pictures of
the Dp brane, namely, a closed string picture (supergravity description) and an open string
picture (supersymmetric gauge theory description). In the supergravity description, we
consider a stack of N number of Dp branes charged under the R − R form fields. This
configuration is stable because the Dp branes are BPS object and consequently they do not
exert force among each other. In this scenario, for large N , Dp-brane has solitonic, static
description in terms of a metric and the R−R form potential. On the other hand, the open
string modes live on the Dp brane. The dynamics of these modes is encoded in a quantum
field theory on the Dp brane. In particular, the massless vector modes along with the
fermions and the transverse scalar fields furnish a supersymmetric gauge theory [17]. The
detail exploration of these two complementary pictures give rise to the idea of gauge/gravity
duality which is also known as AdS/CFT correspondence [18–21]. This duality, long
expected to appear from the works of ’t Hooft and Susskind [15, 16], got a strong support
from a proposal due to Maldacena [18]. In the next couple of sub-sections we elaborate
upon the supergravity as well as the gauge theory descriptions of the Dp brane leading to
the correspondence.

1.2.2 D-branes as supergravity solution
In the closed string picture, the Dp brane is a solitonic solution of the typeII theory.
Among many important properties satisfied by the Dp brane solution, we note that it is
a half BPS object preserving 16 of 32 spacetime supersymmetry, carries the charge of
the (R − R) form field and it is isotropic in the transverse directions. The solution of
our interest can be constructed by studying the effective low energy typeII action that
involves the massless bosonic modes, such as the metric gµν , the dilaton φ, the p + 2
form field strengths Fp+2 from the (R−R) sector, the (NS −NS) 3-form fields and their
supersymmetric partners [22–25]. In Einstein frame, the action can be written as,

IE =
1

16πG10

∫
d10x

√
|g|(R− 1

2
∂µφ∂

µφ− 1

2

∑
p

1

(p+ 2)!
eapφF 2

p+2 + ....). (1.5)

The dots in the action stand for the (NS −NS) 3 form fields and the fermionic fields. The
dilatonic coupling ap is defined as,

ap = −1

2
(p− 3). (1.6)
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The ten dimensional gravitation constants, G10 is related to previously mentioned parame-
ters gs and ls as follows,

G10 = 8π6g2
s l

8
s . (1.7)

The Euler-Lagrange’s equation of motion for the gµν , dilaton φ and the p + 2 form field
strengths Fp+2 can be written respectively,

Rµ
ν =

1

2
∂µφ∂νφ+

1

2(p+ 2)!
eapφ((p+ 2)F µξ2...ξp+2Fνξ2...ξp+2 −

p+ 1

8
δµνF

2
p+2),

∇2φ =
1
√
g
∂µ(

√
g∂νφg

µν) =
ap

2(p+ 2)!
F 2
p+2,

∂µ(
√
geapφF µν2...νp+2) = 0. (1.8)

The form field tensor Fp+2 in the action is considered as electric. Using electric/magnetic
duality in this set up, it is easy to define it’s magnetic Hodge dual

F̃10−p−2 = eapφ ∗ Fp+2. (1.9)

It can be shown that under the following set of duality transformations,

apφ→ −apφ, (p+ 2) → (10 − p− 2), Fp+2 → F̃10−p−2, (1.10)

the equations of motion (1.8) remain invariant [25]. Now we consider a particular class of
supergravity solutions depicting the D3-brane. The D3-brane solution plays a major role
to understand the most well studied example of AdS/CFT . It is important to note that
the D3-brane carries the charge of the self dual five form field strength. Generalizations to
p 6= 3 branes are rather straightforward. Imposing the self-duality condition F5 = ∗F5, a
solution of (1.8) in the Einstein frame can be found as,

ds2 = H−1/2(−fdt2 +
3∑
i=1

(dxi)
2
) +H1/2(f−1dr2 + r2(dΩ5

2)),

H = 1 + (
h

r
)
4

, f = 1 − (
r0
r

)
4

,

h8 + r4
0h

4 =
Q2

16
, φ = Constant, gs = eφ. (1.11)

h can be determined by the integration constants, r0 and Q. Here we have considered

(t, x1, x2, x3) as the world-volume coordinates of the D3-brane and r =
6∑
i=1

yi
2, where

{yi} are the transverse coordinates which are orthogonal to the world-volume. For electric
ansatz, the solution for five form field strength is obtained as,

Fti1i2i3r = εi1i2i3H
−2Q

r5
. (1.12)
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To make the form field self dual we replace F5 → F5 + ∗F5. The parameter Q is related to
the charge µ3 of the D3 brane,

µ3 =
Ω5Q

(2π)
7
2 l4sgs

, (1.13)

where Ω5 is the volume of the 5-sphere, r0 turns out to be the horizon of the metric where
f(r) vanishes. The singularity is localized at r = 0. The solution given in (1.11) is
supersymmetric only when r0 vanishes, which is then called the extremal D3 brane. The
explicit form of a single extremal D3 brane solution is

ds2 = H−1/2(−dt2 +
3∑
i=1

(dxi)
2
) +H1/2(dr2 + r2(dΩ5

2)),

h4 =
Q

4
, f(r) = 1, H = 1 +

Q

r4
. (1.14)

Following eqn (1.14), one can construct an effective low energy supergravity solution for
the N coincident extremal D3-branes. In this case, equation (1.3) should be generalized
for N number of branes and hence

µ3 = NT3(2π)
7
2 ls

4gs. (1.15)

Now using (1.15), (1.13) and (1.4) we can write Q in terms of N , ls and gs.

Q = 16Nπgsls
4. (1.16)

With these, the solution takes the final form:

ds2 = H−1/2(−dt2 +
3∑
i=1

(dxi)
2
) +H1/2(dr2 + r2(dΩ5

2))

H = 1 +
l4

r4
, l4 = 4Nπgsls

4. (1.17)

This N number of extremal D3-branes span along the three spatial directions x1, x2, x3.
From the gravitational point of view, this stack of branes is similar to that of a point particle
with mass M ∼ NT3 in the six transverse directions. Therefore the metric depends only
on the radial coordinate r. The solution (1.17) approaches the Minkowski geometry in the
asymptotic limit (r � l)

ds2
Minkowski = (−dt2 +

3∑
i=1

(dxi)
2
+ dr2 + r2(dΩ5

2)), (1.18)

with a small correction term which is of the order of l4

r4
. Using the relations, G10 ∝ gs

2ls
8

and M ∝ NT3 ∝ N
gsls

4 , we get l4

r4
∝ G10M

r4
which can be thought of as the gravitational

potential due to a massive object of mass M in the six transverse directions {yi}. Thus l
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is considered as the characteristic length scale of gravitational effect of N number of 3-
branes. This effect is very strong in the region r � l where the metric (1.17) becomes
AdS5 × S5 geometry.

ds2
AdS5×S5 =

r2

l2
(−dt2 +

3∑
i=1

(dxi)
2
) +

l2

r2
dr2

︸ ︷︷ ︸
AdS5

+ l2(dΩ5
2)︸ ︷︷ ︸

S5

. (1.19)

Hence we conclude that the far away geometry, sourced by N number of coincident D3
branes is a flat ten-dimensional Minkowski space, whereas close to the branes it represents a
‘throat’ geometry of the form AdS5×S5. An important property of this metric (1.17) is it’s

non-constant red shift factor, H(r)−
1
4 = (1 + l4

r4
)
− 1

4 . The energy Ep of the configuration
measured by an observer at a fixed position r differs from the energy E∞ measured by an
observer at infinity by this redshift factor and are related by

E∞ = H(r)−
1
4Ep. (1.20)

Therefore any excitation near the throat geometry appears energetically very small with
respect to an observer at infinity. In the low energy limit, these exited modes decouple
from the massless supergravity modes in the flat space time. So we get two decoupled
theories. One is the close string theory with all higher excitations (typeIIB) near AdS5 ×
S5 geometry and the other is the free supergravity in asymptotically flat spacetime.

We record here that AdS5 is a space-time with a constant negative curvature. It can be
geometrically realized as an embedding of a hypersurface in the six dimensional flat space.

X2
0 +X2

5 −
4∑
i=1

X2
i = l2, (1.21)

The metric of this space-time is obtained as,

ds2 = −dX2
0 − dX2

5 +
4∑
i=1

dX2
i . (1.22)

The isometry group of AdS5 is SO(2, 4). In addition to that, the S5 has an isometry group
SO(6) ∼ SU(4). We know that the superstring theories living on AdS5 × S5 have 32
supercharges since the spacetime is maximally symmetric. These symmetries combine
into the super-Lie group PSU(2,2|4). More details can be found in [21, 25].

So far we have discussed the N D3-branes in terms of the low energy supergravity
description. This is the picture seen by the closed strings propagating in the bulk. In the
next subsection, we study the same stack ofN number coincidentD3 branes from the open
strings perspective.
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1.2.3 D-branes and gauge theory
We pointed out earlier, the Dp brane has an equivalent description in terms of the open
strings. To further elaborate on this, let us consider N number of coincident Dp branes
in 10 dimensional flat spacetime. Like in previous subsection, we restrict our analysis
for p = 3 in typeIIB theory. According to the perturbative string theory, two kinds of
excitation modes arise. One is the open string modes living on the world volume of the
D3- brane and the other is the closed string modes living in the bulk of the theory. Indeed
two different modes interact with each other [21]. The total action can be written as,

Stotal = Sbrane + Sbulk + Sint. (1.23)

While the Sbrane contains the U(N) gauge fields, the Majorana fermions in the adjoint
representation of U(N) and the massive open string modes,the Sbulk includes massless and
massive modes of the closed string sector. It is important to note that, for a singleD3-brane,
the maximally supersymmetric gauge theory living in the 3 + 1 dimensional world volume
corresponds to a single species of U(1) gauge field. For N number of coincident D3 brane,
one can associate a non-dynamical degree of freedom, namely the Chan-Paton level, with
both the ends of the open strings. For each end of the open strings, the Chan-Paton level
runs from 1 to N , giving rise to N2 number of U(1) gauge fields of different species. But
N2 is the dimension of the adjoint representation of U(N) gauge group, so indeed we find
the maximally supersymmetric U(N) gauge theory living in the 3 + 1 dimensional world
volume of the N parallel D3-branes. Again there is a U(1) part associated to the trace,
which constitutes an Abelian sub-sector of U(N). Excitation related to this U(1) provides
the dynamics of the brane’s center of mass. Due to the overall transnational invariance,
this U(1) part decouples from the remaining SU(N) part describing relative dynamics
among the branes in the stack. Henceforth, we consider that the stack of N number of D3
branes corresponds to a SU(N) gauge theory [26]. The effect of the low energy limit in 10
dimensions, i.e, taking α′ → 0 limit at finite gs and N results into a decoupling between
the massless and the massive modes of open string sector. However, interactions between
the massless modes in this sector, controlled by the gs, remain non-trivial. Finally, the
massless effective gauge theory living on the world volume of the D3 branes is equivalent
to the dimensional reduction of the SU(N), N = 1 super Yang-Mills(SYM) gauge theory
in 10 dimensions to 3+1 dimensions. Up to the two derivative level, this is exactly the 3+1
dimensional SU(N), N = 4 super Yang-Mills gauge theory. In particular, via dimensional
reduction the ten-dimensional gauge field Aµ reduces to a four-dimensional gauge field
Aa and six scalar fields φi. The ten-dimensional Majorana spinor reduces to the four 4-
dimensional Weyl spinors λAα , where A = 1, 2, 3, 4 is the R symmetry (will be explained
shortly) index and α = 1, 2 is the Weyl index. The action of the 3+1 dimensional SU(N),
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N = 4 super Yang-Mills gauge theory is given by [27],

SN=4 =

∫
d4xTr{− 1

2g2
YM

∑
a,b

F abFab +
θI
8π2

∑
a,b

F abF̃ab − i
∑
a

λ̄σ̄aDaλ−
∑
a

(Daφ)2+

g2
YM

2

∑
i,j

[φi, φj]
2 + fermion-scalar term},

(1.24)

where gYM is the SYM gauge coupling and θI is the instanton angle. The trace is taken
over the SU(N) indices. The gauge coupling is determined by the string coupling,

g2
YM = gs. (1.25)

N = 4 SYM gauge theory further exhibits a R-symmetry. This is a global rotational
symmetry among the 6 scalars φi, and thus has a symmetry group SO(6)R = SU(4)R.
The scalars have mass dimension 1 and the fermions have mass dimension 3

2
, thus all the

terms in the action together with the measure, are dimensionless. This renders the theory to
be scale invariant. The combination of this scaling symmetry and the Poincarè symmetry
in the four dimensions gives the conformal symmetry SO(2, 4). N = 4 supersymmetry
in four dimensional space has 16 supercharges, but the conformal superalgebra doubles
the number of the supersymmetry generators. So the total number of the supercharges
becomes 32. Finally, together with the supersymmetry, the R-symmetry and the conformal
symmetry, the superconformal group of the four dimensional SU(N), N = 4 SYM gauge
theory becomes PSU(2, 2|4). This is also the supergroup ofAdS5×S5 geometry discussed
in the previous subsection.

The rest of the action also simplifies in the low energy limit because of the following
reasons. All the interaction terms in the Sint as well as the higher order corrections in the
Sbulk come with positive powers of the ten-dimensional Newton’s constant G10. G10 is
proportional to κ2

10 where κ10 ∼ gsα
′2. So in the low energy limit, the Sint becomes zero

and Sbulk describes a free supergravity in the ten-dimensional bulk spacetime.
We note that in the low energy limit, the closed string picture of the extremal D3 brane

gives a decoupling between the typeIIB superstring theory (all excitations are allowed)
near the throat geometry of AdS5 × S5 and the super gravity in the asymptotically flat
spacetime. In the open string picture of the extremal D3 brane, the low energy limit results
into a decoupling between the N = 4 SYM and the free supergravity in the bulk. As the
both pictures describe the same extremalD3 brane, hence identification of the super gravity
modes in both sides naturally leads to a conclusion that the N = 4 SYM is dual to the
typeIIB superstring theory on AdS5 × S5. The systematic exploration of this relationship
builds the AdS/CFT correspondence which we discuss in the following section.

9
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1.3 AdS/CFT correspondence
From our previous discussion it is clear that the action of the system is given by the con-
tribution from the branes, the bulk and the interactions between them. In the low energy
limit (α′ → 0), we have two decoupled theories, namely, the N = 4, SU(N) SYM living
on the stack of branes and the free supergravity in the bulk. In the closed string picture, the
low energy limit leads to a scenario where the same stack of N number of D3 branes can
be described by two decoupled theories, namely, the typeIIB superstring theory near the
throat geometry of AdS5 × S5 and the supergravity in the asymptotically flat spacetime. If
we compare the low energy limit of both the open and the closed string pictures and take
into account that both of them give the description of the same N number of D3 branes, we
can match the free supergravities in the bulk for these two descriptions and also identify the
gauge theory on the branes with the string theory on the throat, leading to the Maldacena
conjecture [18]:

N = 4, SU(N) super Yang-Mills theory in four dimensional Minkowski space is dual
to type IIB superstrings theory on AdS5 × S5 with N unit of R-R 5-form flux on S5.

The parameters of the theory are related as,

gs = g2
YM ,

g2
YMN = λ =

l4

4πls
4 (1.26)

The above statement is a strong version of Maldacena’s AdS/CFT correspondence as
it is a correspondence for any values of the parameters N and λ. However, it is very
difficult to implement this version at the computational level. The very lack of a consistent
formulation of full quantum string theory on a curved space such as AdS5 × S5 plays the
role of hindrance. Nevertheless, there are precise non-trivial limits restricting the range of
the parameter space where explicit computations can be performed. For example, in the
’t Hooft limit, (N → ∞, λ is fixed and finite) the SYM reduces to only planar sector and
the string theory has to account for only tree level diagram (gs ∼ 1/N → 0) whereas all
the higher order loops get suppressed as sub-leading corrections. This particular limit is
also known as the planar limit. There is another limit of this correspondence, known as
the strong coupling limit (λ � 1), where the string theory side is more tractable. In this
limit, the N = 4 gauge theory becomes strongly coupled and thus enters into the non-
perturbative regime. According to the relation (1.26), λ � 1 limit of the gauge theory
translates into l � ls limit of the string theory. As a result, the string theory sector of
the correspondence dramatically simplifies to the corresponding supergravity. l � ls limit
can be equivalently understood as m2

s � R, where the Ricci scalar R ∼ 1
l2

provides the
curvature scale of the spacetime and ms is typically the mass scale of the string. In a
low energy process, m2

s � R suggests us to keep only the massless string modes, i.e.
the supergravity modes of the theory. Thus to summarize, ’t Hooft limit suppresses the
quantum nature of dual string theory and the strong-coupling limit reduces its stringy effect.

10
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Moreover with the simultaneous consideration of the both limits, the full string theory
reduces to a ten dimensional classical theory of supergravity.

In many cases, it is convenient in many cases to express the fields in the ten dimensional
gravity theory into the tower of fields in AdS5. This can be done by compactifying the ten
dimensional action on S5. This approach renders the original duality into an equivalence
between the four dimensional, N = 4 SYM at strong coupling and the gravity in AdS5.
This is commonly refereed to as AdS5/CFT4 correspondence. The advantage in this ap-
proach is twofold. Firstly, it makes the realization of the holographic principle manifest
with the bulk spacetime being AdS5 and the boundary being four-dimensional Minkowski
spacetime. Secondly, this provides a unified footing to many different examples of the
gauge/gravity duality. With the dimensional reduction on S5 the ten dimensional action
takes the following form,

S =
1

16πG5

∫
d5x[Lgravity + Lmatter]. (1.27)

Lgravity is the well-known Einstein-Hilbert Lagrangian in five dimensions with a negative
cosmological constant Λ = − 6

l2

Lgravity =
√
−gAdS5 [R +

12

l2
]. (1.28)

Lmatter is the Lagrangian sourced by the matter fields and G5 is the five dimensional New-
ton’s constant satisfying the following relation,

G5 =
G10

π3l5
. (1.29)

It is important to note that the AdS/CFT correspondence is a strong / weak type du-
ality. In the non-perturbative gauge theory regime (λ � 1), the string theory lives on a
weakly curved background (l � ls) and is tractable at the level of computation. On the
other hand, the perturbative regime of gauge theory (λ � 1) is computationally tractable
but the string theory lives on a highly curved back ground (l � ls) and goes beyond pertur-
bative analysis. In this thesis we will explore various aspects of both sides of this duality.
We will study certain non-perturbative aspects of the finite temperature gauge theory of the
strong interaction via the the computation in the dual weakly coupled gravity theory. We
will also analyze the transitions between the typical nonperturbative semiclassical objects
called the giant gravitons (explained later) via the computations in the weakly coupled dual
gauge theory. In the latter case of study, we exploits the AdS4/CFT3 correspondence.
Here we briefly elucidate the correspondence and the limit we are interested in. The de-
tailed discussion of this duality will be provided later.

The M-theoretic version of the AdS4/CFT3 correspondence: U(N)k × U(N)−k,
N = 6 three dimensional Chern-Simon gauge theory is dual to the M-theory on AdS4 ×
S7/Zk (k � N

1
5 ), where k is the Chern Simon level that takes only integral values.

11
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We can compactify the M-theory on AdS4 × S7/Zk to the typeIIA string theory on
AdS4 × CP3. The duality takes the following form.

The string-theoretic version of theAdS4/CFT3 correspondence: U(N)k×U(N)−k,
N = 6 three dimensional Chern-Simon gauge theory is dual to the typeIIA string theory
on AdS4 × CP3 (N

1
5 � k � N ),

The illuminating part of theAdS4/CFT3 duality is its nature of again being strong/weak
type. The Chern-Simon level k comes out as an overall factor in the action of the gauge
theory. Eventually g2

CS ≡ 1
k

becomes the coupling constant of the theory. For k � 1, the
theory is weakly coupled and fits with the perturbative analysis. However, for both versions
of the duality, we can define a ’t Hooft coupling constant λ = N

k
. Thus the ’t Hooft limit,

which is actually the planar limit of the theory, becomes N → ∞, k → ∞, where λ is
kept fixed. By observing the strong/weak nature of the duality we can further take a limit
in which the gauge theory has a free field description.

k � N, λ� 1, (1.30)

Though a direct proof of this conjecture is still lacking, in the following we only provide
some evidences in support of the correspondence focusing only on the AdS5/CFT4 ver-
sion. Our discussion is mainly based on the matching of the symmetry, the spectrum and
the correlators from the both sides.

1.3.1 Matching of the symmetry

We have already seen, in the low energy closed string picture, the isometry of AdS5 × S5

spacetime and the spacetime supersymmetry combine in a super-Lie group PSU(2, 2|4). In
the low energy open string scenario, the combination of the conformal symmetry, the R
symmetry and the supersymmetry forms the same superconformal group. Moreover there
is also a matching of symmetries in the non-perturbative sector of both sides of the duality.
N = 4 SYM has a SL(2, Z) S-duality symmetry. This symmetry transformation acts
on the complex gauge coupling τgauge = θ

2π
+ i 4π

g2Y M
, where θ is the instanton angle. The

typeIIB string theory is invariant under the same S-duality which acts on the axion-dilaton
complex coupling τstring = ξ

2π
+ ie−φ, where ξ is the axion field.

1.3.2 Matching of the spectrum
The validity of the AdS/CFT correspondence is supported by the fact that the supersym-
metric group of both sides of the duality is PSU(2, 2|4). Accordingly, the representation
of the group should have a one to one correspondence in both sides of the duality. This re-
alization leads to an idea that the gauge invariant local operators in the gauge theory maps
into the local fields in the dual gravity. Here we discuss a particular sector of the gauge
theory multiplet and its dual gravity multiplet and establish the operator-field correspon-
dence [21].

12
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The four dimensional, SU(N), N = 4 SYM theory has four supersymmetry generators
QA
α (and their complex conjugates Q̄α̇A), where α = 1, 2 is the Weyl-spinor index and A

transforms as the 4 of the SU(4)R R symmetry group. The gauge theory has a unique vec-
tor multiplet which includes a vector field Aµ (µ belongs to SO(1, 3)), four complex Weyl
fermions λAα , and six real scalars φi which transform as 6 of SU(4)R. Using the field con-
tents of the vector multiplet, one can construct the local operators in this theory as a gauge
invariant observable. Since the fields in this theory transform in the adjoint representation
of SU(N), such operators involve a product of traces of the product of the fields. The op-
erators are divided into two sectors, namely, the single trace operators and the multi-trace
operators. Here we only concentrate on the single trace operators as in the ’t Hooft limit
the correlators of the multi trace operators, made of some set of fields, are suppressed by
the powers of N compared to the correlators of the single trace trace operators involving
same set of fields. We have already discussed that the gauge theory is a superconformal
theory. The superconformal nature of the symmetry suggests one to classify the single trace
operators into the chiral primary and the non-chiral primary operators. The chiral primary
operators are annihilated by half of the supersymmetry generators. The representation of
the superconformal algebra lies on the consideration of states with the lowest conformal
dimension which are annihilated by the fermionic generators in the superconformal alge-
bra and by the generators of the special conformal transformation. The rest of the states
of higher dimensions can be build by acting the supersymmetry generators and the mo-
mentum operator Pµ on the lowest dimension state. The supercharges have the helicity ±1

2

and the chiral primary operators in such representation have a range of helicities varying
from λh − 2 to λh + 2. Here λh is the helicity of the operator with lowest dimension. The
systematic computation of the representation of the chiral primary operators of the N = 4
SYM theory is very difficult. Therefore we focus on the known representation available
in the literature. We start with the fact that the lowest components of the representation
consists of only scalar fields. Let’s consider the following operator,

On = OI1I2...In = Tr(φI1φI2 ...φIn). (1.31)

It can be proved that the short chiral primary representations can be built by treating the
above operators as the lowest components, if and only if the indices (I1I2...In) form a
symmetric trace-less product of n 6’s of SU(4)R with n = 2, 3, · · · , N . By trace-less rep-
resentations, we mean that when any two indices are contracted the result gives zero. This
is a representation of weight (0, n, 0) of SU(4)R. The superconformal algebra restricts the
dimension of these fields On to be [On] = n. As mentioned before, the full chiral primary
representations can be achieved by the action of the supersymmetry generators and the
momentum operator Pµ on the fields On. The total number of states in this chiral primary
representation is 256× 1

12
n2(n2−1), half of them are bosonic and half are fermionic. Since

these short chiral primary multiplets are built on a scalar field of helicity zero, the helicity
of the higher dimensional primaries ranges between −2 and 2. For example, to construct
the bosonic field of n+1 dimension we have to consider the action of the two supercharges
on On. If the supercharges are of the same chirality (QQ) then we get a Lorentz scalar field
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in the (2, n− 2, 0) representation of SU(4)R, and an anti-symmetric 2-form of the Lorentz
group, in the (0, n − 1, 0) representation of SU(4)R. Both of them are complex and the
conjugate fields are constructed by the action of the two supersymmetric charges of oppo-
site chirality (Q̄Q̄). Moreover the action of QQ̄ gives a real Lorentz vector in (1, n− 2, 1)
representation of SU(4)R. Now we consider a particular values of n, i.e. n = 2. This
representation consists of a vector of dimension 3 (SU(4)R R symmetry current), a sym-
metric tensor field of dimension 4 (energy-momentum tensor), a complex scalar field of
dimension 2.

We can now identify fields on AdS5 with the operators in the dual conformal field
theory. The single-trace operators in the field theory may be identified with the single-
particle states in AdS5, while the multiple-trace operators correspond to the multi-particle
states. The conformal dimension of the field theory operator is identified with the mass
dimension associated with the particle states in the dual gravity. Since the full typeIIB
string spectrum onAdS5×S5 is not yet known, we only concentrate on the states that arises
from the dimensional reduction of the ten dimensional typeIIB supergravity multiplet
[35]. Firstly, the helicity of this multiplet ranges from −2 to 2. Here also we can achieve a
short multiplet built on the lowest dimensional scalar field in (0, n, 0) representation of the
R symmetry group SO(6) for n = 2, 3, ....∞. The lowest dimensional scalar field in each
representation is generated by a linear combination of the metric along S5 and four form
field which is indexed along S5. For n = 2, the spectrum contains a massless graviton field,
the massless SU(4)R gauge field. The massless graviton field is identified with the energy
momentum tensor in the gauge theory sector and and the massless SU(4)R gauge field is
identified with the SU(4)R symmetry current of the gauge theory.

1.3.3 Matching of the correlators
Another physical quantity, eligible for comparison in each of the theories is the correlation
function. Since the gauge theory is conformally invariant, it has no scale. Consequently,
there is no asymptotically free states and S-matrix of the theory. An important class of
invariant, that a CFT does possess is the scaling dimensions of operators. These must be
related to some other invariants in the gravity (string) theory. The supergravity in AdS5 ×
S5 has a mass scale and the asymptotic mass eigenstates. From the equivalence of the
correlators in both sides of the duality we can introduce a precise relation between the
conformal dimension and the mass scale.

As argued in the Gubser-Klebanov-Polyakov-Witten prescription [19, 20], AdS/CFT
correspondence maps the problem of finding quantum correlation function in the field the-
ory side to a classical problem in the dual gravity. The correlation function of a local gauge
invariant operator O(x) in the gauge theory can be calculated by deforming theory in the
following way.

S → S +

∫
d4xφ0(x)O(x), (1.32)

where φ0(x) is the source term. Boundary values of a bulk field φ plays the role of a source
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for the gauge-invariant operator O in such a way that the following relation holds:

Wgauge[φ0] = −log〈e
R

d4xφ0(x)O(x)〉CFT ' onshell S[φ0(x)]sugra. (1.33)

Here W is the generating functional for the connected Green’s function in the gauge the-
ory. In the bulk supergravity we have to solve equations of motion supplemented by the
Dirichlet boundary condition on the boundary with the specified boundary value. Finally
we plug the solution into the supergravity action and get back the “on-shell” action.

It is straight forward to compute the n-point correlation function. We need to take the
source φ0 to zero at the end of this calculation.

〈T [O(t1, x1)...O(tn, xn)]〉 =
∂nSsugra

∂φ0(x1, t1)....∂φ0(xn, tn)

∣∣∣
φ0→0

. (1.34)

For an illustrative purpose, we consider the simplest of all, namely the two point function.
For two-point function, only the quadratic part of the bulk action is needed. To this end,
consider a massive scalar field in AdS5. The generic form of the action is given as,

S ∼
∫
d5x

√
g

[
1

2
(∂φ)2 +

1

2
m2φ2

]
(1.35)

We consider a metric form of AdS5 space,

ds2 =
l2

z2
(−dt2 +

3∑
i=1

(dxi)2 + dz2), (1.36)

where z → 0 represents the boundary and z → ∞ represents the region deep inside the
bulk. The action in this metric reads,

S =
1

2

∫
dzd4x

l3

z3
[(∂zφ)2 + (∂µφ)2 +

m2l2

z2
φ2], (1.37)

Now we consider the momentum space decomposition of the massive scalar field,

φ(xµ, z) =

∫
d4keik.xfk(z). (1.38)

The equation of motion in terms of the Fourier modes is given by

f
′′

k − 3

z
f

′

k − (k2 +
m2l2

z2
)fk = 0, (1.39)

with k2 = gµνkµkν .
The equation of motion (1.39) has a solution which is a linear superposition of the

Bessel functions, z2I∆−2(kz) and z2K∆−2(kz). The behavior of the above Bessel functions
in the interior of the bulk AdS space (z → ∞) is as follows,

I∆−2(kz) ∼ ekz, K∆−2(kz) ∼ e−kz. (1.40)

15



Chapter 1. Introduction

By demanding the regularity at z → ∞ we set the coefficient of I∆−2(kz) to zero. In the
above expressions we have introduced a parameter ∆ related to the mass and the radius of
curvature of AdS space

∆ = 2 +
√

4 +m2l2. (1.41)

∆ comes as an exponent in the expression of the scalar field. To make it a real exponent
one needs to impose the condition, m2l2 ≥ −4. This condition is known as Breitenlohner-
Freedman (BF) bound and turns out to be very important for stability of the solution [21,
36, 37]. The boundary condition of the scalar field φ(x) is set to be

φ(x, z)|z=ε = φ0(x)ε
4−∆, (1.42)

where we put a cutoff ε which is arbitrarily closed to the actual boundary z = 0. Using the
above boundary condition, we normalize the function fk(z)

fk(z) = φ0(k)z
2ε2−∆K∆−2(k, z)

K∆−2(k, ε)
. (1.43)

Now we take this solution, plug it back into the equation (1.38). The on shell action for
ε→ 0 takes the form

Sonshell =
1

2

∫ ∞

0

∫ ∞

0

d4kd4k
′

(2π)8
δ4(k + k

′
)φ0(kµ)φ0(k

′

µ)
(

Divergent term

−21−2(∆−2)(∆ − 2)k2(∆−2) Γ(2 − ∆)

Γ(∆ − 2)

)
. (1.44)

Equation (1.44) has some divergent pieces in the limit ε → 0. However these terms can
be subtracted off by adding some suitable counter terms in this action. According to our
previous definition of the correlators, we take two derivatives on the action (1.44) to get

< O(k)O(k
′
) >= −21−2(∆−2)(∆ − 2)k2(∆−2) Γ(2 − ∆)

Γ(∆ − 2)
. (1.45)

In the position space, the above 2-point function takes the form,

< O(x)O(x
′
) >= 2π−2 Γ(∆)

Γ(∆ − 1)

1

|x− x′|2∆
. (1.46)

From the position space realization of the 2-point function, the interpretation of ∆ as the
scaling dimension of O(x) becomes evident. Correlation functions of the non-scalar oper-
ators are also very useful to study the relation between the mass and the conformal dimen-
sion. A table of the mass-dimension formula in AdSd+1 with unit radius is given below.

• scalars: ∆± = 1
2
(d±

√
d2 + 4m2),

• spinors: ∆ = 1
2
(d+ 2|m|),
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• vectors: ∆± = 1
2
(d±

√
(d− 2)2 + 4m2),

• p-forms: ∆ = 1
2
(d±

√
(d− 2p)2 + 4m2),

• spin-3/2: ∆ = 1
2
(d+ 2|m|),

• massless spin-2: ∆ = d.

We conclude this subsection with a remark that the AdS/CFT correspondence has passed
many tests beyond the two-point functions. In particular the three point functions are well
understood and are protected by the conformal invariance in the field theory side. Four
point functions do not follow this protection, but have been studied widely. A detailed
discussion of these higher point correlators are given in [38, 40–44].

1.4 Generalization of AdS/CFT correspondence

Having given a brief account of the AdS/CFT conjecture, in this section, we generalize
this duality by introducing temperature, chemical potential and also by adding flavors to
this gauge theory.

1.4.1 Finite temperature and chemical potential
One way of generalizing the gauge theory is to introduce a temperature. There exists two
common ways. First is to perform a Wick rotation on the AdS geometry to bring it into
the Euclidean signature and then compactify the Euclidean time. The inverse of this peri-
odicity defines the temperature in the gravity theory. The other is to deform the pure AdS
by introducing a black hole, keeping the asymptotic geometry unchanged. The Hawking
temperature now becomes the temperature of the gauge theory [45–47]. In this thesis, we
focus on the second approach. To further illustrate, we consider a stack of N number of
blackD3 brane. The geometry is described by a non-extremal version of the solution (1.11)
where the radius of horizon (r0) is finite.

ds2 = H−1/2(−f(r)dt2 +
3∑
i=1

(dxi)
2
) +H1/2(f−1(r)dr2 + r2(dΩ5

2)),

f(r) = 1 − (
r0
r

)
4

, H = 1 +
(
√
r08 + Q2

4
− r4

0)

2r4
,

(1.47)

where Q, as mentioned in eq (1.13), is related to the charge of the black D3 branes. The
above non-extremal geometry is asymptotically flat but, in the near horizon limit, it de-
scribes a black hole in the AdS space times a five sphere

ds2
AdSbh×S5 =

r2

l̃2
(−fdt2 +

3∑
i=1

(dxi)
2
) +

l̃2

fr2
dr2 + l̃2(dΩ5

2), (1.48)
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where the radius of the AdSbh geometry is same as that of the S5 and is given as

l̃4 =
(
√
r08 + Q2

4
− r4

0)

2
. (1.49)

We can associate a temperature TH , known as the Hawking temperature, entropy and other
thermodynamical quantities with the non-extremal solution. Additionally the solution sat-
isfies all the laws of thermodynamics. One then associates this temperature, entropy and
other thermodynamical observables with those of the finite temperature SYM [24]. The
Hawking temperature is defined as [47],

TH = − 1

4π

(dgtt
dr

)
r=r0

=

√
2

π
r0

[
r4
0 +

√
r8
0 +

Q2

4

]− 1
2

. (1.50)

The above temperature is identified with the gauge theory temperature. Hawking-Bekenstein
formula then associates an entropy with the black hole [36].

SBH =
A

4G5

, (1.51)

where G5 is the five dimensional Newton constant and A is the horizon area. Because the
horizon has an infinite volume, the black hole entropy diverges. To make the entropy finite
we divide it by the total volume V and get a finite entropy density s. Finally, from the
relation G5

l̃3
= π

2N2 and equation (1.50), we write the entropy density in terms of gauge
theory parameters,

s =
1

4G5

(πl̃)3T 3
H =

π2

2
N2T 3. (1.52)

The s is then interpreted as the entropy density of the dual gauge theory. Once we know
the entropy, the other thermodynamical variables associated with the gauge theory can be
easily derived. For example, we compute the pressure P =

∫
sdT , the energy density

E = −P + Ts and the free energy density F = E − Ts.

P =
π2

8
N2T 4,

E =
3π2

8
N2T 4,

F = −π
2

8
N2T 4. (1.53)

Here, the factor N2 multiplying various expressions is important. Since the degrees of
freedom of the deconfined phase of the SU(N) gauge theory is of the order N2, one imme-
diately suspects that the dual of the high temperature black hole geometry is a deconfined
SU(N) SYM. Indeed this was explicitly shown in a paper by Witten [20].
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We can further introduce a chemical potential into the system. The N = 4, SU(N) SYM
has a global SU(4)R-symmetry and one can consider the three independent R charges cor-
responding to the three Cartans of SU(4). For each U(1) Cartans we can turn on a chemical
potential (µ). Dual of these R currents are the gauge fields Aµ in the bulk. Therefore, the
dual of the finite temperature gauge theory at non-zero chemical potential are the charged
black hole in AdS space.

1.4.2 Adding flavor
It is further possible to add the flavor degrees of freedom in the boundary gauge theory. The
matter spectrum of the N = 4, SU(N) SYM contains the scalars and the Weyl fermions
(transforming under the adjoint representation of SU(N)). Therefore, this theory does
not include the quarks. It was first Karch and Katz [48] who introduced a way to include
the fundamental degrees of freedom in this gauge theory set up. This is done by adding
an extra stack of Nf Dp branes in addition to the pre-existed N number of D3 branes.
The fundamental degrees of freedom can be obtained from the modes of the open string
excitations with one end of the string on the stack of N D3 branes and the other end on
a different stack of Nf Dp branes. We cannot distinguish between the branes of a stack
on which a string ends. Thus we associate a SU(N) symmetry group with N D3 branes
and a SU(Nf ) symmetry group with Nf Dp branes [4,49]. We interpret the SU(N) as the
color and the SU(Nf ) as the flavor groups. The flavor branes are separated from the color
branes by a distance L (L ∈ (0,∞)). Further the so-called probe limit (Nf � N ) ensures
that the back-reaction of the additional Nf Dp branes on the near horizon geometry of the
D3 branes can be neglected. The types of possible open string modes in this new setup
come out as follows. The first one is of 3 − 3 type which ends only on the D3 branes. The
second one is, p − p type which ends on the Dp branes. The remaining one is of 3 − p
type which connects the D3 and the Dp branes. All types of open strings interact among
each other. The degrees of freedom associated with the 3 − p strings transform under the
bi-fundamental representation of the gauge group SU(N) × SU(Nf ). In the low energy
limit and for p > 3, the open string picture simplifies significantly. The p− p strings living
on the Nf Dp brane get decoupled from the 3 − 3 and the 3 − p sectors. Only interaction
that remains, acts between the 3-3 strings and the 3− p strings. The gauge group, SU(Nf )
associated with the Nf Dp branes becomes a global symmetry group. In the closed string
picture, the geometry is back reacted by the stack of N D3 branes. The Dp branes remains
as probe brane in this back-reacted geometry. In fact such stable probe brane solutions can
be explicitly constructed from their actions [48, 50]. To summarize we can say that the N
= 4, SU(N) SYM theory coupled to the Nf degrees of freedom transforming under the
bi-fundamental representation of gauge group SU(N) × SU(Nf ) is dual to the typeIIB
string theory in AdS5×S5 coupled to the open string living on the Nf number of probe Dp
branes. So far we have not mentioned the values of p. In the typeIIB theory, the possible
configurations are D3 − D5 and D3 − D7 with specific orientations. The existence of
the tachyonic mode in the ground state of the D3 −D5 system excludes the possibility of
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having this configuration. So we are left only with the D3−D7 system. If we quantize the
3 − 7 string, we get the fundamental degrees of freedom as Nf number of scalars and Nf

number of Dirac fermions. All of them have equal mass,

M =
L

2πα′ , (1.54)

where L is the separation between the D3 and the D7 stacks. In literature, these scalars
and the fermions are collectively called as “quarks”. The inclusion of the D7 branes on top
of the pre-existed the D3 branes, breaks the supersymmetry further from N = 4 to N = 2.

The inclusion of the fundamental dynamical quark opens up a window to study an
important non-local operator in this context, called the Wilson loop. The loop can be traced
out by the world line of the dynamical quark. In the next section we introduce the Wilson
loop in the light of AdS/CFT .

1.5 Wilson Loop
Wilson loop is a gauge invariant non-local operator which plays an important role in the
Abelian and the non-Abelian gauge theories. They are useful for evaluating the propaga-
tor of a particle interacting with the gauge fields, for studying the theory of confinement.
Various approaches can be employed to study the Wilson loops, such as, the perturbation
theory, the AdS/CFT techniques, the lattice methods, the localization techniques in the
supersymmetric theories etc. For our purpose we only concentrate on the AdS/CFT tech-
niques. For Non-Abelian gauge theories, Wilson loop operator is defined as,

W(C)r = TrP(i
∮
c
(Aµdx

µ)), (1.55)

where C is the closed path on which the loop is computed. Here r stands for the either
the fundamental (F) or the adjoint representation (A). The trace is taken over the gauge
group involved in the theory. P is the path ordering [51]. Aµ = AaµTa is the gauge field
and T a’s are the generators of the gauge group. The Wilson loop can be thought of as the
world line of a quark or antiquark. We have the probe quarks in the theory emerging from
the probe D7 branes. In the dual gravity, we consider a fundamental string hanging from
the probe D7 brane living in the AdS geometry. It is oriented along the radial direction.
The end point of the string attached to the boundary is identified with the quark and the
worldsheet traced out by the string is identified with the world line of the quark. The
mass of the quark is proportional to the length of the string. The expectation value of the
Wilson loop operator gives the vacuum to vacuum propagator of the quark along the loop
C. The identification between quark and the string naturally suggests that there must be
a correspondence between the expectation value of Wilson loop operator and the partition
function of the dual string world sheet A [52, 53],

〈W(C)r〉 = Zstring[∂A = C]. (1.56)
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We are particularity interested in the case of the infinitely heavy quark. In the gravity dual
we can achieve this by placing the probe D7 brane at the boundary of the AdS geometry.
Simultaneous application of ’t Hooft limit (N → ∞ at fixed λ) and the strong coupling
limit (λ� 1) simplifies the partition function.

〈W(C)r〉 = Zstring[∂A = C] = eiS(C). (1.57)

S(C) is the Nambu-Goto action [54] of the probe string world sheet dual to the world line
(C) of the quark. The consideration of the ’t Hooft limit as well as the strong coupling limit
is very crucial. Here, N → ∞ at fixed λ leads to the fact that the string coupling gs → 0.
So there will be no string loops which splits off from the worldsheet. λ � 1 signifies that
the string does not fluctuate around its classical configuration. Using the relation specified
in eqn (1.57), we now perform a simple computation of the potential energy of a quark
antiquark pair (qq̄) sitting in the vacuum configuration.

Let us consider a rectangular Wilson loop traced out by a qq̄ pair seating at the boundary
of theAdS5 spacetime and separated by a distanceL. We considerL to be along a boundary
coordinate x1 and the pair moves along the time direction up to an interval T . We assume
that T � L. From the field theory side, we expect the 〈W(C)r〉 to

〈W(C)r〉 = e−iEtotT = e−i(2M+V (L))T , (1.58)

whereEtot is the total energy of the configuration, V (L) is the potential energy andM is the
mass of the quark/antiqurak. As the field theory is strongly coupled, we do the computation
in the dual gravity. The AdS5 metric parameterized by xµ = t, x1, x2, x3, z is given as,

ds2
AdS5

=
l2

z2
(−dt2 + dx1

2 + dx2
2 + dx3

2 + dz2). (1.59)

First we fix the parametrization of the worldsheet as well as the boundary conditions. We
consider the worldsheet surface whose action S(C) is to be extremized by the AdS5 co-
ordinates xµ = xµ(τ, σ), where τ, σ are the worldsheet parameters. In the T � L limit,
we assume that the worldsheet surface is translationally invariant along the τ direction,
Therefore it allows,

xµ(τ, σ) = xµ(σ). (1.60)

Due to the reparametrization invariance of the string world sheet action, we can choose a
suitable gauge.

τ = t, σ = x1. (1.61)

The Wilson loop is traced on a hyperplane defined by the boundary coordinates x2, x3 as,

x2(σ) = constant, x3(σ) = constant. (1.62)

To fulfill the requirement that the worldsheet has the boundary specified by C, we impose
a boundary condition on the bulk coordinate z.

z(±L
2

) = 0. (1.63)
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The Nambu-Goto action in the AdS5 background takes the following form,

SNG = − l2T
2πα′

∫ L
2

−L
2

dσ
1

z2

√
1 + z′ , (1.64)

where z′ is dz
dσ

. It is suitable now to introduce some dimensionless parameters in this anal-
ysis. We define σ′ and y so that,

σ = Lσ
′
, z(σ) = Ly(σ

′
). (1.65)

Exploiting the symmetry z(σ) = z(−σ) we get,

SNG = − l2T
πα′L

∫ 1
2

0

dσ
′

y2

√
y′2 + 1. (1.66)

The equation of motion of y takes the following form,

y
′2

=
y0

4 − y4

y4
. (1.67)

y0 is the turning point where y′
= 0. By symmetry consideration this should be at σ′

= 0.
We can explicitly calculate y0 by using the integration below

1

2
=

∫ 1
2

0

dσ
′
=

∫ y0

0

dy

y′ . (1.68)

The result turns out to be y0 =
Γ( 1

4
)

2
√
πΓ( 3

4
)
. Now, using the value of y0 and changing the

variable from σ′ to y in equation (1.66) we compute integration. It is clear that the integrand
is singular at y = 0. This divergence, coming out of this singularity, is due to the presence
of infinite mass of qq̄ pair. We can set a IR cutoff at z = εwhere ε is arbitrary small number.
Now we have to subtract 2MT term from the exponential in equation (1.58). M can be
calculated by considering the Nambu-Goto action representing two disjoint world sheets
hanging from the boundary along z direction. The calculation is similar to the one already
presented here. The final answer for M is

√
λ

2πε
. After the subtraction, we take ε → 0 limit

to achieve the finite qq̄ potential.

V (L) = − 4π2

Γ4(1
4
)

√
λ

L
. (1.69)

The potential is written in terms of gauge theory parameter. From the above discussion it
becomes clear that in this set up the computation of Wilson loop boils down of evaluating
worldsheet action of a classical string. One can also repeat the same computation for qq̄
pair seating in the finite temperature gauge theory. Accordingly, in the dual gravity we have
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to replace the pure AdS5 geometry by an AdS5 black hole background. See [26] for the
details.

Having discussed some generalizations of theAdS/CFT conjecture, we are now ready
to review some applications of this correspondence. These will include an exploration of
properties of the strongly coupled plasma phase of the gauge theory. We will also review
certain expected features of the string/M theory on the AdS geometry by looking at their
weak coupling boundary duals.

1.6 Quark- Gluon-Plasma and AdS/CFT
After the discovery of the asymptotic freedom in the QCD, it was realized that the confined
phase of the quark and the gluons could reached a new deconfined phase of the matter
at high temperature and at high number density. In the phase diagram of the QCD, this
appears as a crossover (explained shortly after) from the confined to the deconfined phase.
In the later phase, the quarks and gluons can freely move within the system [59]. This
deconfined phase resembles the one which existed for a very short time period (∼ 10µ sec)
after the Big Bang [80], or the one which still exists in the core of the neutron star [61].
This new phase of the matter is called the quark-gluon plasma (QGP). To further elaborate
upon this new phase, it is instructive to consider the phase diagram of the QCD (see figure
1.1) in some detail.

Let us first focus on the region of low temperature and low baryon chemical potential
(see figure 1.1). The degrees of freedom which become dominant at the low tempera-
ture (T ≤ 100Mev) and at the zero baryon chemical density are the pions and the light
mesons. As the temperature increases above 100 Mev, the massive resonance states are
produced. According to the the pioneering work by Hagedorn [55], at some critical temper-
ature around 160 MeV, the density of the hadrons becomes very large. In fact, it becomes
so large that the hadron looses its composition and system starts behaving like a plasma
made out of the quarks and the gluons. The new phase of matter we mentioned before is
known as quark-gluon plasma (QGP) [56]. In this phase, the quarks and the gluons move
freely within the system.

The temperature at which the transition between the hadronic phase and the QGP phase
occurs is studied using the lattice QCD method. The computation is done at zero baryon
chemical potential. It is found that, around the critical temperature many thermodynamical
quantities increase very steeply [57]. This behavior signifies the occurrence of a phase
transition. However, as mentioned in [58], there is no sharp phase transition that takes place
around the critical temperature. Instead one observes a continuous crossover between the
two phases. Correspondingly, the critical temperature is estimated not to be labeled by a
point but by a region between 150-190 MeV. It is however not clear from the phase diagram,
if the QGP phase is strongly coupled. We shall come back to this issue later in this section.

One can also study the phases of the QCD at zero temperature but at a finite baryon
chemical density. The phase starts with a vacuum, remains same with the increase of the
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Figure 1.1: QGP phase diagram

potential up to a critical value (922 MeV). At and above this critical value of baryon density,
a phase of nuclear matter is favored than the vacuum phase leading to a transition from the
vacuum phase to the nuclear matter phase.

This is a first order phase transition which is extended from zero to finite but low tem-
perature. Further increase of baryon density beyond 922 MeV by keeping the temperature
at low value results into more and more compressed nuclear matter. If the baryon den-
sity continues to increase, at some critical value which is not properly known yet, again a
transition occurs from the phase of the highly dense nuclear matter to a phase described in
terms of quarks. The quark phase is known as the color superconductor phase.

When both the temperature and the baryon density are finite, it is very hard to study
the QCD phases. However, the development of the lattice QCD shows that the crossover
which is initially realized at zero chemical potential continues to occur even at finite but
small values of the baryon density. Finally it smoothly extends up to the critical point in
the phase diagram. Moreover, if the baryon chemical potential is increased further, the
phase transition is expected to be a first order one. From theoretical speculations, it was
thought that this QGP phase could be produced through the collision of two heavy nuclei
with ultra relativistic energy [62]. In recent time, it is believed that at the Relativistic Heavy
Ion Collider (RHIC) in BNL [63–69] or at the Large Hadron Collider (LHC) in CERN [71]
this QGP phase has indeed been created.

The experimental observation at the RHIC is done at various stages. Two disk like
heavy gold nuclei approach together with the maximum center of mass energy 200 GeV.
They are Lorentz contracted by a factor γ = Ebeam

M
∼ 110, where Ebeam is the energy per

nucleon and M is the nucleon mass. After collision, a large momentum transfer (Q ∼
1GeV) takes place among quarks, antiquarks and gluons (partons). As a result, secondary
partons with large transverse momentum (pT ) are produced in very early time (∼ 1

pT
) after

collision. Consequently, soft collisions with small momentum exchanges take place. Again
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many more partons are produced and they get thermalized after ∼ 1fm/c. The thermalized
phase expands hydrodynamically, cools down adiabatically and finally the hadronization
occurs. The hadron matter interacts among themselves quasi-elastically and continues to
expand till chemical freeze out (the inelastic interactions between the hadrons cease) and
thermal freeze out (the elastic interactions between the hadrons cease) happens. During
this process, the unstable hadrons decay down and stable ones move to the detector. The
most intriguing quest that arises is whether the quark gluon plasma phase has at all been
discovered in the RHIC. We do not yet have any direct evidence of the plasma as the particle
reached at detector are those produced after the hadronization. However, the observation of
the extreme level of thermalization, strong collective behavior, screening of the color fields
in the intermediate process give indirect signatures of plasma formation. Very low values of
the viscosity obtained from the experimental data suggest the plasma as a strongly coupled
perfect fluid. Before we go on to study the properties of the strongly coupled plasma, in
the next few subsections, we elaborate upon some features of the RHIC plasma.

1.6.1 Expectation of the pQCD
One of the most important motivations of the RHIC experiment is to study the phase struc-
ture of the QCD and the physics of the phase transition from a confined phase of colorless
hadrons to a deconfined phase made of free quarks and gluons at very high energy and/or
density. The other motivation is whether the QGP phase can be produced in a laboratory
setup. Asymptotic freedom suggests that in the QCD, the enhancement of the energy scale
in any process lowers the strength of the coupling. So the expectation from the perturbative
QCD (pQCD) was, in the deconfined phase the quarks and the gluons interact very weakly
and collectively behave like an ideal gas. The physics can be explained by the pQCD at
and above the critical temperature Tc, where the Tc signifies the temperature at which the
confinement/deconfinement phase transition occurs [72]. It was also argued from the per-
turbative study that the cascade of jets (stream of the free quark and gluons) produced in the
RHIC should be similar to those formed in the individual proton-proton collision. If there is
small deviation between them it should be captured by the perturbation technique [72, 73].
At low density, where the perturbative analysis breaks down, physics should be explained
by the lattice QCD. In this approach the system can be thought of as a grand canonical
ensemble and it resides over a space-time put in a lattice. This is a very useful technique to
compute the kinematical observables, such as critical temperature, entropy etc. Using this
method the numerical value of Tc turned out to be ∼ 150 − 180MeV [68, 74].

1.6.2 Suppression of J/ψ and screening length .
So far we have discussed a few theoretical predictions of the quark gluon plasma. Let
us now see if the analysis of the experimental results really agrees with the predictions.
First consider the status of observing the phase transition between the confined phase and
the QGP phase. Unfortunately, any direct observation of this phase transition turns out to
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be vary hard due to a number of experimental obstacles. The Au-Au collision in the RHIC
takes place over a time scale of the order of ∼ 10 fm/c. It is not fully clear that what is taking
place during this extremely small time interval, is a phase transition between two states in
thermal equilibrium. Therefore, the signature of the phase transition remains elusive [63].
However, there are indirect but very elegant ways to observe the various stages of the matter
after collision and confirm the signature of the QGP formation. For example, one of these
approaches is to look at how the properties of the particles get modified by their interactions
with the thermal medium. A very important phenomenon related to these modification
of particle properties is suppression of the number of the J/ψ mesons observed by the
detector [63, 70].

What actually happens is that the vector meson, consisted of a pair of quark and anti-
quark, melts while passing through the plasma like medium. Consequently, fewer number
of such mesons are observed by the detectors. One of these vector mesons is the J/ψ
which decays into two muons. These leptons are very easy to detect. By comparing the
cross-sections of the J/ψ meson production both for the Au-Au collision in the RHIC
and the proton-proton collision, it becomes clear that the J/ψ production is suppressed by
the medium induced effect. Thus the deconfined phase of the free quark and gluons can
perhaps be identified with the QGP phase [75]. It is very crucial to understand the suppres-
sion of the J/ψ meson as a color screening effect. The high energy collisions produce the
tightly bound qurkonium states made of heavy quark anti-quark pair (qq̄). In particular, the
resonant interaction of the charm quark(c) and the anti-charm quark(c̄) produces the J/ψ
as a charmonium bound state. The cc̄ bound states experience some modification of their
vacuum properties (properties at the zero temperature) due to the presence of the hot QGP
medium. Firstly, the confining potential acting between them dies out. Secondly, the color
Coulomb interaction between the cc̄ pair modifies due to the free color charges present in
the medium. The free color charges actually screen the charge of c(c̄) which is reduced in
magnitude as seen by c̄(c). Eventually the color Coulomb interaction gets modified into
the color Yukawa interaction Exp[−r/Ls], where r is the separation distance between cc̄
and Ls is the effective length scale known as screening length [76]. This length scale signi-
fies the minimum separation length of cc̄ beyond which the pair dissociates. We know that
there is only one scale in the theory which is the medium temperature. So we associate the
length scale Ls with the inverse of the temperature. This explains the fact that the increase
of the temperature accelerates the dissociation of the charmonium bound states. Typically,
the J/ψ dissociates in between 1.5Tc to 2.5Tc. If the temperature is sufficiently high, the
screening length is very small (less than the radius of bound) the J/ψ state melts into the
free c and c̄ . They drift apart far away from each other. This screening length also de-
pends on the relative velocity between the c(c̄) pair and the rest frame of the QGP plasma.
Experimental result shows that the Ls grows inversely with respect to the velocity.
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1.6.3 Jet quenching.
Another strong signature of the QGP formation is Jet quenching. In the proton-proton
collision at very high energy, there is always a production of parton (quark and gluons)
pairs whose subsequent evolution leads to the fragmentation and the hadronization. Finally,
the two jets of hadrons carrying high transverse momentum and propagating back-to-back
in the center of mass frame are detected. Therefore, the detector can be triggered with
the particles carrying high transverse momentum in one of these jets. The distribution
of radiation in the azimuthal angle ∆φ exhibits two prominent peaks at ∆φ = 0 (near
side) and ∆φ = π (away side). For Au-Au collision in the RHIC experiment, the away
side peak at ∆φ = π disappears. This observation compels us to imagine that the hard
scattering happens near the edge of the collision region, so that the near side jet escapes to
the detector, while the away side jet gets suppressed. But this kind of suppression of the
particles with high transverse momentum is only conceivable if we consider the formation
of plasma with the free color charges. While passing through a medium the away side jet
interact with the free color charges and the color equivalent of Bremsstrahlung interaction
takes place. This interaction results a quenching of hard scattered jets which are dragged
and the high transverse momentum is dissipated in the medium. One can compute the ratio
RAA between the particle yield in the Au+Au collisions and the respective yield in the
proton-proton collisions rescaled by the number of participating nucleons [77]

RAA =
d2NAu−Au/dpTdη

Ncolld2Np−p/dpTη
, (1.70)

where N is the number of nucleon with transverse momentum pT . Ncoll is the total number
of binary Au-Au at a given impact parameter, η is the pseudo-rapidity. According to the
prediction of the pQCD, the nucleus-nucleus collision is a superposition of the collisions
between the constituents nucleons and RAA should be 1. But in the reality it is suppressed
roughly by a factor of 5. This observation further shows that the process of jet quenching
can not be explained by the pQCD methods. The theoretical way to describe the suppres-
sion or the quenching of partons in away side jet is achieved by computing the rate for
energy loss due to the in medium effect. This energy loss is typically related to a transport
coefficient called jet quenching parameter q̂, which characterizes the parton interactions in
the QGP medium.

1.6.4 Collective motion
Apart from the evidences which originate from the observation of modified properties of
the matter, there is another signature of the QGP formation. Instead of looking for the
individual parton, one can also observe the collective behavior of the system. Indeed, one
of the main aims in the relativistic heavy ion collisions is to study the global features like
the total and elastic cross sections. For this kind of experimental analysis, the object of in-
terest is not the individual partons but mostly the macroscopically large fireball whose size
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exceeds the microscale of correlation inside the system. In the case of the QGP plasma this
microscale is provided as the inverse of the system temperature [78]. In the RHIC experi-
ments, the collisions between the Au nuclei with the mass number(A ∼ 200) and the size
(∼ 6fm) produce an object which is at a very high energy and density. It is known as the
fireball. The fireball expands hydrodynamically until the thermal and chemical freeze out
take place. Theoretically, the collective behavior can be nicely explained by the relativistic
fluid dynamics [79,80]. The stronger the strength of the interaction between the free quarks
and the gluons is, the better is the explanation from the fluid dynamics. The velocity of the
fluid has either the longitudinal (along the beam of jets) component or the transverse com-
ponent. The transverse component can be divided again into two components. One is the
radial flow which is present in the axially symmetric central collision. The other one is the
elliptic flow which exists only for the non-central collision. By centrality we mean attain-
ing the minimum value of the impact parameter of collision (length of a vector connecting
the centers of the nuclei). We are mostly interested in those collective flows of the system
which is contributed by the elliptic flow. During the process of QGP formation, fireball
keeps an almond like shape for a non-zero value of the impact parameter. The shape is not
spherically symmetric, but spatially anisotropic with respect to the reaction plane (plane
which connects the centers of the two nuclei along the direction of the impact parameter
of the collision). Because of this shape, when the fireball evolves hydrodynamically, this
spatial anisotropy translates into a momentum anisotropy. The anisotropy in momentum
can be realized as a Fourier distribution of the momentum in the azimuthal angle [81–86].

dN

dyd2pT
=

dN

2πpTdpTdy

[
1 +

∞∑
k=1

2vk cos(k(φp − ΨRP ))
]
, (1.71)

where N is the number of nucleons with transverse momentum pT , φp is the azimuthal
angle corresponding to pT , y is the rapidity parameter and the ΨRP is the orientation angle
of reaction plane. vk = vk(y, pT ) is the kth harmonic differential flow. The integrated flow
representing the collective dynamics can be obtained by averaging the vk over pT and y.
The second harmonics v2 is related to the elliptic flow [82]. At lower energy, the negative
values of v2 implies that flow of the momentum out of the reaction plane. At higher energy,
positivity v2 signifies the in plane flow. It is important to note that if the QGP is weakly
interacting, the whole system should expand like an ideal gas, isotropically in all directions.
At higher energy the large, non zero v2 indicates that the momentum of the in plane flow is
always contributing more than that of the out of plane flow (momentum anisotropy). This
implies that the system has a large pressure gradient and experiences a fast thermalization.
Each species of the particles has a unique elliptic flow coefficients v2 characterizing the
unique azimuthal deformation of the momentum distribution. v2 has been measured over
a large class of hadron species, namely from the pion (mpi = 140 MeV) to the Ω hyperon
(mΩ = 1672 MeV). More than 99% hadron has a transverse momentum pT < 2GeV. In this
range the experimental data shows an excellent agreement with the hydrodynamics result.
The value of the shear viscosity to the entropy density ratio (η/s) can be experimentally
measured. It turns out that η/s = .1 − .2 < 1. This small value of the η/s ratio shows
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the QGP is the most ideal fluid ever discovered in a lab. By using the results ofthe kinetic
theory one can deduce a relation between the shear viscosity and the coupling constant of
the theory [87]. According to the kinetic theory, the mean free path (lmfp) of a system is
given as,

lmfp ∼
1

nσv
, (1.72)

where n is the density of the particles, σ is the scattering cross-section, v is the typical
particle velocity. Now using the typical temperature dependence of all three parameters,
n ∼ T 3, σ ∼ λ2T−2 and v ∼ 1 we get,

lmfp ∼
1

λ2T
. (1.73)

λ is the coupling constant of the respective theory. The kinetic theory also prescribes the
relation between the shear viscosity and the mean free path,

η ∼ e lmfp, (1.74)

where e is the energy density (e ∼ T 4). Using eqn (1.73) and eqn (1.74) we get the relation
between the shear viscosity and the coupling constant.

η ∼ T 3

λ2
. (1.75)

From eqn (1.75) it is clear that when the viscosity is very small the coupling constant of the
theory is very large. So the smallness of the η/s ratio again confirms the plasma is strongly
coupled.

The above discussions of the quarkonium suppression, the jet quenching and the col-
lective motion actually suggest that the phenomenological aspect of the QGP can not be
explained theoretically only using the pQCD methods. One of the other suitable theoretical
candidates is the lattice QCD. This is a theoretical tool, which is based on the numerical
calculations of kinematical observables of thermal gauge theory, even at strong coupling.
The quantitative behavior of all thermodynamical variables, the thermal equation of state,
the critical temperature, the screening length etc are the successful triumph of this subject.
However, there are severe limitations for which it does not play the role of the best suitable
candidate. All the kinematical results have deceivingly small impacts when we shift from
the weak coupling regime to the strong coupling regime. So the lattice QCD is somewhat
insensitive to the typical strongly coupled phenomena. Moreover, in order to avoid some
phase factors the lattice QCD uses the Euclidean signature of the metric. In this signature,
the Euclidean time coordinate is made periodic. So any real time dynamics in Minkowski
signature becomes difficult to analyze within the lattice methods. Considering these limi-
tations of the pQCD and the lattice QCD, other avenues were proposed and explored. One
of the most important options is perhaps the use of the gauge/gravity duality. However, we
would like to highlight at this stage that the gauge theories admitting the gravity duals are
the super Yang-Mills (SYM) theories and they are different from the real QCD in many
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aspects. In particular , SYM is conformal and non-confining. However, some of these
differences get blur if we consider both these theories at temperature above the critical
temperature. Then none of these strongly coupled theories are confining and both display
the Debye screening

Many differences however still remain. Consider the N = 4 SYM for example. Notice
that the number of degrees of freedom (d.o.f) of the SU(N) , N = 4 SYM with N = 3 is
larger than those of the QCD. So if the observable (to calculate) is dependent on d.o.f in a
non trivial way, the end result will differ for both theories. Furthermore, in the N = 4 SYM
theory, we take N → ∞ and λ→ ∞ limit in order to perform the reliable computations in
the bulk. In the QCD, the coupling constant remains large but finite and the number of color
is three. Therefore while comparing with the QCD, the results of the N = 4 SYM should
be supplemented by some non-trivial correction terms. Lastly, the QCD has the d.o.fs in
the fundamental representation of the gauge symmetry group. These fundamental d.o.f
are three flavor, Nf = 3. They contribute to the thermodynamics obtained at temperature
above Tc. But in the case of the N = 4 SYM we always take either Nf = 0 or Nf � N . It
is extremely difficult to keep N ∼ Nf in one hand and do computations in the dual gravity
theory on the other.

From above discussion it is clear that, in spite of having few similarities, the plasma
phase of the QCD at finite temperature is certainly different from the strongly coupled N =
4 SYM at finite temperature. However, interestingly the studies on the transport coefficients
and the dynamical observables of the various strongly coupled plasmas computed using the
gauge/gravity duality show universal behavior [87–92, 174]. It is this universality which
attracted attention of many researchers. Consequently, the gauge theories having gravity
duals were explored even though they differ from the QCD.

To substantiate our arguments, let us review here some of the universal features of
the strongly coupled plasma admitting the gravity dual. In [87–89, 91, 92], Kovtun, Son
and Starinets discovered that the shear viscosity to entropy density ratio (η/s) is 1

4π
for

all such strongly coupled gauge theories. If the gauge theories are at finite temperature,
then the universality of many physical coefficients (ξ(T )) like the speed of sound, the bulk
viscosity, the diffusion coefficient, the DC conductivity of probe U(1) charge emerge

ξ(T ) = ξCFT + Cξ(∆)(
πΛ

T
)
2(4−∆)

, (1.76)

where the Λ and the ∆ are the energy scale and the scaling dimension. Cξ(∆) is a constant
[114, 115]. One can further show that the ratio of the R charge conductivity (σ) to the
charge susceptibility (χ) at finite temperature and zero chemical potential is universal [92].

σ

χ
≥ ~c2

4πT

d

d− 2
, (1.77)

where c is the velocity of light, d ≥ 3 is the dimension of the gauge theory, T is the tem-
perature. For a finite chemical potential, electrical conductivity shows a universal behavior
for a large class of finite temperature gauge theory with gravity dual
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The conductivity of gauge theories satisfying a constraint has universal form [174].

σ = σH(
sT

ε+ p
)
2

, (1.78)

where σ is the conductivity of gauge theory, σH is a geometric quantity evaluated at hori-
zon, s, T, p, ε are the entropy density, the temperature, the pressure and the energy density.
Such universal behaviors motivate us to calculate the transport coefficients and dynamical
observables of the QGP like medium admitting a gravity dual. In the following subsections
we review some of the holographic computations of such quantities, namely drag force on
a heavy probe quark, jet quenching parameter and screening length of a quark-antiquark
pair, in the context of the N = 4 SYM plasma. Computations similar to these, will be
performed in the next two chapters for different models.

1.6.5 Drag force in SU(N) N = 4 SYM gauge theory
When the high-energy partons move through the QGP medium, their energy loss is encoded
by drag force they experience. Within the framework of the gauge/gravity duality, drag
force on an external heavy quark, moving with a constant velocity in the N = 4 super
Yang-Mills plasma at finite temperature, is computed in [94–100]. The mass of the quark
is generally assumed to be much larger than the typical energy scale associated with the
medium (inverse of the temperature scale). The time scale of quark motion is assumed to
be large compared to the relaxation time scale of the medium.

Here, we briefly describe the the drag force computation, following [95]. A computa-
tion similar to this will be employed in the next chapter. The high energy parton is repre-
sented by a heavy probe quark charged under the fundamental representation of SU(N).
It is holographically identified with the one of the endpoints of a fundamental string, at-
tached to the boundary of the dual AdS background. The body of the string in the AdS
bulk geometry is realized as the gluonic fields in the thermal plasma. The background,
we consider, is a five dimensional AdS black hole, which is a part of the ten dimensional
geometry defined in (1.48). This, in turn, introduces a non-zero temperature in the bound-
ary. The dynamics of a fundamental string in the black hole background is described by
the Nambu-Goto action. We consider the motion of the string along x1 only. In the static
gauge, τ = t and σ = r, the string dynamics can be specified by the function x1(t, r).
Moreover, we choose the ansatz of the late time behavior associated with the string profile
as: x1(t, r) = vt+ ξ(r). Accordingly, the Nambu-Goto action takes the following form

SNG = − 1

2πα′

∫
dtdr

√
1 +

f

H
(∂rξ)2 − (v)2

f
=

∫
dtdrL. (1.79)

The equation of motion of the string can be calculated from (1.79)

ξ′ = ±(2πα′)πξ
H

h

√
h− v2

h− (2πα′)2πξ2H
. (1.80)
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On the right hand side of (1.80), we consider the positive sign to take care of the trailing
nature of the string profile [95]. To obtain a physical profile ξ(r), we have to solve eqn
(1.80) and further impose the following constraints

h = v2,

πξ = − v√
1 − v2

r2
0

l2
. (1.81)

The above two constraints make the quantity under the square root in the right hand side of
eqn (1.80) always positive, therefore making ξ′ always real. To evaluate the drag force we
need to consider the conservation of world sheet current of space time energy-momentum
of the test string, P α

µ = − 1
2πα′Gµν∂

αXν around a closed loop C on the worldsheet,∮
C
(P τ

µdσ − P σ
µ dτ) = 0. (1.82)

The AdS/CFT dictionary suggests that the momentum loss of the heavy quark, during the
interaction with the medium, can be holographically identified with the flow of total string
momentum from boundary to the horizon. The rate of change of total momentum in a finite
time interval (t1 to t2) gives the desired form of the drag force.

px
1

t1
− px

1

t2
= −

∫ t1

t2

√
−gP z

x1dt, (1.83)

where px1

t is the x1 component of the total momentum at time t. The drag force is defined
as

Fdrag =
dpx1

dt
= −

π
√
g2
YMN

2
T 2 v√

1 − v2
. (1.84)

In the last expression we write the drag force in terms of gauge theory variables. The drag
force has a quadratic dependence on the temperature. The form of the velocity dependence
in the drag force expression is due to the relativistic motion of the quark.

1.6.6 Jet quenching parameter in SU(N) N = 4 SYM gauge theory
As mentioned in [101, 105, 106, 109], the high energetic parton carrying a large transverse
momentum interacts with the strongly coupled QGP medium while passing through it and
and losses energy. In addition to that, the direction of parton’s momentum with respect
to the initial one, also gets changed. This phenomena is known as “transverse momentum
broadening”. While interacting with the medium, the pertons radiate gluons by a process
which is a QCD analogue of Bremsstrahlung [102,103]. The transverse momentum broad-
ening is described by a probability function P (k⊥) defined as the probability of acquiring
transverse momentum k⊥ after propagating a distance D inside the medium. The normal-
ization condition for P (k⊥) is, ∫

d2k⊥
(2π)2

P (k⊥) = 1. (1.85)
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We can define a parameter q̂ related to the energy loss of the heavy parton in this scenario.
It is defined as the mean transverse momentum acquired by a parton per unit distance it
travels inside the medium

q̂ ≡ 〈k2
⊥〉
D

=
1

D

∫
d2k⊥
(2π)2

k2
⊥P (k⊥). (1.86)

q̂ measures the the radiative energy loss associated with the high energetic partons. This
kind of energy loss sources the jet quenching phenomenon described earlier. q̂ is known as
the jet quenching parameter [105, 106, 109]. The probability distribution of the transverse
momentum is expressed as a function of the Wilson lines traced by the heavy quark and
antiquark [107–109]. This kind of calculation assumes that the gluonic medium does not
get changed while interacting with the partons. So it can be treated as a background field.
So the Wilson line describing the trajectory of the partons is computed in the presence of
the background field. It is important to notice that a physical quantity in this scenario must
contain at least two Wilson lines. This is so due to the fact that the medium average of any
observable is accomplished at the level of the cross section. At this level only colorless
states are allowed. Therefore the quantities of physical interests in the are [26],

P (k⊥) =

∫
d2x⊥e

−ik⊥·x⊥WRep(x⊥), (1.87)

with
WRep(x⊥) =

1

dim(Rep)
〈Tr[W†

Rep[0, x⊥]WRep[0, 0]]〉, (1.88)

where WRep [x+, x⊥] is defined as,

WRep

[
x+, x⊥

]
≡ P

{
exp

[
ig

∫ L−

0

dx−A+
Rep(x

+, x−, x⊥)

]}
. (1.89)

Here we consider the boundary coordinates as t, x1, x2, x3 and define the corresponding
light cone coordinates as,

x± =
1√
2
(x0 ± x3). (1.90)

Consequently, the Wilson lines are aligned along the light cone. x⊥ is the transverse co-
ordinates and Rep is the representation of the gauge theory. In pertutrbative regime of the
gauge theory, all these quantities can be calculated [107, 109]. However, this prescription
was not very useful for strongly coupled plasma until the development AdS/CFT corre-
spondence because there was no known field theoretical computation of the Wilson line
operator for the strongly coupled plasma. As a special case of (1.57), the Wilson line cal-
culated over the light-like trajectories of the quark-antiquark pair moving in the conformal
boundary of an AdS space corresponds to the minimal area of the dual string with both
endpoints attach to the boundary.

〈WF (C)〉 = exp[−S(C)]. (1.91)
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The detailed holographic techniques for the computation of jet quenching parameter is
described in Chapter − 2. Here we briefly mention the final result [26] for N = 4 SYM
plasma.

q̂ =
π3/2Γ(3

4
)

Γ(5
4
)

√
λT 3, (1.92)

where T is the temperature of the N = 4 SYM gauge theory and λ is the ’t Hooft constant.

1.6.7 Screening length in SU(N) N = 4 SYM gauge theory
Screening length Ls between a pair of quark and antiquark, moving with a uniform veloc-
ity v, in a thermal plasma can be computed by using the AdS/CFT duality. For N = 4
SYM plasma, the computation has been done in [110]. In this computation the dual gravity
background is described by an AdS5 Schwarzschild black hole geometry which is exactly
similar to the AdS part of (1.48). In the next chapter we shall holographically compute
the screening length in detail. In those computations, we shall describe the dual gravity
theory by a general background metric which can be reduced to an AdS5 black hole geom-
etry by suitable choice of the metric parameters. Therefore, following the same procedure
described there one can reproduce the screening length for the N = 4 SYM plasma. Ac-
cording to the result given in [26], the screening length in this case depends on the velocity
of quark-antiquark pair and the temperature of the plasma in the following way,

Ls ∼
0.28

T

√
1 − v2. (1.93)

In this thesis, we shall study the drag force, the jet quenching parameter and the screen-
ing length in the context of two gauge theory models admitting gravity duals. First one is
a holographic QCD (hQCD) model discussed in [178]. Gravity dual of this model is an
asymptotically AdS (aAdS) black hole in the Einstein-Maxwell-Dilaton (EMD) system. In
the second model, we take SU(N) N = 4 SYM plasma associated with the standard AdS
black hole gravity dual. Then we add a uniform distribution of fundamental quark to this
SYM plasma. We name this gauge theory setup as the quark cloud model. Due to the pres-
ence of these extra quarks in N = 4 SYM plasma, the dual AdS black hole geometry gets
deformed. The description of the hQCD model and its gravity dual is given in chapter2
whereas the same for quark cloud model is given in chapter3.

In the following section we explore the application of the AdS/CFT to explore some
features of the non-perturbative M theory/string theory.

1.7 Strongly coupled String/M theory and AdS/CFT
One of the hallmark of the strong/weak duality in the string theory is that it teaches us
how to tame the non-perturbative sector of the string theory via the perturbative calcula-
tions in the dual field theory. The direct proof of this duality is not yet achieved as it pre-
supposes the non-perturbative formulation of string theory. However, there are a class of

34



Chapter 1. Introduction

non-perturbative half-BPS objects which are protected by the symmetry (especially super
symmetry) of both sides of the duality and allow us to carry out various checks of this du-
ality. Those states are annihilated by half of the supersymmetry generators and thus belong
to a short representation of the supersymmetry. Therefore it is meaningful to extrapolate
their properties in the weakly coupled regime to the strongly coupled regime (see [21] and
reference therein). The typeII string theory contains the Dp branes as a half BPS non-
perturbative objects. We have already seen in the typeIIB theory, the D3 brane plays a
major role in the context of the strong/weak duality. Similarly one may ask if theDp branes
(p even) of the typeIIA theory, being half BPS, can shed further light on the strong/weak
coupling duality.

When the string coupling gs is very large, an appropriate description in terms of a eleven
dimensional theory is known as M theory in the literature. In the low energy limit, it has
an effective description in terms of the eleven dimensional supergravity (11-D SUGRA).
The solution of the 11-D SUGRA allows only two kinds of stable half BPS configurations.
One is the three dimensional super-membrane called M-2 brane [117]. The other is the five
dimensional super-membrane called M-5 brane [118]. Appropriate near horizon limit of the
M2 brane facilitates a description of the AdS4/CFT3 correspondence. We first summarize
this description.

1.7.1 M-2 and M-5 branes
We start with the 11-D SUGRA preserving N = 8 supersymmetry with 32 supercharges.
We look for the the stable 1

2
BPS configuration preserving half of the supersymmetry. The

mass less sector consists of a metric GMN , three-form gauge field CMNP and the fermion
ΨM,α. The action takes the following form,

S11d =
1

2κ2
11

[ ∫
d11x

√
−G(R11 −

1

2
F 2) − 1

6

∫
C ∧ F ∧ F

]
+ fermionic terms, (1.94)

where, κ11 is the gravitational coupling constant in eleven dimensions and is related to the
eleven dimensional Plank length lp as,

2κ2
11 = (2π)8lp

9. (1.95)

R11 is the eleven dimensional Ricci scalar, G is the determinant of the metric, and F is the
four form field strength.

FLMNP = ∂[LCMNP ]. (1.96)

Three form gauge potential CMNP is related to the two-form gauge transformation param-
eter ΛPQ in the following way,

CMNP → C
′

MNP = CMNP + ∂[MΛNP ]. (1.97)

The full theory is invariant under the local supersymmetry, preserving the 32 supercharges.
However, we are interested in the 1

2
BPS configuration of the theory preserving half of the
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supersymmetry. Since we are considering only the mass less bosonic sector of the theory,
the 1

2
BPS configuration can be achieved by demanding the vanishing of supersymmetric

variation of the mass less fermion ΨM .

δΨM = 0 = ∇Mε+
1

12

( 1

4!
ΓM(dC)PQRSΓ

PQRS − 1

2
(dC)MQRS.Γ

QRS
)
ε (1.98)

The stability of the solution suggests that the BPS configuration must be supported by flux
sourced by the three form-fieldCMNP and its dual six-form C̃LMNOPQ = 1

3!
εLMNOPQRSTC

RST .
The four-form field strength FMNPQ arises from CNPQ and satisfies eq.(1.96). The dual
seven-form field strength is given as

F̃LMNOPQR =
1

4!
εLMNOPQRSTUV F

STUV . (1.99)

The 1
2

BPS configuration must be electrically and magnetically charged and acts as a source
of the magnetic and the electric flux. A magnetically charged solution must act as a source
for the four-form magnetic flux emanating through a 4-sphere enclosing the solution. In
general, for D number of spatial dimensions a d-sphere encloses a D − d− 2 dimensional
object. Therefore the magnetic source of the four-form magnetic flux in the eleven space-
time dimensions extends along 11− 4− 2 = 5 spatial dimensions. So we conclude that the
magnetic solution of the eleven dimensional supergravity is extended along the five spatial
dimensions. This five dimensional supermembrane solution gives the effective description
of M-5 brane in M-theory. From now on we refer this five dimensional object as M-5 brane.
The magnetic charge of the M-5 brane is given by,∫

S4

F = QM5, (1.100)

where S4 is a four-sphere enclosing the M-5 brane. Similar argument shows the solution
of the 11D SUGRA, which acts as a source of seven form electric flux (dual to the four
form magnetic flux), extends along the 11 − 7 − 2 = 2 spatial dimensions. This is a two
dimensional supermembrane solution giving an effective low energy description of M-2
brane in M-theory. From now on we refer this solution by M-2 brane. The electric charge
of the M-2 brane is given as, ∫

S7

F̃ = QM2, (1.101)

where S7 is a seven-sphere enclosing the M-2 brane. Now we describe the solution of eqn
(1.94) representing a stack of NM2 number of M-2 branes. We choose the world-volume
coordinates living on the branes as ya = y0, y1, y2 with y0 being the timelike direction
and the traverse coordinates as xI = x1, x2, ....., x8. By demanding the Lorentz symmetry
SO(1, 2) in world volume coordinates, the rotational symmetry SO(8) in transverse coor-
dinates and the transnational symmetry in ya coordinates, the solution takes the following
form,

ds2 = A1(r)dy
adya + A2(r)dx

IdxI . (1.102)
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The only non-zero component of electric field strength is given by,

F012r = A3(r), (1.103)

where r is the radial distance
√

(x1)2 + ......+ (x8)2 from the brane. The three functions
A1(r), A2(r), A3(r) can be described by a single harmonic function H(r)

H(r) = 1 +
(rM2

r

)6

, ∂I∂IH(r) = 0, (1.104)

where rM2 is given by
r6
M2 = 32π2NM2l

6
p. (1.105)

It is related to the charge and the tension of the M-2 brane. finally we have A1(r), A2(r),
A3(r) in terms of H(r).

A1(r) = H(r)−
2
3 ,

A2(r) = H(r)
1
3 ,

A3(r) = − ∂

∂r
(H(r)−1). (1.106)

We get the electric charge of the M-2 brane, which is quantized in NM2 units,

QM2 =

∫
S7

F̃ = 6(rM2)
6Ω7 = 2π4(rM2)

6, (1.107)

where Ω7 = π4

3
is the volume of the seven-sphere. The integration constant rM2 can be

written in terms of the brane tension TM2.

(rM2)
6 =

(2πlp)
9

2π

NM2TM2

2π4
. (1.108)

Thus we achieve a relation between the charge and the mass of a single M-2 brane

QM2 =
(2πlp)

9

2π
TM2. (1.109)

We can similiarly construct the solution for NM5 of M-5 branes. Here we briefly tabulate
the results.

• World volume coordinates, ya = y0, ....., y5.

• Transverse coordinates, xI = x1, ..., x5.

• Symmetry = SO(1, 5) × SO(5) + translational symmetry in ya coordinates.
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• ds2 = Ã1(r)dy
adya + Ã2(r)dx

IdxI .

• Magnetic filed strength = F̃012345r = Ã3(r).

• radial coordinater =
√

(x1)2 + ......+ (x5)2.

• H̃(r) = 1 +
(
rM5

r

)3

, ∂I∂IH̃(r) = 0.

• r3
M5 = πNM5l

3
p.

• Ã1(r) = H̃(r)
− 1

3 , Ã2(r) = H̃(r)
2
3 , Ã3(r) = − ∂

∂r
(H̃(r)

−1
).

• Magnetic charge QM5 = 8π2r3
M5, r

3
M5 = (2πlp)9

2π
NM5TM5

8π2 .

• Charge-mass relation for a single M-5 brane, QM5 = (2πlp)9

2π
TM5.

Combining the expressions for the charges QM2 and QM5 we get,

QM2QM5 = (2πlp)
9NM2NM5 = (2πlp)

9N, (1.110)

where N = NM2NM5 is an integer. The above relation is known as the Dirac quantization
condition. Tensions of M-2 and M-5 branes are also related as follows,

TM2TM5 =
(2π)2

(2πlp)
9N. (1.111)

The above two eleven dimensional solutions are the stable 1
2

BPS configurations of the
eleven dimensional supergravity preserving the N = 8 supersymmetry with 16 super-
charges. They stand for the low energy effective description of the M-2 brane and the
M-5 brane put in the eleven dimensional flat background. However, in the context of the
AdS4/CFT3 we need NM2 number of coincident M-2 branes probing the conical singu-
larity of the orbifold C4/Zk. The reason of considering the C4/Zk geometry will be clear
when we discuss the moduli space of the NM2 number of coincident M-2 branes probing
this particular background. Zk acts as a discrete symmetry group which rotates the phase
of the four complex coordinates of C4. The over all geometry of the background is given
by M3 × C4/Zk, where M3 represents the three dimensional Minkowski space. Since the
seven dimensional base geometry of the C4/Zk is S7/Zk, C4/Zk can be viewed as a cone
over S7/Zk. In order to generate the solution describing NM2 number of coincident M-2
branes probing the conical singularity of the orbifold C4/Zk we follow two steps. First, we
generate a solution of NM2 number of coincident M-2 branes on a flat space, C4. Then we
take a orbifold of this geometry in a suitable way. In the C4 flat background the low energy
effective description of the NM2 number of M-2 branes takes the following form,

ds2 = H(r)−
2
3dyadya +H(r)

1
3 (dr2 + r2ds2

S7), (1.112)
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where H(r) is same as in equation (1.104) We are interested in the geometry near to the
stack of M-2 brane. It can be realized by taking the near horizon limit (r → 0) of equation
(1.112). In this limit, the metric simplifies significantly,

ds2 = (
r

rM2

)
4

dyadya + (
rM2

r
)
2

(dr2 + r2ds2
S7). (1.113)

Redefining the radial coordinate as ρ =
r3M2

2r2
, we get the final form the metric,

ds2 = R̃2{dy
adya + dρ2

ρ2︸ ︷︷ ︸
AdS4

+4 ds2
S7︸︷︷︸

S7

}. (1.114)

The geometry factorizes to a direct product of a AdS4 space with radius R̃ = rM2

2
and a

seven-sphere of radius 2R̃ = rM2. Now we consider the action of orbifolding over the
seven sphere part of the geometry given by (1.114). This orbifolding is more explicit when
we write the metric ds2

S7 as a Hopf fibration of the S1 circle over three dimensional complex
projective plane CP3. S7 can be coordinatized by four complex coordinates z1, z2, z3, z4

constrained to the condition,

|z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. (1.115)

The explicit parametrization of the complex coordinates is given by,

z1 = cos ζ sin
θ1

2
ei(α+ 1

4
ψ− 1

2
φ1),

z2 = cos ζ cos
θ1

2
ei(α+ 1

4
ψ+ 1

2
φ1),

z3 = sin ζ sin
θ2

2
ei(α−

1
4
ψ+ 1

2
φ2),

z4 = sin ζ cos
θ2

2
ei(α−

1
4
ψ− 1

2
φ2). (1.116)

The range of the parameters are , ζ ∈ [0, π
2
], θ1, θ2 ∈ [0, π], α, φ1, φ2 ∈ [0, 2π] and ψ ∈

[0, 4π]. α plays the role of an overall phase factor, The metric depicting the Hopf fibration
of S1 fiber over CP3 can be described as,

ds2
S7 = (dα+ ω)2 + ds2

CP3
. (1.117)

The Fubini-Study metric of CP3 space and the one-form potential of the Kähler form of
the same space are given respectively,

ds2
CP3

= dζ2 +
1

4
cos2 ζ sin2 ζ[dψ + cos θ1dφ1 + cos θ2dφ2]

2

1

4
cos2 ζ[dθ2

1 + sin2 θ1dφ
2
1] +

1

4
sin2 ζ[dθ2

2 + sin2 θ2dφ
2
2],

ω =
1

4
cos(2ζ)dψ +

1

2
cos2 ζ cos θ1dφ1 −

1

2
sin2 ζ cos θ2dφ2. (1.118)
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Now this Zk quotienting over the seven-sphere is done by

zI → e
2πi
k zI . (1.119)

The action of the Zk quotienting translates into the effect on the phase factor α, which
identifies the total phase α ∼ α + 2π

k
, where k is an integer. This identification actually

shrinks the radius of the fiber S1 by a factor 1
k
. By re-scaling the phase factor α̃ = kα we

can rewrite the metric (1.117) in the desired form.

ds2
S7/Zk

=
1

k2
(dα̃+ kω)2 + ds2

CP3
. (1.120)

So the metric of the full-space time is now AdS4 × S7/Zk.

ds2 = R̃2{dy
adya + dρ2

ρ2︸ ︷︷ ︸
AdS4

+4
1

k2
(dα̃+ kω)2 + 4ds2

CP3︸ ︷︷ ︸
S7/Zk

}. (1.121)

By shrinking the radius of fiber S1, the volume of the space S7/Zk can be made smaller
by a factor k. In the orbifold space, to make the electric charge of the M-2 brane quantized
in NM2 units, NM2 is needed to be kNM2. Now correspondingly, the radius of the CP3

changes into (32π2kNM2)
1
6 (in Plank’s length unit) and the same for the fiber S1 reduces

to (32π2NM2

k5 )
1
6 . So to retain the successful perturbative description of M-theory, the limit

N � k5 should be maintained. When the radius of S1 becomes vanishingly small, the
eleven-dimensional supergravity reduces to an effective low energy description to the ten-
dimensional typeIIA superstring theory. The reduction of the metric (1.121) is similar to
the one described in [119]

ds2
11 = e−

2φ
3 ds2

IIA + e
4φ
3 (dα̃+ A1)

2. (1.122)

Comparing equation (1.121) and (1.122) one can identify the metric, dilaton and two-form
field as

ds3
IIA ==

R̃3

k
(ds2

AdS4
+ 4ds2

CP3
),

e2φ =
R̃3

k3
,

F2 = dA1 = kdω. (1.123)

The four-form field remains the same as it is in the eleven dimensions. The action of the
orbifolding further reduces the supersymmetry from N = 8 to N = 6.
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1.7.2 ABJM theory

So far we have discussed the supergravity descriptions of M-theory onAdS4×S7/Zk or the
typeIIA string theory on AdS4×CP3. It is clear from section (1.3), that these descriptions
represent the gravity side of the AdS4/CFT3 correspondence. To complete the circle, we
need to introduce the three dimensional CFT description of the dual gauge theory side. It
was first Aharony, Bergman, Jafferis and Maldacena (ABJM) who proposed the dual gauge
theory providing the low energy physics of the world-volume of N number of M-2 branes
probing the C4/Zk geometry [120]. It is a N = 6 Chern-Simon-matter theory with the
matter fields transforming under the bi-fundamental representation of the U(N)k×U(N)−k
semi-simple gauge group. k and −k are the Chern-Simon levels with opposite signs and
they take only integer values. Aharony, Bergman, Jafferis proposed a further generalization
of the dual gauge theory where the gauge group is modified as U(M)k × U(N)−k [121].
This generalized theory is known as ABJ theory. The gauge sector of the ABJ(M) theory
includes two gauge fields, Aµ carrying the gauge index of U(M) subgroup and Âµ carrying
the same of U(N) gauge group. The matter sector of the theory consists of four complex
scalars (A1, A2, B1, B2) and four three dimensional Dirac fermions ψa and their complex
conjugates (A†

1, A
†
2, B

†
1, B

†
2) and ψ†a, where the index a runs from 1 to 4. The scalar fields

describe the complexified eight coordinates transverse to the world-volume of the M-2
brane. All the matter fields transform in the bi-fundamental representation (M, N̄) and their
conjugates in the anti-bi-fundamental representation (M̄,N) of the gauge group U(M)k ×
U(N)−k. There is a globalR symmetry under which ABJ(M) remains invariant. The gauge
group of the R symmetry is given as SO(6) ∼= SU(4). The bi-fundamental scalars and the
fermions transform as 4 and 4̄ under R symmetry.

There are various ways to write down the action of ABJ(M) theory. It can be written in
terms of the N = 1 , N = 2, N = 3 and N = 6 superspace formalism [122–125]. Here we
discuss the action in terms of the N = 2 superfields. In this formulation a SU(2)× SU(2)
subgroup of SU(4) R symmetry is manifest. The two vector fields Aµ, Âµ belong to vector
superfields V and V̄ respectively. The matter sector in bi-fundamental representation can be
arranged as the components of chiral superfields Aa and Ba, where the index a runs from
1 to 2. Aa and Ba transform in (2, 1) and (1, 2̄) of the global group SU(2) × SU(2). They
also transform as (M, N̄) and (M̄,N) of the gauge symmetry group U(M)k × U(N)−k.
Following the convention of the N = 2 super field expansion we can write down the
expression for A and B.

A = A(y) +
√

2θζ(y) + θθF (y),

Ā = Ā(ȳ) −
√

2θ̄ζ†(ȳ) − θθF †(ȳ),

B = B(y) +
√

2θω(y) + θθG(y),

B̄ = B̄(ȳ) −
√

2θ̄ω†(ȳ) − θθG†(ȳ), (1.124)

where ζ, ζ†, F, F̄ †, ω, ω†, Ḡ† are the auxiliary fields. The superpotential manifestly showing
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SU(2) × SU(2) global symmetry can be also constructed.

W (A,B) = 1
4!
εacε

bdTr(AaBbAcBd),
W (Ā, B̄) = 1

4!
εacεbdTr(ĀaB̄bĀcB̄d). (1.125)

The total action including the contribution of the gauge fields and chiral superfields take
the following form,

S = [SCS + Smattar + Spot],
SCS = − ik

8π

∫
d3x

∫
d4θ
∫ 1

0
dsTr[VD̄α(esVDαe

−sV) − V̄D̄α(esV̄Dαe
−sV̄ ],

Smattar = −
∫
d3x

∫
d4θTr[Āae

−VAaeV̄ + B̄ae−V̄BaeV ],

Spot = 8π
k

∫
d3x

∫
d2θ W (A,B) + 8π

k

∫
d3x

∫
d2θ̄ W (Ā, B̄). (1.126)

It is important to note that the super potential (1.125) is invariant under an extra global
U(1) symmetry.

Aa → eiαAa,

Ba → e−iαBa. (1.127)

So the R symmetry group is enhanced to U(1) × SU(2) × SU(2). We can arrange the
scalar and the fermionic fields into the multiplets of full SU(4)R symmetry.

Y a = {A1, A2, B
†
1, B

†
2},

Y †
a = {A†

1, A
†
2, B1, B2},

ψa = {εabζbe−
iπ
4 ,−εabω†be

iπ
4 },

ψa† = {−εabζ†be
iπ
4 , εabωbe

− iπ
4 }, a = 1, ..4. (1.128)

By integrating out all the auxiliary fields from the action (1.126) we get

Skinetic =

∫
d3x[

k

4π
εµνλTr(Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ (1.129)

−2i

3
ÂµÂνÂλ) − Tr(DµY

†
a )(DµY a) − Tr(ψa†iγµDµψa)],

SVbos
= − 4π

3k2

∫
d3xTr(Y aY †

a Y
bY †
b Y

cY †
c + Y †

a Y
aY †

b Y
bY †
c Y

c + (1.130)

4Y aY †
b Y

cY †
a Y

bY †
c − 6Y aY †

b Y
bY †
a Y

cY †
c ),

SVfer
=

2πi

k

∫
d3xTr[Y †

a Y
aψb†ψb − Y aY †

a ψbψ
b† + 2Y aY †

b ψaψ
b† (1.131)

−2Y †
a Y

bψa†ψb − εabcdY †
a ψbY

†
c ψd + εabcdY

aψb†Y cψd†], (1.132)

where the covariant derivative acts as, DµY
a = ∂µY

a + iAµY
a − iY aÂµ. The gauge

transformation rule acting on the scalars and the gauge fields is induced by the operators
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(U, Û) ∈ U(M) × U(N).

Y a → UY aÛ †, Y †
a → ÛY †

aU
†,

Aµ → UAµU
† − iU∂µU

†, Âµ → ÛÂµÛ
† − iÛ∂µÛ

†. (1.133)

The supersymmetry transformation of the ABJ(M) action is generated by 12 supercharges.
In particular, theU(N)×U(N) ABJM theory provides the low energy physics of the world-
volume ofN number of M-2 branes probing the C4/Zk geometry. Being a half-BPS object,
the M-2 brane allows only 16 of the 32 supercharges. The orbifolding procedure further
reduces the number of supercharges from 16 to 12. In three dimensions, they furnishes
the N = 6 supersymmetry algebra. The 12 supecharges combine into 6 real spinors which
transform in the vector representation 6 of theR symmetry group SU(4) ∼= SO(6). In addi-
tion to the gauge symmetry and supersymmetry, ABJ(M) is invariant under Poincarè group,
as well as the scale transformations. These symmetries together form a three-dimensional
conformal group SO(2, 3). The conformal symmetry, R symmetry and supersymmetry of
ABJ(M) theory build up a superconformal group OSp(6|4). Moreover ABJM theory pre-
serves another Z2 parity symmetry under the exchange of the Chern-Simon indices k and
−k. The ABJ theory does not respect parity symmetry due to the asymmetry between the
orders of the gauge group U(M) × U(N). The realization of moduli space of ABJ(M)
is one of the main cornerstone to understand the AdS4/CFT3 correspondence. We dis-
cuss mainly the moduli space of the U(N) × U(N) ABJM theory. The moduli space
of the U(L) × U(M) ABJ theory is exactly same as the U(N) × U(N) theory, where
N = min(L,M). For simplicity we consider the moduli space of the Abelian ABJM the-
ory with gauge group U(1)×U(1). The generalization for U(N)×U(N) follows from the
Abelian case. For the Abelian theory we consider only the bosonic sector. In this sector, the
potential and the interaction terms vanish and the action reduces to a free field action. The
four complex scalar fields are given by 1×1 matrices Y 1, Y 2, Y 3, Y 4. Apparently, the mod-
uli space seems to be C4. But it can be shown that due to the presence of Chern-Simon term
still there is a Z2 symmetry playing among the scalars, Y a → e

2π
k Y a a = 1, .., 4 [120]. So

the moduli space turns out to be C4/Zk. Now for non-AbelianU(N)×U(N) case the scalar
potential vanishes for diagonal Y a. This configuration actually gives the full moduli space
of the theory. The U(N) × U(N) gauge symmetry reduces to the U(1)N × U(1)N × SN ,
where SN is the symmetry group permuting N number of diagonal elements. So general-
izing the U(1) × U(1) case we get the moduli space as (C4/Zk)N

SN
.

The ABJ(M) gauge theory enjoys a planar limit. We know that theU(N)×U(N) ABJM
gauge theory has two parameters, the Chern-Simon level k and the order of the gauge group
N . Both parameters take integer values. The Chern-Simon level k seats out side the action
as an overall factor. Thus we can define the coupling strength of the ABJM theory as
g2
CS = 1

k
. When k � 1 the gauge theory is weakly coupled and one can consistently use

the perturbation theory. Like the N = 4 SYM theory, here we can also define a ’t Hooft
coupling constant λ.

λ = g2
CSN =

N

k
. (1.134)
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Now it is straightforward to take the planar limit,

N → ∞, k → ∞, with λ fixed. (1.135)

As N and k are integers λ must be a rational number but in the ’t Hooft limit one can
consider it as a continuous number. The U(M) × U(N) ABJ theory comes with two
different orders of the gauge group, M and N . So theory contains an extra parameter
M − N , where it is assumed that M > N . This extra parameter allows to introduce two
distinct ’t Hooft couplings,

λ =
M

k
, λ̂ =

N

k
. (1.136)

Correspondingly, the ’t Hooft limit is defined as

M → ∞, N → ∞, k → ∞, with λ, λ̂ fixed. (1.137)

Instead of treating λ and λ̂ as the coupling constants, it is more convenient to define

λ̄ =
√
λλ̂, σ =

(λ− λ̂)

λ̄
, (1.138)

where λ̄ is now the equivalent coupling constant of the theory and σ is the deviation of
coupling constant from the same in ABJM theory.

1.7.3 AdS4/CFT3 correspondence.
Let us further review the evidences in favor of the AdS4/CFT3 correspondence. The main
reason behind this correspondence is the geometrical similarity between the moduli space
of vacua in the gauge theory and the manifold of vacua in the dual M-theory. The moduli
space of vacua of the ABJM theory is the N -th symmetric power of four dimensional
complex space orbifolded by a discrete symmetry group Zk, i.e. (C4/Zk)N

SN
. In the M-theory,

parallel M-2 branes are 1
2

BPS objects and there is no force acting between them. So one can
consider N number of indistinguishable, non-interacting M-2 branes freely moving around
the C4/Zk singularity. Such configuration of M-2 brane stack corresponds to the vacuum
of the theory. So the vacuum moduli space of the ABJM theories has precisely the right
form to be interpreted as the manifold of the M-theoretic vacua representing N number of
coincident M-2 branes moving in the C4/Zk transverse space [120]. Furthermore, in the
gauge theory side of the correspondence, the coupling of the theory is given by g2

CS = 1
k
.

It is weakly coupled for k � 1. For large N , the theory admits a ’t Hooft expansion
in powers of 1

N2 . One can associate a ’t Hooft coupling λ = N
k

with this expansion. In
the planar limit (N → ∞, k → ∞, fixed and finite λ) only planar diagram survives. The
theory has a perturbative description when coupling constant λ is small (k � N ). The
N = 6 supersymmetry, the SU(4) × U(1) R symmetry and the conformal symmetry in
three dimensions, SO(2, 3) combine into the OSp(6|4) superconformal symmetry.
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In the gravity side, we consider the near horizon limit of the geometry generated by the
N coincident M-2 branes probing the C4/Zk singularity. For simplicity, first we choose
k = 1. The near horizon geometry of N M-2 branes becomes AdS4 × S7 with the N units
of four-form flux. It is always convenient to think of the S7 as a Hopf fibration of a S1

over a complex-projective plane CP3. The global isometry group of the full space is now
SO(2, 3) × SO(8). If we take the kth order orbifolding over the S7 part, the near horizon
geometry becomes AdS4 × S7/Zk. In the language of the Hopf fibration, this orbifolding
reduces the radius of the S1 fiber k times smaller than the original one. It also modifies
the isometry group into SO(2, 3) × SU(4) × U(1). The components, SO(2, 3), SU(4),
U(1) act on AdS4, CP3, S1 respectively. Reducing the M-theory on the S1 fiber, one can
recover the typeIIA string theory on AdS4 × CP3 preserving same amount of symmetry.
We know because of the orbifolding, the M-theory/string theory preserves only 12 out of
32 supercharges. The isometry and the supersymmetry of the gravity sector form a larger
symmetry group OSp(6|4) which is exactly the superconformal symmetry group of the
ABJM theory.

These observations leads to the proposal that, the planar sector of the three dimen-
sional, N = 6, U(N)×U(N) ABJM theory is dual to the eleven dimensional supergravity
on AdS4 × S7/Zk (the low energy effective description of N M-2 branes) or the ten di-
mensional typeIIA supergravity in AdS4 × CP3 (the low energy effective description of
N D-2 branes in typeIIA string theory) [120].

It would be natural to expect some relation between the parameters of both sides of the
correspondence. In the gravity sector, we have seen that after implementing Zk orbifolding,
the radius R̃ in eqn (1.121) changes as R̃6 = (32π2kN)

2
(in Plank’s unit). Keeping this in

mind, we compare eqn (1.134) and (1.121) and get the relation between the parameters,

λ =
N

k
=

2R̃6

π2k2
. (1.139)

The supergravity description of the duality to be good, we expect the large value of the ’t
Hooft coupling.

λ� 1 → N � k. (1.140)

We know that the consequence of the orbifolding on the fiber S1 is the reduction of its

radius into (32π2N
k5 )

1
6 . To have a meaningful supergravity description of the M-theory we

need the radius of S1 fiber to be large. This leads to

N � k5. (1.141)

When the gravity sector is the typeIIA supergravity, by comparing (1.134) and (1.123)
the relation between the parameters becomes

λ =
N

k
=

2R4

π2
, (1.142)
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where we have assumed that R2 = R̃3

k
. The typeIIA description is more appropriate

than the M-theory when the radius of the fiber S1 is small. This puts a restriction on the
parameters.

k5 � N. (1.143)

We tabulate the three ranges of the parameter for which we can certainly exploit the duality.

λ� 1 : Weakly coupled field theory.
N � k5 : eleven dimensional supergravity

k � N � k5 : type IIA supergravity. (1.144)

The Chern-Simon level k is identified with the order of orbifold symmetry group in the
M-theory side.

We now review the form of this duality in the ABJ theory. In this theory the gauge
group is given by U(M) × U(N), where, we have assumed M > N without the loss of
any generality. We have already seen that for ABJ theory one may define two independent
’t Hooft coupling constant. The dual supergravity theory builds up an effective description
which allows the N number of M-2 branes moving in the C4/Zk orbifold singularity and
the |M −N | number of fractional M-2 branes are localized at the singularity. By fractional
M2-branes we can think of a configuration that represents a wrapping of a M5-branes on
a vanishing three-cycle at the orbifold point. This effective geometry is given by AdS4 ×
S7/Zk with a background three-form field C3 [121].

1

2π

∫
S3/Zk∈S7/Zk

C3 =
M −N

k
+

1

2
. (1.145)

By compactification over S1 we get the typeIIA supergravity onAdS4×CP3 in the gravity
side, with a backgroundNS B-fieldB2 having a non-trivial holonomy on CP1 ∈ CP3 [121]

1

2π

∫
CP1∈CP3

B2 =
M −N

k
. (1.146)

There is an interesting property that is followed by the ABJ gauge theory due to its dual
brane construction. An equivalence develops between the U(M)k ×U(N)−k gauge theory
with gauge coupling λ, λ̂ andU(N)k×U(2N−M+k)−k with gauge coupling 2λ̂, 2λ̂−λ+1
[121].

There are further evidences for the AdS4/CFT3 duality which we have left out. For
example, the spectrum of supergravity fields is in complete agreement with the spectrum
of the chiral primary operators of the gauge theory [126]. For details we refer the readers
to the reviews [127–129].

Before concluding this section, we would now like to digress for a moment and consider
an important development in this area. It started with the works of Bagger, Lambert and
Gustavson (BLG) where they proposed a model for multiple M-2 branes [130, 131].
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1.7.4 BLG theory
BLG theory is a three-dimensional world-volume theory of the M2-branes. The eleven
dimensional spacetime can be grouped into three dimensional world volume of M-2 brane
({xµ}, µ = 0, 1, 2) and the eight dimensional Euclidean space ({XI}, I = 1, ..., 8) trans-
verse to the world volume. The eight transverse directions play the role of scalar fields
in the world volume gauge theory. The theory has the explicit N = 8 supersymmetry
and SO(8) R symmetry. As because the theory is supersymmetric there are also eight
Spin(1, 2) fermions which can be collectively thought of as a single eleven-dimensional
Majorana spinor, Ψ with 32 independent real components. The spinor satisfies the follow-
ing property,

γ012Ψ = −Ψ, (1.147)

where γµ is the world volume gamma matrix. In addition, there is a gauge field which
contributes to a Chern-Simon term.

The action of the theory takes the following form,

L = Tr
(
−1

2
(DµX

I)(DµXI)+ i
2
Ψ̄γµDµΨ+ i

4
Ψ̄ΓIJ{XI , XJ ,Ψ}− 1

12
{XI , XJ , XK}2

)
+ 1

2
εµνλ

(
fabcdAµab∂νAλcd + 2

3
f cdagf

efgbAµabAνcdAλef
)
. (1.148)

Here µ = 0, 1, 2 designates the world volume directions, I = 1, . . . , 8 denotes the
flavors and a = 1, 2, 3, 4 are the indices of the gauge theory the containing gauge fields
Aµab

. γ and Γ are, respectively, the three- and eight-dimensional gamma matrices. fabcd

are the structure constants of the ternary algebra, while the ternary bracket is written as
{ , , } (we shall explain the ternary algebra in the next section). − 1

12
{XI , XJ , XK}2 is the

sextic potential term. The gauge theory generators which furnish the ternary algebra are
denoted as Ta. Correspondingly, we define the metric tensor for raising and lowering the
gauge indices.

hab = tr(TaTb). (1.149)

The scalars and the fermion take the value in the ternary algebra as

XI = habXI
aTb, (1.150)

Ψ = habΨaTb. (1.151)

The covariant derivative in the above action (1.148) is given as,

DµX
Ia = ∂µX

Ia + fabcdA
cd
µ X

Ib (1.152)

The gauge transformation of the fields are given by,

δXI
a = −fabcdΛbcXId

δ Ψa = −fabcdΛbcΨ
d

fabcdδA
ab
µ = fabcdDµΛ

ab, (1.153)
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where Λab are the gauge transformation parameters.
The theory is invariant under the supersymmetry transformations [130]

δXI = i θ ΓIΨ, (1.154)

δΨ = DµX
IγµΓ

Iθ − 1

6
ΓIJK{XI , XJ , XK} θ, (1.155)

δAµ(φ) = i θ γµΓ
I{Ψ, XI , φ}, (1.156)

where φ represents either a XI or Ψ and θ denotes the parameter of the supersymmetry
variation. The supersymmetry transformations close on-shell up to the translation and the
gauge transformation. During the process it becomes evident that the structure constant
satisfies the following identity which is known as the fundamental identity,

fabcgf
efg

d = f efagf
gbc

d + fagcdf
efb

g + fabgdf
efc

g. (1.157)

The only possible solution of the above identity is given by,

fabcd =
2π

k
εabcd, (1.158)

where k is the Chern-Simon level. The realization of the theory is furnished by a SO(4)
gauge theory where XI and the fermion Ψ transform as vectors under the gauge group
[130]. The metric is taken to be Euclidean,

hab = δab. (1.159)

The ternary bracket takes the following form,

{XI , XJ , XK} = εabcdXI
aX

J
b X

K
c Td. (1.160)

The classical vacuum moduli space of the BLG theory was systematically pointed out by
Lambert and Tong [132]. Later the same realization of moduli space was achieved in a
gauge invariant way [133]. The analysis shows, for k = 1 the moduli space is given by,

Mk=1
∼=

R8 × R8

Z2 × Z2

. (1.161)

While for k = 2 the moduli space takes the form,

Mk=2
∼=

(R8/Z2) × (R8/Z2)

Z2

. (1.162)

Both structures of moduli spaces agree with the fact that BLG theory is a theory of two
M-2 branes moving in an orbifolded background. R8/Z2.
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1.7.5 3-algebra
We have mentioned the ternary algebra or 3-algebra while describing the BLG theory.
Though in mathematics, the ternary algebra structure [136–138] was developed quite a
while back, its realization in physical problems remained elusive until recently. It only
attracted attention after its appearance in the context of the multiple M-2 branes. A ternary
algebra is a vector space V endowed with a triple product,

V ⊗ V ⊗ V → V. (1.163)

In particular we can define a linear adjoint map on the elements of the vector space V ,

AdA,B(X) = {X,A,B}. (1.164)

It is required that the linear adjoint map should act as a derivation on the algebra,

adA,B({X,Y, Z}) = {adA,B(X), Y, Z} + {X, adA,B(Y ), Z}
+{X, Y, adA,B(Z)}. (1.165)

The consistency of the derivation rule further requires that the elements of the vector space
should satisfy some identity known as fundamental identity.

{{X,Y, Z}, A,B} = {{X,A,B}, Y, Z} + {X, {Y,A,B}, Z} + {X, Y, {Z,A,B}} ,
(1.166)

One may consistently develop a one to one mapping between the 3-algebraic structure
and the 2-algebraic structure when both of them have properly defined metrics. This prop-
erty makes the 3-algebra structure very useful for constructing the gauge symmetry of the
M-2 brane. There are also some generalization of 3-algebras which have indefinite metrics
for some physical reasons. For example, those theories allow the negative normed states to
be gauged away. This kind of 3-algebra structure reduces the original theory into the Yang-
Mills gauge theories of the Dp-branes. [140, 145–150]. There are also infinite dimensional
3-algebras with positive definite metric constructed from Nambu bracket [135]. Theories
based on this algebra are related to M-5 branes [141–144]. Apart from the physical appli-
cations, there are also successful attempts to understand the rich mathematical structure of
the 3-algebra. In particular, the consistent generalization of the Kac-Moody, the (center-
less) Virasoro 2-algebras, the classical Heisenberg 2-algebra into respective 3-algebras are
achieved [236–238]. In BLG theory we have already seen that the only possible realization
of the ternary algebra is SO(4) three algebra. The basic 3-algebraic structure of the theory
is followed from the previous general discussion. SO(4) 3-algebra is a vector space with
basis T a, a = 1, . . . , 4, along with a trilinear antisymmetric product,

{T a, T b, T c} ∼ εabcdT
d, (1.167)

where εabcd is the mostly anti-symmetric invariant tensor in four dimensions. The raising
and the lowering of the indices is accomplished by the consideration of a inner product,

hab = tr(T aT b) = δab. (1.168)
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The structure constant εabcd is totally anti-symmetric in all of its indices.

εabcd = ε[abcd]. (1.169)

The trilinear product also satisfies a generalized version of Jacobi identity known as “fun-
damental identity".

Having introduced BLG theory and the role of 3-algebraic structure, we briefly mention
the connection between ABJM and BLG. In ABJ(M) theory, when the orders of the gauge
group U(N1)k × U(N2)−k satisfy the limit N1 = N2 = 2, one finds some extra symmetry
due to the fact that the 2 and 2̄ representation of U(2) are equivalent. This extra symmetry
enhances the supersymmetry of the ABJM theory from N = 6 to N = 8. Finally, in the
special limit N = 2 and k = 2, the ABJM theory becomes equivalent to the BLG theory.
Within this limit, the moduli space of the both theories exactly matches.

In the last few paragraphs we have briefly discussed the BLG theory and the role of
ternary algebra in this theory. We further have reviewed the basic mathematical structure
of the ternary algebra. Finally we have briefly mentioned the connection between the BLG
theory and the ABJM theory. One of the non-perturbative objects string theory has are the
giant gravitons. Properties of this objects can be understood by exploiting the AdS/CFT
correspondence.

1.7.6 Giant graviton
We previously learned that there exists an one to one mapping between the primary op-
erators of the gauge theory and the fields in the gravity sector. Consider for example the
case of the AdS5/CFT4. Then the gauge theory is described by the N = 4 SYM in four
dimensional Minkowski space and the dual gravity theory is described by the typeIIB
supergravity in AdS5 × S5 spacetime. By dimensional reduction of massless supergravity
fields on five-sphere we get a tower of massive fields in the AdS5 spacetime. The massive
fields correspond to the Kaluza-Klein excitations [151]. We assume that the Kaluza-Klein
states maintain a BPS bound. They are characterized by set of quantum numbers. Among
them, angular momentum l due to the motion along S5 plays an important role and takes
only integer values. The energy/mass of these sates is given by m = l

R
, where R is the

radius of both AdS5 and S5. The particles of mass m have the Schwarzschild radius [152],

rS ∼
√
g2
s

R5
m =

1

m

√
l3

N2
. (1.170)

While introducing eqn (1.170) we have used the relation gsN ∼ R4. It is pointed out
in [152] that when l � N

2
3 , the Schwarzschild radius associated with the Kaluza-Klein

becomes larger than the Compton wavelength. As a consequence of that the linearized
supergravity approximation breaks down. So the dimensional reduction mechanism pre-
scribed in [151] does not fit into the picture. McGreevy, Susskind and Toumbas [153] first
gave the correct supergravity picture of these massless states with large angular momen-
tum l. They showed the solution corresponding to the large angular momentum, blows up
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into the spherical brane. Actually, those massless supergravity states rotate around the five
sphere in the presence of a Ramond-Ramond magnetic flux and get polarized with a finite
dipole moment. As they rotate along the S5, the dipole moment streches due to the interac-
tion with magnetic flux. As a result, the size of these states increases and thus they become
spherical branes. This is a special case of the Myers effect [155, 156]. These branes are
wrapped around the spherical part of the AdS5 × S5 geometry. They are in a dynamical
equilibrium because the contraction due to the tension of the brane is precisely canceled
by the expansion due with the coupling of the angular momentum to the background flux
field. The existence of this spherical brane becomes a realization of stringy exclusion prin-
ciple observed in the context of the AdS/CFT correspondence [157]. In the gauge theory,
this principle suggests that a family of chiral primary operators terminates at some maxi-
mum weight as the gauge symmetry group has a finite rank. In terms of the dual gravity
description, these operators corresponds to the single particle massless supergravity states
expanding into spherical branes. They grow into the spherical part of the AdS5×S5 geom-
etry with a radius proportional to the angular momentum associated with their motion along
the five sphere. The radius of these spherical branes must be smaller than the radius of the
sphere. The AdS/CFT correspondence relates the radius of sphere in the gravity theory
with the rank of the gauge group in the dual gauge theory. In other words, the angular
momentum associated with the gravity states corresponds to the R charge of those primary
operators in the dual gauge theory. Thus stringy exclusion principle puts an upper bound
on the angular momentum. This spherical brane configuration is known as Giant Gravi-
ton (sphere giants). It is important to note that the stability of giant graviton requires the
presence of Ramond-Ramond flux in the background. Moreover, the large value of angular
momentum associated with those states renders the supergravity approximation. Combin-
ing both facts, we come to a conclusion that understanding the giant graviton in the gravity
pictures requires the study of the typeIIB string theory inAdS5×S5 geometry in the pres-
ence of Ramond-Ramond flux. But due to the presence of the significant nonperturbative
effects, this kind of theory is very little understood so far. Therefore the giant graviton is
considered as a non-perturbative object in the gravity theory. However, strong/weak duality
of the AdS/CFT correspondence allow us to study the properties and representation of gi-
ant graviton in the dual perturbative field theory (’t Hooft constant λ � 1). There are also
generalization of this spherical brane configuration of giant graviton which is wrapped in-
side the spherical part of the AdS5 × S5 geometry. Hashimoto, Hirano, Itzhaki introduced
the dual giant gravitons which expands into AdS5 part of the full AdS5 × S5 geometry
(AdS giants) [158]. The radius of the dual giant graviton is again proportional to its angu-
lar momentum. But as it grows into the non-compact AdS5 spacetime, unlike the spherical
giant gravitons, there is no upper-bound for the angular momentum. So to summarize we
can consider the giants and the dual giants as stable, 1

2
BPS spherical D3 branes wrapping

a three cycle inside either S5 or AdS5. Moreover, both of the stable, 1
2

BPS giants and the
dual giants are realized in theAdS4/CFT3 set up [160–166]. InAdS4×S7/Zk, these giant
gravitons are either the spherical M2-brane growing in theAdS4 or the M5-brane wrapping
an S5 ⊂ S7. Whereas for AdS4 × CP3, the M-2 brane is replaced by a D2 brane growing
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into AdS4 and instead of M-5 brane, D4 brane wrapping on some circle of CP3.
The polarizability and the stability of giant graviton can be studied in quantitative way.

Here, we discuss this issue in the context of sphere giants in the AdS5/CFT4 set up. This
discussion remains valid for AdS giants also. Moreover, same kind of analysis for both
sphere and AdS giants is developed in case of the AdS4/CFT3 correspondence. We start
our discussion with a simple configuration of a electric dipole which is composed of a
pair of unit charges with opposite polarity. The dipole lives on a 2-sphere and performs
an orbital motion on the equator. Consider them to be joined together by a perfect spring.
When these particles are not moving, the spring shrinks to a zero length. The masses of
the charges are negligible. We now place a magnetic monopole at the center of this sphere,
which sources a uniform magnetic flux. Due to the orbital motion, the constituent charges
of the dipole experience the Lorentz force in opposite direction. There is another force act-
ing between the two unit charges via the perfect spring. The system rotates by maintaining
a dynamical equilibrium. The analysis of [153] shows that as the angular momentum of the
system associated with the rotation increases, the size of the spring stretches further. The
stretching continues until the charges are at the opposite ends of the sphere. We assume
that the radius of the sphere is R and the magnetic field has a flux density B. The total flux
is quantized as 2πN = BR2V olS2 . The momentum P associated with the dipole is ∼ 2BR
when it stretches upto the two opposite ends of the sphere. So the angular momentum L is
PR ∼ BR2 ∼ N . Therefore, if the dipole never exceeds the size of the sphere, the angular
momentum can not exceed the value N .

Now we extend the above analysis into the case spherical D3 brane (the spatial part of
brane world volume is S3) wrapped inside the three-cycle of S5. D3 brane couples to a five
form Ramond-Ramond field with a constant flux density B. Similar to previous case, the
total flux is quantized inside S5 of radius R.

V olS5BR5 = 2πN. (1.171)

The radius R of the S5 is given as,

R = (4πgsN)
1
4 ls. (1.172)

Let us now consider the action of the spherical D3 moving in S5. The action consists of
two part,

Stotal = SDBI + SCS, (1.173)

where SDBI is the Dirac-Born-Infeld action for spherical D3 brane and SCS is the Chern-
Simon action which induces a coupling of the brane to the five form Ramond-Ramond
flux. Before evaluating the DBI action for spherical D3 brane we fix the parametrization
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of background five-sphere.

X1 =
√
R2 − r2 cosφ,

X2 =
√
R2 − r2 sinφ,

X3 = r cos θ1,

X4 = r sin θ1 cos θ2,

X5 = r sin θ1 sin θ2 cos θ3,

X6 = r sin θ1 sin θ2 sin θ3, (1.174)

where, XI , I = 1, ..., 6 satisfy the constraint,
6∑
I=1

X2
I = R2. Using this background

parametrization one can calculate the world volume metric of the spherical D3 brane.

ds2
wv = −(1 − (R2 − r2)φ̇2)dt2 + r2dΩ2

3. (1.175)

Here we assume that the spherical D3 brane (S3) wraps on the S5. So r is constant and
dr = 0. The Ω3 is parameterized by θ1, θ2, θ3. Now using eqn (1.175) we can write the
explicit form of SDBI .

SDBI = −TD3

∫ √
(1 − (R2 − r2)φ̇2)r3dtdΩ3. (1.176)

So the kinetic term of the total Lagrangian takes the form,

Lk = −TD3r
3Ω3

√
(1 − (R2 − r2)φ̇2). (1.177)

Using eqn (1.172) and the relation TD3 = 1
2π3l4sgs

we get the final form of Lagrangian,

Lk = −N

R4
r3

√
(1 − (R2 − r2)φ̇2). (1.178)

The SCS can also be explicitly obtained.

SCS =

∫
Σ5

F, (1.179)

where F is the five form Ramond-Ramond field. Σ5 is a five manifold in S5. The boundary
of the Σ5 is identified as a 4-dimensional surface swept out by the brane during an orbital
motion. Corresponding Lagrangian is given as,

LCS =
SCS
T

= BV ol(Σ)T−1 = Br4RV olS5

φ̇

2π
= φ̇N

r4

R4
. (1.180)

To derive eqn (1.180) we used eqn (1.171) and the form of volume element of S5, i.e.
V olS5 =

∫
Rr

′2
dr

′
dφdΩ3. φ̇ can be interpreted as angular velocity of the brane. T is
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the time period of orbital motion executed by the brane. Now the total Lagrangian can be
written as,

Ltot = −N

R4
r3

√
(1 − (R2 − r2)φ̇2) + φ̇N

r4

R4
. (1.181)

It is straightforward to calculate the angular momentum from the total Lagrangian.

l =
∂Ltot
∂φ̇

=
Nr3(R2 − r2)φ̇2

R4

√
(1 − (R2 − r2)φ̇2

+N
r4

R4
. (1.182)

The energy of the system is given by

H = lφ̇− Ltot =
Nr3

R4
√

(1 − (R2 − r2)
=

√
(
Nr3

R4
)
2

+
(l −Nr4/R4)2

R2 − r2
. (1.183)

SinceR is the maximum value allowed for r, the angular momentum is bounded byN . The
variation of total energy H with respect to r, keeping l fixed, we obtain a stable minimum
at r2 = l

N
R2. The total energy H at this minimum is given as E = l

R
provided l is large

and N > l. So we conclude that that massless gravitons in the typeIIB supergravity with
the large angular momentum are described by the stable BPS spherical D3 branes.

We now consider the above giants from the gauge theoretic perspective. In the SU(N),
N = 4 SYM theory, the 1

2
BPS operators can be constructed out of the six real scalars

({φi} i = 1, .., 6). These six real scalars transform under (0, l, 0) representation of the
SU(4) R symmetry group. (0, l, 0) representation is the symmetric trace-less representa-
tion of SO(6). The 1

2
BPS operators saturate a lower bound on their conformal dimensions

which is related to their R symmetry charge. These operators transform under the adjoint
representation of the gauge group SU(N) and can be realized as the single trace or multiple
trace operators. The trace is taken over the adjoint indices of the gauge group making them
gauge invariant.

One can construct three complex scalars out of these six real scalars.

Z1 = φ1 + iφ2, Z2 = φ3 + iφ4, Z3 = φ5 + iφ6. (1.184)

These complex scalars transform as Za → G†ZaG, where G ∈ SU(N) and a runs from 1
to 3. The simplest 1

2
BPS operators are constructed as,

∏
ni

[
Tr(Z l

a)
]ni , where l is the R

charge of the operator. Using the AdS/CFT correspondence one can map a single particle
state in the gravity theory with a chiral primary operator in the dual gauge theory. The
chiral primary operator is realized as a single trace operator that we are interested in. The
angular momentum of the gravity state corresponds to the R charge of the trace opera-
tor. Consequently, The multi-particle state corresponds to the multi trace operator. These
multi-particle states of the gravity constitute a Fock space and satisfy an orthogonality
condition. The orthogonality condition tells that the inner product of two elements of the
Fock space describing m and n number of particles respectively, is zero for m 6= n. If the
trace operators are the correct gauge invariant operators then the orthogonality condition
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satisfied by the states of gravity should have a proper realization in the dual gauge theory.
Balasubramanian, Berkooz, Naqvi and Strassler first showed that this is not true when the
R charge associated with the trace operators is large compared to the order of the gauge
group SU(N) [159]. In the free field limit, using the Wick contraction the exact two point
correlator involving the complex scalars can be constructed as,

〈(Za)ij(x)(Za)
†
kl(y)〉 =

δilδjk

(y − x)2 , (1.185)

where i, j, k, l are the gauge indices. When we consider the correlators of gauge invariant
trace operators we perform necessary contraction over the gauge indices. Let us consider,

O1 = Tr((Za)
l)

O2 = Tr((Za)
l1)Tr((Za)

l2) l1 + l2 = l. (1.186)

Using proper modification of eqn (1.185) and ignoring the space time dependence for the
moment we have,

〈O†
1O2〉

〈O†
1O1〉〈O†

2O2〉
∼

√
l1l2l

N
. (1.187)

By the operator-state correspondence in AdS/CFT , the above eqn suggests that the states
created by the trace operators O1 and O2 are orthogonal to each other in the free field limit
(N → ∞) only when the R charge l of the relevant operator is less than N

2
3 [159]. So

we conclude that for large R charge (l > N
2
3 ), the 1

2
BPS trace operators are no more

the proper gauge invariant operators which obey the operator-state correspondence. We
identify the gravity state of large angular momentum with the giant graviton state in the
typeIIB theory. The dual gauge theory operator must be characterized by a large R charge.
This identification can easily be justified for the spherical D3 brane. We know that there is
a bound on R charge of a chiral primary operator (trace operator) in the gauge theory. This
naturally agrees with the fact that the angular momentum of the D3 brane should also have
an upper limit. Therefore we conclude that the trace operator is not a correct description
of the gauge invariant operator with large R charge, dual to the giant graviton state. Using
the tensor decomposition of the SO(6) R symmetry group in the SU(N), N = 4 theory,
Ramgoolam, Corley, Jevicki pointed out that the correct gauge invariant operator, dual
to the giant graviton state in the typeIIB supergravity is described by Schur polynomial
operator [167]. These Schur operator is labeled by the large R charge in SU(N), N = 4
theory. The realization of orthogonality can be verified by computing two point correlator
involving the Schur polynomial. To construct the two point function of Schur polynomial
we need to know some mathematical preliminaries about this polynomial. So before going
into the details of the operator-state mapping between Schur polynomial and giant graviton
state we briefly discuss some mathematical properties of that polynomial.
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1.7.7 Schur polynomial
One can construct the relevant two point function by modifying eqn (1.185) in case of Schur
polynomial. However, for gauge invariant combination, we need to take the sum over free
gauge indices. In general the sum takes the form,∑

i1,i2···in

δi1iσ(1)
δi2iσ(2)

· · · δiniσ(n)
= NC(σ), (1.188)

where each index i1, · · · in runs over integers from 1 to N and C(σ) is the number of cycles
in the permutation σ. To avoid the cumbersome expression involving the stings of delta
functions, we consider the following short-hand notation,

∑
I

δ

(
I(n)

I
(
σ(n)

) )
= NC(σ), (1.189)

The all possible permutations form a group called permutation group. A special case of
the permutation group is the symmetric group Sn. One may define a delta function on the
Sn group algebra. The delta is 1 when the argument is the identity element of Sn and 0
otherwise. It is useful to write this delta function as an expansion of the group characters
of Sn.

δ(ρ) =
1

n!

∑
R

dR χR(ρ). (1.190)

Here, the sum is taken over the representations R of Sn. The representations R are con-
nected with the Young Diagrams with n boxes. dR is the dimension of a representation R.
χR(ρ) is the group character of the element ρ ∈ Sn in the same representation. We can
evaluate dR by exploiting the properties of Young diagram.

dR =
n!∏
i,j hi,j

, (1.191)

where i and j represent the the rows and columns of the Young diagram respectably and
hi,j is the hook number of each box of the same diagram. The orthogonality condition of
the characters is given as,∑

σ

χR(σ−1) χS(σα) =
δRS n!

dS
χS(α), (1.192)

where σ and α belong to the symmetry group Sn.
As mentioned in [168], same Young diagram can be associated with both unitary group

and Sn representations. This is due to the fact that we can always construct a vector space
on which both unitary group and Sn can act and the vector space itself simultaneously
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diagonalizes the operators belonging to both groups. The Schur polynomials can be defined
as the characters of the unitary group in their irreducible representations

χR(U) =
1

n!

∑
σ∈Sn

χR(σ) tr(σ U). (1.193)

If we trivially identify the unitary group with the identity group, eqn (1.193) gives the
dimension of a representation of the unitary group

DimN(R) =
1

n!

∑
σ∈Sn

χR(σ)NC(σ). (1.194)

Using the properties of Young diagram, we can explicitly evaluate DimN(R).

DimN(R) =
∏
i,j

(N − i+ j)

hi,j
, (1.195)

where i and j represent the the rows and columns of the Young diagram respectably and
hi,j is the hook number of each box of the same diagram. Now using both eqns.(1.191) and
(1.195) one may find out a relation of the product of the weights of the Young diagram (fR)
with dimensions of the representations (dR, DimN(R)),

fR =
∏
i,j

(N − i+ j) =
n!DimN(R)

dR
. (1.196)

For our purpose it is important to extend the definition of Schur polynomial involving a
system of complex matrices transforming under adjoint representation of the SU(N) gauge
group

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)Tr(σZ),

where Z is the any one of the complex scalars of N = 4 SYM gauge theory. The trace in
the right hand side of the above equation is taken as,

Tr(σZ) ≡
∑

i1,i2···in

Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin
iσ(n)

. (1.197)

R is the representation associated with a specific Young diagram with n boxes, which
labels the irreducible representation of both unitary group and Sn. It is very important to
mention here the product rule for Schur polynomials. Let us consider three irreducible
representation R1, R2 and S. R1, R2 and S have nR1 , nR2 and nS boxes in their respective
Young diagrams in such a way that the relation nS = nR1 + nR2 is satisfied. According
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to the rule, the product of two Schur polynomials having irreducible representation R1 and
R2 respective becomes,

χR1(Z)χR2(Z) =
∑
S

g(R1, R2;S)χS(Z). (1.198)

In the right hand side of the above equation there is a quantity g(R1, R2;S) which is known
as Littlewood-Richardson number. This quantity counts the number of times the S appears
in the direct product ofR1 andR2. We can generalize the relation for χR1(Z)χR2(Z) · · ·χRm(Z)
as follows,

m∏
i=1

χRi
(Z) =

∑
S1,S2···Sm−2,S

g(R1, R2;S1)g(S1, R3;S2) · · · g(Sm−2, Rm;S)χS(Z)

=
∑
S

g(R1, R2 · · ·Rm;S)χS(Z). (1.199)

1.7.8 Two-point function
Now using the machinery discussed above we compute the two point correlators of the
Schur polynomials defined in eqn (1.197). We note that the Schur polynomials involve
the three complex scalars in N = 4 SYM gauge theory. They might be the correct gauge
invariant operators dual to the giant graviton states in the gravity theory provided the or-
thogonality condition of gravity Fock space would have a realization via the two point
correlators in the gauge theory. Let us compute the two point correlators 〈χR(Z)χS(Z

†)〉,
where we have assumed that R and S are the irreducible representations of two different
Young diagrams.

〈χR(Z)χS(Z
†)〉

= 〈
∑
σ

χR(σ)

n!
Tr(σZ)

∑
ρ

χS(ρ)

n!
Tr(ρZ†)〉

=
∑

i1,i2···in

∑
j1,j2···jn

∑
σ

χR(σ)

n!

∑
ρ

χS(ρ)

n!
(1.200)

〈Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin
iσ(n)

(Z†)j1jρ(1)
(Z†)j2jρ(2)

· · · (Z†)jnjρ(n)
〉

=
∑

i1,i2···in

∑
j1,j2···jn

∑
α

∑
σ,ρ

χR(σ)

n!

χS(ρ)

n!
(1.201)

δi1jαρ(1)
δi2jαρ(2)

· · · δinjαρ(n)
δj1iα−1σ(1)

δj2iα−1σ(2)
· · · δjniα−1σ(n)

=
∑
α

∑
σ

χR(σ)

n!

∑
ρ

χS(ρ)

n!
NC(σ−1αρ−1α−1), (1.202)

Now introducing the delta function mentioned earlier in the context of symmetry group
Sn,
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∑
α,σ,ρ,β

χR(σ)

n!

χS(ρ)

n!
NC(β) δ(β−1σ−1αρ−1α−1)

=
1

(n!)2

∑
α,σ,β

χR(σ) χS(α
−1β−1σ−1α) NC(β)

=
1

n!

∑
σ,β

χR(σ) χS(β
−1σ−1) NC(β)

=
∑
β

1

dR
δRS χS(β

−1) NC(β)

= n!
DimN(R)

dR
δRS

= fRδRS (1.203)

In the final step of the above derivation we have used eqn(1.195) and eqn (1.196). It is
clear from the last line that the presence of the delta function makes the two point function
non zero only when both R and S are exactly same. Therefore the orthogonality of gravity
Fock space is correctly realized in the dual gauge theory. Consequently, Schur polynomial
turns out to be the correct 1

2
BPS gauge invariant operator dual to the giant graviton state in

the gravity theory.

1.7.9 Mapping
The detailed description of the rules of mapping between the Schur polynomial and the
giant graviton states are prescribed in [167]. Here, we briefly review them. This mapping
is based on a couple of important facts. Firstly, the Schur polynomials are labeled by the
Young diagram associated with them. Secondly, the stringy exclusion principle can be
realized in terms of the Young tableaux representation associated with the corresponding
gauge invariant operator with R charge. The Young tableaux that we are considering is
composed of a certain number of boxes. The total number boxes in each tableaux has a
connection with the R charge of the Schur polynomial. In particular, each box is associated
with a complex scalar field Z in the N = 4 SYM theory and possesses 1 unit of R charge.

The mostly antisymmetric representation of Schur polynomial operator made of the
complex scalar fields in the SU(N), N = 4 SYM theory is described by a Young tableaux
of single column. We are interested in the gauge invariant operator of large R charge rep-
resented by the Schur polynomial. So the corresponding Young tableaux should have large
number of rows. As this Young tableaux furnish the mostly antisymmetric representation of
a unitary group of order N , their group theoretic properties tell that the maximum number
of rows must be N . Therefore this restriction puts a cut-of on the value of R charge asso-
ciated with the Schur polynomial. We know that the stringy exclusion principle suggests
the sphere giant to have exactly same kind of cut-of on their angular momentum. Thus we
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identify the sphere giants with a certain class of the Schur polynomial represented by the
mostly antisymmetric Young tableaux.

.

Similarly, the mostly symmetric representation of the Schur polynomial is given by a
Young tableaux made of a single row. From the representation theory it is known that there
is no restriction on the number of columns. So the Schur polynomial associated with the
diagram actually carries arbitrarily large R charge. Therefore from previous discussion we
identify this certain class of Schur polynomial represented by the mostly symmetric Young
tableaux with the AdS giant carrying arbitrarily large angular momentum.

.

If the Young diagram has k number of columns and each of them have equal number of
rows (∼ N ),

,

then it represents a sphere giant wrapping the 3-cycle of the spherical part of theAdS5×S5

geometry with a winding number k. The angular momentum and the energy of this sphere
giant are scaled up by a factor k. If the lengths of the k number columns are not equal but
differ from each other by a number which is very small compared to N then the diagram
can be obtained by fusing a Young diagram of several columns of equal length and a very
small Young diagram. So in the dual gravity picture is a interacting system of sphere giants
and Kaluza-Klein graviton.

Similar the Young diagram having k number of rows, where each of them have equal
but arbitrarily large number of column,

,
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represents a AdS giants wrapping the AdS part of the AdS5×S5 geometry with a winding
number k. The energy and the angular momentum of the graviton is scaled out by a factor
k. If the number of columns are not equal then the dual gravity picture is an interacting
system made of the AdS giants and the Kaluza-Klein graviton.

As explained in [169–171] when the number of vertical boxes in a Young diagram
grows, the dual grows in the spherical part of the AdS5 × S5 geometry. When the number
of rows grows the dual grows in the AdS part of the AdS5 × S5 geometry. However, if the
number of boxes are so large that the R charge comes out as O(N2), the dual would have
a energy large enough to back-react the AdS5 × S5 geometry. Therefore, operator with
O(N2) boxes corresponds to a new geometry in the gravity sector.

So far we have discussed the state operator mapping in the context of the AdS5/CFT4

duality. We shall again discuss the same issue for the AdS5/CFT4 duality. We shall
again discuss the same issue for the AdS4/CFT3 duality in Chapter4. We shall compute,
in particular, the probability amplitude for various transition among these giants. Above
identifications will play the key role in our computations.

1.8 Plan of the thesis

ExploitingAdS/CFT correspondence, in this thesis, we explore some properties of strongly
coupled gauge theory (chapter : 2 − 3) and that of M/typeIIA string theory (chapter :
4 − 5). A brief summary of various chapters is provided below.

In chapter2, we qualitatively study various dynamical observables, important in the
context of real time dynamics of high energy partons moving in QGP medium via the com-
putations in a dual hQCD gravity model represented by a asymptotically AdS (aAdS) black
hole in Einstein-Maxwell-Dilaton (EMD) system. We briefly describe the construction of
this hQCD gravity background, namely, that follows from Einstein-Maxwell-Dilaton sys-
tem by. Here, we provide an asymptotically AdS (aAdS) black hole solution important
for the hQCD model. Finally we calculate the drag force, the jet quenching parameter,
the screening length and the binding energy of external quark-antiquark (qq̄) pair for this
model. We study the qualitative features of this quantities in terms of the chemical poten-
tial and the temperature of the boundary gauge theory. Since the aAdS black hole solution
turns out to be too complicated for a pure analytic approach, we extensively use numerical
methods in the computation of various physical quantities.

In chapter3, we estimate the dissipative force on an external quark in the presence of
evenly distributed heavy quark cloud within the finite temperature N = 4 strongly coupled
super YangMills. This is again computed holographically by constructing the correspond-
ing gravity dual. We show that the gravity background gets deformed due to the backreac-
tion of a string distribution which, in turn, is dual to the quark cloud density. We explicitly
construct this backreacted geometry. This deformed black hole is parametrized by it’s mass
and the density of strings. We further analyze the stability of the gravity dual for vector
and tensor perturbations. Finally, we study the qualitative behavior of the drag force as a
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function of the cloud density and the temperature of the boundary theory.
In chapter4, we study a class of nonperturbative semi classical objects called giant

gravitons living in M-theory/typeIIA background via the computation in dual weakly cou-
pled three dimensional U(N1)×U(N2) , N = 6 Chern-Simon-matter gauge theory known
as ABJ(M) theory, with N2 > N1. We show that the correct gauge invariant operator dual
to giant graviton state is described by the Schur polynomial. Following the work [166],
we generalize the Schur polynomials of ABJM theory to ABJ theory and also identify
them with the gravitons and giant gravitons in the dual gravity. With the aim of finding
out the transition probability among giant gravitons and between giants and gravitons, we
discuss CFT factorization and its probabilistic interpretation. Further, we compute cor-
relators among giant gravitons as well as between giant gravitons and ordinary gravitons
through the corresponding correlators of ABJ(M) theory. Finally, we consider a particular
non-trivial background produced by an operator with an R charge of O(N2

1 ) and find, in
presence of this background, due to the contribution of the non-planar corrections, the large
(N1, N2) expansion is replaced by 1/(N1 + M) and 1/(N2 + M) respectively, where M
(O(N1)) is the number of extra boxes added in the extended Young diagram representing a
gauge invariant operator carrying the R of the order of N2

1 .
We have already mentioned that the ABJ(M) theory is a description of the N = 6

superconformal gauge theory of multiple M-2 branes. In a particular limit of this gauge
theory, we can reinterpret it as another alternative superconformal gauge theory of two
M-2 branes, known as BLG theory. This theory preserves N = 8 supersymmetry. The
gauge fields and the matter fields transform under a gauge group consisted of generators
satisfying a structure of ternary algebra or 3-algebra. Motivated by the importance of 3-
algebra in world volume gauge theory of multiple M-2 branes, in chapter5, we introduce a
novel 3-algebra called w∞ 3-algebra. We start with the generators of W∞+1 algebra. Then
we define a lone-star product among these generators to define a ternary bracket. Moreover,
we take a double scaling limit of the elements of this ternary bracket. We show the effect
of double scaling transforms the generators of W∞+1 algebra into the w∞ generators and
the ternary bracket takes a completely antisymmetric structure with respect to the indices
of the elements belonging to those w∞ generators. We explicitly check the preservation of
fundamental identity associated with this ternary bracket and thus confirm the existence of
a novel 3-algebra, namely w∞ 3-algebra. Finally, we give a geometric representation of
this w∞ 3-algebra.

In chapter6, we give a brief summary of our results.
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Some aspects of QGP phase in a hQCD

model

The dynamical features of the strongly coupled QGP plasma are encoded in the properties
of the probe particles as well as in the collective behavior of the system. The phenomena
of the jet quenching of high energy partons with large transverse momentum, the energy
dissipation of a heavy moving probe quark, the quorkonium suppression due to the charge
screening carry the the signatures of the strong coupling nature of the medium. Our pur-
pose in this chapter is to compute some of the quantities within a holographic QCD model
(hQCD). It is constructed in [178] by employing the so called potential reconstruction ap-
proach [175–178]. Some properties of the hQCD model were studied in [175]. The model
has a deconfinement phase transition and an associated phase diagram [178]. The equation
of states resembles quite closely to the one expected from the lattice QCD results. The
gravity dual of this model is given by an AdS black hole of Einstein-Maxwell-Dilaton sys-
tem. The model however has its own limitation and differs in many aspects from the real
QCD. We will have occasions to discuss these limitations later in this chapter.

In section 2, we briefly review the potential reconstruction approach to the Einstein-
Maxwell-Dilaton system by introducing a nontrivial coupling between the dilaton field
and the Maxwell field. In section 3, we discuss the generic black hole solutions with
asymptotical AdS boundary, and in particular present an analytic black hole solution. In
section 4, we calculate the drag force in this hQCD model. Jet quenching parameter and
screening length are discussed in section 5 and 6, respectively. We end this chapter by a
discussion.

2.1 Einstein-Maxwell-Dilaton system
In this section, we use the potential reconstruction approach [175, 178] to study a 5D
Einstein-Maxwell-Dilaton (EMD) system. Unlike in [178] here we allow a nontrivial cou-
pling between the gauge and the dilaton field.

S5D =
1

16πG5

∫
d5x
√

−gSe−2φ

(
RS + 4∂µφ∂

µφ− VS(φ) − Z(φ)

4g2
g

e
−4φ

3 FµνF
µν

)
,

(2.1)
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where the action (2.1) is written in string frame, Fµν = ∂µAν − ∂νAµ is the Maxwell field,
Z(φ) is an arbitrary function of dilaton field φ and Vs(φ) is the dilaton potential. In Einstein
frame we can rewrite the action as [175]

S5D =
1

16πG5

∫
d5x
√
−gE

(
R− 4

3
∂µφ∂

µφ− VE(φ) − Z(φ)

4g2
g

FµνF
µν

)
, (2.2)

where VS = VEe
−4φ

3 . The metrics in these two frames are connected by the scaling trans-
formation

gSµν = e
4φ
3 gEµν . (2.3)

The Einstein equations from the action (2.2) read

Eµν +
1

2
gEµν

(
4

3
∂µφ∂

µφ+ VE(φ)

)
− 4

3
∂µφ∂νφ− Z(φ)

2g2
g

(
FµkFν

k − 1

4
gEµνFklF

kl

)
= 0,(2.4)

where Eµν = Rµν − 1
2
Rgµν is the Einstein tensor. We consider an ansatz for the matter

field as A = A0(z)dt, φ = φ(z) and for the metric

ds2
S =

`2e2As

z2

(
−f(z)dt2 +

dz2

f(z)
+ dxidxi

)
, (2.5)

in the string frame, where i = 1, 2, 3, ` is the radius of AdS5 space, and As, the warped
factor, is a function of the coordinate z. In the Einstein frame, the metric reads as

ds2
E =

`2e2Ae

z2

(
−f(z)dt2 +

dz2

f(z)
+ dxidxi

)
,

=
`2e2As− 4φ

3

z2

(
−f(z)dt2 +

dz2

f(z)
+ dxidxi

)
, (2.6)

withAe = As−2φ/3. With this metric, the (t, t), (z, z) and (xi, xi) components of Einstein
equations are respectively

b′′(z) +
b′(z)f ′(z)

2f(z)
− b′(z)2

2b(z)
+

4

9
b(z)φ′(z)2 +

A0
′(z)2Z(φ)

6g2
gf(z)

+
VE(φ)b(z)2

3f(z)
= 0,

φ′(z)2 − 9b′(z)f ′(z)

8b(z)f(z)
− 9b′(z)2

4b(z)2
− 3A0

′(z)2Z(φ)

8g2
gb(z)f(z)

− 3VE(φ)b(z)

4f(z)
= 0,

f ′′(z) +
3b′(z)f ′(z)

b(z)
+

4

3
f(z)φ′(z)2 +

3f(z)b′′(z)

b(z)
− (2.7)

3f(z)b′(z)2

2b(z)2
− A0

′(z)2Z(φ)

2g2
gb(z)

+ VE(φ)b(z) = 0,

(2.8)
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where b(z) = `2e2Ae/z2, and A0(z) is the electric potential of the Maxwell field. Manip-
ulating these equations one can obtain following two equations which do not contain the
dilaton potential VE(φ),

A′′
s(z) + A′

s(z)

(
4φ′(z)

3
+

2

z

)
− A′

s(z)
2 − 2φ′′(z)

3
− 4φ′(z)

3z
= 0, (2.9)

f ′′(z) + f ′(z)

(
3A′

s(z) − 2φ′(z) − 3

z

)
− z2Z(φ)e

4φ(z)
3

−2As(z)A′
0(z)

2

g2
gL

2
= 0. (2.10)

Eq.(2.9) is our starting point to find exact solutions of the system. Note that Eq.(2.9) in the
EMD system is the same as the one in the Einstein-dilaton system considered in [176] [177]
and the last term in Eq.(2.10) is an additional contribution from electrical field. In addition,
the equation of motion of the dilaton field is given by

8

3
∂z

(
`3e3As(z)−2φf(z)

z3
∂zφ

)
− `5e5As(z)− 10

3
φ

z5
∂φVE(φ) +

Z ′(φ)b(z)A′
0(z)

2

2g2
g

= 0. (2.11)

Maxwell field should satisfy

1√
−gE

∂µ

(√
−gEZ(φ)F µν

)
= 0. (2.12)

From these equations of motion, once As(z) is given, we can obtain a general solution
to the system, which takes the following form

φ(z) =

∫ z

0

e2As(x)
(

3
2

∫ x
0
y2e−2As(y)A′

s(y)
2 dy + φ1

)
x2

dx+
3As(z)

2
+ φ0, (2.13)

A0(z) = A00 + A01

(∫ z

0

ye
2φ(y)

3
−As(y)

Z(φ(y))
dy

)
, (2.14)

f(z) =

∫ z

0

x3e2φ(x)−3As(x)

A01
2

(∫ x
0
ye

2φ(y)
3 −As(y)

Z(φ(y))
dy

)
g2
g`

2
+ f1

 dx+ f0, (2.15)

VE(z) =
e−2As(z)+

4φ(z)
3 z2f(z)

`2
2
(
− e−2As(z)+

4φ(z)
3 Z(φ(z))z2A′

0(z)
2

4g2
g`

2f(z)

− 2 (3 + 3z2A′
s(z)

2 + 4zφ′(z) + z2φ′(z)2 − 2zA′
s(z) (3 + 2zφ′(z)))

z2

− f ′(z) (−3 + 3zA′
s(z) − 2zφ′(z))

2zf(z)

)
, (2.16)

where φ0, A00, A01, f0, f1 are all integration constants and can be determined by suitable
UV and IR boundary conditions. When Z(φ) = 1, the general solution reduces to the one
given in [178].
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2.2 General asymptotical AdS black hole solutions
Since we are interested in the black hole solutions with AdS asymptotics, we impose the
boundary condition f(0) = 1 at the AdS boundary z = 0, and require φ(z), f(z), A0(z)
to be regular at black hole horizon zh as well as at AdS boundary z = 0. There is
an additional condition A0(zh) = 0, which corresponds to the physical requirement that
AµA

µ = gttA0A0 must be finite at z = zh.
We can parameterize the function f(z) in Eq.(2.13) as

f(z) = 1 +
A2

01

2g2
g`

2

∫ z
0
g(x)

(∫ zh

0
g(r)dr

∫ x
r
g(y)

1
3 dy

Z(φ(y))

)
dx∫ zh

0
g(x)dx

−
∫ z
0
g(x)dx∫ zh

0
g(x)dx

, (2.17)

where f0 = 1, f1 = − A2
01

4g2g`
2

R zh
0 g(x)

R x
0

g(y)
1
3

Z(φ(y))
dy+1

R zh
0 g(x)dx

and

g(x) = x3e2φ(x)−3As(x). (2.18)

We expand the gauge field near the AdS boundary to relate the two integration constants to
the chemical potential (µ) and the charge density, respectively,

A0(z) ∼ A00 + A01
e

2φ(y)
3

−As(y)

Z(φ(y))
z2 + · · · , (2.19)

with

A00 = µ, (2.20)

A01 =
µ∫ zh

0
y e

2φ
3 −As(y)

Z(φ(y))
dy

=
µ∫ zh

0
g(y)

1
3

Z(φ(y))
dy
. (2.21)

The temperature of the black hole can be determined through the function f(z) in (2.17)
as

T =
1

4π
|f ′(z)|z=zh

=

∣∣∣∣∣∣ A2
01

4πg2
g`

2

g(zh)
∫ zh

0
g(r)dr

∫ zh

r
g

1
3 (y)

Z(φ(y))
dy − g(zh)∫ zh

0
g(x)dx

∣∣∣∣∣∣ . (2.22)

The entropy density can be found from the Bekenstein-Hawking formula and is given by

s =
Aarea
4G5V3

=
`3

4G5

(
eAs− 2

3
φ

z

)3∣∣∣
zh

, (2.23)

where V3 is the volume of the black hole spatial directions spanned by coordinates xi in
(2.6).
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2.2.0.1 An analytical black hole solution

In this subsection, we construct an analytical solution of the Einstein-Maxwell-Dilaton
system by using Eq.(2.13-2.16) with Z(φ) = 1. We impose the constrain f(0) = 1, and
require φ(z), f(z) to be regular at z = 0, and zh. We give the solution in Einstein frame

ds2
E =

`2e2Ae

z2

(
−f(z)dt2 +

dz2

f(z)
+ dxidxi

)
, (2.24)

with

Ae(z) = log

(
z

z0 sinh( z
z0

)

)
,

f(z) = 1 − 4V11

3
(3 sinh4(

z

z0

) + 2 sinh6(
z

z0

)) +
1

8
V 2

12 sinh4

(
z

z0

)
,

φ(z) =
3z

2z0
,

A0(z) = µ− 2gg`

z0
V12 sinh2

(
z

2z0

)
, (2.25)

where z0 is an integration constant and V11, V12 are two constants from the dilaton potential

VE(φ) = −
12 + 9 sinh2

(
2φ
3

)
+ 16V11 sinh6

(
φ
3

)
`2

+
V 2

12 sinh6
(

2φ
3

)
8`2

. (2.26)

The two integration constants V11 and V12 then can be expressed in terms of horizon zh and
chemical potential µ as

V11 =

3cosh4
(
zh

2z0

)(
µ2z20 sinh4

“

zh
z0

”

cosh4
“

zh
2z0

”

4g2g`
2 + 8

)
32
(
2 sinh2

(
zh

2z0

)
+ 3
) ,

V12 =
µz0cosh2

(
zh

2z0

)
2gg`

. (2.27)

We can obtain the temperature of the black hole by using Eq.(2.22). In figure (2.1), we show
the temperature as a function of horizon radius zh for three different chemical potentials.
In this plot we take parameters ` = 1, z0 = 1, gg = 1. We see from the figure (2.1) that
the temperature with respect to horizon zh is monotonic for a fixed chemical potential. A
vanishing temperature means that the black hole is extremal with a smallest horizon radius.
This smallest horizon radius increases with the chemical potential.
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Figure 2.1: The temperature as a function of horizon radius zh for the analytical black hole
solution with parameters ` = 1, z0 = 1, gg = 1.

2.2.1 The hQCD model
Based on the general solutions, in Ref. [178], a holographic QCD model has been proposed
to realize the confinement/deconfinement phase transition of QCD. In passing we briefly
review the main features of the model. Let us consider the warped factor As(z) of the
following form

As(z) = k2z2, (2.28)

where k is a constant. There are various phenomenological motivations for this choice.
Following [178] we set k = .3GeV . With As(z) as in eq (2.28), dilaton takes the form

φ(z) =
3

4
k2z2(1 +H(z)), (2.29)

where we have set the integration constant φ0 = 0, and H(z) is given by

H(z) = 2F2

(
1, 1; 2,

5

2
; 2k2z2

)
. (2.30)

The characteristic function of the black hole background takes the form

f(z) = 1 +
1

4g2
g`

2

(
µ∫ zh

0
g(y)

1
3dy

)2
∫ z
0
g(x)

(∫ zh

0
g(r)dr

∫ x
r
g(y)

1
3dy
)
dx∫ zh

0
g(x)dx

−
∫ z
0
g(x)dx∫ zh

0
g(x)dx

, (2.31)

where

g(x) = x3e
3
2
k2x2(1+H(x))−3k2x2

. (2.32)

One can clearly see that the second term in (2.31) comes from the contribution of elec-
tric field. If one turns off the electric field, one can reproduce the black hole solution in
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Einstein-dilaton system [176]. In addition, the electric field At(z) is given by

At(z) = µ+
µ∫ zh

0
g(y)

1
3dy

∫ z

0

xe
1
2
k2x2(−1+H(x))dx. (2.33)
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Figure 2.2: Plot (a): The black hole temperature as a function of horizon zh with different
chemical potentials. When µ > µc the temperature monotonically decreases to zero with
increase of zh; when 0 < µ < µc, the temperature decreases to a minimum at zm and grows
up to a maximum at zM and then decreases to zero monotonically. When µ = µc, one has
zm = zM . Plot (b): The temperature of the black hole with µ = 0.1GeV. The three black
hole solutions with horizon z′p, zp and z′′p have the same temperature. The black hole with
zm < zp < zM is thermodynamically unstable. Here we take gg` = 1, k = 0.3GeV. In this
hQCD model, we always fix k = 0.3GeV and accordingly the critical chemical potential is
µc = 0.34GeV, which corresponds to the case zm = zM .

In the figure (2.2) we plot the temperature with respect to the horizon radius zh for dif-
ferent chemical potentials. One can see clearly that the temperature crucially depends on
the value of chemical potential: there is a critical chemical potential µc, beyond which the
black hole is always thermodynamically stable, while when the chemical potential is less
than the critical one, there is a region of horizon radius, where the black hole is thermody-
namically unstable with negative heat capacity. To be more clear we plot in figure (2.2)(b)
the temperature versus the horizon zh in the case µ = 0.1GeV < µc as an example. One
can see from the figure that the black hole is thermodynamically unstable in the region
zm < zh < zM , where zm and zM are the black hole horizons corresponding to the minimal
and maximal temperatures, respectively. In this region, the heat capacity of the black hole
is negative. The black hole solutions in the regions zh < zm and zh > zM are thermody-
namically stable. When µ ≥ µc, zm and zM are degenerated to one point. In contrast to
the case in the figure (2.1), there are local minimal and maximal values of temperature for
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small µ. This is crucial to realize the critical point in the T −µ phase diagram of the hQCD
model [178].

2.3 Drag force
An external probe quark moving in the boundary plasma will experience a drag force.
We now compute that force for the above model. We will follow the technique described
in [95]. The drag force is a function of temperature and chemical potential. The bound-
ary gauge theory we are considering is on M4 described by the boundary coordinates
t, x1, x2, x3. As mentioned in the previous chapter, to compute the drag force holographi-
cally, we need to consider a string in the bulk with appropriate boundary conditions. The
dynamics of a fundamental string is specified by the Nambu-Goto action in the black hole
backgroundhin (2.5). The world sheet action reads

S = − 1

2πα′

∫
dτdσ

√
−detgαβ, gαβ =

∂Xµ

∂σα

∂Xµ

∂σβ
Gµν , (2.34)

where gαβ is the induced metric on the world sheet and Gµν is the background metric. The
equation of motion derived from (2.34) is given by

∆αP
α
µ = 0, P α

µ = − 1

2πα′Gµν∂
αXν , (2.35)

where ∆α is the covariant derivative with respect to gαβ and Pα
µ is the world sheet current

of space time energy-momentum of the test string. We consider the motion of the string
along x1. In the gauge, τ = t and σ = z, the string dynamics can be completely specified
by the function x1(t, z). In this case, the Lagrangian reads

L = − 1

2πα′

√
1

H
+
f(z)(∂zx1)2

H
− (∂tx1)2

Hf(z)
, (2.36)

where H is defined as

H =

√
z2

`2e2As
. (2.37)

To capture the dragged motion of the quark in the boundary theory we assume the following
ansatz in the bulk [95]

x1(t, z) = vt+ ξ(z). (2.38)

Here we have assumed only the late time behavior of the string motion. With this ansatz
the Lagrangian reduces to

L = − 1

2πα′

√
1

H
+
f(z)(∂zξ(z))2

H
− v2

Hf(z)
. (2.39)
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The momentum which conjugates to ξ(z) reads

Πξ =
∂L
∂ξ′ = − ξ′

2πα′
f

H

√
Hf

f − v2 + f 2ξ′2 . (2.40)

For the sake of consistency, it is important to invert the equation (2.40) and write it in the
following way

ξ
′
=

√√√√ Πξ
2(f − v2)

f2

H2 [
1

4π2α
′2Hf − Πξ

2H2]
. (2.41)

Here the positive sign is taken due to the trailing nature of the string profile [95]. To obtain
the string profile we have to solve the differential equation (2.41). To have a real ξ(z), we
further impose the constraints

f(z)|z=zv = v2,

Πξ
2|z=zv =

1

4π2α′2

v2

H
, (2.42)

so that one has ξ′|z=zv = v2/f2, keeping finite. The profile of the string is defined in the
region with z < zv, That is, there is a maximal value zv < zh for the string profile.

The constraints are very useful to figure out the final form of the drag force. Before to
compute the drag force, we recapitulate the relation between the drag force in the bound-
ary field theory and the dissipation of momentum flowing down the string, in the light of
AdS/CFT correspondence. In the boundary theory, the presence of the thermal medium
results into dissipation of energy and momentum of external quark until it reaches thermal
equilibrium with the medium. In the bulk theory, the momentum flows the string from the
boundary to the bulk and the change of momentum at a given spatial point on the world
sheet for a given time interval can be calculated. The identifications of the endpoint of
the string attached to the boundary with the quark and of the string in the bulk with the
thermal medium around the quark suggest that the drag force can be realized in terms of
the force imparted by the string on its boundary endpoint. To calculate the change of string
momentum due to its motion along x1 direction, we consider a closed curve on the world
sheet and study how the momentum is conserved around this curve [199]. According to the
conservation of world sheet current of space time energy-momentum of the test string, the
total flux calculated around the path C must be zero,∮

ABDEA

(P τ
µdσ − P σ

µ dτ) = 0. (2.43)

Note that one end of the string is attached to the boundary and the other end close to horizon
is free. In the static gauge, Eq. (2.43) reduces to

pt1x1
− pt2x1

= −
∫ t1

t2

√
−gP z

x1
dt, (2.44)
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Figure 2.3: This plot shows a closed path in an anti-clockwise direction on a world sheet
bounded by coordinates [A = τ1, σ2], [B = τ2, σ2], [D = τ2, σ1] and [E = τ1, σ1].

where ptx1
is the x1 component of the total momentum at time t. Consequently, the drag

force is defined as

Fdrag =
dpx1

dt
= −

√
−gP z

x1
= − 1

2πα′

`2e2As

zv2
v. (2.45)

Finally we have to replace all the gravity parameters in terms of gauge theory parameters.
Before doing that, we analyze the form of the constraints case by case. The exact forms of
constraint for the solutions (2.25) and (2.31) are given respectively by

v2 = 1 − 4V11

3
(3 sinh4( zv

z0
) + 2 sinh6( zv

z0
)) + 1

8
V 2

12 sinh4
(
zv

z0

)
,

v2 = 1 + 1
4g2g`

2

(
µ

R zh
0 g(y)

1
3 dy

)2 R zv
0 g(x)

“

R zh
0 g(r)dr

R x
r g(y)

1
3 dy

”

dx
R zh
0 g(x)dx

−
R zv
0 g(x)dx

R zh
0 g(x)dx

. (2.46)

It is always desirable to express the drag force in a closed analytic form as a function of
gauge theoretical variables. However, in the present case, due to the complexity of (2.46)
and (2.22), analytic computations become difficult. Instead we solve them numerically and
plot the drag force with respect to gauge theory parameters, e.g, temperature and chemical
potential. The qualitative features of the drag force can be revealed from our results.

Although the analytic black hole solution (2.25) is not a dual to a QCD like theory.
However, as a warm-up exercise, we plot the drag force in figure (2.4). We see that the drag
force monotonically increases with temperature and for a fixed temperature, it increases
with the chemical potential. These features are qualitatively expected in realistic QCD.

In figure (2.5), we plot the drag force for our hQCD model given by the solution (2.31)
with different chemical potentials µ = 0.10, 0.34, and 0.80. We see from the figure, that
for fixed chemical potential and temperature, the drag force increases with the velocity of
the quark, while for fixed chemical potential and velocity, the drag force increases with
temperature. These are expected features in QCD. In particular, let us note that in the
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Figure 2.4: This plot shows the drag force from the analytic black hole solution as a
function of T for chemical potential µ = 0.01, 0.80, and 1.20 respectively. Here we take
v = 0.1.
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Figure 2.5: This figure shows the drag force as a function of T for the chemical potential
µ = 0.10 (plot a), 0.34 (plot b), and 0.80 (plot c), respectively, in the hQCD model. Here
the dashed curves stand for the behavior of drag force in confined phase which is denoted
by CF in the figure. In the confined phase, in fact the drag force is not well defined, meaning
that the dashed curves do not make any sense here.
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Figure 2.6: The figure shows the drag force as a function of T for three chemical potential
µ = 0.10, 0.34, and 0.80, respectively in the hQCD model. The dashed parts of the curves
stand for the drag force in the confined phase which denoted by CF in the figure. Here we
take v = 0.1.

low temperature region with small chemical potential, the drag force is a multi-valued
function of temperature (see plot (a) and (b)). However it becomes a monotonic function
when the chemical potential (see plot (c)) is large. This feature is closely related to the
confinement/deconfinement phase transition in this hQCD model [178]. The dashed parts
of curves in plot (a) and (b) denote the drag force in the confined phase and actually they
do not make any sense here since drag force is not well-defined in the confined phase. Our
result for the drag force in the deconfined phase is in agreement with the one in [26]. For
comparison, in figure (2.6) we plot the drag force versus temperature with three different
chemical potentials µ = 0.10, 0.34 and 0.80, respectively. In this figure the velocity of
quark is taken as v = 0.1.

2.4 Jet Quenching parameter
In this section, we use the AdS/CFT duality to compute the jet quenching parameter in our
hQCD model. To employ the holographic principle in the computation of this parameter,
the hQCD dual solution (2.31) as the bulk theory of gravity serves the purpose. The jet
quenching parameter is related to the expectation value of light-like Wilson loop computed
in the adjoint representation [101]. The gauge/gravity duality prescribes how to map the
expectation value of light-like Wilson loop in fundamental representation 〈W F (C)〉 into
the exponential of the regularized extremal surface in the bulk with a boundary contour C
located at z = 0.

〈W F (C)〉 = exp[−S(C)]. (2.47)
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In the planar limit, considering the fact TrAdj = Tr2
Fund , the relation between W F (C) and

WA(C) can be easily established as

〈WA(C)〉 = 〈W F (C)〉2. (2.48)

Now we start with the background black hole solution in string frame

ds2
S =

`2e2As

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx1dx1 + dx2dx2 + dx3dx3

)
. (2.49)

By introducing the light cone coordinates defined as

x± =
t± x1

√
2
, (2.50)

the black hole metric (2.49) can be rewritten as

ds2
S =

`2e2As

z2

(
(1 − f(z))

2
((dx+)

2
+ (dx−)

2
) − (1 + f(z))(dx+dx−)

+
dz2

f(z)
+ dx2dx2 + dx3dx3). (2.51)

We take the gauge with τ = x−(0 ≤ x− ≤ L−), σ = x2(−L2

2
≤ x2 ≤ L2

2
), and set the pair

of quarks at x2 = ±L2

2
on x+ = constant, x3 = constant plane. In the limit with L− � L2

the string profile is completely specified by z = z(σ). Following [101] and using (2.47),
(2.48), we find

〈WA(C)〉 = exp(− 1

4
√

2
q̂L−L2

2), (2.52)

where the jet quenching parameter is defined as

q̂ =
8
√

2(S − S0)

L−`2
, (2.53)

where S is the Nambu-Goto action of the string and S0 is the self energy from the mass of
two quarks.

Substituting the induced metric of the fundamental string into the Nambu-Goto action
(2.34), we get

S = − 1

2πα′

∫
dτdσ

√
−detgαβ,

=
L−`2√
2πα′

∫ L2
2

0

dσ
e2As

z2

√
(1 − f(z))(1 +

z′2

f(z)
). (2.54)

Since the integrand in (2.54) does not explicitly depend on σ, one can regard σ as time and
the integrand as a Lagrangian. In this case the corresponding Hamiltonian is conserved.
That is, we can have

∂L
∂z′ z

′ − L = E, (2.55)
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where E is a constant and L is the integrand in (2.54). From this relation we obtain the
equation of motion for z as

z
′2 = f(z)(

e4As

z4

(1 − f(z))

E2
− 1). (2.56)

We choose the boundary conditions z(±L2

2
) = 0 and z′

(0) = 0. In that case, the turning
point zT is determined by solving Eq.(2.56). Since z′

(σ) is a real function, so the square of
it should be non-negative. The realization of boundary condition z′

(0) = 0 at the turning
point requires the proper choices of zeros and the positivity region of the right hand side of
Eq.(2.56). From the boundary conditions of the black hole solution

lim
z→zh

f(z) = 0, lim
z→0

f(z) = 1, (2.57)

together with the fact that we are interested in the case with small E, it is clear that the
factor e4As (1−f(z))−E2z4

E2z4 is always positive near the black hole horizon and negative near the
boundary. To remove the region with a negative z′2, we consider a modified boundary at
z = δ. We assume that at z = zmin,

e4As(zmin)

z4
min

(1 − f(zmin))

E2
− 1 = 0, (2.58)

and δ > zmin. In the region δ ≤ z ≤ zh, thus, the factor [ e
4AS

z4
(1−f(z))

E2 − 1] is always
positive. So only viable solution of z′2 = 0 is

f(z) = 0 ⇒ zT = zh. (2.59)

That is, the turning point is just at the horizon. The distance between two quarks can be
determined by

L2

2
=

∫ zh

δ

dz
E√

f [e4As(1 − f)z−4 − E2]
. (2.60)

As we are interested in the small L2 limit, considering the smallness of E, we can expand
Eq.(2.60) in terms of E as

L2

2E
=

∫ zh

δ

dz
z2e−2As√
f(1 − f)

+
E2

2

∫ zh

δ

dz
e−6Asz6√
f(1 − f)3

+ O(E4). (2.61)

Inverting (2.61) suitably, we can obtain E up to the leading order of L2 as

E =
L2

2
∫ zh

δ
dz z2e−2As√

f(1−f)

+ O(L2
3). (2.62)

Thus we can obtain the string action

S =
L−`2√
2πα′

∫ zh

δ

dz
e4As(1 − f)

z2
√
f(e4As(1 − f) − z4E2)

. (2.63)
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Clearly this action is divergent. The divergence comes from the contribution of mass of
two quarks. With the gauge x− = τ and z = σ, the self energy of two free quarks reads

S0 =
L−`2√
2πα′

∫ zh

δ

dz
e2As

z2

√
(1 − f)

f
. (2.64)

Thus the regularized action up to the leading order of L2 is given by

SI = S − S0 =
L−L2

2`
2

8
√

2πα′

1∫ zh

δ
dz z2e−2As√

f(1−f)

+ O(L2
4). (2.65)

With the definition of the jet quenching parameter (2.53), we finally reach

q̂ =
`2

πα′

1∫ zh

δ
dz z2e−2As√

f(1−f)

. (2.66)

In fact the cutoff here can be removed by noting the fact that the integrand is regular inside
the region 0 ≤ z ≤ zh, i.e, from the horizon to the real boundary,∫ zh

δ

dz
z2e−2As√
f(1 − f)

=

∫ zh

0

dz
z2e−2As√
f(1 − f)

−
∫ δ

0

dz
z2e−2As√
f(1 − f)

. (2.67)

The second integral in the right hand side of the above equation smoothly vanishes in the
limit δ → 0. So the final expression for the jet-quenching parameter is

q̂ =
`2

πα′

1∫ zh

0
dz z2e−2As√

f(1−f)

. (2.68)

Because the black hole metric is still too complicated it is hard to obtain an analytical ex-
pression of the jet-quenching parameter in terms of physical parameters. We rather solve
it numerically and plot in figure (2.7) the jet-quenching parameter as a function of tem-
perature in the hQCD model with three chemical potentials µ = 0.10, 0.34 and 0.80, re-
spectively. For large µ ≥ µc cases, the jet-quenching parameter decreases monotonically
with temperature, which agrees with the one in [200] qualitatively. On the other hand,
when µ < µc, the jet-quenching parameter is a multi-valued function of temperature in
low temperature region and it decreases monotonically with respect to temperature in high
temperature region. The multi-valued behavior of the jet-quenching parameter in low tem-
perature region is clearly related to the first order phase transition between the hadron phase
and the QGP phase. The jet-quenching parameter confirms the hydrodynamical description
of QGP phase and agrees with the real QCD expectation at high temperature. Once again,
as the drag force in the confined phase, the dashed parts of curves in figure (2.7) denote the
jet-quenching parameter in the confined phase and thus they cease to make any sense.
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Figure 2.7: The figure shows the jet-quenching parameter as a function of T for three
chemical potentials µ = 0.10, 0.34, and 0.8, respectively, in the hQCD model. The dashed
parts of curves stand for the jet-quenching parameter in the confined phase which are de-
noted by CF in the figure.

2.5 Hot plasma wind and screening length
The screening length is defined as the maximum length achieved by a quark-antiquark
bound state at temperature T > Tc, beyond which the pair dissociates. For quark-antiquark
pair, the energetically favorable configuration in the dual gravity theory is a fundamental
string with both ends attached to the boundary. The attached endpoints correspond to the qq̄
pair whereas being separated beyond the screening length, thus dissociated from each other,
the pair maps into two separate strings hanging from the boundary. In [199], the screening
length is computed in the rest frame of qq̄ pair and the plasma wind flows at a constant
speed v for the hot N = 4 SYM plasma. This setup is identified with a quark-antiquark
pair moving in hot N = 4 SYM plasma. In this section, we compute the screening length
for the hQCD model (2.31) in the same way as in [199].

In the static frame of qq̄ pair, we assume that the hot plasma is moving with velocity v
in the negative x3 direction. The Wilson loop we are interested in lies in the t − x1 plane
specified by the length T and L respectively. We assume T � L such that the string world
sheet is invariant under translation along the time direction. The boost we are considering
is defined as

dt = cosh ηdt
′ − sinh ηdx

′

3,

dx3 = − sinh ηdt
′
+ cosh ηdx

′

3, (2.69)

where cosh η = γ, sinh η = γv and γ = 1/
√

1 − v2 is the Lorentz boost factor. With the
Lorentz transformation, we obtain the boosted black hole metric in string frame

ds2
S = H(z)[−(1 − (1 − f) cosh2 η)dt2 + (1 + (1 − f) sinh2 η)(dx3)

2
,

−2(1 − f) cosh η sinh ηdtdx3 + (dx1)
2
+ (dx2)

2
+

dz2

f(z)
], (2.70)
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where H(z) = `2e2As/z2. We prefer to work in the static gauge

τ = t, σ = x1, x2(σ) = x3(σ) = constant, (2.71)

with the following boundary conditions

z(σ = ±L
2

) = 0, z(σ = 0) = zc, z
′
(σ = 0) = 0. (2.72)

Thus the world sheet metric induced on the boosted background is given as

gττ = −H(z)(1 − (1 − f) cosh2 η),

gτσ = gστ = 0,

gσσ = H(z)[1 + (1 +
z
′2

f(z)
)]. (2.73)

Then the Nambu-Goto action for the string takes the form as

S = − T
πα′

∫ L
2

0

dσH(z)

√
(1 − (1 − f) cosh2 η)(1 +

z′2

f
). (2.74)

As the Lagrangian L in (2.74) does not depend on σ explicitly, the corresponding Hamilto-
nian is conserved and can be viewed as a constant of motion

−q =
∂L
∂z′ z

′ − L. (2.75)

With this we can cast the equation of motion in the form as

z′ =

√
f [H2(1 − (1 − f) cosh2 η) − q2]

q
. (2.76)

It is evident from the constraint (2.76) that at the horizon, z = zh, where f(zh) = 0, the
factor H2

q2
(1− (1− f) cosh2 η)− 1 = −H2

q2
sinh2 η− 1 is always negative. At the boundary,

f(0) = 1, the factor H2

q2
(1 − (1 − f) cosh2 η) − 1 = H2

q2
− 1 is always positive for small

values of q < H . Therefore in the range 0 < z < zh there must be a location (z = zc)
where H2

q2
(1 − (1 − f) cosh2 η) − 1 switches its sign. Accordingly z = zc is the physical

turning point of the string configuration. The string can not be stretched up to the horizon
as z′ is an imaginary quantity in the region zc < z < zh. By solving the equation

f(zc)H
2(zc) cosh2 η

q2
− H2(zc) sinh2 η

q2
− 1 = 0, (2.77)

the turning point can be numerically determined. Then one can obtain the binding energy
between the quark and antiquark pair through calculating the action (2.74) with constraint
(2.76)

V = −S − S0

T
, (2.78)
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Figure 2.8: Plot (a) shows the quark-antiquark distance as a function of q for a fixed
rapidity, while plot (b) shows the binding energy with respect to the distance. In both plots
we fix the chemical potential µ = 0.10, 0.34, and 0.80, respectively. We have set a same
temperature T to obtain these curves.

where S0 is given by

S0 = − T
πα′

∫ zc

0

dz
√
−GttGzz. (2.79)

The distance between quark and antiquark can be calculated from (2.76) as

L

2q
=

∫ zc

0

dz
1

H
√
f [(1 − cosh2 η(1 − f)) − q2

H2 ]
. (2.80)

It is not possible to work out the integration in (2.80) explicitly. To determine the screening
length, we plot the distance L with respect to the constant of motion q for a fixed rapidity
η in figure (3.2 a). It turns out that for a fixed value of rapidity, there exists a maximum for
L, which is regarded as the screening length Ls = Lmax(η)/(πT ). Plot (b) in figure (3.2)
shows the binding energy V given by (2.78) with respect to L. One can see from plot (a)
that the quark-antiquark distance starts from zero when q is also zero, it increases sharply
with respect to q, reaches its maximum at a certain q, and then decreases monotonically to
zero at some finite q. In between these two zeros, there exists a single L = Lmax beyond
which there is no solution of Eq.(2.80). This implies the quark-antiquark pair dissociates
beyond L = Lmax. We identify Lmax(η)/(πT ) with the screening length Ls. For the
µ = 0.1 case, Lmax ' 1.4 and Ls ' 1.4/(πT ) ' 0.45/T , close to the lattice calculation
Ls ∼ 0.5/T [179] of the static potential between heavy quark and antiquark in QCD. Plot
(b) shows that there are two branches for the binding energy in the region L < Lmax. The
branch with dashed curves has a higher energy than the one with solid curves. This implies
that the branch with dashed curves is physically disfavored.

The screening length Ls(η) as a function of rapidity can be obtained numerically as
illustrated in the figure(2.9). One finds that it decreases with the velocity which indicates
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Figure 2.9: The screening length versus the rapidity η for the cases µ = 0.1, 0.34, and 0.8,
respectively. We have set a same temperature T to obtain these curves.

that the quark-antiquark pair dissociates at a lower temperature as it is moving. This be-
havior is also observed in [26]. If the qualitative behavior holds for QCD, it will have the
consequence for quarkonium suppression in heavy ion collision. Additionally, our results
show that the case with smaller chemical potential has a larger screening length.

2.6 Discussion
In this chapter, we studied a holographic QCD model proposed in [178], in an Einstein-
Maxwell-Dilaton system. First, we have generalized the system by allowing a non-minimal
coupling between between the Maxwell field and the dilaton field, and given an algorithm to
generate a set of exact and asymptotic AdS black hole solutions in the EMD system. After
briefly reviewing the main features of the hQCD model, we have studied some aspects
of QGP phase of the hQCD model by calculating drag force, jet quenching parameter and
screening length. The calculations show that the behaviors of those quantities are consistent
with the expectation from the real QCD.

It is found that the drag force increases monotonically with the temperature which is
consistent with the real QCD phenomenon in the large chemical potential region with µ ≥
µc. In the small chemical potential region ( µ < µc ), the drag force monotonically increases
at high temperature region, while at low temperature, it shows a multi-valued behavior.
Note that, in the case µ < µc, the solution is dual to the confined phase of the QCD and
the drag force is not well defined. Therefore the change from the multi-valued behavior to
the monotonic behavior just manifests the existence of the first order phase transition. We
further find that the jet quenching parameter has a monotonically decreasing behavior with
the temperature This is also consistent with the QCD experiments in the region µ ≥ µc.
For µ < µc, the jet quenching parameter agrees with the real QCD expectation in the high
temperature and once again, it shows the multi-valued behavior in the low-temperature
region. As for drag force, the multi-valued behavior of the jet quenching parameter in the
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low temperature region is consistent with the existence of the first order phase transition
in this hQCD model. For the screening length, we found the separation between the quark
and anti-quark pair as a function of the constant of motion q. It is clear from the plot that
for both cases µ ≥ µc and µ < µc, the dipole dissociates beyond a maximum separation
distance (namely the screening length Ls). We have also calculated the binding energy as
a function of the separation. In addition, we have presented Ls(η) and found that there are
qualitative consequences for quarkonium suppression in heavy ion collisions in this hQCD
model.
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3
Dissipative force on an external quark in

heavy quark cloud

3.1 Introduction
In this chapter, we carry out a simple holographic calculation of the drag force for the ther-
mal N = 4 super Yang-Mills on R3 in the following scenario. We consider an uniformly
distributed heavy quark cloud in this hot plasma. We then ask: how does the drag force
on an external heavy probe quark change with the density of the quark cloud? Our aim is
to find how the cloud backreacts to the geometry and hence modifies the drag force on a
moving heavy quark.

As previously discussed within the framework of AdS/CFT , the heavy probe quark
is modeled by a fundamental string attached to the boundary of an AdS black hole. For
the N = 4 super Yang-Mills, the end point of the string carry a fundamental SU(N)
charge. The string extends along the radial direction of the AdS-Schwarzschild metric.
This external quark, with a mass proportional to the length of the string, loses its energy as
the string trails back imparting a drag force. The gravity dual of the quark cloud represents
a black hole in the presence of a string cloud. These strings, assumed to be non-interacting,
are aligned along the radial direction of the bulk geometry and are distributed uniformly
over R3.

The usual probe approximation one normally uses is justified because the free energy
of the external quark goes as O(Nc) whereas the plasma, being in adjoint representation,
contributes O(N2

c ) to the free energy. So, in this sense, in the large color limit, with Nc →
∞, external quark can be treated as a probe. However, when large number of external
quarks are introduced, the background geometry may get modified. And it is this effect
that we would like to incorporate in our computation. This chapter is organized as follows.

In section 2 we discuss the construction of gravity dual for external quark cloud. We
solve the Einstein equation of motion and obtain a AdS black hole solution by the presence
of the cloud. We also discuss the thermodynamical properties of the black hole solution.
In section 3, we check the gravitational stability of the black hole solution. Our stability
analysis is restricted for the tensor and vector modes of the background solution. In section
4, using gauge/gravity dictionary, we calculate the drag force on an external quark moving
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in the heavy quark cloud. We conclude this chapter with a discussion.

3.2 Gravity dual for external quark cloud

We consider the (n+ 1) dimensional gravitational action given by

S =
1

16πGn+1

∫
dxn+1

√
−g(R− 2Λ) + Sm, (3.1)

where Sm represents the matter part of the action. We represent the matter part as

Sm = −1

2

∑
i

Ti
∫
d2ξ

√
−hhαβ∂αXµ∂βX

νgµν , (3.2)

where we considered gµν and hαβ are the space-time metric and world-sheet metric respec-
tively with µ, ν represents space-time directions and α, β stands for world sheet coordi-
nates. Sm is a sum over all the string contributions with i’th string having a tension Ti. The
integration in (3.2) is over the two dimensional string coordinates.

Varying this action with respect to the space-time metric leads to

Rµν −
1

2
Rgµν + Λgµν = 8πGn+1Tµν , (3.3)

with
T µν = −

∑
i

Ti
∫
d2ξ

1√
|gµν |

√
|hαβ|hαβ∂αXµ∂βX

νδn+1
i (x−X). (3.4)

In the above, the delta function represents the source divergences due to the presence of the
strings. In the following, we will consider the space-time metric of the form

ds2 = gtt(r)dt
2 + grr(r)dr

2 + r2δabdx
adxb, (3.5)

where (a, b) run over n− 1 space directions. We will further consider strings with uniform
tensions T and use the static gauge t = ξ0, r = ξ1. The non vanishing components of T µν ,
following from (3.4), are

T tt = − agtt

rn−1
, T rr = −agrr

rn−1
. (3.6)

Here we have assumed that the strings are uniformly distributed over n− 1 directions such
that the density is1

a(x) = T
∑
i

δ
(n−1)
i (x−Xi), with a > 0. (3.7)

1To define this properly, we need to think of an IR cutoff in n − 1 directions.
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For negative a, Tµν will cease to satisfy the weak and the dominant energy conditions2. We
look for a solution of (3.3) in AdS space and parametrize the metric acccordingly treating
a as a constant3,

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hijdx

idxj. (3.9)

Here hij is the metric on the (n− 1) dimensional boundary. As for the matter part we will
focus on to the string cloud for which the nonzero Tµν components are4 given by

T tt = T rr = − a

rn−1
, with a > 0. (3.10)

The solution which satisfy the Einstein’s equation can be easily constructed. It is given
by5

V (r) = K +
r2

l2
− 2m

rn−2
− 2a

(n− 1)rn−3
. (3.11)

HereK = 0, 1,−1 depending on whether the (n−1) dimensional boundary is flat, spherical
or hyperbolic respectively, having curvature (n− 1)(n− 2)K and volume Vn−1. In writing
down V (r) we have also parametrized cosmological constant as Λ = −n(n − 1)/(2l2).
With equation (3.11), the metric (3.9) represents a black hole with singularity at r = 0
and the horizon is located at V (r) = 0. The horizon has a topology of flat, spherical or
hyperbolic depending on the value of K. However, our interest in this work, lies in the
K = 0 case. In this case of flat horizon, the integration constant m is related to the ADM
(M ) mass of the black hole as follows,

M =
(n− 1)Vn−1m

8πGn+1

. (3.12)

The horizon radius, denoted by r+, satisfies the following equation

r2
+

l2
− 2m

rn−2
+

− 2a

(n− 1)rn−3
+

= 0. (3.13)

This allow us to write m in terms of horizon radius as

m =
(n− 1)rn+ − 2al2r+

2(n− 1)l2
. (3.14)

2For earlier discussions on string cloud/fluid models see [203–205].
3Clearly a in (3.7) depends on x. However, in equations (3.9), (3.10) and in (3.11), a is treated as constant.

To do this, we have replaced a(x) by an average density as

a =
1

Vn−1

∫
a(x)dn−1x =

T

Vn−1

N∑
i=1

∫
δ
(n−1)
i (x − Xi)dn−1x =

T

Vn−1

N∑
i=1

1 =
TN

Vn−1
. (3.8)

Here, Vn−1 is the volume in n−1 dimensional space after imposing an IR cut-off. Now we consider the limit
Vn−1 going to infinity along with the number of strings N, keeping N/Vn−1 constant.

4It turns out that replacement of δij by hij in (3.5) keep the components of the stress-tensor same.
5This is a slight generalization of the metric in [206].
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The temperature of the black hole is given by

T =

√
grr∂r

√
gtt

2π
|r=r+ =

n(n− 1)rn+2
+ − 2al2r3

+

4π(n− 1)l2rn+1
+

. (3.15)

Note that the zero mass black hole has a non-zero temperature and is given by

T0 =
a

2π

(n− 1

2al2

)n−2
n−1

. (3.16)

The black hole temperature increases with the horizon size and for large r+, it behaves as
T ∼ r+/l

2. The entropy is defined as

S =

∫
T−1dM, (3.17)

leading to the entropy density 6

s =
rn−1
+

4Gn+1

. (3.18)

Note that s is finite even for black hole with zero mass. The specific heat associated with
the black hole is

C =
∂M

∂T
=
Vn−1(n− 1)rn−1

+ (n(n− 1)rn+ − 2al2r+)

4Gn+1(n(n− 1)rn+ + 2(n− 2)al2r+)
. (3.19)

Now we have a detail look at the thermodynamic quantities just evaluated. First of all, if
we restrict the temperature to be non-negative, the black hole can have minimum radius

rmin
+ =

( 2al2

n(n− 1)

) 1
n−1

. (3.20)

It can easily be checked that if we focus on to the region T ≥ 0, there is a single positive
real solution of (3.13). We also note from (3.20) and (3.14) that the mass becomes negative
at zero temperature

mmin = −a
n
rmin
+ . (3.21)

This is somewhat similar to the AdS-Schwarzschild with negative curvature horizon [207].
We note that, for mass m ≥ mmin, the specific heat (3.19) continues to be positive and is
continuous as a function of r+. This suggests thermodynamical stability of the black hole.
Finally, we write down the free energy of this black hole

F = −
(n− 1)rn+ + 2al2(n− 2)r+

16π(n− 1)
. (3.22)

6Due to the nature of a dependent term in (3.11), our definition of ADM mass is perhaps ambiguous.
However, with this definition, entropy of the black hole comes out to be one quarter of the horizon area,
provided we assume that the equation dS = MdT holds for this black hole.
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Before we go on to analyze gravitational stability of the black hole, we would like to
make the following comment. Quite naturally, one may wonder if this black hole has a
higher dimensional origin. In particular, can this arise, in some near horizon limit, from
some brane configuration in ten or eleven dimensions after compactifying on spheres (with
the cloud smeared over the compact manifold)? We indeed tried to get this from some
bound state configurations of D-branes and strings but have not succeeded yet.

3.3 Stability of the flat black hole
We now study the stability of the K = 0 black hole geometry using the gravitational
perturbation in a gauge invariant way [209, 210, 212–214]. We consider perturbation on a
background space time M2+p

M2+p = N 2 ×Kp, (3.23)

where the space time metric is,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2δijdx

idxj,

f(r) =
r2

l2
− 2m

rp−1
− 2a

prp−2
. (3.24)

We identify N 2 as a two dimensional space time coordinatized by t and r, whereas Kp is
a p dimensional maximally symmetric space coordinatized by xis. Each perturbed tensor
realized on Kp can be grouped into scalar, vector, and tensor components such that Einstein
equations of motion respect the decomposition. Here we do stability analysis for tensor and
vector perturbations. Scalar perturbation is somewhat more involved and will be reported
else where.

3.3.1 Tensor perturbation
In the case of the tensor perturbation, the metric tensor and energy momentum tensor are
decomposed in scalar, vector, tensor part with respect to Kp in the following manner [210],

hab = 0, hai = 0, hij = 2r2HTTij

δTab = 0, δT ai = 0, δT ij = τTTi
j, (3.25)

Tij is the tensor harmonic function defined on Kp. It satisfies the following properties,

(4̂ + k2
T )Tij = 0

Ti
i = 0, D̂jTj

i = 0. (3.26)

Here we note that in Kp space, 4̂ and D̂j are realized as the Laplace-Beltrami self-adjoint
operator and the covariant derivative respectively. For K = 0, k2

T can take non-negative
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real continuous values [212]. Gauge invariant quantities like HT and τT are function of
variables belong to N 2 spacetime. [213].
Now substituting all the variations in the perturbed Einstein equation, we get the master
equation of tensor perturbation [210].

2HT +
p

r
Dr·DHT − k2

T

r2
HT = −κ2τT (3.27)

We introduce a new variable Φ,
Φ = rp/2HT , (3.28)

and substitute it into the master equation. It takes following canonical form,

2Φ − VTΦ

f
= 0, (3.29)

where VT is defined as,

VT =
f

r2
[kT

2 +
prf ′

2
+
p(p− 2)f

4
]. (3.30)

According to (3.4) the energy momentum tensor is constructed with the spacetime vector
Xµ(t, r) which does not contribute to the linear order of gauge invariant tensor perturbation.
Therefore we set τT to be zero in (3.29). It is clear in plot-1 of figure (3.2) that for higher
dimensions VT is always positive beyond horizon. So the black hole geometry is stable
under tensor perturbation.

3.3.2 Vector perturbation
In the case of vector perturbation, the metric and the energy momentum tensor are decom-
posed in terms of vector harmonics Vi as well as vector harmonic tensor Vij [210].

hab = 0, hai = rfaVi, hij = 2r2HTVij

δTab = 0, δT ai = rτaVi, δT
i
j = τTV

i
j (3.31)

The vector harmonics are defined as

(∆̂ + kV
2)Vi = 0, D̂iV

i = 0 (3.32)

>From vector harmonics we can construct vector type harmonic tensor,

Vij = − 1

2kV
(D̂iVj + D̂jVi),

(∆̂ + k2
V )Vij = 0, V i

i = 0, D̂jV
j
i =

kV
2
Vi. (3.33)
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The gauge invariant parameters for K = 0 are given by

Fa = fa + rDa(
HT

kV
), τT , τ

a. (3.34)

Upon considering the perturbations of the Einstein equation and the conservation law of
energy momentum tensor, master equation arising from the gravitational perturbation with
the source term takes the following form [212],

rpDa(
1

rp
DaΩ) − kV

2

r2
Ω = −2κ2

kV
2 r

pεabDa(rτb) (3.35)

where,

rp−1F a = εabDbΩ +
2κ2

kV
2 r

p+1τa. (3.36)

Now introducing the change of variable

Φ = r−p/2Ω (3.37)

we recast the master equation in a canonical form, where the effective potential for vector
perturbation comes out as [214],

VV =
f

r2
[kV

2 +
p(p+ 2)

4
f − pr

2
f ′] (3.38)
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Figure 3.1: Plot 1 shows, for various dimensions, the effective potential VT in tensor per-
turbation is positive beyond horizon radius . Plot 2 shows the effective potential VV in
vector perturbation is not always non-negative for p > 3. In both cases horizontal axis is
normalized with respect to black hole horizon radius r+.

The plot-2 in figure (3.2) implicates that beyond horizon, VV is not always non-negative
for p > 3. We follow S − deformation method [210] to construct modified effective
potential

ṼV = VV + f
dS

dr
− S2, (3.39)
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where S is an arbitrary function of r. If we choose S = pf
2r

, we get the modified effective
potential,

ṼV =
fkV

2

r2
> 0 (3.40)

Once again kV 2 is the eigenvalue of a positive operator. So the above form of ṼV furnishes
the sufficient condition for the stability of the black hole.
Having constructed this black hole geometry we compute the drag force on an external
quark moving in external quark cloud

3.4 Dissipative force on an external quark moving in the
heavy quark cloud

We now like to calculate the dissipative force experienced by the external heavy quark
moving in the cloud of heavy quarks. Our aim is to study the force as a function of the
cloud density. Calculational procedure to evaluate drag force can be found, for example,
in [94,95,101]. As in the previous chapter we follow the notation of [95]. The drag force on
a very massive quark with fundamental SU(N) charge at finite temperature is calculated
holographically by studying the motion of a string whose end point is on the boundary.
This end point represents the massive quark whose mass is proportional to the length of
the string. We will consider here the gauge theory on R3 coordinatized by x1, x2, x3. This
means, for the purpose of this computation, we only consider K = 0, n = 4 case of the
black holes discussed previously.

Let us consider the motion of a string only in one direction, say x1. In static gauge,
t = ξ0, r = ξ1, the embedding of the world-sheet is given by the function x1(t, r). The
induced action of the string in our case follows from a straightforward computation

S = − 1

2πα′

∫
dtdr

√
1 +

3r4 − 2al2r − 6ml2

3l4
(∂rx1)2 − 3r4

3r4 − 2al2r − 6ml2
(∂tx1)2,

(3.41)
where we have scaled x1 by l.

The ansatz that describes the behaviour of the string with attached quark moving with
constant speed v along x1 is given by [95]

x1(r, t) = vt+ ξ(r), (3.42)

for which (3.41) simplifies to

S = − 1

2πα′

∫
dtdr

√
1 +

3r4 − 2al2r − 6ml2

3l4
(∂rξ)2 − 3r4

3r4 − 2al2r − 6ml2
v2. (3.43)

The momentum conjugate to ξ(r) is

πξ = − 1

2πα′
(3r4 − 2al2r − 6ml2)∂rξ

3l4
√

1 + 3r4−2al2r−6ml2

3l4
(∂rξ)2 − 3r4

3r4−2al2r−6ml2
v2
. (3.44)
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Equation of motion can be obtained by inverting this equation for ∂rξ. However, as in [95],
to get a real ξ, the constant of motion πξ has to be set to

πξ = − 1

2πα′
vr2

v

l2
(3.45)

where rv is the real positive solution of the equation

3(1 − v2)r4
v − 2al2rv − 6ml2 = 0. (3.46)

Though this equation can be solved explicitly, the solutions are not very illuminating. How-
ever, it is easy to check that there is only one real positive solution. Substituting this solu-
tion of rv in (3.45), we get πξ. The dissipative force is then given by [95]

F = − 1

2πα′
vr2

v

l2
, (3.47)

with rv given by the positive real solution of (3.46). Now we wish to rewrite the expression
of the dissipative force in terms of gauge theory parameters. Along this line, we solve (3.15)
for r+,

r+ =
l2

6
A(T, b), (3.48)

where b is the scaled quark cloud density, b = a/l4 and A is given by,

A(T, b) = [{2(9b+ 4π3T 3) + 6
√
b(9b+ 8π3T 3)}

1/3
+

2πT{1 +
22/3πT

{(9b+ 4π3T 3) + 3
√
b(9b+ 8π3T 3)}1/3

}] (3.49)

Substituting (3.48) and the following useful relation

l4

α′2 = gYM
2N, (3.50)

in the expression of the dissipative force (3.47), we get the modified form

F = − A2

72π

√
gYM 2Nv

rv
2

r+2
. (3.51)

Here gYM is the Yang-Mills(YM) gauge coupling and N is the order of the gauge group
SU(N). We are able to solve the ratio rv2/r+

2 in a closed form by substituting (3.13) into
(3.46). The relevant equation takes the following form,

(1 − v2)(
rv

4

r+4
) − 144b

(A(T, b))3 ((
rv
r+

) − 1) − 1 = 0, (3.52)
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Figure 3.2: Plot 1 shows the variation of F as a function of T for the values of quark
density b = 0 (solid), 0.5 (dashed), 2 (dotted) respectively. Plot 2 shows the variation of F
as a function of b for the values of T = .1 (solid), .5 (dashed), 1 (dotted) respectively. We
see in both cases the larger the quark cloud density as well as temperature, the more is the
dissipative force.

It turns out that the real positive solution of (3.52) is expressible in terms of A(T, b) and
b itself. Denoting the solution as f(A, b) and plugging it back into (3.51) we achieve the
form of dissipative force expressible in terms of gauge theory parameters

F = − A2

72π

√
gYM 2Nvf(A, b)2. (3.53)

We note here that f(A, b) is an explicitly computable function.
We would now study (3.53) for different values of heavy quark density and for fixed T .

As for an example, it is interesting to check that if the temperature is fixed at the value T0 as
mentioned in (3.16) the dissipative force behaves as F ∼ −b2/3, where b is now the density
of the quark cloud. Also for T = 0, A(T, b) in (3.49) simplifies significantly resulting the
dissipative force to vary as F ∼ −b2/3. For generic temperature and small b, it is possible
to have a power series solution of (3.53) in b. However, for appreciable density, we find it
more suitable to analyze F in terms of plots. In figure (3.2) plot 1 shows the behaviour of
the drag force as a function of T for different b. For fixed T , we clearly see that the force
becomes stronger with the quark density7

3.5 Conclusion
In this chapter we have computed the dissipative force experienced by an external heavy
quark with fundamental SU(N) charge moving in the heavy quark cloud at finite temper-
ature.

7Note that the free energy (3.22) is perfectly well behaved at T = 0. Infact, it is F = −3ar+
32π . Substituting

r+, we find F ∼ −b
4
3 . Furthermore computation of the drag force leads to F ∼ −b

2
3 in this limit.
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To conclude we address the relevance of this work in the context of quark gluon plasma.
Let us consider the dynamics of a heavy quark (say charm) passing through the plasma.
The dynamics is encoded in it’s interaction with the medium and the resulting energy loss
can be calculated. In such calculations, any possible effects of other heavy quarks due
to the back-reaction of the plasma are neglected. In the context of N = 4 SYM, we
have computed such back-reaction effects. Within the gauge/gravity correspondence, such
effects can be modeled in terms of the deformation of the geometry due to finite density
string cloud. The back-reacted dual gravity background is explicitly computable. The
black hole is parametrized by it’s mass and the string cloud density a. The black hole was
found to be thermodynamically stable. We further checked the gravitational stability of
the geometry for tensor and vector perturbations. We then holographically computed the
drag force exerted on the external quark. The most general form of the dissipative force
turned out to be a complicated function of the temperature of the boundary theory T and
the re-scaled quark cloud density b. The nature of the function shows the enhancement of
the drag force due to the presence of the quark cloud.
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4
Correlators of Giant Gravitons from dual

ABJ(M) Theory

4.1 Introduction
In the previous chapters, we used the gravity duals to find certain features of the strongly
coupled plasma. Here we will exploit the other side of the duality. In particular, using the
strong/weak duality of the AdS4/CFT3 correspondence [120], we study some aspects of
the strongly coupled gravity via their boundary duals.

In the introduction, while reviewing the AdS4/CFT3 correspondence, we noted that
the M/typeIIA string theory contains giant gravitons which are non-perturbative in nature.
Our aim in this chapter is to study the transitions between giant gravitons and also between
the giants and the ordinary gravitons. We address this issue within the ABJ theory. This
requires the construction of gauge invariant operators by generalizing the Schur polyno-
mial constructed in the ABJM theory [166]. We then find out the realization of the duality
between the giant gravitons and the Schur polynomials for both ABJM and ABJ theory.
Further we study the transition probabilities among the giants as well as between the gi-
ants and the ordinary gravitons by analyzing the corresponding gauge theory correlators.
For this purpose one needs the appropriate normalization of the gauge theory operators.
Here, we consider two normalization prescriptions, namely overlap-of-states normalization
and multi-particle normalization. Both normalization procedures have been extensively
discussed in the literature [159, 167]. Both types of normalization factor depend on the
boundary coordinates as well as the gauge indices. With these proper normalizations one
can identify the gauge theory correlators with the probability amplitudes associated with
the transition among giant graviton states or between the giant graviton states and ordinary
graviton states in the dual gravity theory.

This chapter is organized in the following way: in section 2, we discuss the Schur
polynomials for ABJ theory and also identify them with the gravitons and giant gravitons of
the dual gravity theory. In section 3 we elaborate on the normalization of the boundary CFT
correlators. In section 4, 5 and 6 we provide various examples of computing the normalized
boundary correlators for ABJ theory. In section 7, we compute the normalized gauge theory
correlators for ABJM theory. Section 8 is devoted for studying the modification of the large
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N expansions in the ABJ theory due to the presence of a non-trivial background in the dual
gravity theory.

.

4.2 Schur Polynomial
In this section we generalize the Schur polynomial of the ABJM theory to the one for
the ABJ theory. With this goal in mind, we closely follow the derivation of the Schur
polynomial of ABJM theory keeping track of whether the gauge indices are associated
with the gauge groups, U(N1) or U(N2). Depending on the choice of the gauge group,
contraction of the gauge indices gives rise to the factors associated with either N1 or N2.
Following the logic as described in [166], we can write down the simplest gauge invariant
half-BPS operator as

∏
ni

[Tr((AB†)l)]ni . We consider the compact notation A and B to
depict the four complex scalars A1, A2 and B1, B2 respectively. Since these complex scalar
fields transform under the bi-fundamental representation of the gauge group, therefore in
the matrix notation, we can write A and B† in the following way

Aij and (B†)ji .

Unlike ABJM now i and j are gauge indices of U(N1) and U(N2) respectively. Here l
counts the amount of R-charge of the operator. According to [217,218], these operators are
represented by Young tableaux consisting of boxes equal to the number of (AB†) fields and
at most the smallest of (N1, N2) rows. In [166] we have shown that single trace operators
are not valid basis to study the ABJM gauge theory in the large R-charge limit. The correct
description of the gauge theory operators are Schur polynomials. Therefore to check the
validity of the single trace operator in this theory, following [159, 166], we compute the
3-point function of two different operators. In the leading order the result is〈

O1O†
2

〉
√〈

O1O†
1

〉√〈
O2O†

2

〉 ∼
√
ll1l2
N1

+

√
ll1l2
N2

. (4.1)

Where

O1 = Tr
(
(AB†)l

)
and O2 = Tr

(
(AB†)l1

)
Tr
(
(AB†)l2

)
with l1 + l2 = l.

To compute this three point function we use the basic Wick contraction between two fields.
One simple example of this contraction is〈

Tr
(
AB†)Tr

(
A†B

)〉
=
〈
Ai1j1B

†j1
i1
A†j2

i2
Bi2
j2

〉
= δi1i2δ

j2
j1
δj1j2δ

i2
i1

= N1N2.
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Since i and j are the gauge indices of U(N1) and U(N2) group respectively, the sum over
i gives N1 and the same over j gives N2. However, we drop the space-time dependence in
this computation, we can easily bring them back when needed. The result of the three point
function says that at large (N1, N2) it vanishes if the factor

√
ll1l2 is less than (N1, N2) and

diverges otherwise. Therefore like ABJM model, in this case also, the trace operator will
be the gauge invariant operator if R-charge l is less than the smaller one between N2/3

1

or N2/3
2 . However, we should remember that we have just computed one specific three

point function and not the most general correlator of the theory. The BMN type analysis in
N = 4 super Yang-Mills theory as well as ABJM theory is more exhaustive to conclude
about the limit of the R-charge [160, 219]. These study suggest that it must be less than√
N to suppress the non-planar corrections those are important even before R-charge gets

toN2/3. Thus we rather say that if R-charge of the operator in the ABJ(M) theory is greater
than the smallest of (

√
N1,

√
N2), for the correct description, we need a new basis and our

natural choice is Schur polynomial given by

χR(AB†) =
1

n!

∑
σ∈Sn

χR(σ)Tr
(
σ(AB†)

)
(4.2)

where R is the representation of a specific Young diagram with n boxes. This Young dia-
gram labels both the representation of unitary gauge group and symmetric group Sn. χR(σ)
is the character or trace of the element σ ∈ Sn in the representation R.

The two point function for this theory can easily be calculated using the same procedure
of [166, 167]. The result of the two point function of our interest is〈

χR(AB†)χS(A
†B)

〉
=
(
n!
DimN1(S)

dS

)(
n!
DimN2(S)

dS

)
δRS = fN1

S fN2
S δRS. (4.3)

Here R and S represent the Young diagrams with n number of boxes for symmetric group
Sn. dS is the dimension of a representation S of the permutation group Sn. DimN1(S) and
DimN2(S) are the dimensions of the representation of the unitary group U(N1) and U(N2)
respectively. fN1

S and fN2
S are the product of the weights of the same Young diagram but

for the gauge group U(N1) and U(N2) respectively. In this calculation we suppress the
space-time dependence. The presence of delta function says that Schur polynomials satisfy
the orthogonality condition in the free field limit and therefore these Schur polynomials
are the correct gauge invariant operators to study the ABJ(M) theory for large R-charge.
Recall that for usual Schurs in N = 4 super Yang-Mills theory, if we have more than N
boxes in a column the product of weights vanishes [167]; this is the stringy exclusion prin-
ciple of AdS5 [157]. Equation(4.3) shows a similar behavior for ABJ(M) theory. When the
number of boxes is more than the smallest of (N1, N2) the two point correlator and, hence,
the operator vanish. Thus it is the smallest of (N1, N2) which sets the bound on the stringy
exclusion principle.
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In order to bring back the space-time dependence of the two point function we first
find out the Green’s function G(x − y) for three dimensional gauge theory. This Green’s
function is the solution of the differential equation

∆xG(x− y) = −δ3(x− y). (4.4)

The solution is given by

G(x− y) =
1

4π|x− y|
. (4.5)

Therefore the above two point function, with space-time dependence included, takes the
form 〈

χR(AB†)(x)χS(A
†B)(y)

〉
=

fN1
S fN2

S δRS(
4π|x− y|

)2∆R
(4.6)

where ∆R is the conformal dimension of the operator χR(AB†).

The three point and multi point functions can easily be calculated from this two point func-
tion by using the product rule of Schur polynomials. The product rule of Schur polynomials
is as follows

χR1(AB
†)χR2(AB

†) =
∑
S

g(R1, R2;S)χS(AB
†). (4.7)

Here the Littlewood-Richardson number g(R1, R2;S) counts the number of times irre-
ducible representation S appears in the direct product of irreducible representations R1 and
R2. By repeated use of this product rule we can write a general direct product

∏l
i=1 χRi

(AB†)
as,

l∏
i=1

χRi
(AB†) =

∑
S1,S2···Sl−2,S

g(R1, R2;S1)g(S1, R3;S2) · · · g(Sl−2, Rl;S)χS(AB
†)

=
∑
S

g(R1, R2 · · ·Rl;S)χS(AB
†). (4.8)

By using this product rule we can have the three point function as〈
χR1(AB

†)(x1)χR2(AB
†)(x2)χS(A

†B)(y)

〉
=

g(R1, R2;S)fN1
S fN2

S

{4π(y − x1)}2∆R1{4π(y − x2)}2∆R2

(4.9)
where ∆R1 and ∆R2 are conformal dimensions of the operator χR1(AB

†) and χR2(AB
†).

Combination of these two conformal dimensions gives the conformal dimension of χS(A†B).
Similarly we can find out the multi point function as〈
χR1(AB

†)(x1)χR2(AB
†)(x2) · ·χRl

(AB†)(xl)χS1(A
†B)(y)χS2(A

†B)(y) · ·χSk
(A†B)(y)

〉

=
∑
S

g(R1, R2 · · ·Rl;S) fN1
S fN2

S g(S1, S2 · · ·Sk;S)

{4π(y − x1)}2∆R1 · · · {4π(y − xl)}2∆Rl

. (4.10)
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The class of correlators that we study here are the analog of the extremal correlators of the
N = 4 super Yang-Mills theory. Motivated by our experience with N = 4 super Yang-
Mills theory, we make a guess that these correlators are the exact answer i.e. they will not
receive any higher loop corrections in the ’tHooft coupling. We need to compute the Feyn-
man graphs to confirm the guess. As before, ∆R1 · · ·∆Rl

are the conformal dimensions of
χR1(AB

†) · · ·χRl
(AB†) and the sum of these conformal dimensions gives the total confor-

mal dimension of the representation S.

According to [217,218,228] trace operators are identified with the giant gravitons of the
dual gravity theory and the R-charge of the operators with the angular momentum of the
giant gravitons. The trace operator represented by a single row Young diagram is mapped
into the giant graviton which grows within the AdS part of the geometry and is called as
AdS giant and the operator corresponding to Young diagram of single column with maxi-
mum number of boxes equal to the smallest of (N1, N2) is mapped into the giant graviton
which wraps in S7 or CP3, and is called as sphere giant. Similarly we can also map this
Schur polynomial with the giant graviton of the dual gravity theory. The Schur polynomial
associated with Young diagram of single column i.e. fully antisymmetric representation
of symmetric group Sn with at most the smallest of (N1, N2) number of boxes is mapped
into a sphere giant and the operator represented by single row Young diagram i.e. fully
symmetric representation of the same group corresponds to an AdS giant. In this chapter
following [216], we use the notation χ[L] for the AdS giant and χ[1L] for the sphere giant
with angular momentum of L units. If the sphere giant brane wraps k times, the corre-
sponding Schur polynomial will have Young diagram of k number of columns whereas
the number of boxes associated with each of them is of the same order as the smaller one
between N1 and N2. For the k number of wrapping of AdS giant within the circle of AdS
the corresponding Young diagram will have k number of rows where the maximum value
of k can be the smallest of (N1, N2). Schur polynomial represented by Young Diagram R
associated with small R-charge, i.e conformal dimension ∆R = O(1) is associated with
KK state of the gravity. They can be written as sums of products of small numbers of traces.

By using this mapping we can compute the gravity correlators between KK states, giant
gravitons and among KK states and giant gravitons from the corresponding gauge theory
correlators. These correlators give the probability for the state created by the operator at
a particular point of the space-time to evolve into the state created by another operator at
different point of the space-time by proper normalization. Therefore, it is very crucial to
normalize the gauge theory correlators in a consistent way to get the probability less than
1. In the literature, there exist two types of normalization [216], namely the overlap of
state normalization and the multi particle normalization. Both prescriptions consist of two
parts, one depends on gauge indices and other is a function of space-time coordinates of
involved operators. Without the space-time dependence, the first scheme gives the probabil-
ities within one but the second procedure suffers from growth in N . However by including
the space-time part, the problem is resolved in [216]. So to figure out the normalization
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factor, we need to know the topology of the space on which the operators live. In con-
formally invariant field theories, the analysis of correlators on different topologies and the
relation between them is generically known as CFT factorization leading to factorization
equations and inequalities in the specific dimension. In the next section we briefly review
the CFT factorization for different topologies and interpret a normalized version of this as
the probability.

4.3 From CFT factorization to probability interpretation
This section generalizes the discussion of [216] to ABJ(M) theory. Factorization can be
explained in the following intuitive way. We consider a manifold M with two operator
insertions and compute the corresponding correlator ZM . Now we cut the manifold M
along a boundary B into two constituent manifolds, M1, M2 with one operator insertion
in each and compute the correlators ZM1 and ZM2 accordingly, constrained to the fact that
all possible boundary configuration should be taken into account. The CFT factorization
suggests,

ZM =
∑
B

ZM1(B) × ZM2(B). (4.11)

In the context of overlap state normalization we consider a manifold S3 with two operator
insertions. Then we cut it into two manifolds with one boundary B having one operator in
each as depicted in fig 4.1.

=

∑

B

|B〉〈B|

〈B|B〉

Figure 4.1: In this figure the operator insertions are represented by cross marks.

Now the factorization in conformal field theory relates this n-point correlator to lower
point correlator as 〈

O†(x∗)O(x)
〉

=
∑
B

〈
O†(x∗)B(y)

〉〈
B†(y∗)O(x)

〉〈
B†(y∗)B(y)

〉 (4.12)

where O′s and B′s are the local operators defined on the manifold of interest and on the
boundary cut respectively. While defining equation(4.12) we assume that we are working
in a basis which diagonalizes the metric on the space of local operators and the conjugation
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operation is executed by reversing the Euclidean time coordinate. This can be generalized
for the extremal correlators where the operators are localized at number of different points:〈

O†
1(x

∗
1)O†

2(x
∗
2) · · · O†

k(x
∗
k)O1(x1)O2(x2) · · · Ok(xk)

〉
=

∑
B

〈
O†

1(x
∗
1)O†

2(x
∗
2) · · · O†

k(x
∗
k)B(y)

〉〈
B†(y∗)O1(x1)O2(x2) · · · Ok(xk)

〉
〈
B†(y∗)B(y)

〉 .(4.13)

Now it is straightforward to promote equation (4.13) into the probability interpretation by
dividing both sides of (4.13) by the left hand side of the same equation and thus we get

1 =
∑
B

∣∣∣〈O†
1(x

∗
1)O†

2(x
∗
2) · · · O†

k(x
∗
k)B(y)〉

∣∣∣2〈
O†

1(x∗1)O†
2(x∗2) · · · O†

k(x∗k)O1(x1)O2(x2) · · · Ok(xk)
〉〈
B†(y∗)B(y)

〉 .(4.14)

We call P as the probability for O1(x1)O2(x2) · · · Ok(xk) to evolve into B.

P
(
O1(x1)O2(x2) · · · Ok(xk) → B(y)

)
=∣∣∣O†

1(x
∗
1)O†

2(x
∗
2) · · · O†

k(x
∗
k)B(y)〉

∣∣∣2〈
O†

1(x∗1)O†
2(x∗2) · · · O†

k(x∗k)O1(x1)O2(x2) · · · Ok(xk)
〉〈
B†(y∗)B(y)

〉 .(4.15)

The above formula (4.15) for probability is based on the notion of overlap state normaliza-
tion. If we replace the state |B(y)〉 by |B(y1)B(y2)〉, the probability will not correspond to
the separate measurement of the operators B(y1) and B(y2).

The extension of this idea for the probability interpretation of separate measurements or
multi particle normalization needs correlator on higher topology. For two separate mea-
surements, unlike the case of overlap state normalization we take a manifold S1 × S2 with
genus-1 and 2k number of operator insertions. Then cut out two boundaries B1 and B2 in
such a way that both manifolds have k number of operator insertions as in fig 4.2.

=

∑

B1,B2

|B1〉〈B1|

〈B1|B1〉

|B2〉〈B2|

〈B2|B2〉

Figure 4.2: In this figure k number of operator insertions are represented by a single mark.
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Now for the n-point correlator, the factorization equation takes the following form〈
O†

1(x
∗
1)O†

2(x
∗
2) · · · O†

k(x
∗
k)O1(x1)O2(x2) · · · Ok(xk)

〉
G=1

=

∑
B1,B2

〈
O†

1(x
∗
1) · · · O†

k(x
∗
k)B1(y1)B2(y2)

〉〈
B†

2(y
∗
2)B

†
1(y

∗
1)O1(x1) · · · Ok(xk)

〉
〈
B†

1(y∗1)B1(y1)
〉〈
B†

2(y∗2)B2(y2)
〉 (4.16)

where O’s are again the local operators defined on the genus-1, S1×S2 manifold of interest
whereas B1’s and B2’s are the local operators defined on the boundary cut B1 and B2

respectively. Then the probability interpretation arises in the same fashion

P
(
O1(x1)O2(x2) · · · Ok(xk) → B1(y1)B2(y2)

)
=

∑
B1,B2

∣∣∣O†
1(x

∗
1) · · · O†

k(x
∗
k)B1(y1)B2(y2)

∣∣∣2〈
O†

1(x∗1) · ·O†
k(x∗k)O1(x1) · ·Ok(xk)

〉
G=1

〈
B†

1(y∗1)B1(y)
〉〈
B†

2(y∗2)B2(y2)
〉 .(4.17)

It is interesting to note that to formulate the probability interpretation for multiple number
of separate measurements we need higher genus factorization.

Therefore depending on the number of measurements or number of out going states or
operators we have to consider the appropriate topology of the space on which the operators
live to find out the transition probability among the states of the gravity. Keeping this lesson
in our mind we compute few probabilities in the forthcoming sections.

4.4 Sphere Factorization
In this section, we want to find out the probability of getting one state from the different
number of states of the gravity. Thus we should use the genus zero factorization. To do that
first we consider two S3 manifolds. By cutting out a 3-ball of unit radius around the origin
of each one, we map them in two separate R3 spaces described by the set of coordinates
(r,Ω2,r) and (s,Ω2,s) respectively. The metrics in the R3 spaces take the following forms,

ds2
r = dr2 + r2dΩ2

2,r and ds2
s = ds2 + s2dΩ2

2,s. (4.18)

Finally, we glue these two manifolds by using rs = 1 to get the genus zero manifold of our
interest. In this manifold, the most general formula for the probability can be written as

P
(
R1(r = ex1) · · ·Rk(r = exk) → R(r = 0)

)
=

〈
R†

1(s = ex1) · · ·R†
k(s = exk)R(r = 0)

〉〈
R†(s = 0)Rk(r = exk) · · ·R1(r = ex1)

〉〈
R†
k(s = ex1) · · ·R†

1(s = exk)R1(r = exk) · · ·Rk(r = ex1)
〉〈
R†(s = 0)R(r = 0)

〉 .(4.19)
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Notice that in this formula we have considered final operator at r, s = 0 instead of r = s =
1. To consider that we first replaced the operators at r = s = 1 by their corresponding
states via operator/state correspondence. We then evolved the states up to r, s = 0 by doing
the path integral over the unit disc. Since in these regions there are no operator insertions,
in the end result states differ by a scale factor only. The scaling factor of state in r space
is exactly canceled by the scale factor arises by evolving state in s space. Finally we again
replaced the states as their dual operators at r, s = 0 (for details see [216]).

Before going to find out the probability for a specific case, we first compute few useful
correlators which will be used in our later computations. From now we suppress the angular
dependence part in most of the computations since the angles, in all of the gluings, are
identified trivially. Most of the time, we also abbreviate χR(AB†) and χR(A†B) as R and
R†. First we like to find out the two point function of two Schur polynomials, one in each
S3 with a cut-out of 3-ball those are glued together to construct the manifold of our interest.
The two point function of interest is

〈R†(s = 0)R(r = 0)〉 (4.20)

with s = 1/r andR† is a conformal primary operator. To calculate the correlator we should
bring the operator R† in the r coordinate frame. Under this coordinate change, the metric
of R3

s changes as

ds2 + s2dΩ2
2,s →

1

r4
(dr2 + r2dΩ2

2,r) (4.21)

and so the operator R† transform as

R†(s) → Ω(r)−∆/2R†(r) = r2∆R†(r) (4.22)

where Ω(r) = 1/r4 and ∆ is the conformal dimension of the operator R†. Now we are
ready to compute the above correlator which is also called Zamalodchikov metric of the
conformal field theory. The result is

〈R†(s = 0)R(r = 0)〉 = lim
r0→∞

〈r2∆
0 R†(r = r0)R(r = 0)〉

= lim
r0→∞

[ r2∆
0 fN1

R fN2
R

(4π|0 − r0|)2∆

]
=

fN1
R fN2

R

(4π)2∆
. (4.23)

We would also like to find out this correlator:

A1
M = 〈Tr(AB†)MTr(A†B)M〉. (4.24)

We find out this by writing down a recursion relation. Choose one trace from Tr(AB†)M

and contract the involved fields A and B† with the fields A† and B of the other trace
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Tr(A†B)M . We can do this in two ways: firstly, A and B† contract with A† and B fields of
the same trace of Tr(A†B)M and give N1N2. There lies M number of choices since there
is M number of traces. In the second way, B† does not contract with B field of trace where
A† is already contracted with A. So for this way, A field has again M number of choices
but for the B† there are (M − 1) choices. For both ways, at the end (M − 1) number of
traces will be left out. So we can write the above correlator through this recursion relation

A1
M =

(
MN1N2 +M(M − 1)

)
AM−1

= M(N1N2 +M − 1)AM−1

= M !
(N1N2 +M − 1)!

(N1N2 − 1)!
. (4.25)

Finally, before going to the main computation, we compute the correlator like

AJM = 〈Tr((AB†)J)MTr((A†B)J)M〉. (4.26)

Since exact computation is difficult, we restrict the analysis up to leading order where
JM << N1N2 and the result is

AJM = 〈Tr((AB†)J)MTr((A†B)J)M〉 = JMM !(N1N2)
JM . (4.27)

By using the above correlators, we first calculate the probability to get one giant gravi-
ton from two giant gravitons of angular momentum N1/2. The formula in equation(4.19)
reduces to

P
(
R1(r = ex), R2(r = ex) → R(r = 0)

)
=

∣∣∣〈R†
1(r = ex)R†

2(r = ex)R(r = 0)〉
∣∣∣2

〈R†
2(s = ex)R†

1(s = ex)R1(r = ex)R2(r = ex)〉〈R†(s = 0)R(r = 0)〉

=
g (R1, R2;R)2

[
fN1
R fN2

R

]2
e−4N1x(4π)−4N1∑

S g (R1, R2;S)2 fN1
S fN2

S e−2N1x(4π)−2N1(ex − e−x)−2N1fN1
R fN2

R (4π)−2N1
.(4.28)

Here we have consideredR1 andR2 at the same position, so that the normalization factor in
the denominator is an extremal correlator. We also consider the large x limit to maximize
the distance between the operators R1 and R2 from R. It gives the probability which is
space-time independent. Thus, at large x limit, we get

P (R1, R2 → R) =
fN1
R fN2

R∑
S g (R1, R2;S)2 fN1

S fN2
S

. (4.29)

The fusion of the two sphere giants (two vertical Young diagrams of length N1/2) gives a
sum of representations, with column lengths (N1/2 + i, N1/2− i). Hence the denominator
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can be written as

N1/2∑
i,j=0

N1!(N1 + 1)!

(N1/2 − i)!(N1/2 + i+ 1)!

N2!(N2 + 1)!

(N2 −N1/2 − j)!(N2 −N1/2 + j + 1)!
. (4.30)

By straightforward simplification we arrives at the final expression for the probability of
sphere giant

∼ e
−
[
(2N2+ 3

2
) log(1+ 1

N2
)+(N2−N1+ 1

2
) log(1−N1

N2
)+(N1−2N2− 3

2
) log(1− N1

2N2
)+2N1 log(2)−2

]
. (4.31)

Similarly for AdS giant, the denominator will be

N1/2∑
i,j=0

(3N1/2 + i− 1)!(3N1/2 − i− 2)!

(N1 − 1)!(N1 − 2)!

(N2 +N1/2 + j − 1)!(N2 +N1/2 − j − 2)!

(N2 − 1)!(N2 − 2)!
.

(4.32)
Since, in the sum the fN1

R fN2
R is included, the probability becomes less than 1.

Let us consider one sphere giant graviton produced by the combination of N1 number of
KK gravitons of angular momentum 1. From now, we assume that N1 is less than N2.
Since these KK gravitons are with angular momentum 1, we should write them in terms of
trace operators. Thus we write the probability as

P
(

Tr(AB†)N1(r = ex) → χ[1N1 ](AB
†)(r = 0)

)
=

∣∣∣〈Tr(A†B)N1(r = ex)χ[1N1 ](AB
†)(r = 0)〉

∣∣∣2
〈Tr(A†B)N1(s = ex)Tr(AB†)N1(r = ex)〉〈χ[1N1 ](A

†B)χ[1N1 ](AB
†)〉
. (4.33)

Since in the numerator one side of the correlator is in Schur basis, we should change our
trace operator in to Schur polynomial and we do that by the formula derived in [229]

Tr((A†B)n) =
∑
R

χR(σ)χR(A†B) (4.34)

where R is the representation of the symmetric group Sn and χR(σ) is the character of a
cycle of length n [168]. By doing this one can write the trace operator with unit R-charge
that corresponds to a single box Young diagram as

Tr(A†B) = χR(A†B).

Therefore we can write N1 number of KK graviton with angular momentum 1 as(
Tr(A†B)

)N1

=
(
χR(A†B)

)N1

=
∑
S

g(R1 · · ·RN1 ;S)χS(A
†B). (4.35)
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Finally, by replacing trace basis as Schur basis in the numerator, we have the probability

P
(

Tr(AB†)N1(r = ex) → χ[1N1 ](AB
†)(r = 0)

)
=

∣∣∣〈∑S g(R1 · · ·RN1 ;S)χS(A
†B)(r = ex)χ[1N1 ](AB

†)(r = 0)〉
∣∣∣2

〈Tr(A†B)N1(s = ex)Tr(AB†)N1(r = ex)〉〈χ[1N1 ](A
†B)χ[1N1 ](AB

†)〉

=

[
fN1

[1N1 ]
fN2

[1N1 ]

]2
e−4N1x(4π)−4N1

N1!
(N1N2+N1−1)!

(N1N2−1)!
e−2N1x(4π)−2N1(ex − e−x)−2N1fN1

[1N1 ]
fN2

[1N1 ]
(4π)−2N1

.

In the second line we use the fact that two point function is finite when representation
S is same with the representation of the sphere giant. Thus the contributing Littlewood-
Richardson number is only g(R1 · · ·RN1 ; [1

N1 ]) which has value 1. Again at large x limit
probability reduces to

P
(

Tr(AB†)N1(r = ex) → χ[1N1 ](AB
†)(r = 0)

)
=

[
fN1

[1N1 ]
fN2

[1N1 ]

]
N1!

(N1N2+N1−1)!
(N1N2−1)!

=

N1!N2!
(N2−N1)!

N1!
(N1N2+N1−1)!

(N1N2−1)!

=
N2!

(N2 −N1)!

(N1N2 − 1)!

(N1N2 +N1 − 1)!

∼ e
−[N1+

N1
N2

− 1
2N2

+N1 log(N1)+(N2−N1+ 1
2
) log(1−N1

N2
)]
. (4.36)

Similarly to produce an AdS giant from N1 number of KK gravitons with angular momen-
tum 1 we will have the probability

P
(

Tr(AB†)N1(r = ex) → χ[N1](AB
†)(r = 0)

)
=

(2N1−1)!(N2+N1−1)!
(N1−1)!(N2−1)!

N1!
(N1N2+N1−1)!

(N1N2−1)!

=
(2N1 − 1)!(N2 +N1 − 1)!(N1N2 − 1)!

(N1 − 1)!(N2 − 1)!N1!(N1N2 +N1 − 1)!

∼ π− 1
2 e

−
[
N1+

N1
N2

− 1
2N2

+(N1+ 1
2
) log(N1)−(N1+N2− 1

2
) log(1+

N1
N2

)−(2N1−1) log(2)
]
. (4.37)

Now consider a combination of L/J number of gravitons with angular momentum J <√
N1, resulting into a sphere giant of angular momentum L. So the probability for this

transition will be

P
(

Tr((AB†)J)L/J(r = ex) → χ[1L](AB
†)(r = 0)

)
=

∣∣∣〈Tr((A†B)J )L/J (r=ex)χ
[1L]

(AB†)(r=0)〉

∣∣∣2
〈Tr((A†B)J )L/J (s=ex)Tr((AB†)J )L/J (r=ex)〉〈χ

[1L]
(A†B)χ

[1L]
(AB†)〉

=

P

R1..RL/J
g(R1,..,RL/J ;[1L])2

[
χR1

(J)..χRL/J
(J)
]2[

f
N1
[1L]

f
N2
[1L]

]2

e−4Lx(4π)−4L

JL/J (L/J)!(N1N2)Le−2Lx(4π)−2L(ex−e−x)−2Lf
N1
[1L]

f
N2
[1L]

(4π)−2L
. (4.38)
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In this calculation we consider the leading order value of the first correlator of the denom-
inator. Since the final state is sphere giant, which is an antisymmetric representation, the
only allowed representations of the gravitons are antisymmetric so that combined repre-
sentation gives the antisymmetric representation. Therefore, we do not need the sum over
Littlewood-Richardson number and it gives 1 only and also χR(J), the characters of a cycle
of length J , always be ±1 and due to square over the product of the characters the total
contribution of them will be 1 only. Thus at the large x limit, the probability reduces to[

f
N1
[1L]

f
N2
[1L]

]
JL/J (L/J)!(N1N2)L = N1!N2!

JL/J (L/J)!(N1N2)L(N1−L)!(N2−L)!

∼ π− 1
2 e

−[2L−L
J
− 1

2
log(J)+( L

J
+ 1

2
) log(L)+(N1−L+ 1

2
) log(1− L

N1
)+(N2−L+ 1

2
) log(1− L

N2
)+ 1

2
log(2)]

.(4.39)

Similarly, to create an AdS giant from L/J number of gravitons with angular momentum
J <

√
N1, the probability will be

P
(

Tr((AB†)J)L/J(r = ex) → χ[L](AB
†)(r = 0)

)
= (N1+L−1)!(N2+L−1)!

JL/J (L/J)!(N1N2)L(N1−1)!(N2−1)!

∼ π− 1
2 e

−[2L−L
J
− 1

2
log(J)+( L

J
+ 1

2
) log(L)−(N1+L− 1

2
) log(1+ L

N1
)−(N2+L− 1

2
) log(1+ L

N2
)+ 1

2
log(2)]

.(4.40)

All these correlators are always less than 1 and decay exponentially with N1 and N2.

If L number of gravitons with J amount of angular momentum interact and produce single
graviton of angular momentum (LJ) which is less than

√
N1, the probability can be written

as

P
(

Tr((AB†)J)L(r = ex) → Tr((AB†)LJ)(r = 0)
)

=

∣∣∣〈Tr((A†B)J )L(r=ex)Tr((AB†)LJ )(r=0)〉

∣∣∣2
〈Tr((A†B)J )L(s=ex)Tr((AB†)J )L(r=ex)〉〈Tr((A†B)LJ )Tr((AB†)LJ )〉

=

P

R1···RL;S g(R1,...,RL;S)2
[
χR1

(J)···χRL
(J)χS(LJ)

]2[
f

N1
S f

N2
S

]2

e−4LJx(4π)−4LJ

JLL!(N1N2)LJe−2LJx(4π)−2LJ (ex−e−x)−2LJ (LJ)!
(N1N2+LJ−1)!

(N1N2−1)!
(4π)−2LJ

. (4.41)

Since we know χR(I) will only be non-zero for hooks χ[(R−r),1r](I) = (−1)r. Therefore
the contribution of the each character is ±1. Thus the total contribution of the characters is
only 1. Then the above probability reduces at large x limit as

P
(

Tr((AB†)J)L(r = ex) → Tr((AB†)LJ)(r = 0)
)

=

P

r1···rL,s g

(
[(R1−r1),1r1 ],...,[(RL−rL),1rL ];[(S−s),1s]

)2[
f

N1
[(S−s),1s]

f
N2
[(S−s),1s]

]2

JLL!(N1N2)LJ (LJ)!
(N1N2+LJ−1)!

(N1N2−1)!

. (4.42)

Using this method one can find out other type of correlators those will produce only one
final state. Like large number of gravitons with different R-charge producing one sphere
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giant, AdS giant or graviton. However we are not going to find out those in this chapter.
We close this section with these above correlators. In the next section we compute the
correlators for two out going states.

4.5 The genus one factorization
To obtain the probability of finding two states from many states we need to compute cor-
relators on genus one manifold. Particularly, we consider here the manifold S1 × S2. We
construct this manifold by gluing two cylinders I × S2 described by coordinates (r,Ω2,r)
and (s,Ω2,s) in the two different R3 spaces. The radial variables are bounded by these
ranges

1 ≤ r ≤ eT and 1 ≤ s ≤ eT . (4.43)

We also introduce the coordinates r′ = 1/r and s′ = 1/s. Now to produce the manifold
S1 × S2, we glue the two cylinders at the inner ends r = 1, s = 1 with rs = 1 and outer
ends at r = eT , s = eT with r′s′ = e−2T (i.e rs = e2T ).

As earlier, we can now define the probability of one giant graviton going to two smaller
giant gravitons as follows

P
(
R(r = ex) → R′

1(r
′ = 0)R2(r = 0)

)
=

∣∣〈R†(r = ex)R′
1(r

′ = 0)R2(r = 0)
〉∣∣2〈

R†(s = ex)R(r = ex)
〉
G=1

〈
R†

1

′
(s′ = 0)R′

1(r
′ = 0)

〉〈
R†

2(s = 0)R2(r = 0)
〉 .(4.44)

Following the same logic as described in the previous section we have again considered the
operators at r, r′ = 0. To compute this probability we study term by term. Lets first work
out the three point function of the numerator

〈R†(r = ex)R′
1(r

′ = 0)R2(r = 0)〉
= lim

r0→∞
〈R†(r = ex)r2∆1

0 R1(r = r0)R2(r = 0)〉

= (4π)−2(∆1+∆2)e−2x∆2g(R1, R2;R)fN1
R fN2

R . (4.45)

Then we compute second two point function of the denominator

〈R†
1

′
(s′ = 0)R′

1(r
′ = 0)〉 = (4π)−2∆1e2T∆1fN1

R1
fN2
R1
. (4.46)

Similarly for the third two point function of the denominator we get

〈R†
2(s = 0)R2(r = 0)〉 = fN1

R2
fN2
R2

(4π)−2∆2 . (4.47)

In addition to these three correlators we need to know one more correlator which is on
S2 × S1, seating in the denominator . For the space-time dependent part of the correlator,
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we have to know the Green’s function for this manifold. To find out Green’s function we
start with the associated metric of this space

ds2 = dτ 2 + dθ2 + sin2 θdφ2 (4.48)

with the proper range of coordinates, τ ∈ [0, 2T ], θ ∈ [0, π] and φ ∈ [0, 2π].

Sturm-Liouville theory suggests that, if the eigenvectors Ψn(x) of a hermitian operator L
span a basis, the Green’s function of interest, G(x, y) is expressible as a linear combination
of the Ψn(x)

G(x, y) =
∑

n|λn 6=0

Ψ∗
n(x)Ψn(x)

λn
. (4.49)

As we are analysing three dimensional conformal filed theory of scalar field on 3-sphere
, while defining the differential operator L it is necessary to consider coupling to the 3-
dimensional curvature. In general L takes the following form

L = ∆ − R

8
(4.50)

where ∆ is Laplacian and not conformal dimension. R is the Ricci scalar. More specifi-
cally, considering the space S1×S2 with unit radii and also noting that only the curvature of
S2 contributes, the Ricci scalar comes out as R = 2. The differential operators L modifies
into a particular form

L = ∆Euclidean −
1

4
. (4.51)

The form of differential operator L leads to the identification of its eigenvectors as a com-
plete set of spherical harmonics on S2 × S1

Ψn = ςm(τ)Y M
J (θ, φ) (4.52)

where n = (m, J,M). The explicit form of S2 harmonics is given by

Y M
J (θ, φ) =

√
(2J + 1)

4π

(J −M)!

(J +M)!
(−1)M sinM θ

( dJ+M

dJ+M cos θ

)(cos2 θ − 1)
J

2JJ !
(4.53)

where the quantum numbers J and M take values as

J = 0, 1, 2, 3 · · ·
M = −J,−J + 1, · · · J. (4.54)

The harmonics on S1 are
ςm(τ) =

1√
2T

e
imπτ

T , (4.55)
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with m takes the values as, m = 0, 1, 2 · · · .
The spherical harmonics of S2 and S1 satisfy the following differential equations respec-
tively

∆S2Y M
J (θ, φ) = −J(J +M)Y M

J (θ, φ),

∆S1 = −
(mπ
T

)2

ςm(τ). (4.56)

Now with all the eigenfunctions of Euclidean Laplacian operators defined on S2 × S1 in
hand, we are able to write the differential equation for operator L

LΨn =
(
∆S2×S1 − 1

4

)
Ψn =

[
− J(J +M) −

(mπ
T

)2

− 1

4

]
Ψn. (4.57)

In the 3-dimensional space-time of our interest we define the action of operator L on cor-
responding Green’s function defined in conformity with R3 correlator.

LG(x, y) = −δ3(x− y) (4.58)

and the Green’s function in terms of the spherical harmonics is

G(x, y) =
∑
J,M,m

ςm
∗(τ)Y M

J
∗
(θ, φ)ςm(τ)Y M

J (θ, φ)

J(J +M) + (mπ
T

)2 + 1
4

. (4.59)

Now we are ready to compute the two point correlator on S1 × S2

〈R†(s = ex)R(r = ex)〉G=1. (4.60)

Since the associated metric of S1 × S2 involves the coordinate τ, θ, φ and we suppress an-
gular coordinates in our calculation, we should bring the correlator in τ coordinate instead
of r and s. We do that by changing the coordinates s = e−τ , r = eτ and finally we get

〈R†(s = ex)R(r = ex)〉G=1 = e−2x∆〈R†(τ = −x)R(τ = x)〉G=1 (4.61)

with ∆ = ∆1 + ∆2 by charge conservation. Finally in terms of gauge index and Green’s
function we have the correlator as

〈R†(s = ex)R(r = ex)〉G=1 = e−2x∆fN1
R fN2

R

[ ∑
J,M,m

ςm
∗(0)Y M

J
∗
(θ, φ)ςm(2x)Y M

J (θ, φ)

J(J +M) + (mπ
T

)2 + 1
4

]2∆
.

(4.62)
As we suppress angular part, the final result should be independent of the choice of θ and
φ. We thus choose θ = 0, so that the sum simplifies significantly. Equation(4.53) demands
for θ = 0 the only non-zero term contributing corresponds to J = 0,M = 0 and the above
correlator reduces to

〈R†(s = ex)R(r = ex)〉G=1 = e−2x∆fN1
R fN2

R

[ 1

2T

∑
m

e
im2πx

T
Y 0

0
∗
(θ, φ)Y 0

0 (θ, φ)

(mπ
T

)2 + 1
4

]2∆
.

(4.63)
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With the value of harmonic function Y 0
0 = 2−1π− 1

2 we get the final expression

〈R†(s = ex)R(r = ex)〉G=1 =
[ 1

8πT
[2
∑
m>0

cos m2πx
T

(mπ
T

)2 + 1
4

+ 4]
]2∆

e−2x∆fN1
R fN2

R

=
[ 1

8πT
[8
∑
m>0

(−1)m

(2mπ
T

)2 + 1
+ 4]

]2∆
e−2x∆fN1

R fN2
R

=
[ 1

8πT
[−4 + T (coth

T

4
− tanh

T

4
) + 4]

]2∆
e−2x∆fN1

R fN2
R

=
[ 1

4π
cosech

T

2

]2∆

e−2x∆fN1
R fN2

R

=
[ 1

4π
(2e−T/2)

]2∆
e−2x∆fN1

R fN2
R . (4.64)

To get the last line we have used the large T limit where cosechT
2
→ 2e−T/2.

Thus combining all four separate correlators we get the probability of one giant graviton
goes to two giant gravitons as

P
(
R(r = eT/2) → R1(r = eT )R2(r = 0)

)
=

g(R1, R2;R)2fN1
R fN2

R

22(∆1+∆2)fN1
R1
fN2
R1
fN1
R2
fN2
R2

(4.65)

in the T → ∞ limit and R at r = eT/2, which maximize the distance of the operators R1

and R2 from R and suppress the space-time dependence in the probability as earlier.

In particular, the probability of the transition of an AdS giant with angular momentum N1

into to two smaller AdS giants with angular momentum N1/2 is given by

1

22N1

fN1

[N1]f
N2

[N1][
fN1

[N1/2]f
N2

[N1/2]

]2 =
1

22N1

(2N1 − 1)!(N1 − 1)!(N2 +N1 − 1)!(N2 − 1)!

[(3N1/2 − 1)!(N2 +N1/2 − 1)!]2

∼ e
−
[
(2N2+N1−1) log(1+

N1
2N2

)−(N2+N1− 1
2
) log(1+

N1
N2

)+(3N1−1) log(3)−(3N1− 3
2
) log(2)

]
. (4.66)

For a sphere giant [1N ] evolving into two smaller sphere giants [1
N
2 ] this probability be-

comes

1

22N1

fN1

[1N1 ]
fN2

[1N1 ][
fN1

[1N1/2]
fN2

[1N1/2]

]2 =
1

22N1

[
(N1/2)!(N2 −N1/2)!

]2
N1!N2!(N2 −N1)!

∼ π
1
2 e

−
[
(N2−N1+ 1

2
) log(1−N1

N2
)−(2N2−N1+1) log(1− N1

2N2
)− 1

2
log(N1)+(3N1+ 1

2
) log(2)

]
. (4.67)
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We can also compute the transition probability of one sphere giant with angular momentum
N1 going into two gravitons with angular momentum N1/2. Where N1/2 is less than√
N1. In this case we can consider the trace basis for gravitons as genus zero case and then

transform as Schur basis by using the equation(4.34). Then the probability reduces to

P
(
χ[1N1 ](AB

†)(r = eT/2) → Tr((AB†)N1/2)(r = eT )Tr((AB†)N1/2)(r = 0)
)

=

∑
R1,R2

g(R1, R2; [1
N1 ])2

[
χR1 (N1/2)χR2 (N1/2)

]2[
fN1

[1N1 ]
fN2

[1N1 ]

]
22N1(N1/2)2(N1N2)N1

=
N1!N2!

22N1(N1/2)2(N1N2)N1(N2 −N1)!

∼ π
1
2 e

−
[
2N1+ 3

2
log(N1)+(N2−N1+ 1

2
) log(1−N1

N2
)+(2N1− 5

2
) log(2)

]
. (4.68)

To get the 3rd line from 2nd line we have again used the fact that we can only have the
antisymmetric representations of the gravitons from a sphere giant and in this condition
sum over Littlewood-Richardson number takes the value 1. Same computation can be done
for the AdS giant also. In that case probability becomes

P
(
χ[N1](AB

†)(r = eT/2) → Tr((AB†)N1/2)(r = eT )Tr((AB†)N1/2)(r = 0)
)

=

[
fN1

[N1]f
N2

[N1]

]
22N1(N1/2)2(N1N2)N1

=
(2N1 − 1)!(N2 +N1 − 1)!

22N1(N1/2)2(N1N2)N1(N2 − 1)!(N1 − 1)!

∼ e
−
[
2N1+2 log(N1)−(N2+N1− 1

2
) log(1+

N1
N2

)− 3
2

log(2)
]
. (4.69)

Again all correlatots are less than 1 and decaying exponentially with N1 and N2.

If L number of gravitons with J amount of angular momentum interact and produce two
gravitons of angular momentum L1 and L2 which are less than

√
N1, the probability takes

the following form

P
(

Tr((AB†)J)L(r = ex) → Tr((AB†)L1)(r = eT )Tr((AB†)L2)(r = 0)
)

=

∣∣∣〈Tr((A†B)J)L(r = ex)Tr′((AB†)L1)(r′ = 0)Tr((AB†)L2)(r = 0)〉
∣∣∣2

〈Tr((A†B)J)L(s = ex)Tr((AB†)J)L(r = ex)〉G=1

× 1

〈Tr′((A†B)L1)(s′ = 0)Tr′((AB†)L1)(r′ = 0)〉〈Tr((A†B)L2)(s = 0)Tr((AB†)L2)(r = 0)〉
.

Following the same procedure of previous section, the above probability can be written at
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large x limit as

P
(

Tr((AB†)J)L(r = ex) → Tr((AB†)L1)(r = eT )Tr((AB†)L2)(r = 0)
)

=

∑
r1···rL,s,s1,s2 g

(
[(R1 − r1), 1

r1 ], . . . , [(RL − rL), 1rL ]; [(S − s), 1s]
)2[

fN1

[(S−s),1s]f
N2

[(S−s),1s]

]2
22LJJLL!(N1N2)2LJL1L2

× g
(
[(S1 − s1), 1

s1 ], [(S2 − s2), 1
s2 ]; [(S − s), 1s)]

)2

.

It is needless to say, one can compute other different types of correlators those have two
final states like large number of gravitons creating two giant gravitons. However we close
this section having these five above specific examples and in the next section we consider
correlators involving more than two out going states.

4.6 Higher genus factorization
To get the large number of final states we should consider the higher genus G = n − 1
factorization. Following [216], we also guess the probability for this condition as

P (R → R1, R2, . . . , Rn) =
1

k
2(∆1+∆2+···+∆n)
n

g(R1, R2, . . . , Rn;R)2fN1
R fN2

R

fN1
R1
fN2
R1
fN1
R2
fN2
R2

· · · fN1
Rn
fN2
Rn

. (4.70)

Here kn is a constant and it takes value 1 for genus zero and 2 for genus one. We are again
computing the probability at long-distance limit, that is the operators are in a symmetric
configuration far apart from each other.

We find the probability for AdS giant with angular momentum N1 going to n number of
smaller giants is,

P
(
[N1] → n× [N1/n]

)
=

1

kn
2N1

fN1

[N1]f
N2

[N1]

[fN1

[
N1
n

]
]
n
[fN2

[
N1
n

]
]
n

∼ 1√
2

(n+ 1

n

)n
2
[ 4nn+1

k2
n(n+ 1)n+1

]N1
(
1 +

N1

N2

)N1+N2− 1
2
(
1 +

N1

nN2

)n
2
−nN2−N1

. (4.71)

As a special case, we explicitly calculate the higher genus amplitude for 3 outgoing smaller
AdS giants,

P
(
[N1] → 3 × [N1/3]

)
=

e
−
[
(3N2+N1− 3

2
) log(1+

N1
3N2

)−(N2+N1− 1
2
) log(1+

N1
N2

)+(6N1− 5
2
) log(2)−(4N1− 3

2
) log(3)

]
k2N1

3

.(4.72)
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In the same way the transition of a sphere giant to smaller giants is given by,

P
(
[1N1 ] → n× [1N1/n]

)
=

1

kn
2N1

fN1

[1N1 ]
fN2

[1N1 ]

[fN1

[1
N1
n ]

]n[fN2

[1
N1
n ]

]n

∼
√

2πN1

k2N1
n

(n− 1

n

)n
2
+nN1−N1(

1 − N1

N2

)N1−N2− 1
2
(
1 − N1

nN2

)n
2
+nN2−N1

. (4.73)

Again in the case of sphere giant we calculate the transition amplitude for 3 outgoing
smaller giants.

P
(
[1N1 ] → 3 × [1N1/3]

)
= 4

k
2N1
3

√
π
27
e
−
[
(N2−N1+ 1

2
) log(1−N1

N2
)−(3N2−N1+ 3

2
) log(1− N1

3N2
)− 1

2
log(N1)+2N1(log 3−log 2)

]
.(4.74)

The transition of an AdS giant carrying R-charge ∆R into n number of KK gravitons is
given by,

P
(
[∆R] → Tr((AB†)∆1) · · ·Tr((AB†)∆n)

)
=

1

k2∆R
n

fN1

[∆R]f
N2

[∆R]

〈Tr((A†B)∆1)Tr((AB†)∆1)〉 · · · 〈Tr((A†B)∆n)Tr((AB†)∆n)〉

∼ e
−
[
2∆R−(N1+∆R− 1

2
) log(1+

∆R
N1

)−(N2+∆R− 1
2
) log(1+

∆R
N2

)
]

k2∆R
n ∆1 · · ·∆n

. (4.75)

The transition of an sphere giant carrying R-charge ∆R into n number of KK gravitons is
given by,

P
(
[1∆R ] → Tr((AB†)∆1) · · ·Tr((AB†)∆n)

)
=

1

k2∆R
n

fN1

[1∆R ]
fN2

[1∆R ]

〈Tr((A†B)∆1)Tr((AB†)∆1)〉 · · · 〈Tr((A†B)∆n)Tr((AB†)∆n)〉

∼ e
−
[
2∆R+(N1−∆R+ 1

2
) log(1−∆R

N1
)+(N2−∆R+ 1

2
) log(1−∆R

N2
)
]

k2∆R
n ∆1 · · ·∆n

. (4.76)

4.7 Transition probability in ABJM theory
In this section we carry on our computation on transition probabilities among giant gravi-
tons or from giant gravitons to ordinary gravitons for ABJM theory where N1 = N2 = N .

113



Chapter 4. Correlators of Giant Gravitons from dual ABJ(M) Theory

We will only enumerate the main results.

The transition amplitude between two sphere giants of angular momentum N
2

to a single
sphere giant of angular momentum N is given as

P
([

1
N
2

]
,
[
1

N
2

]
→
[
1N
])

= 2−2N . (4.77)

We extend the result for same type of transition occurring between AdS giants.

P
([N

2

]
,
[N

2

]
→
[
N
])

=

[
(2N − 1)!(N − 2)!

]2
(∑N1/2

i=0 (3N
2

+ i− 1)!(3N
2
− i− 2)!

)2 . (4.78)

We calculate transition probability of the process depicting a sphere giant graviton is pro-
duced by the combination of N number of KK gravitons of angular momentum 1.

P
(

Tr(AB†)N(r = ex) → χ[1N ](AB
†)(r = 0)

)
∼ π

1
2 e−
[
(N− 1

2
) log(N)+(N2+N− 1

2
) log(1+ 1

N
)− 1

2
log(2)

]
. (4.79)

The transition probability to go from N number of KK gravitons with angular momentum
1 to an AdS giant is

P
(

Tr(AB†)N(r = ex) → χ[N ](AB
†)(r = 0)

)
∼ π− 1

2 e−
[
N− 1

2N
+1+(N+ 1

2
) log(N)−(4N− 3

2
) log(2)

]
. (4.80)

The transition probability of the process where L/J number of gravitons with angular
momentum J <

√
N combining and giving a sphere giant of angular momentum L is

given by

P
(

Tr((AB†)J)L/J(r = ex) → χ[1L](AB
†)(r = 0)

)
∼ π− 1

2 e−
[
2L−L

J
− 1

2
log(J)+( L

J
+ 1

2
) log(L)+2(N−L+ 1

2
) log(1− L

N
)+ 1

2
log(2)

]
. (4.81)

Similarly for AdS giant the result changes as,

P
(

Tr((AB†)J)L/J(r = ex) → χ[L](AB
†)(r = 0)

)
∼ π− 1

2 e−
[
2L−L

J
− 1

2
log(J)+( L

J
+ 1

2
) log(L)−2(N+L− 1

2
) log(1+ L

N
)+ 1

2
log(2)

]
. (4.82)

Now we calculate the transition probability from an AdS giant with angular momentum N
to two smaller AdS giants with angular momentum N/2. The probability is

∼ e−
[
2(3N−1) log(3)−(8N−3) log(2)]. (4.83)
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For a sphere giant [1N ] evolving into two smaller sphere giants [1
N
2 ] probability becomes

∼ πe−
[
(4N+1) log(2)−log(N)

]
. (4.84)

The transition probability of evolving from one sphere giant with angular momentum N to
two gravitons with angular momentum N/2 with the restriction N/2 is less than

√
N is

∼ πe−
[
2N+log(N)+(2N−3) log(2)

]
. (4.85)

We also calculate the transition probability of evolving from one AdS giant with angular
momentum N to two gravitons with angular momentum N/2 where we assume again the
fact that N/2 is less than

√
N and the probability is

∼ e−2
[
N+log(N)−(N+1/2) log(2)

]
. (4.86)

Finally we calculate the higher genus transition probability for AdS giants. With the choice
of N1 = N2, (4.71) gives the appropriate higher genus correlator for the ABJM theory

22N−1
(n+ 1

n

)n−nN−N[ 4nn+1

k2
n(n+ 1)n+1

]N
. (4.87)

Again for the case of sphere giants equation (4.73) modifies as,

1

k2N
n

(2πN)
(n− 1

n

)n(1+2N)−2N

. (4.88)

Having these discussion on transition probability in the last four sections we are going to
find out the large N expansion of the theory in the non-trivial background.

4.8 Large N expansion in non-trivial background
We know that the large N expansion of N = 4 SYM theory as well as of ABJM theory is
replaced by 1/(N+M) in the presence of non-trivial background created by Young diagram
of N number of rows and M number of columns of the order of N . Therefore for ABJ
theory it is natural to expect the same. To verify that we compute the amplitude of the multi
trace operator in the non-trivial background as ABJM theory. Following [?, 166, 230, 231],
we first calculate the amplitude without the presence of background and the result is

A
(
{ni;mj}, N1, N2

)
≡

〈∏
ij

Tr
(
(AB†)ni

)
Tr
(
(A†B)mj

)〉

=
∑
R,S

αRβS

〈
χR(AB†)χS(A

†B)

〉
=

∑
R

αRβRf
N1
R fN2

R . (4.89)
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Here we have rewritten the multi trace operator in terms of Schur polynomials as∏
i

Tr
(
(AB†)ni

)
=
∑
R

αRχR(AB†),
∏
j

Tr
(
(A†B)mj

)
=
∑
R

βRχR(A†B). (4.90)

Coefficients αR and βR are independent ofN1 andN2. The amplitude can also be calculated
in the presence of non-trivial background and the result is

AB

(
{ni;mj}, N1, N2

)
≡

〈∏
ij

Tr
(
(AB†)ni

)
Tr
(
(A†B)mj

)〉
B

=
∑
R

αRβR

(
fN1

+R

fN1
B

)(
fN2

+R

fN2
B

)
. (4.91)

Here fB is the product of weights of the background Young diagram B and f+R is the
product of the weights of the Young diagram +R produced by the product of background
Young diagram and Young diagram representing multi trace operator. All the weights of the
diagram B are repeated in the diagram +R. Therefore all weights of fB will be canceled
by the weights of the f+R and the remaining weights of the f+R contribute to find out the
amplitude of the multi trace operator in presence of non-trivial background. However it
seems that the remaining weights turn out the weights of the diagram R which represent
the multi trace operator, corresponding to the gauge group U(N1 + M) or U(N2 + M).
Thus the amplitude with background can easily be calculated from the amplitude without
background just by replacing the gauge groupU(N1) andU(N2) asU(N1+M) andU(N2+
M) respectively. Therefore we can write

AB

(
{ni;mj}, N1, N2

)
= A

(
{ni;mj}, N1 +M,N2 +M

)
. (4.92)

Since A
(
{ni;mj}, N1, N2

)
admits expansions 1/N1 and 1/N2, so we can expect that

A
(
{ni;mj}, N1 +M,N2 +M

)
should have expansions 1/(N1 +M) and 1/(N2 +M).

4.9 Conclusion:

Here we have shown that in U(N1) × U(N2) ABJ theory (N1 < N2), the correct 1
2

BPS
gauge invariant operators carrying a R charge greater than

√
N1, are not the single trace

operators. Rather, one needs to consider the Schur operators. We then identified the corre-
sponding states in the dual gravity theory. Subsequently, we computed the two, three and
multi-point correlation functions involving these operators. Our computations show, for
large N1 and N2, all of the correlators with proper normalization converge to the values
less than unity – a fact that is consistent with the probability interpretation of the correla-
tors. We also have seen that the two point correlators show a stringy exclusion principle.
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While calculating the correlators, we have used the overlap state and the multi-particle nor-
malization; both were found to depend on the gauge indices as well as the boundary space
time. We have further found that the correlators of the gravity state have an exponential
decay. However, owing to the parity non-invariance of the ABJ theory, the results are not
symmetric under the exchange ofN1 andN2. Finally, we have considered a particular grav-
ity background dual to an operator with a R-charge of O(N2) in ABJ gauge theory. As a
result, due to the non-planar contributions, the large N1 and N2 expansions get replaced by
1/(N1 +M) and 1/(N2 +M) respectively where M is the number of extra columns added
to the Young diagram.
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5
w∞ 3-algebra

5.1 Introduction

ABJM theory is a U(N)k × U(N)−k, N = 6 Chern-Simons-matter theory, where the two
Chern-Simons gauge fields have the levels k and −k. In the limit, N = 2, supersymmetry
of ABJM theory enhances from N = 6 to N = 8. Finally, in the special limit N = 2 and
k = 2, ABJM theory becomes equivalent to another independent world volume theory of
two M-2 branes known as BLG theory. The gauge field as well as the matter fields in BLG
theory are valued in a completely anti-symmetric ternary product satisfying the so-called
fundamental identity and a Euclidean metric. This ternary product is also known as 3-
algebra. Although this 3-algebra plays an important role in the formulation of multiple M-2
brane theory, its rich mathematical structure makes the algebra very important to its own
right. The consistent generalization of Kac-Moody and (centerless) Virasoro 2-algebras
into respective 3-algebras motivates us to construct a further extension.

In this chapter, we explicitly obtain a classical w∞ 3-algebra and show that our relation
satisfies the 3-algebra “Fundamental Identity” (FI). Our construction is based on the earlier
work on W∞ and W1+∞ symmetries (see [240, 241] and references therein). Using the
‘lone-star’ product of W1+∞ generators and their commutation relations we write down
a antisymmetric 3-algebra relation. This 3-algebra relation formed by W1+∞ generators
simplifies significantly in a double scaling limit. The resulting mathematical structure still
maintains a 3-algebra relation formed by w∞ generators. This procedure of taking the
double scaling limit is a generalization to that of taking a single scaling limit to obtain the
w∞ 2-algebra from the W∞ 2-algebra. We explicitly check that the w∞ 3-algebra satisfy
the FI

We organize the chapter in the following way. In section 2, we introduce the generators
of W1+∞ algebra which happens to be the building blocks of our w∞ algebra. In section 3,
we define the “lone-star’ product and construct an antisymmetric ternary bracket involving
the generators of W1+∞ algebra. In section 4, we take double scaling limit of this ternary
bracket and obtain the w∞ 3-algebra. In section 5, we give a geometric interpretation of
the w∞ 3-algebra. Lastly we end this chapter by a discussion.
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5.2 Generators of W1+∞ algebra
We now start with the commutation relations defining W1+∞ algebra written in terms of
generators Ṽ i

m [240]:

[Ṽ i
m, Ṽ

j
n ] =

∑
l≥0

q2lg̃ij2l(m,n)Ṽ i+j−2l
m+n + q2ic̃i(m)δijδm+n,0, (5.1)

where superscripts i, j, l, representing the conformal spin of the generators, are in general
integers: −1, 0, 1, · · · etc. whereas integer subscripts m,n can take arbitrary positive or
negative values. We also have:

g̃ijl (m,n) ≡ gijl (m,n,−1

2
) (5.2)

given by an expression:

gijl (m,n, s) =
1

2(l + 1)!
φijl (s)N ij

l (m,n). (5.3)

Explicitly, φijl (s) are given by a generalized hypergeometric function:

φijl (s) = 4F3

 −1
2
− 2s, 3

2
+ 2s, − l

2
− 1

2
, − l

2

; 1
−i− 1

2
, −j − 1

2
, i+ j − l + 5

2

 (5.4)

and

N ij
l (m,n) =

l+1∑
k=0

(−1)k
(
l + 1
k

)
(2i+2− l)k[2j+2−k]l+1−k[i+1+m]l+1−k[j+1+n]k,

(5.5)
where [a]n stands for a!

(a−n)!
and (a)n stands for (a+n−1)!

(a−1)!
. Also, in eq. (5.1) q is an arbitrary

scaling parameter, which we will fix later on through a double scaling process. Finally, the
central term of the algebra in eq. (5.1) can be consistently set to zero and corresponds to
the analysis of classical symmetries.

5.3 Lone-star product
Another property of interest for us will be the ‘lone-star’ product of the W1+∞ generators:

Ṽ i
m ? Ṽ

j
n =

∑
l≥−1

qlg̃ijl (m,n)Ṽ i+j−l
m+n . (5.6)

This star product is classical, since it does not contain information about the central term.
As in the following we make use of the relation (5.6) to construct our 3-algebra, this analy-
sis therefore holds for the classical case only. Note also that the commutation relation (5.1)
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follows from the ‘lone-star’ product eq. (5.6) (in absence of central term) by realizing that
coefficients g̃ijl (m,n) are symmetric under the simultaneous interchange of i, j and m,n
for odd l’s whereas they are antisymmetric for even l’s. We now restrict ourselves to the
case when the central term is absent.

Now, using the definition of the 3-algebra relation:

[A,B,C] = A[B,C] +B[C,A] + C[A,B] (5.7)

and the commutation relation (5.1) as well as the star product (5.6), we can write the 3-
algebra relation:

[Ṽ a
m, Ṽ

b
n , Ṽ

c
p ] =

∑
l≥0,r≥−1

q2l+r[g̃b,c2l (n, p)g̃a,b+c−2l
r (m,n+ p)+

g̃c,a2l (p,m)g̃b,c+a−2l
r (n,m+ p) + g̃a,b2l (m,n)g̃c,a+b−2l

r (p,m+ n)]Ṽ a+b+c−2l−r
m+n+p , (5.8)

where the index r, for a given l, runs over indices r = −1, 0, · · · , (a + b + c − 2l + 1),
whereas the running of index l in the three terms in rhs of eq. (5.8) is from zero upto b+ c,
c+ a and a+ b respectively.

The 3-algebra relation in eq. (5.8) may be of interest in its own right, however in
the following we present a simpler situation by using a double scaling limit on the above
relation. We also recall that a similar procedure (but with a single scaling parameter q)
was used earlier to obtain the w∞-algebra from W∞. Relationship between w∞-algebra
and area preserving reparameterizations of 2-torus are also well known [242]. We observe
an interesting relation at the 3-algebra level by comparing the structure constants of the
3-algebra emerging from the 3-bracket given in eq. (5.8), after taking the double scaling
limit, with the one for the classical Nambu 3-brackets of globally defined functions f, g, h
on T 2.

5.4 Double scaling limit and w∞ 3-algebra

Now, to apply our double scaling, we scale all the generators Ṽ a
m in eq. (5.8) by a parameter

β. Note that such a scaling is in addition to the one given in [240] which lead to the powers
of q2l in the commutation relation (5.1). We also note that the smallest power of q in eq.
(5.8) corresponds to l = 0 and r = −1. In order to keep only this term, after the double
scaling, we take the limits: q → 0, β → ∞ such that β2q = 1. We then obtain the
simplified 3-algebra in terms of the rescaled generators wam’s:

[wam, w
b
n, w

c
p] = [c(n−m) + b(m− p) + a(p− n)]wa+b+c+1

m+n+p , (5.9)

where we have also made use of the fact that

g̃ab−1(m,n) = 1, g̃ab0 (m,n) = (b+ 1)m− (a+ 1)n. (5.10)
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We now verify that w∞ 3-algebra satisfies the FI, written in the present case as:

[wam, w
b
n, [w

c
p, w

d
q , w

e
r]] = [[wam, w

b
n, w

c
p], w

d
q , w

e
r]] + [wcp, [w

a
m, w

b
n, w

d
q ], w

e
r]] + [wcp, w

d
q , [w

a
m, w

b
n, w

e
r]].(5.11)

A discussion on the necessity of the FI’s defining the Leibniz rule for the action of 3-
brackets, as well as an analysis of the associativity constraints in such cases, is presented
in [237]. In our case, evaluating the four terms we obtain:

[wam, w
b
n, [w

c
p, w

d
q , w

e
r]] = [e(q − p) + d(p− r) + c(r − q)]×

[(c+ d+ e+ 1)(n−m) + b(m− p− q − r) + a(p+ q + r − n)]wa+b+c+d+e+2
m+n+p+q+r ,(5.12)

[[wam, w
b
n, w

c
p], w

d
q , w

e
r]] = [c(n−m) + b(m− p) + a(p− n)]×

[e(q −m− n− p) + d(m+ n+ p− r) + (a+ b+ c+ 1)(r − q)]wa+b+c+d+e+2
m+n+p+q+r ,(5.13)

[wcp, [w
a
m, w

b
n, w

d
q ], w

e
r]] = [d(n−m) + b(m− q) + a(q − n)]×

[e(m+ n+ q − p) + (a+ b+ d+ 1)(p− r) + c(r −m− n− q)]wa+b+c+d+e+2
m+n+p+q+r ,(5.14)

[wcp, w
d
q , [w

a
m, w

b
n, w

e
r]] = [e(n−m) + b(m− r) + a(r − n)]×

[(a+ b+ e+ 1)(q − p) + d(p−m− n− r) + c(m+ n+ r − q)]wa+b+c+d+e+2
m+n+p+q+r .(5.15)

Using eqs. (5.12), (5.13), (5.14) and (5.15), it can now be checked directly that the 3-
algebra in eq. (5.9) satisfies the FI in eq. (5.11).

We have therefore obtained a 3-algebra generalization of the w∞-algebra. Note that
our double scaling is such that it gives a nontrivial 3-algebra in terms of w∞ generators.
This double scaling would however make the original commutation relations [240] of w∞
generators trivial. There is, however, no inconsistency with our analysis above, since the
‘lone-star’ product also goes to infinity in this limit, thus giving us a well defined 3-algebra
with finite coefficients. We have also analyzed the expressions for the (totally antisym-
metrized) 4-brackets involving the generators wam, using the relation (5.9):

[wam, w
b
n, w

c
p, w

d
q ] = wam[wbn, w

c
p, w

d
q ]−wbn[wcp, wdq , wam]+wcp[w

d
q , w

a
m, w

b
n]−wdq [wam, wbn, wcp].

(5.16)
By explicit calculation we find that it is identically zero, a result similar to the one [237]
for the Virasoro 3-algebra.

5.5 Geometric realization of w∞ 3-algebra
As already pointed out before, above results can also be reinterpreted in terms of the alge-
braic structure of the reparameterizations of 2-torus through the evaluation of the classical
Nambu 3-brackets (3CNB) of globally defined functions f, g, h on a 2-torus. 3CNB of
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functions f, g, h, that are completely antisymmetrized, are defined as the Jacobian of the
transformation from (x, y, z) to (f(x, y, z), g(x, y, z), h(x, y, z)):

{f, g, h} ≡ ∂(f, g, h)

∂(x, y, z)
≡ f{g, h} + g{h, f} + h{f, g}

=
∂f

∂x
(
∂g

∂y

∂h

∂z
− ∂h

∂y

∂g

∂z
) +

∂g

∂x
(
∂h

∂y

∂f

∂z
− ∂f

∂y

∂h

∂z
) +

∂h

∂x
(
∂f

∂y

∂g

∂z
− ∂g

∂y

∂f

∂z
). (5.17)

Now, to establish the connection with our results given above, we note that by choosing:

f ≡ wam =
√
z exp ((a+

1

2
)x+my),

g ≡ wbn =
√
z exp ((b+

1

2
)x+ ny),

h ≡ wcp =
√
z exp ((c+

1

2
)x+ py), (5.18)

we obtain the 3CNB of generators {wam, wbn, wcp}, which matches with the 3-bracket given
in eq. (5.9) (by a constant scaling of the generators), with structure constant:

=
1

2

∣∣∣∣∣∣
1 1 1
a b c
m n p

∣∣∣∣∣∣ . (5.19)

We also note that a somewhat similar structure appeared in the Moyal (sine) brackets of
[242] and its correspondence to 3-algebra structure constants in our case will be of interest
to examine. Also, it is noticed from eq. (5.18) that the 3-algebra generators of eq. (5.9)
can be identified with the modes of the deformations of 2-torus [242]. In the present case,
however, one also needs to multiply the exponential functions in eqs. (5.18) by an extra
factor

√
z common to all three generators in the 3CNB. The geometric interpretation of

such an extra factor may be possible by identifying the complete geometry as a direct
product of 2-torus with a point, since the deformation mode along the z direction is frozen.

5.6 Discussion
In this chapter, we establish the emergence of a novel classical 3-algebra formed by the
generators of w∞ symmetry group. Like SO(4) 3-algebra described earlier in BLG theory,
w∞ 3-algebra is also completely antisymmetric with respect to the indices of its elements
and satisfies FI. Using Nambu 3-bracket, we achieve the geometrical realization of this w∞
3-algebra. We also check the validity of the 3-bracket expression (before taking the scaling
limit), i.e. eq. (5.8), as a proper 3-algebra relation. Our study shows that the ternary bracket
of W∞+1 generators does not satisfy FI except for few low lying modes.
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6
Summary

Gauge/gravity duality provides a systematic prescription to explore some strongly coupled
theories. On one hand, by exploiting strong/weak nature of this duality, we can uncover fea-
tures of strongly coupled gauge theories by studying dual weakly coupled gravity. On the
other hand, physics of non-perturbative string/M theory becomes accessible by analysing
weakly coupled boundary duals. The thesis attempts to explore both sides of this duality.

While studying the strong coupling limit of gauge theory, we focused on a holographic
QCD model and the N = 4 SYM plasma at finite temperature with additional heavy fun-
damental static quarks. We use the holographic techniques to calculate the drag force, jet
quenching parameter and screening length of the quark and the antiquark. These quantities
are sensitive to the strong coupling nature of gauge theory in the context of quark gluon
plasma. In the case of holographic QCD model, we found that the drag force increases with
temperature in the large chemical potential region (µ ≥ µc). When the chemical potential
is small ( µ < µc ) the drag force also increases for high temperature region, but it shows a
multi-valued behavior at low temperature region. The jet quenching parameter has a mono-
tonically decreasing behavior with the temperature in the region µ ≥ µc. But for µ < µc,
it shows similar multi-valued behavior in the low-temperature region. These multi-valued
behaviors of the drag force and the jet quenching parameter, for µ < µc and in the low
temperature region, is consistent with the existence of first order phase transition in this
hQCD model. We also find that, for all values of µ, the quark-antiquark pair dissociates
beyond a characteristic screening length Ls of the system. Moreover, we calculated the
binding energy as a function of the separation between a quark and antiquark. In another
model, we discussed the computation of the dissipative force experienced by an external
heavy quark with fundamental SU(N) charge moving through a collection of other heavy
static quarks uniformly distributed over N = 4 SYM plasma at finite temperature. We ex-
plicitly calculated the effect of the back reaction of plasma on an external probe quark due
to the presence of other heavy quarks. To realize this back reaction, we introduced a uni-
form distribution of fundamental strings embedded in a dual AdS black hole background.
Correspondingly, the back reaction on the AdS black hole geometry due to the presence of
the string cloud was computed. The back reacted black hole is parametrized by it’s mass
and the string cloud density. We have verified the thermodynamical stability as well as the
gravitational stability (up to the tensor and the vector perturbation) of this new black hole
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geometry in a systematic way. Finally, we computed the drag force on a heavy probe quark
in this new black hole background. Drag force enhances with the temperature and with the
density of heavy quark distribution.

In the second part of the thesis, we explored the other side of the gauge/gravity cor-
respondence to reveal the strong coupling side of string/M theory via the analysis in dual
weakly coupled field theory. In particular, by exploiting the AdS4/CFT3 correspondence,
we studied a class of semiclassical objects in gravity theory known as the giant graviton
and the dual giant graviton. These objects are nonperturbative in nature and can be thought
as either spherical M-2/M-5 branes living in AdS4×S7/Zk geometry or spherical D-2/D-4
branes living in AdS4×CP3 geometry. Using the operator state correspondence prescribed
by the AdS4/CFT3 dictionary, we mapped these gravity states in to the 1

2
BPS gauge-

invariant chiral primary operators in the dual weakly coupled N = 6, U(N1)×U(N2) ABJ
gauge theory. We showed the correct gauge invariant operators dual to the giants with large
angular momentum are the Schur polynomial operators with the large R charges. Using
the combinatorics of Young tableaux representation of these Schur polynomials, we calcu-
lated various gauge theory correlators represnting transitions among the giants or between
the giants and the ordinary gravitons. Our analysis in the weakly coupled gauge theory
respects the orthogonality condition maintained by the giant graviton states in gravity Fock
space and the probability interpretation of the transition amplitudes among those gravity
states. Moreover, we considered a particular gravity background dual to an operator with a
R-charge of O(N2) in ABJ gauge theory. This type of oprators are constructed by adding
M number of extra columns to the Young diagrams representing the relevent Schur poly-
nomials, where M is of the order of the smallest one among N1 and N2. We showed due to
the non-planar contributions, the large N1 and N2 expansions get replaced by 1/(N1 +M)
and 1/(N2 + M) respectively. We noted that apart from the ABJ(M) theory, there is an
alternative world volume theory of multiple M-2 branes known as BLG theory. Motivated
by the importance of 3-algebraic structure in this BLG theory we constructed a novel 3-
algebra consisted of w∞ generators. We explicitly showed this algebraic structure satisfies
the FI. We also gave a geometrical interpretation of this w∞ 3-algebra.

We hope that our study will be useful to understand some generic features of a strongly
coupled system.
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