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SYNopsis

Holography states that a (d + 1)—dimensional gravity theory (bulk theory) has a
description in terms of d—dimensional field theory ( boundary theory), where extra
dimension in the gravity side is identified with energy scale in the field theory side.
A well understood example is AdSs;/CFT, duality, which arises in the study of
D3 branes in type [IB string theory. According to this duality, type IIB string
theory on AdSs x S% is dual to four dimensional N =4, SU(N) super Yang-Mills
theory. In the strong 't Hooft coupling and large N limit of the gauge theory, dual
string theory can be approximated by supergravity in five dimension coupled with
Kaluza-Klein (KK) modes (lowest lying modes) coming from S® compactification.
Within this duality, one can ask questions such as whether it is possible to recon-
struct bulk space time using conformal field theory (CFT) data or given a bulk
space time, what properties of dual gauge theory can one read off? For example,
heating up the above gauge theory implies that in the bulk we have black brane
in AdSs5. Further more, adding some gauge charge to the black brane is equivalent
to having some chemical potential for the gauge theory. Stated more precisely,
solutions to bulk equations of motion determines the thermodynamic variables of
the dual CFT at equilibrium. One can even introduce a small space time depen-
dent perturbations about equilibrium which in the domain of linear response leads
to important processes such as transport properties of CFT. The basic object of
interest is that we want to compute are retarded Green’s functions which captures
response of the gauge theory to the external perturbation. To illustrate further, let
us consider an interacting quantum field theory (QFT), in global thermal equilib-
rium at temperature T and chemical potentials () for various conserved charges.
Now if we perturb the system out of equilibrium by allowing system thermody-
namic variables to fluctuate in a scale which is sufficiently large compared to scale
set by temperature or energy density in equilibrium, one describes system in terms
of hydrodynamics. Then we expect, around any given point a region where local
temperature is roughly constant and one can use basic thermodynamic variables
to describe the physical properties of the region. The role of hydrodynamics is
to describe how these different regions exchange thermodynamic quantities among
themselves. The dynamics in this regime is captured by conservation of energy
momentum tensor and other conserved global charges. The fluid perturbed away
from equilibrium, tries to equilibrate through dissipation and the response to these
perturbations are encoded in transport coefficients such as shear viscosity, electri-
cal conductivity, thermal conductivity etc. Using gauge/gravity duality one can
compute retarded greens functions of dual gauge theory operators from gravity
side and use Kubo formulas to relate it to the transport coefficients.

After its discovery, the AdS/CFT duality is generalized for many different sit-
uations such as the case of non conformal boundary theories which arises in the
study of Dp branes (p # 3). AdS/CFT duality also has been generalized for many
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Synopsis

other situations mostly based upon symmetry principles, not necessarily always
they have a well understood string theory embedding. Some such examples are
cases where boundary theory is not required to be relativistic invariant or boundary
theory has Lifshitz like symmetry. In the following discussions we shall consider
generic gravity set up assuming a field theory dual in a similar spirit.

Our motivation and goal can be summarized as follows. Given the fact that,
number of models which exhibits such dualities are increasing rapidly, it is desirable
to have some features which are independent (referred as universal) of particular
model. For instance, it is well known that shear viscosity (1) to entropy density
ratio is equal to ﬁ, in the dimension less units for a large class of gauge theory hav-
ing a gravity dual. Interestingly this falls with in the experimental range observed
at RHIC. So, even though these theories in several ways are different from theories
such as QCD, they seem to share qualitatively similar behavior. This motivates us
to investigate possible universality of other transport coefficients which might shed
some light into qualitative features of RHIC physics. We primarily focus on com-
putation of electrical conductivity at finite chemical potential () and temperature
(T') which is related to current current correlator through Kubo formula. Assuming
gravity theory has a gauge theory dual, under general assumptions in the gravity
side we show that electrical conductivity at finite chemical potential is universal
and can be expressed in terms of thermodynamic quantities of the dual gauge the-
ory. We further propose a universality of thermal conductivity (k) to viscosity
ratio (“g—j‘fQ) We also provide a proof of universality of electrical conductivity and
shear viscosity to entropy density ratio at zero temperature.

Our approach towards proving universality of electrical conductivity is as fol-
lows. First we compute electrical conductivity in the presence of one and more
than one chemical potentials for several models [1]. What we observe is that, in
the presence of multiple chemical potentials, there is a nontrivial mixing between
current operators which, from the bulk point of view can be understood to be
arising because of interaction through graviton. Then we compute thermal con-
ductivity (defined as response to temperature gradient in the absence of electric
current) and observe that thermal conductivity to shear viscosity ratio (%)
is independent of how many chemical potential one turns on. This observation
together with observation that at zero chemical potential as well the above ra-
tio remains unchanged, lead us to conjecture that L%I”Q, is universal and we
showed that it can be expressed in terms of central charges of the dual confor-
mal field theory (CFT) [2]. With the aim of proving above conjecture, in [3] we
found out interesting connection between the membrane paradigm fluid which sits
at the horizon effectively encoding the properties of the black brane to an exter-
nal observer and fluid which sits at the boundary of the space time known from
gauge/gravity duality. By exploiting the fact that changing radial position in the
bulk corresponds to RG flow in the boundary fluid, in [4,5], authors proposed a
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number of relations and even interpolations between them. For example, radial in-
dependence of certain quantities is used to show that, the shear viscosity to entropy
density ratio for both the fluids is the same, as well as the fact that at zero chem-
ical potential, low frequency limit of electrical conductivities of these two distinct
fluids are related. However the situation changes significantly at finite chemical
potential in the boundary theory, where radial independence exploited earlier in
relating electrical conductivity of these two fluids, gets completely destroyed. One
needs to solve the flow equation in order to relate conductivities of the fluid at the
boundary with the fluid at the horizon. In spite of this apparent difficulty, in [3],
we observed that for charged Reissner-Nordstrom black brane in arbitrary dimen-
sion, there exist a simple relation between the conductivities of these two fluids.
Further we computed electrical conductivity on hypothetical hyper surface at any
radial position out side black brane horizon to show that there exist a smooth inter-
polation between conductivities of these two fluids. Based on these observations
together with support from several other computation of electrical conductivity
for asymptotically AdS spaces which corresponds to dual gauge theory to be CFT
lead us to propose a form of electrical conductivity which is universal. We further
checked that the proposed form of electrical conductivity holds for non conformal
field theories, where the dual gravity theory is not asymptotically AdS (which
arises in the study of Dp brane for p # 3), where as for asymptotically Lifshitz like
gravity theories where boundary theory enjoy anisotropic scaling, it does not hold.
This led us to ask, what is the most general gravity set up for which proposed form
of electrical conductivity holds. In [6], we found that under general assumptions
in the gravity side together with precise condition on the bulk stress tensor the
electrical conductivity is the same as one we proposed. The condition on the bulk
stress tensor may be related to the criteria for vacuum of dual gauge theory to be
Lorentz invariant. This immediately explains why Lifshitz like theories does not
have the form of conductivity as proposed since vacuum of dual gauge theory is not
Lorentz invariant, where as for asymptotically AdS and some non AdS examples
that we considered has dual gauge theory vacuum which are Lorentz invariant.
Further we observed that thermal conductivity to viscosity ratio is again universal
for non conformal theories.

We then turn our attention to study of transport coefficients of gauge theories at
zero temperature which corresponds to extremal black hole in the bulk. In [1], we
observed that for several examples the form of conductivity at zero temperature
is same. Under the general assumption that extremal black brane has double
pole structure at the horizon together with requirement that boundary theory
vacuum has to be Lorentz invariant, we show that form of electrical conductivity
is universal. Further in [7], we proved that shear viscosity to entropy density ratio
is ﬁ even at zero temperature.
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Introduction

1.1 Overview

Quantum chromodynamics (QCD) is a theory of strong interactions-one of the
fundamental forces in nature that describes the interactions between quarks and
gluons making up the hadrons. QCD enjoys two special properties. First is asymp-
totic freedom-at very high energy, quarks and gluons interact very weakly. Second
is confinement-forces between quarks increase with their separations. Indirect sup-
port of the confinement comes from the fact that so far no free quarks have been
experimentally observed. Lattice calculations suggest, confinement to deconfine-
ment transition in QCD occurs at a temperature around 7" ~ 175Mev.

Recently, in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory, a new phase called Quark-Gluon Plasma (QGP) was believed to have
been created by colliding gold nuclei at energies of order 100 GeV per nucleon.
Estimation suggests that the temperature of this phase created at RHIC is about
two times the deconfinement temperature. In this phase, quarks and gluons behave
like a near perfect strongly coupled fluid. The fact that, QGP at RHIC is strongly
coupled gets support from some unexpected features observed in the experiment.
These include but not limited to the observation of strong collective behaviour
(elliptic flow), large energy loss of high energy particles moving in this medium (jet
quenching). Clearly this indicates that the plasma, in fact, interacts very strongly
with itself and is thus referred to as strongly coupled. Most of our knowledge of
QCD, however, is not applicable in this regime. Known calculational techniques
involve a perturbative expansion of the theory in terms of the coupling constant
and, therefore, it breaks down when the coupling becomes large.

One of the remarkable developments during the late last century was to provide
a framework where we could make distinct progress in understanding strongly
coupled gauge theories. This goes by the name of gauge /gravity duality. According
to this conjectured duality, there is a correspondence between certain strongly
coupled gauge theories with the weakly coupled string theories. By this it is meant
that both the theories describe same physics. However, calculations become easier
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in one theory than the other!. This immediately opens up a possibility of an
application: what is the dual of QCD? If we find one, we can carry out relevant
computations in the dual theory to gain insights into QCD itself.

Unfortunately, till to date, gauge/gravity duality is well developed only for a
certain class of theories which excludes QCD. These gauge theories share some
properties with QCD, but differ from QCD in many essential ways. Nevertheless,
we can still look for some universal features of these strongly coupled gauge theo-
ries. Our hope is that these results might be useful if a dual of QCD is discovered.
This will be the central theme of this thesis.

As a concrete illustration, let us consider one of the most well understood exam-
ples of the gauge/gravity correspondence. It states that N = 4, four dimensional
SU(N) super Yang-Mills (SYM), at finite temperature is dual to type IIB string
theory on AdSs - Schwarzschild black hole times S°. Both A/ = 4 and QCD have
gluons but they differ in their other ingredients and properties. On the gravity
side of this duality, AdS5 represents the five dimensional anti-de Sitter space which
has a constant negative curvature. Finite temperature is introduced by adding a
black hole into this background. One can reach this correspondence by studying
non-extremal D3 -branes in IIB string theory and we will defer this discussion
for the later sections. The strong coupling behavior of this gauge theory at fi-
nite temperature is captured by studying weakly coupled string theory on AdSs -
Schwarzschild black hole times S® background.

In [1], using this duality, Policastro, Son and Starinets performed an elegant
and striking calculation of the shear viscosity of strongly coupled N/ = 4 theory
with the result

n 1 h h
s

= — — ~0.08—. 1.1
47T]€B Oong ( )

Here, s is the entropy density and kg is the Boltzmann constant. Interestingly
enough, RHIC data suggests that QGP has very low viscosity and the estimated
value is "
Too1—. (1.2)
S kB
The proximity of these two results initiated major activities in this area. This is
not only because of its calculational simplicity but also for the universal nature
of this result. Indeed, this ratio of shear viscosity to the entropy density is found
to be same for all gauge theories with an Einstein gravity dual in the N — oo

and large t’Hooft coupling limit. In fact, it was further conjectured by Kovtun,

'Such an equivalence is possible in string theory because of the existence of the Dirichlet
branes or the D-branes in short. These are the solitons in string theory which admit descriptions
in terms of both open or closed strings. While the low energy dynamics of the open strings with
their ends attached to D-branes (due to the Dirichlet condition) represent a gauge theory, the
closed string description surely contains gravity. In the later sections, we will have occasions to
further elaborate upon this idea.
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Son, Starinets in|2], that this number is a universal lower bound for all materials
including water and liquid helium!

A very natural question is, therefore, to ask if there are other universal quan-
tities associated with the strongly coupled gauge theories which have a gravity
dual. Indeed, as discussed in [3], the R-charge conductivity (o) to the charge sus-
ceptibility ratio () at zero chemical potential is expected to be another universal
quantity. The ratio is given by

o her  d
- > — (1.3)
X 4T d-—2
Here c is the velocity of light, d represents the dimension of the gauge theory at
temperature 7.

One of the primary aims of this thesis is to study the universality in electri-
cal conductivity for gauge theories at finite chemical potentials. The presence of
chemical potential introduces another scale in the theory (besides the tempera-
ture) and, consequently, complicates the matters in several ways. Let us pause
for a moment and discuss this here. As will be explained later in greater detail,
the gauge/gravity correspondence suggests that gauge theory fluctuations at large
length scales are dictated by the behavior of the near horizon geometry of the
gravity dual. In the absence of chemical potentials, boundary transport coeffi-
cients such as shear viscosity or electrical conductivity can be computed solely in
terms of horizon data. This is because the response function in the low frequency
limit evolves in a very simple manner as we go away from the horizon along the
radial direction[4, 5|. Tt is here that the introduction of a chemical potential pri-
marily brings in non-trivialities. Although shear viscosity can still be computed
solely in terms of horizon data, for the computation of electrical conductivity, hori-
zon data is not enough. The reason is that the evolution of the response function
does no longer remain trivial as above. Rather, it is given by a complicated flow
equation. Nevertheless, our analysis reveals that if the stress-energy tensor related
to the matter content of the bulk satisfies a compact relation among its space and
time components, the boundary conductivity at low frequencies is universal. In
the same spirit, we also discuss the universality of thermal conductivity to viscos-
ity ratio at both zero and finite chemical potentials. Furthermore, this thesis also
addreses the issue of transport coefficients of gauge theories at zero temperature,
where the gravity dual is represented by extremal black holes. Though it is not
immediately obvious, we show that the universality relation in Eq.(1.1) continues
to hold at extremality. Finally, we also elaborate upon the universal nature of
electrical conductivity at T = 0.

Before we go on to present our results in the later chapters, in the next section,
we give a brief introduction to D-branes in string theory and their complementary
descriptions in terms of open and closed strings. Subsequent sections concern the
gauge/gravity correspondence, the mapping of operators in the gauge theory to the

3
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fields in the bulk dual. This chapter also includes a description of hydrodynamics
and the techniques for the computation of the hydrodynamic response functions.

1.2 Strings and D-branes

The fundamental constituents in string theory are the strings? which can be either
closed, or open and are characterized by a string tension Ty, which is related to
string length [, by
Ty = ﬁ with o =12. (1.4)
In addition, the interactions between strings are controlled by a dimensionless
coupling constant g, related to the expectation value of a dilaton; a field that
appears in the massless spectrum of the string. Different vibrational modes of
the strings give rise to different fields which, in the low energy limit, look like
point particles. A consistent relativistic quantum theory of closed strings has, in
it, a massless spin-2 state whose interaction at low energies is governed by general
relativity. Similarly, open strings gives rise to gauge fields as it’s end points can
carry charges. However they do not carry spin-2 massless field in their spectrum.
Consistency requires the strings to have supersymmetry and to live in 10 space-time
dimensions. Consistency also requires five different types of superstrings, namely
type [1A, type IIB, type I, SO(32) heterotic and Fg x Fg heterotic. However,
via various perturbative and non-perturbative dualities, all of them are found to
be connected [12].
In addition to strings, superstring theory also contains solitonic configurations
of various dimensionality. They are known as Dirichlet branes (D-branes)[13, 14].
A Dp-brane is a (p+ 1) dimensional hypersurface in 9+ 1 dimensional space-time.
Both open and closed string can interact with the D-branes and the branes can be
defined as objects where open string end points live, obeying Neumann boundary
condition along p 4+ 1 space time direction and Dirichlet boundary conditions in
(9—p) spatial directions. Their origin can be understood as follows. In the spectra
of closed string, one has left and right moving fermions. Depending on whether we
implement periodic or anti periodic boundary conditions, we can have four sectors
(R—R), (R—NS), (NS—R), (NS—NS), where R stands for Ramond and NS
stands for Neveu-Schwarz. The (R—R), (NS —N.S) sectors are space-time bosons
whereas (R — NS), (NS — R) are space-time fermions. While the (NS — NYS5)
sector contains the graviton g,,,, a two form field B, dilaton ¢, the (R— R) sector
contains p + 1 form field A,,;, in the massless sector. Depending on whether p is
even or odd, we have type I A or type IIB theory. The Dp-branes are charged

2For an excellent elementary introduction to string theory, see [6]. For more advanced discus-
sions, see[7, 8, 9, 10, 11])
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under this p + 1 form field. The minimal coupling of Dp-branes with form fields
can be written as

o [ Ay, (1.5)
where

1 — /*Fp+2. (1.6)

with Fj19 = dA,,. Being solitonic in nature, Dp-branes are heavy and its mass
per unit volume, the tension Tp,, can be written as®

1

Tpp = 7(27T)Pgsl§+l .

(1.7)

Since Dp-branes are BPS configurations, vanishing force between them allows us
to put N number of branes stacked on top of each other. If N is large, then
this stack is necessarily very heavy, and consequently, it curves the space-time.
Since, in addition, Dp-branes are charged under R-R p + 1 form potential, Dp-
branes have description in terms of some classical metric and R-R form potential.
This is what is known as the closed string description of D-branes. On the other
hand, D-branes also have a description in terms of open strings. One can think of
open strings as excitations of D-brane since open string spectrum can be identified
with the fluctuations of the D-brane. The massless spectrum of the open strings,
living on N number of Dp-brane, is that of a maximally supersymmetric U(N)
gauge theory with fermions and 9 — p massless scalar fields which together with
the gauge field provide an unique supersymmetric completion. Thus, we have
two very different descriptions of a stack of D-branes: one in terms of a gauge
theory and the other in terms of classical R-R charged p-brane gravity background.
Exploration of this idea led to the discovery of gauge/gravity duality also known
as AdS/CFT correspondence[15, 16, 17|, originally proposed by Maldacena. The
next two subsections serve as a brief introduction to this correspondence.

1.2.1 D-branes and gauge theories

If we consider N number of coincident D3-branes in a flat space-time, the massless
spectrum of open string consists of a gauge field A,,, six real scalar field X* and
four Weyl fermion \? in the adjoint representation® of U(N) with R-symmetry (as
explained below) index a = 1,...,4 and Weyl index a = 1,2. At two derivative

3Let us note that, Dp branes are solitonic objects in string theory, and their mass is related
inversely to the string coupling , which is different from usual solitonic objects found in the gauge
theory where mass goes as g21 . The factor lp% that comes in Eq.(1.7) comes from dimensional
Y M E
grounds and (27)? is introduced as a normalization factor.
4Let us note that, this theory has no fields such as quarks which transform in the fundamental

representation.
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level, the low energy® effective action for massless modes turns out to be N’ = 4
super Yang-Mills® (SYM) with gauge group U(N) in 3 + 1 dimensions. One can
think of SU(N) C U(N) as relative motion of branes where as U(1) C U(N) as
rigid motion of the branes. Because of the overall translation invariance[18|, this
mode decouples from SU(N), giving us N' = 4 SYM theory with gauge group
SU(N). Let us note that N’ = 4 has a global symmetry, the SU(4)r symmetry
under which A, transforms as singlet, \% as 4 and scalars X’ are rank 2 anti-
symmetric tensors in representation 6. One can understand the origin of SU(4)g
global symmetry as follows. The directions transverse to the D-branes is isotropic
and these directions correspond to scalars X*. Isotropy therefore means that there
is a global SO(6) ~ SU(4) symmetry for X’. The Lagrangian for N' = 4 super
Yang-Mills theory is unique and is given by [19]

0 N _ . 4
F* By 4 o5 P F = > iXG"Dyda — Y D, X'D'X'

L= T'r(—

295y -

2 g5y arCIALX N D gsyar A [X Ay 4+ B ST XAER)
%]

a,b,i a,b,i

where ggy s is the gauge coupling and 6 is instanton angle. The constants C#® and
Ciap are the Clebsh — Gordon coefficients needed to make a singlet out of fermions
and scalars. The overall trace is taken over the SU(N) indices. The gauge coupling
is determined in terms of string coupling by the relation

QEYM = Js- (1.9)

The gauge field and scalars have mass dimension 1 and fermions have mass
dimension % So all the terms in the action have mass dimension 4. This implies
that the theory is classically scale invariant. This scaling symmetry combines with
Poincare symmetry SO(1,3), resulting in a conformal symmetry SO(2,4). This
group is generated by translations P,, Lorentz transformations L, dilations D
and conformal transformations K. It turns out that, even at the quantum level,
this theory remains conformally invariant. This together with supersymmetry
and R-symmetry lead to the supergroup’ SU(2,2|4) as the symmetry group of

1

V!
are not accessible.
6D-branes preserve % of the 32 supersymmetries in the bulk. Thus the four dimensional world
volume of D3-branes has 16 supercharges which implies N' = 4 in four dimensions.
"Let us note that, the supergroup SU(2,2[4) can be written as

( SU(2,2) ~ S0O(2,4) @, S )

By low energy we mean £ < , so that massive states of the open strings on the D—branes

Q5 SU(4)r

where @ and S are Poincare supersymmetry generators and conformal supersymmetry generators
respectively.
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N = 4 SYM. We shall see that this symmetry group is again appearing in the next
subsection where we consider D-branes in a different perspective.

We also note that, the Lagrangian in Eq.(1.8) receives higher derivative correc-
tions which are suppressed by terms of order o' E2, at an energy E. It also receives
corrections due to its interactions with the closed string sector. The interactions of
the closed string modes with themselves and with the open strings modes are con-
trolled by dimensionless coupling constant o *E®. Hence, in the low energy limit,
the Lagrangian that describes the dynamics is given in Eq.(1.8) plus the decoupled
closed string modes. So we conclude that the low energy effective description for
D3 branes can be given by N' =4 SU(N) SYM theory and decoupled closed
strings or supergravity in the ten dimensional Minkowski space-time.

1.2.2 D-brane space-time geometry

As we have noted, the D-branes are massive solitonic objects and they are the
sources of various (R-R) fields. One can obtain the corresponding geometry by
solving the equations of motion that follow from the effective low energy type I1
supergravity. Let us consider the case of D3-brane in particular. The D3 brane is
a solution in type IIB string theory which, like generic Dp-branes, preserves half
of the space-time supersymmetry. In the low energy limit, massless fields include,
among the bosonic fields, metric g™, dilaton ¢, axion C, and a (R-R) five form
self-dual field strength Fiy nypor. The truncated action in the Einstein frame can
be written as

= 1673 o / 4 /Tg] (R - %aMwM(p _ %e%&MC@MC’
- %aFMNPQRFMNPQR)(l.IO)
The ten dimensional Newton’s constant is given by®
G = 87°g213. (1.11)

The D3-brane solution following from the equations of motion, after imposing self-
duahty *F5 = F5 iS,

3
ds® = H73(~dt* + Y _(da')?) + H?(dr? + r2d2) (1.12)
i=1

and

Fy = (14 %)dt Aday Adao Ades NdH™E, gy = €2,
C = Constant, ¢ = Constant, (1.13)

8In Eq.(1.11), 1% comes from the fact that G109 has a dimension of length®. For fixed I, we
expect gravitational effect should increase with increasing g;. The exact dependence of g2 follows
from computation of string scattering amplitude. The factor 872 is again a convention.
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with
4

o L* = 4mg,NI2, (1.14)
where (¢, 21, 9, 23) are the D3-brane world-volume coordinates and 72 = 370 42,
with y;’s are orthogonal to brane directions. This solution is referred to as an
extremal D3-brane solution. The non-extremal generalization, discussed later, in-
troduces temperature and consequently breaks space-time supersymmetry. The
factor L can be thought of as characteristic length of gravitational effect of N D3-
branes. Its exact dependence on [, and g, is explained below. The above solution is
known as supergravity solution since we have neglected all possible corrections that
might come from massive string modes. To be precise, in the limit g, N < 1, the
length L is much less than /4 and thus supergravity approximation is not expected
to be a reliable approximation of the full string solution. On the other hand, in
the limit gsN > 1, the radius L is much greater than [, and thus supergravity
approximation is expected to be a reliable approximation to the full string solu-
tion. To have a better understanding of the geometry, we consider the following
two limits. In the region r > L, the metric looks like

ds* = (1 + O(f—j))(nMNd:pdeN), (1.15)

which is ten dimensional Minkowski space with small correction of the order of f—f
The appearance of correction terms can be understood as follows. The mass of N
number of D3-branes is M o« NTps. Since D3-branes extend along three spatial
directions, their gravitational effect is similar to that of a point particle with mass
M in the six transverse directions. So at r > L, we expect a correction of the
form <187 Now using Eq.(1.11) and Eq.(1.7), we get

GloM gleé
+ T4

(1.16)

T T

This explains various factors that appears in L in Eq.(1.14) except 47 which is a
convention.
Now we consider the opposite limit, namely r < L. The metric in Eq.(1.12)
approximates to
ds* = dsigg, + L*dQZ, (1.17)

where
dsgs, = 5 (—dt* + Z (dx') —dr (1.18)
So to conclude, far away from the branes the space time is flat, ten-dimensional

Minkowski space, whereas close to the branes a throat geometry of the form AdSs x
S5 develops.
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Let us now concentrate on two distinct sets of modes, one propagating in the
Minkowski region and other propagating in the throat region. The low energy limit
consists of focusing on excitations that have arbitrarily low energy with respect to
an observer in the asymptotically flat Minkowski region. While in the Minkowski
region, only massless ten-dimensional graviton super multiplet survives, the whole
tower of string excitations contribute in the throat region. One can understand
this in the following way. The energy of an object measured by an observer at
constant r (say E,) and energy E measured by an observer at infinity are related
by a redshift factor

L'\ -2

E- (1 + F) E. (1.19)
So a closed string of arbitrarily high proper energy in the throat region may have an
arbitrarily low energy as seen by an observer at asymptotic infinity. To understand
how these two modes interact, one can study the absorption cross section of mass
less particles (say graviton) from the branes sent from asymptotic infinity. In the
low energy limit, they decouple as the low energy absorption cross section goes to
zero at energy E, as L®E? [20, 21|. Similarly the excitations that live deep down
the throat, faces a infinite gravitational potential barrier so they can not escape to
the asymptotic region. So we conclude that we get two region where, in the first
region we get supergravity in Minkowski space and, in the second region, we get
the full string theory on AdSs x S°.

Another instructive way to see this decoupling is as follows. We start with the
D3-brane metric given in Eq.(1.12). Defining a new coordinate

LZ
=, 1.20
2= (1.20)
we can rewrite the metric as
L4 _1 L2 ) ) L4 1 d 2
ds? = (1 n —4) * 2 pydaidat + L2<1 n —4) : <12 n dgzg)
z z z z

= L*gynda™da™. (1.21)

Here ¢,j run over the world-volume coordinates of the brane and n;; is the flat
metric. In the last line we introduced gy = L?Gyn for the complete metric in
ten dimensions with M, N =0,1,...,9. Let us now consider a closed string moving
in this geometry. The world-sheet action of which is

S:

el /d%ﬁv“ﬁgMNaaXM@BXN + ...

L2
- 4dra/

/ PV GO XM O XN + . (1.22)

where the dots represent possible other terms which will not be relevant for the
discussion to follow. In Eq.(1.22), 744 is the world-sheet metric with a, 5 running
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over the world-sheet coordinates. Using the relation L* = 4wg,NI* and o' = I2,
we re-write Eq.(1.22) as

S = ,/%/d%\/ﬁaﬁgMNaaXMaﬁxN + .. (1.23)

where we have used A = ¢g,N. In view of Eq.(1.9), A is the 't Hooft’s coupling in

the gauge theory. The Eq.(1.23) also implies that the world-sheet higher derivative

corrections (the correction due to massive string modes) are now controlled by
dimensionless coupling

1

/e ective — R 1.24

O ef fect Y (1.24)

e Maldacena’s limit: Maldacena’s limit is defined as o’ — 0, keeping \ fixed.

This is equivalent to taking L — 0 since form (1.22) and (1.23)

L? A
=4/ —. 1.25
4dra/ 47 ( )

Interestingly, in this limit string action is well defined and the rescaled metric
gun in Eq.(1.23) reduces to

1 o d2?
gundrda™ = ?mjda:zdxj + 2—22 + dQ3. (1.26)

This is AdS5 x S® metric with unit radius of curvature, written in z coordi-
nate. To summarize, we see that in the Maldacena limit, only the AdSs x S®
region of the D3-brane contributes to the closed string dynamics while asymp-
totically flat region effectively decouples.

Before we pass over to the next section, we end this section with a brief de-
scription of AdS5[22]. AdSs is a space-time with a constant negative curvature. It
can be represented by a hypersurface obeying

4
Xo+X2-) X2 =17 (1.27)

i=1

in six dimensional flat space with metric

4
ds® = —dX} —dX2+ ) dX?. (1.28)

=1

In this form, it is obvious that AdSs metric is endowed with SO(2,4) isometry.
Moreover, S° has an isometry group SO(6) ~ SU(4). We have already discussed

10
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that, being half-BPS, 16 of 32 supersymmetries are preserved by an array of N
D3-branes. In addition to this, in the decoupling limit where we are left with the
AdS part, we have another 16 conformal supersymmetries which were broken by
full D3-brane geometry. Thus together with supersymmetry, the SU(4)-symmetry
and the conformal symmetry SO(2,4) leads to supergroup SU(2,2|4). This is also
the symmetry group of the N’ =4 SYM, discussed in the last subsection.

1.3 The AdS/CFT correspondence

Discussion in the previous section leads to the two different descriptions of the low
energy limit of N D3-branes.

e Open string description: N = 4, SU(N) SYM in four dimensions with
gauge coupling gsyys + free supergravity in flat space-time.

e Closed string description: Type 1B string theory on AdSs x S° with
parameters string coupling g, and string length [, 4+ free supergravity in
flat space-time.

Both the descriptions have decoupled free supergravity in flat space-time and Mal-
dacena proposed to drop this and identify the rest. This leads to the following
correspondence.

N = 4, SU(N) SYM = Type IIB string theory on AdSs x S, (1.29)
with the parameters of both side related to each other by

QEYM = Ys, (1-30)

2 L*
JsyuN = A= Anlt (1.31)

and the axion expectation value is given by SYM instanton angle (C') = 6.
Unfortunately, quantization of strings on AdSs x S° background suffers from
inadequate understanding. We have noted that above space is supported by the
R-R five form flux. While the NS-R approach turns out to be difficult in presence
of R-R fields, the Green-Schwarz approach is more suitable. However, finding
covariant Green-Schwarz action on curved R-R background is again a complicated
matter (see [23]). In these circumstances, the conjecture is mostly exploited only
in a particular region of the coupling space. This region can be isolated as follows.
We note from Eq.(1.24) that the world-sheet derivative corrections are con-
trolled by o, ffective- L nerefore massive string modes decouple in the limit o, ffective —
0. This, in view of Eq.(1.24), means that we must be in the strongly coupled region

11
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of the gauge theory with A being large. We can also suppress string loop correc-
tions by taking g; — 0. But since A = g, /N, to keep it fixed but large, we need to
take N — oo. So gauge theory in question is actually N' =4 SU(N) SYM with
very large number of colours. Since we have gotten rid of massive stringy modes
and also have g, small, we have a classical type I1B supergravity on AdSs x S°.
This is a very well understood subject. Consequently, most of the explorations are
carried out in this region of AdS/CFT correspondence. In this thesis, we mostly
exploit this weaker form of the conjecture.

1.3.1 The matching of spectrum

We have seen that the symmetry group of both side of the duality is given by the
supergroup SU(2,2|4). The AdS/CFT duality implies that the representations
of the same supergroup SU(2,2|4) should also match on both the sides. Stated
differently, there should be a one to one correspondence between gauge invariant
local operators in the gauge theory with the local fields in the gravity. In the
following, we briefly discuss the spectrum of both the sides and then their mapping
(see [22] for details).

The SU(N), N = 4 SYM contains all the gauge invariant quantities that can be
built out of gauge field A, scalars X and Weyl fermions A\%. Since all of the fields
are in the adjoint representation, the gauge invariant operators must be product of
traces of products of those fields. These can be classified into single trace and multi
trace operators. We only need to consider single trace operators, since multi trace
operators appear in the operator product expansions of single trace operators. Out
of single trace operators, only superconformal primary operators are important
since all others can be built out of them by applying Poincare supersymmetry
generator () and translation P,. These primaries can further be divided into chiral
primary and non-chiral primary operators. Chiral primaries are those, which are
annihilated by half of the supersymmetry generators. Since the supercharges have
helicities i%, the other primaries in that representation will have range of helicities
between A — 2 to A+ 2 where A is the helicity of lowest dimensional operator. This
is known as short multiplet. For example,

Oh[g...In — StT(XhXIQ...XIn)], with n = 27 37 N, (132)

where str means symmetrized trace over gauge algebra which implies that the
above operator is totally symmetric under SU(4)g, I indices and therefore trans-
form in (0,n,0) representation of SU(4). Further, the third bracket in the right
hand side of above equation implies that one needs to take only the traceless part
in the SU(4)g indices. The scaling dimension of these primaries are n, and the
highest dimension primaries in this multiplet have a dimension n + 4, which is of
the form Q*Q*O. The cases with n > N, are multi trace operators where N is the
number of colours.

12
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Let us consider the n = 2 case, which is called supergraviton representation.
Since chiral primary of lowest dimension is built out of scalar (A = 0), this rep-
resentation will have the range of helicities between —2 to +2, and the highest
dimension primaries in this multiplet have a dimension 4, instead of 6 as primaries
with A > 4 vanishes. This multiplet includes among others, a vector, the SU(4)g
symmetry current J* of dimension 3, a symmetric tensor field, the energy momen-
tum tensor T" of gauge theory of dimension 4.

In the gravity side, the short multiplet arises as follows. As we have already
described, it is not known how to compute the full type IIB string spectrum
on AdSs x S5. Only the states that arises from the dimensional reduction [24] of
the ten dimensional type I1B supergravity multiplet, are known. They all have
helicity range (—2) to 2. Hence we get short multiplet and these fields are built on
a lowest dimensional field which is scalar in (0,7, 0) representation of SO(6) with
n = 2 [25]. This lowest dimensional scalar field arises from linear combination
of metric h? along S® and four form field Agpq, where a, b, c,d are indices along
S5. For the case of n = 2, one has in it massless graviton field g"”, the massless
SU(4)r gauge field A,. It then immediately follows that the massless graviton field
g"” corresponds to energy momentum tensor 7" and the massless SU(4)r gauge
fieldA,, corresponds to the SU(4)p symmetry current J* of the gauge theory.

1.3.2 Computing correlation function from AdS/CFT

One of the powerful aspects of duality is that, it maps the problem of finding
quantum correlation function in the field theory to a classical problem in the
gravity. Suppose we are interested in computing correlation function of a local
gauge invariant operator operator # in the gauge theory. For that we need to
deform the theory by

S— S+ /d4x¢(a:)09(:c), (1.33)

where ¢g(x) is source conjugate to 6. According to AdS/CFT, this source can be
identified with the boundary value of some bulk fields ®, up to appropriate factors
(as explained below) such that[16, 17, 27]

—log(ef d4x¢°(x)9(x)>CFT ~ onshell S[¢g(x)]sugra, (1.34)

where by on-shell we mean we solve equations of motion in the bulk subject to
Dirichlet boundary condition on the boundary with the specified boundary value,
and evaluate the action on the solution. Now in order to compute the n-point
correlation function, all we need to do is to take derivative of this on-shell action
with respect to ¢g, n times. More precisely,

o SSugra

- 3¢0(x1,t1)8¢0(xn,tn) (135)

(T[0(t1, x1)...0(tn, x0)])

13
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We illustrate this with an example here.

Let us consider a massive bulk scalar field ® of mass m in AdSs. This can be
thought of as arising from Kaluza-Klein compactification along S°, in which case
the mass is given by m ~ + where L is the radius of S° which is same as AdSs
radius. For the time being, we shall take m to be a generic value. To be more
precise, let us work with AdSs in the coordinate system z with z = LTQ, where
metric takes the form
L2 N
5 (=dt* + (da')? + d2?). (1.36)

i=1

ds® =

The action is given by

1
S = §/d5x\/§[gMN8M<I>8N¢+m2<I>2]
mZLZ

~2

L L 2 2
= = dzd'z—[(0,®)" + (0,®)" +
0

5 = P, (1.37)

where M, N indices takes value along all the bulk directions where as pu, v indices
takes value along field theory directions. In the momentum space

Bzt 2) = / et fy(2). (1.39)
The equation of motion is given by
" 3 . m2L2
R (139
with £ = ¢"k,k, and prime (') denotes derivative with respect to z. Solu-

tion to equation of motion Eq.(1.39) is a linear superposition of 2%In_5(kz) and
22 Ka_(kz). In the interior of AdS space (z — 00), the Bessel functions behave as

In_o(kz) ~ e Ka_o(kz) ~e % (1.40)

So by imposing regularity at z — oo (interior of AdS), we can set the coefficient
of In_o(kz) to zero. In the above, we have used the notation that,

A =2+ Vi+mL (1.41)

To have real exponents in Eq.(?7), we require m?L? > —4 which is referred as
Breitenlohner-Freedman (BF) bound and is required for stability|28, 29, 30]. To
understand the role of A in the boundary theory, let us study the near boundary
behavior of the field ®(z) in Eq.(1.38). Near the boundary (z — €), it behaves as
® ~ 22, We set the boundary condition near the boundary to be

B(2,2)|se = Po(x)e? 2. (1.42)

14
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Using this, we fix the normalization of f to be

fu(z =€) = ¢o(k)e 2, (1.43)

so that we get
22— aBa-a(k, 2)

Jil2) = o)A S (1.44)
In the position space, if we write ® near the boundary, we get
O(z,2) = 2[A(x) + O()] + '3 go(2) + O(?)], (1.45)
with
A(z) = W—Z% / &2 do(a )|z — 2|20, (1.46)

As mentioned earlier, the term ¢y dominates near the boundary whereas the other
factor always goes to zero, since by definition A)0. So the factor ¢o(z) will act as
source for operator 6. Under the scaling v — Az, 2 — Az, the field ® does not
get scaled, but due to presence of factor ¢!~ in Eq.(1.45), the factor ¢, scales as
Po(z\) — A27%¢o(x), and hence by Eq.(1.33), the scaling dimension of operator
0 is A. So we see that the mass of the dual bulk field determines the scaling
dimension of the boundary operator. In the context of the boundary theory, the
BF bound arises from requirement of unitarity. Now we turn our attention to the
computation of correlation functions of operators 6.

Let us first evaluate the on-shell action. By doing integration by parts in the
action Eq.(1.37) and using equation of motion Eq.(1.39) we get on-shell action as
a boundary term and is given by

1.4
onshell // 5 k k )¢0< )¢ ( ) f(k,E) - ) ( 7)
with € — 0. Inserting the solution given by Eq.(1.44) in Eq.(1.47) we get
d4k:d4k 4 , 1 . 99
Sonshell = =0 (k+ ko (k) do (ku)(—€4_m Polynomial[k®¢”]
re2-—A)
_IPAAS) (A A Ty 1.4
(A =i+ ) (1.48)

where ... represents terms which are zero as ¢ — 0. Let us note that we have,
in Eq.(1.48) some divergent pieces as ¢ — 0. If we Fourier transform back in to
position space, we see that these are the contact terms. From the dual gauge
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theory point of view one can think of these as UV divergencies with UV cut-off’
€. These can be subtracted off by adding suitable counter terms. By taking two
derivatives of the on-shell action Eq.(1.48) with respect to ¢g, we get

T2 - A)

/

O(k)O(k') >= —2'2AD(A — 2)p2A-2) 22— 1.50
< O(R)O(K) > (A - e, (1.50)
which in the position space gives
/ ra 1
< O(x)f(x) >= 212 () (1.51)

A —=1) |z —2' ]2

We again observe that, the scaling dimension of 6 is A. Although we have discussed
the case of scalar field, one can similarly find out Greens functions for other oper-
ators in the boundary theory by identifying dual field and calculating the on-shell
action.

Till now we have discussed how to compute correlation functions in the Eu-
cledian signature. The AdS/CFT techniques can very well be used to compute
the same in the Lorentzian signature. The differences between these two are, in
the Euclidean signature we are interested in the time ordered correlators where as
in the Lorentzian signature there are several correlators of interest (time-ordered,
advanced, retarded). We shall return to them in later sections.

1.4 Compactification along S°

In this section, we describe briefly the S° compactification of the type I1B theory.
Results of this section, and its generalization, will be used repeatedly in the later
part of the thesis.

After dimensional reduction on S°, the type I1B supergravity action can be

written as .

~ 167Gs

/ (L + Lonant], (1.52)

9Let us note that, € acts as UV cut-off for gauge theory which is an IR cut-off in AdS space.
This is generally goes by the UV/IR relation in AdS/CFT. To illustrate this, let us write AdSs

metric in the coordinate r = L;, where it takes the form

ds? = (%)%Wdz#dxv + (%)?L?. (1.49)
Scaling symmetry of AdSs implies, under scaling z# — Az* of the gauge theory coordinates, the
radial coordinate scales as energy scale that is » — ¥.Let us note that, as we approach IR of the
boundary theory by doing a scaling by x* — Az, with A > 1, we are going deep inside the AdS.
In other words, r large in the boundary theory corresponds to UV physics of the gauge theory
whereas r small corresponds to IR physics. Hence, radial direction in the gravity side, can be
identified as the energy scale in the dual gauge theory.
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where five-dimensional Newton’s constant G5 is related to ten dimensional Newtons
constant through G5 = -2 By using Eq.(1.11), Eq.(1.30) and Eq.(1.31) we get
G5 ™

The part Lyag in Eq.(1.52) is the Lagrangian for matter fields which gets contribu-
tion from infinite tower of fields that we get after compactification along S°. In the
cases where L.+ = 0, the ten dimensional /1B supergravity reduces to Einstein
action ([ Lgray) in the presence of negative cosmological constant. Details of the
compactification goes as follows. We start with the metric,

ds® = g, da’dz” + L*dQ3. (1.54)

Here g7, is the five dimensional part of the metric and dQ3 is the metric on S°,
represented by five angular coordinates 01, 65, 03, 04, 5. Since the metric is diagonal,
ten dimensional Ricci scalar is totally decoupled in two independent components,
one coming from the g, part and another from the S® part. We denote them by
RO and R respectively. Since we are interested to get five dimensional action,
we keep first component as it is and evaluate the second one from S® metric. Then
the value of R is 23. Similarly the five form field strength F!9) has non vanishing
components F;g(;)t)zusuws = F;E?Lzusuws and F9(11902)939495 = F€9,0,0,0,05, Where F1(5) is a
zero-form field strength on the S°. To write down both the components of the form
field in terms of zero-form field in the action, we use the Hodge dual transformation
for the first component which is F,S?LWWM = éFQ(E’)EMMHSM%. Here F2(5) is also a
zero-form field strength on the space given by metric gfw. After rearranging the all
fields and integrating over the Ss, the ten dimensional action in Eq.(1.10), reduces
to the five dimensional form as

1
— d° (5)
S = Toncs / Ty 19

Let us note that there is no contribution from dilaton ¢ or axion C' since they are
constants. The value of the last term of the above integral can easily be calculated
using equations of motion of the five form field (see [24, 26| for details). This comes
out to be %. Therefore, the final form of the five dimensional action is

1
= Par/g®

Because of the presence of cosmological constant A = —}J—%, the action admits AdSx
as a solution.

In general the above action receives other contributions if we allow rotations or
other excitations on S®. In the case of rotation, for example, the additional terms
come in the form of scalars and vectors. We will come to these contribution in
later sections.

20 1
RO+ 25 —(FP? + F%)]. (1.55)

2 9J5

12
RO ﬁ] : (1.56)
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1.5 Some applications of AdS/CFT: At equilibrium

So far we have considered SYM at zero temperature. In this thesis, we will primar-
ily be interested in gauge theories at finite temperature as well as at finite chemical
potentials. This section serves as an attempt to address some of the general fea-
tures of N' = 4, SU(N) SYM at non-zero temperature and chemical potentials.

At non-zero temperature

In the light of gauge/gravity duality, there are two ways to introduce temper-
ature in the gauge theory. First is to compactify the Euclidean time direction of
AdSs. The periodicity then determines the temperature of the gauge theory. This
is known as the thermal AdS space. Second way is to incorporate a black hole into
the AdS geometry. The Hawking temperature and the entropy of the black hole
then determine the temperature and the entropy of the dual. Moreover, according
to AdS/CFT, the free energy of the gauge theory is determined by the temperature
times the on-shell Euclidean supergravity action. This was computed in [17]. For
N =4, SU(N) SYM, the free energy (density) and the entropy (density), at large
N, were found to have a N? dependence resulting from the contributions due to
all the degrees of freedom of SU(N). We call this phase as the deconfined phase.
Further, the same computation on thermal AdS produces a N° dependence in the
corresponding thermodynamic quantities. Naturally, this space is then identified
as the gravity dual of the confined phase. It was further shown in [17] that for SYM
on S3, the transition from one phase to another takes place at a finite non-zero
temperature and can be identified as the Hawking-Page transition from thermal
AdS to the black hole space-time[31]. However, for gauge theories on R* with dual
as the black hole with flat horizon, the deconfined phase was found to be stable
at all non-zero temperature. In what follows, we shall concentrate on the black
holes with the flat horizon. An excellent discussion on gauge theories on S3, in
this context can be found in [17].

At non-zero temperature and chemical potential

As we have noted previously, N' = 4, SU(N) SYM has a global R-symmetry
given by the group SU(4). Consequently, there can be three independent R-charges
coming from three independent U(1) Cartans of the group. Conjugate of this
charges are the chemical potentials. Therefore, one can study this SYM in the
presence of three non-zero chemical potentials and hence at finite density of charges
conjugate to this chemical potentials. The gauge/gravity duality says that the
global symmetries of the gauge theory appear as a local symmetries on its dual
[32]. Tt is easy to see as to where from the gauge fields could appear in the
geometry. The sphere S° has a SU(4) symmetry with precisely three independent
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U(1)'s. Rotating the sphere along the three independent directions would therefore
produce three gauge fields on AdS after compactification. So the gravity duals are
the five dimensional AdS black holes with these gauge charges. Following the
literature we call these general class of black holes as R-charged black holes. In
the last sub-section of this section, we present a brief discussion on these holes and
their gravity duals.

1.5.1 Finite temperature

The AdS Schwarzschild black holes are the solutions of Eq.(1.56), with

ds* = L2 2)dt* + Z (dz") ), (1.57)
where .
f(z)=1- (;)4. (1.58)

In the above equation zy is a constant. Horizon is given by the solution of f(z) = 0.
This happens at z = zy. The horizon of the black hole is flat, and are called black
branes. The Hawking temperature of the black hole can be computed in the
following way. Close to horizon, we define z = 2z + %pQ with k = @, called
the surface gravity. In the Euclidean space, where ¢t — i7, the metric reads

L2
ds* = K*p*dT* + dp® + = Z d?. (1.59)
S

Comparing the first two terms of the right hand side of the above equation with
dp* + p?d¢?* (where ¢ = ¢ + 27), we see that to avoid conical singularity, we need
to identify

KT ~ KT +2m

2
ST~ T (1.60)
K
The Hawking temperature is simply the inverse of this periodicity and is given by
K 1
- 1.61
2t Twzy ( )

From the gauge theory point of view, this can be interpreted as the temperature
of the SYM. Using the relation between the entropy of the black hole and the area
of the horizon, we can write entropy density to be'®

A L3

= = ) 1.62
§ 4VG5 4G5Z;’_I ( )

10Gince the horizon has an infinite volume, one needs to put a cut-off in order to define thermo-
dynamic quantities. Thermodynamic densities are then defined by dividing respective quantities
by the volume V.
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This is interpreted as the entropy density of the dual gauge theory. Using the
expression for the Hawking temperature we can re-write the entropy as

1

= 4—G5(7TL)3T3. (1.63)

S

Further, one can compute the free energy of the gauge theory by using the relation
Zopr = eT = e~ 5909, (1.64)

where ¢ is the Euclidean saddle point metric which extremizes the action in
Eq.(1.56). However, it turns out that, on-shell action evaluated on the solution
given in Eq.(1.57) is infinite. Therefore one needs to have a regularization scheme.
There are two different way of doing this. First is to subtract the AdS background
keeping the geometries of the AdS background and black hole in the asymptotic
region same[17]. The other way is to introduce counter terms (see for example
[32]). Though we shall use the counter term method to calculate on-shell action,
both the ways give the same result.

It is well known that, in order to have well defined variational principle and
on-shell finite action, one needs to add counter terms to the action Eq.(1.56). The
modified form of the action is given by [32],

Sg = Spu+ Sen + Sa

1 . 12

= T /d /g9 (R+ —3)

1 \ 3
rye [ A=), (1.65)

where 7 is the induced metric at the boundary of the space time and K is the trace
of extrinsic curvature. Sg g is Gibbons-Hawking term that is required to have a
well defined variational principle. However for asymptotically AdS space Gibbons-
Hawking boundary term gives a vanishing contribution to the on-shell action. S, is
required to render the on-shell action finite. Now, in order to evaluate free energy
as in Eq.(1.64), we use the solution as given in Eq.(1.57). After plugging this in
the right hand side of Eq.(1.65) and using the definition in Eq.(1.64), we get

F 1
TATren (mL)*T*. (1.66)

As mentioned earlier, instead of introducing counter terms, above expression could
have been obtained by subtracting the AdS background, keeping the geometries
of the AdS background and black hole in the asymptotic region same. Since, free
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energy in Eq.(1.66) is always negative!!, it is the black hole phase and not the
AdS that minimizes the free energy. We, therefore, conclude that at any non-zero
temperature, black hole is the stable phase of the gravity system. Now turning
our attention to the gauge theory side, we notice that the free energy in Eq.(1.66)
should be identified as the free energy of the gauge theory at the same temperature.
On natural ground, we expect for SYM at temperature 7', the free energy density

is given by
F /
—=—cT* 1.67
=T, (1.67)

where ¢ is a measure of number of degree of freedom of the CFT. Upon comparing
this with Eq.(1.66) and using Eq.(1.53), we get
/ 1 7T2N2
= L) = .
166, " = g

c (1.68)

Since free energy density has a leading N? dependence, we conclude that the
gauge theory is in the deconfined phase. Let us note that, in order to define
thermodynamics properly for gauge theory, we also need to introduce a IR cut-off.
The volume of the space is V, which appears in Eq.(1.66) and in Eq.(1.67) .

Let us end this subsection with the following comment. At a much higher
energy compared to the scale set by the temperature, we expect SYM to have
negligible effect of temperature. In this sense, the temperature modifies the IR
physics. In the gravity dual, the temperature modifies the geometry by putting
a horizon into the deep interior of the AdS. However asymptotically far away, it
preserves the AdS structure. Hence we expect that the near horizon physics of the
black hole captures the IR physics of the gauge theory where as the asymptotic
region dictates the UV physics of the theory.

1.5.2 Finite temperature and chemical potential

The S% reduction of type IIB supergravity gives rise to A’ = 8, D = 5 gauged
supergravity with SO(6) Yang-Mills gauge group. The complete details of this
reduction is quite complex (see for example [33|). However, truncation of this

T A more interesting situation arises when we consider the gauge theory on S' x S3. In this
case the dual gravity background is a black hole with spherical horizon. Here one finds that
below a critical temperature, the thermal AdS space has lesser free energy than the black hole
phase and hence there is a phase transition from black hole to thermal AdS as we lower the
temperature. This, in the gauge theory, is interpreted as deconfinement to confinement transition,
where thermal AdS space represents the confined phase of the gauge theory. Let us note that, the
transition temperature is inversely proportional to the radius of the space S® where field theory
lives. Hence, in the limit where radius of the sphere goes to a very large value, the transition
temperature tends to zero. This is what we got from the study of thermodynamics of black hole
with flat horizon.
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five dimensional theory to N' = 2 gauged supergravity with gauge group U(1) x
U(1) x U(1) which is the Cartan subgroup of SO(6) is known. In the bosonic
sector, it contains three gauge bosons, the metric and two scalars. However, it is
more convenient to parametrize these two scalars in terms of three real scalar fields
with a constraint. We give a brief description of the black holes and their various
thermodynamic properties. We refer them as R-charged black holes. More details
of R-charged black holes can be found in [34, 35, 33, 36|.
The truncated action is given by

55 B 167TG5 /de <R + V GZ]F;VFMV] - szaquaqu
1 HVpo i j k
YW €ijiF Fo AX ) (1.69)
where L
Gy = - diag[(X) 2, ()72 (X*)7 (1.70)

and the scalar potential is given by

3
1
=2)" < (1.71)
i=1

The F!, with i = 1..3 are the field strength of the three U(1) gauge fields and X"
with ¢ = 1..3 are three real scalars subject to constraint X; X, X3 = 1. The Newtons
constant and gauge theory variables are related by ﬁ = &g—ig, as before. The
solution of the equations of motions that follow from the action in Eq.(1.69) are
summarized below. The metric is given by

T TyL)? L?
ds? = —H~ 2/37(” 0L pa 4 s TR (g2 gy g a2y s e,
u 4fu?
(1.72)
where
3 3
f(u) = H(u) —UZH(1+/@), Hi=1+ru, H= HHi’ (1.73)
i i=1
and /s
. H
X' = 1.74
Hw) (1.74)
where as the gauge field is given by
, Tor/2k;(1+ k1) (1 4+ ko) (1 + k

H;i(u)
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For convenience, we have used the coordinate system wu in which v = 1 is the
horizon'? and u = 0 is the boundary which is AdSs. Let us note that, if we set all
the chemical potential to zero x; = 0, then we see that the u coordinate is related

to z coordinate of the previous section by the relation u = ZZ—; and hence Tj is

H
identified as the temperature of the black hole at zero chemical potential. Now
we summarize various thermodynamic quantities. The Hawking temperature and
entropy density can be computed as done in the last subsection and are given by

9 _ 2N2T
_ 24 K1+ Ra+ K3 — Kikgks T _ TNt H (1+r;)Y%. (1.76)
24/ (1 + k1) (1 + k2) (1 + K3)

As discussed previously, in order compute free energy, we need to add appropriate
counter terms. Including counter terms, the full action takes the form

/ d*zv/—h K+ / d*zv/—hW (X), (1.77)
boundary boundary

S =55+

87G5 887G

where
1<
W=—— X' 1.78

and was derived originally in [37]. Let us note that in four or higher dimension,
we do not require any boundary term for the Maxwell fields. Upon evaluating
on-shell action, we get free energy of the dual gauge theory. The pressure (P) of
dual gauge theory, which is related to free energy by P = —g is given by

m2N2TE
P = TH(ML/@). (1.79)

The energy density of the gauge theory is related to ADM mass of the black hole
and is given by[38]

3 2N2
T H 14 1), (1.80)

and hence we see ¢ = 3P. The densities of physical charges and conjugate chemical
potentials are

TN*Tg i Lo\ 2k; >
pi = 0\/ H1+/€ W = Aj(u) :ﬁﬂ(ljtm)l/?,
u=1 o=

(1.81)

2Let us note that f = 0, has three roots. The largest root corresponds to black hole horizon.
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One can now easily check that the relation

3
e+ P = STH+Z,02~,ui (1.82)

i=1

holds. Asis the case with temperature, introduction of chemical potential effects IR
physics of the gauge theory. This is evident from the fact that, solution Eq.(1.72)
asymptotically (or near the boundary) approaches AdSs.

It is well known that, unless the charges satisfy certain constraints, these black
holes undergo a local instability [39, 38, 40]. While at high temperature, black
holes remain stable, once we reduce the temperature down to a critical value, the
specific heat and susceptibility diverge. In order to see this, let us compute those
quantities. The specific heat associated with the black holes has the following form

85)

0T/ i1 o s
3 — (:‘il + Ko + 53) — (HJlHJQ -+ RoK3 + /€3/€1) -+ 3:%1:%2/433

4\/(1 + /‘61)(1 + /‘62)(1 + K,g)(Q — (K,l + Ko + /{3) + /‘ill‘{,gl‘{,g) .

C = <T = (7THL)*(2 + Ky + Ko + K3 — K1kaks) X

(1.83)

The expressions for susceptibility can be found in [41]. What we note from above
expressions that the specific heat diverges over the critical hypersurface

2— (K,l + Ko + K,g) -+ R1RoK3 = 0. (184)

Same is true for susceptibility as well. Hence the black hole background is ther-
modynamically stable provided the x;’s satisfies the constraint

2— (K,l + Ko + K,g) + Ki1kaoks > 0. (185)

It turns out that the Lagrangian in Eq.(1.69) can further be truncated down to
a smaller one. For example, one can truncate it to a theory with diagonal U(1) of
the group U(1)3. In this case the fields X; =1 for i = 1...3. Action can be written
as|33]

S5 =

iF( )+ %\/ge“”p‘”\FWF”"AA) (1.86)
The solution of the equations of motions that follows from the above action is
asymptotically AdS Reissner-Nordstrom black hole in five dimensions. The em-
bedding of this truncated Lagrangian in D = 10 dimensions can be found in [42].
In the light of AdS/CFT, thermodynamics and instabilities of these black holes
have also been discussed in [42].

5
167TG5/de <R+
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1.6 Some applications of AdS/CFT: Dissipation near
the equilibrium

Till now, we have seen how time independent homogeneous gravity backgrounds
can be used to study equilibrium properties of dual gauge theories. We now con-
sider the response of the gauge theory to small space and time dependent external
perturbations about its equilibrium. This has been developed in [43, 44, 1] and
has been extremely useful to study the transport properties of strongly coupled
gauge theories.

The basic quantity that we want to compute is the retarded Green’s function.
It encodes the causal response of system to external perturbation. Let us consider
a perturbation of the field theory of the form

ASqwr — / 120, ()b (), (1.87)

where ¢, is source and O, is an operator in the field theory. When the source of
the perturbation ¢,(t,z) is small then in the linear response regime, we can write

(1.88)

=0

5(Ou(x)) = — / GE (o — y)ouly)

where by 0(0,(x)) we mean deviation from the average value of operator at equi-
librium. In Eq.(1.88) G (z — y) is the retarded '* Greens function and can be
written as

Gz —y) = —if(2" — y"){[Oa(), On(y)])- (1.89)
Taking a Fourier transform of Eq.(1.89) we get
5<@a> = GaRb<w7 k)¢b<w7 k)7 (190)
where we have assumed space-time translation invariance. Similarly taking a
Fourier transform of Eq.(1.89) and using Eq.(1.90) we get

Gﬁj(w,?) = —z'/d?’xdte_i“t_im([@a(:c),@b(O)D. (1.91)

In the long wavelength and low frequency limit, where the field theory at finite tem-
perature is defined by hydrodynamics, one can use the Kubo’s formula (elaborated
later)

5<@a> - Z.(")Xabgbb

(1.92)

w,k—)O’

3In the Lorentzian signature, we have several choices for correlator, namely time-ordered,
advanced, retarded. The choice of retarded Greens function here, over others follows from the
causality.
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where Y5 is some response function (transport coefficient) which characterizes the
hydrodynamic regime. The Eq.(1.92) together with Eq.(1.90) implies,

1
Xab = _wl,}ego EG&(W,/{Z) (193)
If we consider © = T or © = J* then y = 7, the shear viscosity or y = o, the
conductivity of the dual gauge theory respectively.
In the next few subsections, we provide a brief review of these developments.
In the later chapters of this thesis, we will discuss universal nature of some of the
transport coefficients of strongly coupled theories using gauge/gravity duality.

1.6.1 Hydrodynamics

Let us consider an interacting QFT, in global thermal equilibrium at tempera-
ture (7) and chemical potentials (i) dual to various conserved charges. There is
a characteristic length scale in QFT, namely the mean free path (l,,f,). Now if
we perturb the system out of equilibrium with fluctuations whose wave length is
large compared to scale set by the mean free path, one describes the system in
terms of an effective theory called hydrodynamics, which is formulated in-terms of
equations of motion. Perturbation away from the equilibrium, in this limit, can
be thought of as if we are allowing the thermodynamic variables of the system
to fluctuate at a scale sufficiently large compared to scale set by temperature or
energy density in equilibrium. Then its natural to expect, around any given point,
a region where local temperature is roughly constant and one can use basic ther-
modynamic variables to describe the physical properties of the region. The role
of hydrodynamics is to describe how these different regions exchange thermody-
namic quantities among themselves. The dynamics in this regime is captured by
conservation of energy momentum tensor and other conserved global charges. The
dynamical equations are

T =0, T =0, (1.94)

where T is stress tensor and J} is the charged currents and I specifies number
of conserved charges required to specify the system. Now all that we have to do
is to solve Eq.(1.94) for energy momentum tensor and current. By the virtue of
local thermal equilibrium, we should be able to express T"” and J* in terms of
thermodynamic variables. Since we would like to understand how thermodynamic
variables flow from one region of local thermal equilibrium to the other, we asso-
ciate a velocity field u*(z) to each region. It turns out that, local thermodynamic
variables together with velocity field completely describes the system in the hydro-
dynamic regime. We therefore need to know as to how the stress tensor and the
currents can be expressed in terms of variables like temperature 7', energy den-
sity €, pressure P, chemical potentials p and fluid velocity u*. We do this for the
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ideal fluid and then for the dissipative fluids. For further details, we refer reader
to[46, 36, 47, 45].

Ideal fluid

For an ideal fluid, there is no dissipation. One can go to a local rest frame
where velocity field is aligned in the direction of energy flow. In this case one can
write

CZjig.:al = eufu” + PP“V’ Jﬁideal = pfu“7 (195)
with u,u* = —1, and P* = g"” + u*u” which can be thought of it as projecting

orthogonal to velocity. In the local rest frame, P*” is used to decompose energy
momentum tensor into temporal and spatial components. In Eq.(1.95), ¢, P and p;
are the energy density, pressure and conserved charged of the system. Since there
is no dissipation one expects zero entropy production. This can be understood by
defining entropy current

JH .= sut, (1.96)

which keeps track of how local entropy density varies in the fluid. In the above
equation s is the entropy density of the fluid. For ideal case we have d,J"| =0,
s

a statement of no entropy production.

Dissipative fluid

The fluid perturbed away from equilibrium, tries to equilibriate through dissi-
pation (see [46, 36, 47, 45| for details). Microscopically dissipation arises because
of interaction term in QFT. In this case we expect flow of fluid to create entropy
consistent with second law of thermodynamics. To model dissipation, one might
simply adds extra terms in the energy momentum tensor and current as

T pion = T + T, I e = I

Dissipation I, Dissipative

ideal + }/}ﬂ' (197)
So we now need to determine IT"” and Y}'. One way of doing this is to demand
positivity of entropy current and determine set of allowed most general terms in
I Y} consistent with symmetries. Here one allows terms that are gradient in
velocity and thermodynamic variables. In addition we need to choose the velocity
field. In the Landau frame [46],

w, " =u,Y}' = 0. (1.98)

In other words we find T*u, = —eut. So u* can be thought of as eigenvector
with eigenvalue €. So u* determines how energy-momentum is transported in the
system. Before writing down dissipative parts in terms of gradient expansion of
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thermodynamic variables and velocity field, let us look at the following . We know
that
VI = 0. (1.99)

Contracting it with velocity and using expression for ideal part of energy momen-
tum tensor, we get

Uy vﬂ ﬂﬁZal =0
= (e+p)vuu'+u' 7, e = 0. (1.100)

Projecting orthogonal to velocity field we get

P”C‘f Vi j}éléal =0
= Py <7 P+ (e+p)Pout vyu” = 0. (1.101)

We observe that there is a relation between gradient of thermodynamic variables
such as energy density, pressure to gradient of velocity. So we conclude that energy
momentum tensor can only be expressed in terms of derivative of velocity field.

The velocity gradient can be decomposed along and orthogonal to velocity
field. The orthogonal part can further be decomposed into trace part (), traceless
symmetric (o) and antisymmetric parts (w*”). For a four dimensional system
we can write,

V' = —a"ut + o + W + %QP‘“’, (1.102)
where
0 = v : The divergence part
a = u’<y, ut : The accelaration
o = %(v“u” + ut) + %(u“a” +u’at) — %HP‘“’ (1.103)

1 1
Wt = a(v“u” — v ut) + §(u”a” —u”at).
It follows from the definition that,
u,at = o"'u, = wu, = 0. (1.104)

We are now ready to write down the most general form of the dissipative part of
the energy momentum tensor (II*”) that appears in Eq.(1.97). In order to do so, we
should keep in mind that, the energy momentum tensor should be symmetric and
it should obey Landau frame condition stated in Eq.(1.98). With these constraint
in mind, the dissipative part of energy momentum tensor can be expressed as

1" = —2nc™ — COP™, (1.105)
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where we have introduced two new parameters, the shear viscosity n and the bulk
viscosity (. Further, if the system is conformally invariant, the bulk viscosity (
vanishes. Before concentrating on how to compute shear viscosity 7, we shall
discuss the dissipative part Y/* that appears in the Eq.(1.97).

Keeping in mind the Landau frame condition stated in Eq.(1.98), one can
express Y/ in terms of acceleration a*, and derivatives of thermodynamic variables.
However, using Eq.(1.101), we see that a* can be written in terms of gradient of
thermodynamic variables. For convenience, Y} is expressed in terms of gradient
of intensive variables such as chemical potentials ;; or temperature T, instead of
expressing it in terms of gradient of energy density, charge densities. The most
general form that is consistent with Eq.(1.98) is given by

YF = s, PPy, % — P 7, T (1.106)

If we are interested in the case of a conformal system such as N =4 SYM, then
the only contribution that should come from chemical potential and temperature
is in the scale-free combination £+, and hence 7; = 0. The negative signs are
chosen to make the divergence of the entropy current positive. This is required
by second law of thermodynamics since we have dissipation. To simplify matters
a little more, we consider the field theory to live in flat space so that covariant
derivatives can be replaced by ordinary derivatives. The coefficient s¢;; can be
related to the thermal conductivity of the field theory in the following way. The
thermal conductivity[46, 36], is defined as response to temperature gradient ( which
induces a heat flow and hence energy flow 7% # 0), in the absence of any charge
current i.e. Ji = 0. For small u®, the vanishing of charge current, upon using
Eq.(1.97) gives

prut = 350 T
J=1
From which one obtains

m m I
Z prre ) pout = Zma’% : (1.107)
1,J=1 I=1
hence }
‘ 1 o .
v Y 't (1.108)
1 T
> Py py =l
1,J=1
Using thermodynamic relations
€+P:TS+Z/LIp[, dP:sdT+Zp1duI, (1.109)
=1 =1

4n our notation i, u, v.. are the field theory space-time indices where as I,.J are the charge
indices.
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we get

P Z
Zp 8””‘ L + OT + aT (1.110)

After substitution this in Eq.(1.108), we get

u = — (00T - JP). (1.111)
Ui -1 T2 €+ P
> P11 P1
1,J=1
Therefore
| | 1 P, |
Tt = (e + Pyul = —— (e - S0P, (1112)
_ €
> pI%IleJ
I,J=1

In the non-relativistic case, heat flow is proportional to temperature gradient,
where as in the relativistic case, in addition we have pressure gradient. The pro-
portionality coefficient is known as thermal conductivity hence [48]

P\’ 1
K = (HT ) _ . (1.113)
;1P1%f}PJ

1

)

Let us further note that for systems with a single conserved current|[36], 71% =
1J
v

7. Therefore one gets[36]

e+ P 2 e+ P 2
- = —, 1.114
- ( pT ) ” ( p ) T ( )

1.6.2 Kubo formula for various transport coefficients

The set of transport coefficients 7, the shear viscosity, k7, the thermal conductiv-
ity, which characterizes the hydrodynamic regime and encodes dissipation, can be
related to Greens function by using Kubo formula. This is discussed below.

Shear viscosity

Let us consider field theory in flat space-time and, on it, a spatially homoge-
neous time dependent metric perturbation of the form [43, 49|

gij(t,l’) - 5@']’ + hz‘j(t), hij < 1.
goo(t, x) = —1, goi(t, ) = 0. (1.115)
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In the rest frame, where u* = (1,0,0,0), the dissipative part of the energy mo-
mentum tensor Eq.(1.105) is given by

" = —2not, (1.116)
and up to the linearized order it takes the form (using Eq.(1.104))
M,y = —700hay(t), (1.117)

giving
= Toy = —n0ohyy(t). (1.118)

Now by going to Fourier space and comparing with Eq.(1.88) and Eq.(1.92), in the
low frequency limit and at zero spatial momentum, we get

nyyxy(w,()) = —i/dtd3xeth9(t)<[T$y,Txy])
= —uw, (1.119)
implying
1
n=—lim ;%ny,w(w). (1.120)

Thermal conductivity

Consider putting the system in a slowly varying background gauge fields (AY)
which couple to conserved currents. This field will induce a current, proportional
to electric field as

) %
JI = O'IJEJ

= o75(0'AL - 0'AY), (1.121)

where the coefficients o;; represent the electrical conductivity of the system. The
field A% can be identified with the chemical potential j;. Now comparison between

Eq.(1.121) and Eq.(1.106) suggests o7; = - and hence

Ji = %(amf, — oA, (1.122)

In the Fourier space, at zero spatial momentum and low frequency limit, with (spa-
tially homogeneous) time dependent background field, above equation simplifies to

Ji = i%wAf,. (1.123)
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Comparing with the relation Ji = —G A% that follows from linear response
theory, we get

Go 19(0,0) = / Qe 0() ([ Tos, T, )

= i, (1.124)
T
which implies|36]
28 1
0= —}}E% ;ng,x,u(W)- (1.125)

Now the thermal conductivity can be related to above using Eq.(1.113).

Given a weakly coupled field theory, in principle we should be able to compute
using perturbation technique, the transport coefficients such as 7, . However it
turns out to be a difficult exercise [50, 51|. Since we are interested in the transport
coefficients of strongly coupled theories, the known techniques fails to provide
any meaningful results. However for certain classes of strongly coupled gauge
theories such as N’ = 4 SYM, we can use their gravity duals to compute transport
coefficients. This is what we discuss in the next sections.

1.7 Computation of real time correlators from
gauge/gravity duality

Gauge/gravity duality allows us to compute gauge theory correlators using clas-
sical supergravity computations which are other wise hard to compute. We have
discussed in subsection (1.3.2) how AdS/CFT can be used to compute the Eu-
clidean correlator. However, for many purposes such as computation of transport
coefficients, we need real time correlators. One might argue that by doing ana-
lytic continuation of two point Euclidean correlators, one can find retarded Green’s
function. The relation between the retarded and the Euclidean two-point functions
in momentum space is given by

— —
k

Grlw, &) = Gu(—i(w +i€), k). (1.126)

However in most cases, the Euclidean correlation functions can only be found nu-
merically. Consequently analytic continuation to Lorentzian signature becomes
difficult. In particular, the problem that one faces in order to extract the hydro-
dynamic limit (w, & — 0) of real time correlators from Euclidean ones is that one
needs to perform analytic continuation from a discrete set of frequencies (Matsub-
ara frequencies) having lowest value w = 277 to real and small frequencies such
that w < 2#T. Thus, it is important to be able to compute real-time correla-
tion functions directly. A working prescription for the computation of real time
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correlator was given in [44, 1] and later on, in [52], it was established rigorously.
An alternate way to compute the real time correlator was given in [4]. Here we
summarize both the ways of computation.

1.7.1 Son, Starinets prescription for computing real time
correlators
In this subsection we shall briefly describe the recipe for computing the real time

correlator prescribed first by Son and Starinets in [44, 1]. Suppose we are interested
in computing the retarded two point correlator

Gz —y) = —i(T ©(x) B(y)) (1.127)

where © is some scalar operator in the gauge theory side, which is dual to some
massless scalar field (¢) in the gravity side. The boundary value of ¢ acts as a
source and we have

S — S+/¢o@. (1.128)
For the time being we shall consider a generic black hole background given by
d—1
ds* = gu(2)dt* + g..(2)d2" + g,a(2) Y _(de (1.129)

i=1

where z is the radial coordinate. The action for this scalar field in this background
is given by

5= / At / d=v/=glg7(0.0)? + 9" 9,60,4), (1.130)

where zy is the location of horizon. The equation for scalar field which follow from
this action is

\/L__gaz(\/—_gg” .¢) + g 0,0,¢ = 0, (1.131)

where p, v runs in the field theory directions. The above equation needs to be
solved with the boundary condition

lim ¢(z) — ¢o. (1.132)

z—0

In momentum space we can write,

o) = [ el )nlh) (1.13)
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with fr(z — 0) = 1, which upon using Eq.(1.131) reduces to

1
——0.(v/~9970.f) + 9" 0,0, fr = 0. (1.134)
V=4 '
In order to get the retarded correlator, we also need to put incoming wave boundary
condition at the horizon (this is natural, since classically we do not expect things
to come out of the horizon). The on-shell action therefore reduces to

5= [ o Ft onth)|” (1.135)
~ 72 ) 2ni® HIP| Ly '
where
F(k,2) = V=99 f ()0 fu(2). (1.136)
Now if we differentiate the above action with respect to boundary value ¢, we get
Gk) = =2k, )" = 2R (=k, o)™ 1.137
(>__§ (7’2)’2%0_5 <_ 7Z)z~>0. ( )

Now using Eq.(1.134) and the fact that, f = f_x, we get
0.S(F(k,2)) =0, (1.138)

so we can evaluate imaginary part of F' at any radius. Consequently the imaginary
part of Greens function in Eq.(1.137) vanishes. To circumvent this problem, in
[44, 1], the following proposal was put forward

GR(k) = —F(k,z—0)
= V9 (D)0 il 2). (1.139)

In order to verify that the prescription works, in[44|, retarded Greens function
was computed in theories where it is known from other methods. Further the
Eq.(1.139) was established rigorously in [52], using connection between closed time
path formulation of real time QFT with dynamics of whole Penrose diagram of
black hole. Although we have shown here the computations for a scalar field,
above prescription can be followed for other fields as well. We summarize this in
the following.

Suppose we are interested in computing retarded correlator of some operator
O whose dual field in the gravity side is W.

1. Extract out the coefficient of kinetic term A(z) from the classical action of
field W written in the gravity side. A(z) is defined as

Sel = %/dzddzch(z)(82,\1/)2 + ... (1.140)
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2. Find solution to the equation of motion with in-going boundary condition at
the horizon and a constant value U(z, k) — Wy(k) at the boundary z — 0.
Let us assume the solution in the Fourier space has the form

U(z, k) = fe(2)Vo(k), (1.141)
where fi(z =0) = 1.

3. The prescription then tells that the retarded Greens function is

G (k) = A(2) fr0.fr(2)| . (1.142)

z—0

We end this discussion with the computation of a few transport coefficients using
prescription mentioned above.

Example : The shear viscosity

First we compute the shear viscosity of NV = 4 SYM at finite temperature 7.

The metric Eq.(1.57) in the coordinate system u = (i)2 with zy = =, can be
written as
TL)? 2
a5 = TEE a1+ da 4 dy? + d2) + —L— s 1.143
= LEh ()t +do? 4y 4 )+ s, (1149

where f(u) = 1 — u? with u = 1 being horizon and u = 0 is the boundary. The
entropy for this case is given by

2

5= 7N?T?’. (1.144)
To compute shear viscosity, we need to take the background perturbation of the
form

gy = 9y + 0, (1.145)

where ¢ = hy. The action and the equation of motion for ¢ is that of a massless
scalar field in the background Eq.(1.143). With appropriate normalization, the
action is given by

1

5= T 327G,

[ #adt [[auy=gig™ 0.6 + 90,00, (1.146)

In the Fourier space we write

o' 0) = [ e onu)on(h) (1.147)
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The object that we want to compute is 7}, correlator which is related to shear
viscosity as discussed in the previous section. In order to find the Greens function,
we now need to solve ¢x(u). The equation of motion takes the form

1+u? wr — KX f
of (@) T eaTus

where prime denotes derivative with respect to radial coordinate u. This equation

can not be solved for all values of w, ¢. However in the limit %, % < 1, we can

write a series solution in 7, . There are two solution which are complex conjugate

to each other, which represents incoming and out going solutions at the horizon
(u=1). The incoming solution at u = 1 can be written as

"
br —

br =0, (1.148)

o w u
— (1 — ) tEr (1 Y O(w?, 2 ) 1.149
b= =y (12 T s o, ) (1.149)
Now using the prescription as summarized in Eq.(1.142) we get

TN?T3
8

GE (w) =

TY,TY

iw, (1.150)

where we have used the relation G5 = % as given in Eq.(1.53). Now the Kubo’s
formula for 7, immediately gives

n= gN2T3. (1.151)
So we see that )
n

Example : electrical conductivity

As we have already discussed, if we are interested in computing current-current
correlator in N' = 4 SYM, we then need to analyze linearized perturbation of U(1)
gauge field A, on the dual gravity back ground. The five dimensional Maxwell
action in this background can be written as [44, 1|

N2

5= 1672L

1
/d%z/—gFWFW, (1.153)
where F,, = 0,A, —0,A,. The gauge fields A, obey Maxwell equation of the form

o [v/—=g9"*¢"F,,] = 0. (1.154)
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We choose the gauge where radial component of the gauge field is zero (A, = 0).
As before, we work in the Fourier space where,

&k,
Atz u) = / (ZW)46_Zwt+Z7'7AM(w,q,u). (1.155)

For our purpose we choose perturbation to be spatially homogeneous so that we
can set ¢ = 0. Suppose we are interested in computing (J*J*) correlator, then

we should focus on A, component of the gauge field in the bulk. The spatial
component of the gauge field A, obeys the equation

” fl ’ 1 LLJQ
Apla Y g
R W oy

where prime denotes derivative with respect to radial coordinate u. Upto linear
order in w, the solution to Eq.(1.156), takes the form

0, (1.156)

Cw , 1+
Ay(w,u) = A%(1 — ) '5T (1 + @%IH 5 Sy O(w?, qQ)). (1.157)

Finally, following the same procedure as for shear viscosity along with the use of
appropriate Kubo’s formula, we conclude that the response function is given by
N2T

_ . 1.158
77 T6n (1.158)

Actually to define the above response function as the electrical conductivity of
the SYM, we need to first gauge the global U(1) symmetry of SYM with small
electromagnetic gauge coupling (say e). This implies, the current operators are
multiplied with a factor of e that is J, — eJ, and hence there will be a factor of e?
in the two point current correlator [53, 3]. However we shall drop that extra factor
of €2 from our discussion. Since e is small, to the leading order in e, the effect of
gauging can be neglected and response can be computed from original theory. For
details see[53, 18].

1.7.2 Iqgbal-Liu prescription for computing real time corre-
lator

It turns out that the Son-Starinets prescription can be reformulated in terms of
boundary values of the canonical momenta of the bulk field by treating the AdS
radial direction as time. This reformulation has various advantages. For example,
many of the boundary transport coefficients can be expressed in terms of quantities
evaluated at the horizon. Universality of transport coefficients can therefore be
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understood via certain universal behavior of the black hole horizon. According to
AdS/CFT, the one point function is defined as

> s [0, (1.159)

= <~ 9d
60 0Py
where ¢ is the boundary value of the massless scalar field dual to operator ©.
Let us note that, in the classical mechanics derivative of an on-shell action with
respect to boundary value of a field is simply equal to the canonical momentum
conjugate to the field evaluated at the boundary. For example

(©)

X(ty)
S:/ dt ., (1.160)
X(to)
and 5

where P(t) is the momentum conjugate to X (¢). For the case of scalar field ¢, we
can write

<O(x) >4 = %%Scz[ﬁbo]
= I(z,2) (1.162)

z—0

where I1(z, ) is the canonical momentum conjugate to ¢ with respect to radial z
foliation. Equivalently in the Fourier domain, we can write

< O(k) >=T1(z,k) (1.163)
z—0
In the domain of linear response, we have
<O >=-G""w,k) lir% o(k, 2), (1.164)
Z—
This implies
II(z, k)
Gt = ——— 1.165
(2, k) 12-0 ( )
which upon using Eq.(1.93) gives,
II(z, k)
= lim ———— 1.166
iy iw(z, k) lz=0 ( )

For illustration, let us consider the case of massless scalar field propagating in the

background
d—1

ds® = gu(2)dt* + g.(2)d2" + guu(2) Y (do (1.167)

=1
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where z is the radial coordinate. We have assumed full rotational symmetry in z*
directions so that g;; = g,,0;;, where ¢, j run over all the indices except z,t. We
also assume that metric components depend only on radial coordinate. We assume
that the metric has an event horizon, where gy has a first order zero and g.., has
a first order pole. We also require that all the other metric components are finite
as well as non vanishing at the horizon. The action for the scalar field is same as
given in Eq.(1.130). The canonical momenta for this case is,

(2, k) = —v/—=9970:¢. (1.168)
Using Eq.(1.131), we can compute
O.01(z, k) = /—gk*¢(z, k). (1.169)
In the limit £ — 0, we have both
EE% 0 I1(z, k) =0, }clir(l) 0. (wo(z, k)) = 0. (1.170)

So in the limit £ — 0, both w¢(z) and TI(z, k) is independent of z, which implies
xX(z —=0)=x(z = zm). (1.171)

In other words, the radial evolution of response function y, which we refer as
flow, is trivial. This can be used to show, in particular that response function of
gauge theory dual to some gravity theory, can be expressed in terms of geometrical
quantities evaluated at the horizon. Let us note that, had we considered the
massive scalar field of mass m in the bulk, then

lim 0.11(z, k) ~m?¢(k,z) # 0, (1.172)

which implies that there is a non-trivial flow of the transport coefficient if we
go from horizon to boundary. Hence evaluating response function at the horizon
will not give same result as boundary response function. One such example is, the
computation of electrical conductivity at finite chemical potential. We shall discuss
this issue in later chapters. Following [4] and stretching the previous discussion a
bit more, one can define response function at any radial position z, through

x(z) = lim (z k)

wk—0 iwd(2, k) (L.173)

which in the limit z — 0 gives AdS/CFT results. It is possible to compute
Eq.(1.173) at the horizon and then, by solving flow equation, we can relate it with
AdS/CFT result which is evaluated at the boundary. This leads to a connection
between dual gauge theory with the fictitious fluid living on the horizon. This goes

39



Chapter 1. Introduction

by the name membrane paradigm (for a brief discussion on membrane paradigm,
see Appendix). Following the Igbal-Liu proposal, we end this section with the
computations of two transport coefficients. Both these two, however, have trivial
flow from the horizon to the boundary AdS.

Example : The shear viscosity

In order to find out the shear viscosity, we need to look at fluctuation ¢ = hy
of the metric field g;, where z,y are the field theory directions. As previously
discussed, the shear fluctuation mode decouples from rest of the fluctuations and
behaves as massless scalar field with the action Eq.(1.146). As before we shall work
with spatially homogeneous fluctuations, so that we can set 7, the spatial part of
k zero and we shall also work in the limit where w — 0. Evaluating the canonical
momentum, we get

I(z—0,w—0,g=0) = I(z = zyg,w—0,g=0)
/=g 1
167G \/—g--9u

where G is the Newtons constant and in the second line of above equation we have
used in-going boundary condition at the horizon, which states

iwe(zg,w — 0,q=0),1.174)

zZH

lim Lo(z) = —iw lim /L= 6(2) + O@w2). (1.175)

Z—=ZH dZ Z—ZH —0ut

Now using definition of response function we get shear viscosity n to be

/=g 1
= . 1.1
1= ioc \/%] ” (1.176)

Entropy density of the black hole is area of the horizon divided by 4G, which gives

1 /—q
s=—- VI | (1.177)
4G V = 9z20tt 'z
Now the shear viscosity to entropy density ratio is given by
n 1
-=— 1.178
s Am ( )

This result coincides with Eq.(1.152), which was computed for particular back
ground dual to N' = 4 SYM. So we already see, for large class of gauge theories
with gravity dual having metric of the form Eq.(1.167) subject to certain constraint,

the shear viscosity to entropy density ratio is ﬁ and is universal.
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The origin of Eq.(1.175), perhaps require some elaboration. Near the horizon,
the metric can be written as

b

2y — 2z

g = —alzm — 2), Gz = (1.179)

In this region, at vanishing spatial momentum 7 =0, the Eq.(1.134) takes the

form
a

which has solutions of the form

b oc e~ WD) Gy — /;qigzttdz. (1.181)

The in falling boundary condition on the horizon picks up the positive sign in the
exponent. This implies, the solution near the horizon takes the form

doce ™ dv=dt+ | Lde (1.182)
— Yt

So solution can only depend on the non singular combination v. This gives, near
the horizon

@, — /] Z=8,)6 = 0. (1.183)
— Gt
This, in turn, means
im -Lo() = —iw Tim [T 6(2) + O@W?). (1.184)
Z—=ZH dZ Z—ZH — it

Example : electrical conductivity

Let us consider a Maxwell field propagating in the uncharged black brane back-
ground. The Maxwell field action is

1
49§+1(Z)
where g2 +1(2) in general is a z dependent, gauge coupling, where background value

of gauge field is zero and we take only nonzero component to be A,. Here again one
can show that equation for A, is same as that for massless field with a substitution

S = —/dd“x V=g Fyn MY (1.185)

1
V=9 = —5——V—99"". (1.186)

9d+1(2)
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Now using

(o(k)) = o (k) lim By (2,k), B, = —iwA, (1.187)

we get

J 1 V-
oo Jln) [ . I_goo| (1.188)
_ZWAJJ(ZH) gd+1(z) V 09220t ZH
Applying this for N' =4 SYM (dual gravity background is the AdSs Schwarzschild
black hole) we get
1
o= —(nLT) (1.189)
95

which is same as expression in Eq.(1.158) provided we make the identification
1 N2

gz = 16m2L"

” Let us note that, in the above computations, we have not assumed any par-
ticular gravity background. Rather, we have only imposed few generic constraints
on the gravity background. So, above results are applicable to the gravity dual
of N =4 SYM at finite temperature as well as any other gauge theory at finite
temperature with a gravity dual and a few generic constraints. In fact we shall
push these ideas further and present computations of transport coefficients for the
backgrounds where Igbal-Liu prescription might not be readily applicable. Our
main focus will again be on finding features which are independent of details of
these particular models. Though in some part of the thesis, we shall work with
gravity backgrounds for which dual gauge theory might not always be well defined,
we hope our results might be applicable to situations where it is well defined. With
this brief introduction, in the next section we discuss the plan of the thesis.

1.8 Plan of the thesis

The plan of the thesis is as follows. In the next chapter, we compute electrical
conductivity in the presence of one and more chemical potentials for several models
[48, 54]. What we observe is that, in the presence of multiple chemical potentials,
there is a nontrivial mixing between current operators which, from the bulk point
of view, can be understood to be arising because of interactions through graviton.
We find that the boundary electrical conductivity takes a universal form in the
presence of chemical potential for a large class of black branes which include R-
charged black branes in various dimensions in asymptotically AdS spaces as well
as charged Dp branes in various dimensions. We also observe that the boundary
conductivity is related to horizon conductivity by thermodynamic quantities. We
further note for Lifshitz like black branes, the form of conductivity is different than
one observed for other examples. Subsequently, we focus on understanding relation
between the conductivity of the fluid described by membrane paradigm'®. In order

15In the appendix A, we give a brief account of the membrane paradigm.
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to do that, we compute conductivity at arbitrary cut-off out side the horizon for
gauge theory dual to charged asymptotically AdS black hole and show that there is
a smooth interpolation between conductivity at the horizon and at the boundary.

In the third chapter, we provide a proof that under general assumptions in the
gravity side together with precise condition on the bulk stress tensor, the electri-
cal conductivity is the same as one we observed in the second chapter[55]. This
immediately explains as to why the Lifshitz like theories does not have the form of
conductivity as proposed since the bulk stress tensor does not satisfy the constraint.
In this chapter we also give a general form of conductivity matrix encoding the
mixing between current operators, in the presence of multiple chemical chemical
potential.

In the fourth chapter, we compute thermal conductivities for various field the-
ories with gravity duals and observe that the thermal conductivity to the shear
viscosity ratio is independent of number of chemical potentials. This observation
together with observation that at zero chemical potential the above ratio remains
unchanged, lead us to conjecture that it is universal. Further, for CFT’s with a
gravity dual, using thermodynamic relations, one can express the above ratio in
terms of central charges of the dual conformal field theories [56]. We also observe
that the thermal conductivity to the viscosity ratio is again universal for non con-
formal theories. All these observations give us a way to express the conductivity
solely in terms boundary thermodynamic variables.

We then turn our attention to study of transport coefficients of gauge theo-
ries at zero temperature which corresponds to extremal black hole in the bulk, in
chapter five. We find that, for several examples, the form of conductivity at zero
temperature is same. Under the general assumption that extremal black brane has
double pole structure at the horizon together with requirement that bulk stress
tensor satisfies same constraint as non extremal cases, we show that form of elec-
trical conductivity is universal. We also provide a simple proof that shear viscosity
to entropy density ratio is ﬁ even at zero temperature.

In chapter six, we give a brief summary of the results presented in this thesis.
In the appendix A, we give a brief account of membrane paradigm, we also provide
details of R-charged black holes in various dimensions in appendix B.
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Electrical conductivity at finite chemical
potential

2.1 Introduction

Based on several examples, we find out a general expression for electrical conduc-
tivity for gauge theories in the presence of chemical potentials having a gravity
dual. It turns out that the electrical conductivity can be determined in terms of
geometrical quantities evaluated at the horizon and thermodynamic quantities.

At finite temperature and at large length scales, an interacting QF T is described
by hydrodynamics. In the gravity side, finite temperature amounts to having a
black hole and the long wave length physics of the field theory is governed by the
near horizon physics of the black hole. This idea was employed in [4] to show
that, in the low frequency limit, the linear response of the boundary theory is
captured completely by the near horizon physics. In [4], the authors studied the
transport coefficients which correspond to the massless modes in the bulk, resulting
in trivial flow from horizon to boundary. This in turn, gave an equality between
the boundary and the horizon transport coefficients. So when there is a nontrivial
flow from the horizon to the boundary (like massive bulk modes), horizon physics
will no longer be able to capture the whole low frequency AdS/CFT response.
Calculation of electrical conductivity in the presence of non-zero chemical potential
is one such example where corresponding mode in the bulk shows a non trivial flow
from horizon to boundary. These flows are in general governed by complicated
differential equations (if more than one charge is present they are coupled as well)
and, a priori, there is no reason that electrical conductivity for different theories
will show some universal features. In spite of this, as we shall find, electrical
conductivity does show some universal features.

This chapter is structured as follows. In section 2 we discuss the effective
action approach in the gravity side to compute electrical conductivity following
[48, 57]. We set it up in way that allows us to study different gravity backgrounds
in a unified way. In section 3, we take up several examples such as R-charge
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Chapter 2. Electrical conductivity at finite chemical potential

black hole in 4,5 and 7 dimensions. We compute electrical conductivity for single
charge case as well as multiple charge cases. For multiple charge case, we observe
non-trivial mixing between current operators. In section 4 we demonstrate the
relation between horizon and boundary conductivity, based on these examples. In
section 5 and 6, we check that the relation continues to hold for Reissner-Nordstrom
AdS black hole in arbitrary dimension and for black Dp-branes, which in general
corresponds to non-conformal gauge theory. However in section 7, we check that
Lifshitz like black holes do not satisfy the same relation. In section 8, we study
radial evolution of electrical conductivity. We end this chapter with a discussion
of our results.

2.2 Holographic computation of electrical conduc-
tivity at finite chemical potential: The pertur-
bation equation

We start with a gauge theory at finite temperature with multiple chemical poten-
tials with a gravity dual. In the gravity side, this gauge theory correspond to black
branes charged under multiple U(1) gauge fields. In the boundary theory one has
current operator dual to every U(1) bulk gauge field. At equilibrium, there are
no mixing between the different current operators. When perturbed away from
equilibrium, in general there might be nontrivial mixing between them. This mix-
ing arises naturally in the context of gauge/gravity duality due to the presence
of graviton in the bulk which induces interaction between different gauge fields
modes, hence nontrivial mixing. To understand that, we consider the bulk action

of the form .

1
_ d+1 I vJ
S = 52 /d zv/—g(R — ZGUFWF“ +...), (2.1)
where dots contains other bulk fields such as neutral scalar fields. The metric that

we take is of the form

U

—1
ds* = gy (r)dt* 4+ g (1)dr? + guu(r) Y (da')?, (2.2)
1

(]
where r is the radial coordinate. We have assumed full rotational symmetry in
z' directions so that'® g;; = g,.0;;, where 4,7 run over all the indices except r,.
We also assume that metric components depend on radial coordinate only. We
shall work with the metric which has an event horizon!”, where g;; has a first order
zero and g, has a first order pole'®. We also assume that all the other metric

6Let us note that, we are using the notation where g, (r) = g,..
"For charged black holes, there exists inner horizons also.
I8 Therefore it excludes extremal black holes
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components are finite as well as non vanishing at the horizon. The boundary of
the space time is at » = co. The gauge coupling GG;; may be constant or in general
can be a function of r. The constant x is related to Newtons constant. Maxwell
equation can be written as

Ou(V=9G1IFS) =0, (2.3)

If we consider G; to be diagonal and only A;(r) component to be non zero, we
can define charge density to be,

1 rr
Pr = Q—IQQV—QGHQ gttFrIt' (2-4)

Since our aim is to compute the electrical conductivity using Kubo formula, it is
sufficient to consider perturbations in the tensor (metric) and the vector (gauge
fields) modes around the black hole solution and keep other fields such as scalars
unperturbed. Therefore we consider perturbation of the form

Guw = 8) + by AL =AIO 4 AL (2.5)

where gfg,) and Aft(o) are background metric and gauge fields. In order to determine
electrical conductivity it is enough to consider perturbations in (tz') and (x'z?)
component of the metric tensor and z' component of the gauge fields. Moreover
one can choose the perturbations to depend on radial coordinate r, time ¢ and one
of the spatial coordinates say 2. A convenient ansatz, with the above restrictions
in mind, is

o —iwt+iqx? o —iwt+iqa?
htzl = ozlzl T('r) e 7 y h:)ﬁxl = ozz Z(T’) € 7 y

AL = ¢p(r) e iwttien’, (2.6)

Here w and ¢ represent the frequency and the momentum in 2% direction respec-
tively and we set perturbations in the other components to be equal to zero. Next
step is to find linearized equations which follow from the equations of motion. It
turns out that at the level of linearized equation and at zero momentum limit,
metric perturbation Z(r) decouple from the rest [57, 58]. The linearized equation
that we get are of the form

d

N 01(r)) — 0 Nr " 61(1) + Nigaag'* - (67 h) = 0. (2.1

with
=V—=9Grrg™g", (2.8)

and
% ) = Zcmm% 2.9
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We observe that we can use Eq.(2.9) in Eq.(2.7) to get an equation only in terms
of gauge field fluctuations. Upon substitution we get

d, . d -
— (N — w’Np grrg" M = 0. 2.10
d'r( Idr¢1(7“)) w" Ny grrg” d1(r) + ; 17¢(r) =0 (2.10)
with
M]J = Frlt\/ —gG[[gxxgrrgttG‘]JFri. (211)

Let us note that M;; = Mj;.

Following [48], we now write down the effective action which reproduces the
Eq.(2.10) and extract out the expression for electrical conductivity using Kubo
formula.

2.2.1 Effective action and expression for conductivity

The electrical conductivity is usually computed from current-current correlator!

A = — i Gee®20=0)
w—0 W
I T —iwt . - =
_ ilglo—w/_oodt ’ /dx([Jx(t,x),Jx(0,0)]). (2.13)

The current-current correlator can be computed by taking second derivative of
effective action which reproduces the Eq.(2.10) with respect to boundary fields
[44, 1]. The expression for electrical conductivity can formally be written as A\ =
100 + 0.

19Tf there is more than one conserved current then one can define conductivity matrix using

G (w,q=0)

w—0 w
S T —iwt ST A T O
_ iﬂ)ﬂﬁmdt ¢ /dm([Jm(t,x),Jm(0,0)D, (2.12)

where indices, i, 7 are for different gauge fields, for which the currents are defined.

47



Chapter 2. Electrical conductivity at finite chemical potential

e (= R(A)): In order to determine the real part of the conductivity (o), we
follow [48]. Effective action 2 can be written as

1 d’q 1 & d d
S = 92 (2W)ddr[§;NI(T)JW(T,W,Q)%@(T,—w,—q)
+ %I;IMIJ(T)@(T,MQ)%(T,—w,—q). (2.14)

Boundary action is given by

1 d? 1 d
S, = rli_glog,iz (273,1 (5ZNI(T’)%%(T’,W,Q)@(T,—W,—q)>
=1
d’q n o ;
- /(27T)d Y W @) Fik(w,q) dx(—w, —q). (2.15)
I>K,I,K=1

where the boundary value of the field ¢;(r) is ¢%(w, q). Next, the retarded
correlators are given by

—2Fik(w,q), J=K,
GR :{ 7% 4) (2.16)

_FJK<W7Q)7 J%K

The expression for diagonal and off diagonal parts of the conductivity can

be written as
S (GR(W, q= 0))

o=
2 %(fn(w —0,q= 0))

— 2.17

» : (2.17)

200ne can obtain this effective action, starting from the action written in Eq.(2.1) and eval-
uating it to the quardratic order in fluctuations ¢, T and using Eq.(2.9). Let us note that, in
general Eq.(2.1) includes other parts such as contributions coming from matter fields other than
the gauge fields, which are denoted by dots. However, they does not play any role in evaluating
effective action.
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and
R <GR(w, q= 0))
=l
%<-FIJ<W —0,¢= 0))
= 2.18
- , (218)
respectively.

In order to find out S(]—"), we need to compute,

3 jim 5z [ (%szf(r%@(r,w,q)@(r, . —q>) | )

Now

=3[ G N0 oon(r 0 )ontr =0
- d d
+ZNI(T)$¢I(T7‘U’Q)$¢I(T7 —Ww, _Q):| . (220)

Using (2.10), right hand side of above equation reduces to

m

MIJ(T)¢I(Ta W, q)ng(Ta —Ww, _Q)+Z NI(U)%QZ)I(Ta W, q)%gbf(ra —Ww, _q)] )

m
3 [—
I,J=1 =1

(2.21)
which is equal to zero since the quantity in the bracket is real. Then (2.18)

can as well be calculated at the horizon i.e. at r = r,. This simplifies
calculations significantly. Regularity at the horizon implies

lim igzbl('r) = —iw lim —&gb[(r) + O(w?). (2.22)

r—=ry dr r—r) it

Hence (2.18) reduces to

d m
%[ — 1w TILT% 2%‘{2 / (;iﬂ_qyl _& <% ; N](T)gb[(’l“, W, Q)¢I(T’ —Ww, _q)> :| .
(2.23)
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Let us note that, if we take the solutions of the form

dr(r,w,q) = > Ph(r,w,q)6%, (2.24)
A=1

where

lim ¢I(Taw7 q) = ¢?a (225)
then we get
f _ & ! 2.26
H = 2/{2 - SNAL ()i (r)| (2.26)
Th

and
3 —w— -5 N 2.2
3(7F1) =5y AZ AAWAC)| (2.27)

Single charge case: For single charge case, consider ¢(r) = 1(r)¢pg, then
we get

1 grr 1
R =w—s,/—F—=N 2.28
$(F) =wgay/ -y M) (2:28)
Th
Using Eq.(2.16), we get
= [N e)
7 22 Jut TR
Th
= 5aGulr) g V(1)
- 2[@ 11 gxx -
= oy V(r)| (2.29)
T=Tp
where
L enm a7 (2.30)
Oog = 942 11(T) Gz — .
We can also compute conductivity at any arbitrary radius say at r.. This is
given by
O(T ) 2/{2 11(T) g — ¢(rc) ( )

Let us note that, at the horizon the expression for conductivity (which we
shall call as horizon conductivity) reduces to oy, where as at the boundary
conductivity is related to the horizon conductivity by Eq.(2.28).
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e Imaginary part of conductivity oo(= I(A)): The imaginary part of the
conductivity is

1 1 d
J(N) = —N(r 2.32
Using Eq.(2.10) and Eq.(2.11), we can write
d grrgtt
N 2.
ol ==y [ g, (23
which implies 2!
d . 2\2 2 Th Grr it
Jim N(r) o) =~ [dr g (2

Defining ¢(r) = ¢ (r)¢g, we find

1 1 d
SW = g i 5N ge)
_ 2 2 " Grr Gt
= —2K"p d (r). (2.35)

r
0o V —9Yxz

In order to compute imaginary part of conductivity, we can use both Eq.(2.31)
as well as Eq.(2.34).

2.3 Electrical conductivity for R-charged black hole
in 4,5,7 dimensions in asymptotically AdS space

In this section we compute electrical conductivity for gauge theories dual to 4, 5, 7
dimensional R-charge black branes??. We observe that the behavior of conductivity
with temperature is o ~ 793 for d dimensional dual gauge theory which also
follows from dimensional analysis. For multi-charge black hole we get conductivity
matrix whose off diagonal parts comes solely due to effective interaction between
gauge fields. We first compute conductivity with single chemical potential and
then turn to multiple chemical potential cases. In the following, we shall use radial
coordinate to be u for convenience and we shall use notation x> = 871Gy in d + 1
dimensions. In this coordinate system, © = 1 and u = 0 are respectively position
of horizon and boundary. The details of these background in coordinate system u
can be found in [34, 35, 33, 36] and are summarized in the Appendix.

2Let us note that, N(r = r,) = 0, since N(r) = /—gG(r)g**¢"" and ¢""(r = r,) = 0, and at
the boundary if N(r — oo) ~ r!=" then ¢(r — co) ~ ¢° + ¢t

22Black branes in 4, 7 dimensions arise from rotating M2, M5 brane solutions in a similar as 5
dimensional R-charged black brane arises which is discussed in chapter 1 section 1.5.2.
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2.3.1 Single charge black hole in various dimension

For single charge black hole one finds

/ / b k
(¢1)" + (f7 + % - 2) (1) — %(mﬁ) = 0. (2.36)

The expression for conductivity reduces to

1 uu N 9 9 y Wy T
871G 41 Gt (¢)°(¢) ws1.g0
. _ 1 _ Guu
In this case we have oy = [chdﬂ \/ "o N(U)Lﬂl-
e D=4: In this case one gets ¢ = 0,a = 1,0 = 2. Relevant parts are
N3 3
P — 1+ k)2, 2.38
1 2k
_ 40 3 2.39
ou) = ¢ 1+ ku ( )
which implies
2k)2N 2
(3+2k)"N (2.40)

o= ———.
63m\/2(1 + k)
We see that for three dimensional gauge theory, conductivity is independent of
temperature. Now we can compare this result with the the result for u = 0, case.
ou (14 %)2

- > 1. (2.41)
O-y,:(] ]_ + kf

Since there exist a critical line k = 2 [58], one can not make conductivity
arbitrarily large. This discussion also holds true for rest of the cases with only

difference in location of critical line.

e D=5: Here c=0,a=1,b=1. Summary of the results are

_ N?Ty(1 + k)2

ogy 167 s (242)
1 o+ ku
¢(u) = ¢o7 L{fu. (2.43)

So one gets conductivity
2+ k)?2N?Ty,  N?Ty(2+k
oo GER N NTTu(24 k) (2.44)

C6am/(1+k) 327

is the Hawking temperature of the black hole.

(24+K)Th
211k

where T =
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e D=7: In this case ¢ = —1,a = 4,b = 3 . Relevant parts are

ANSTS(1 + k)?

1+ B
= . 2.4
o(u) = o173 (2.46)

Conductivity in this case is given by

ABRRNSTY  ANPTY(1 + k) i)
36/(1 + k) 2713+ k) '

where Ty = % is the Hawking temperature of the black hole.

2.3.2 Two charge black hole in various dimension

Now we turn to cases where two chemical potentials are turned on in the boundary
gauge theory. Differential equations are??

(6)" + (LI polh T g) (é1)

f "H H
b
_aw(l +fk21)2<1 + ko) [k;l(pl + v/ k1ks @} =0, (2.48)
1

and

/ H/ /
(¢2)" + (— + Qi TR E) (p2)'

f U
_aub(l —l—f/{;};l + ks) [k2¢2 + k1 ks ¢1} =0, (2.49)

2
Note that o = [SWG{HI \/ _ZZS Nz(u)] X where N; = ij Now we compute
u—r
case by case.

e D—=4: Here one has c = 0,a =1,b =2 . Solutions are

(ao + 2a0k17:l;0\/k1k2 U/) (bo + 2b0k276§0\/k1k2 U/)

(bl - ) ¢2 = ) (250)

1+k1u 1+k:2u

and
3
2

B Na(1+k)?
 24r 20+ k) (1 + ko)

(2.51)

OH,ii

Z3These form of equations are different than the form written in [41] , because as mentioned
earlier that we have done a rescaling.
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Using these we get following form of conductivity.

3 3
N2 (9+(124-ko)k1+4k7) 2N 2 VEika (3+k1+ko)
637m\/2(1+k1) (1+k2) 637 /2(1+k1) (1+k2)

3
ONEVERa(tkithks) N2 (O+(12+k1)ko+4k3)
637m/2(1+k1) (1+k2) 63my/2(1+k1) (1+kz2)

e D=5: Here we have ¢ = 0,a = 1,b = 1. In this case solutions are

(CLO + aoklbe()\/mqo (bO + bOkQ*agmu)

_ = 2.52
gbl 1 + k:lu ) ¢2 1 + kQU ( )
Where as N2T (14 )2
O = oL+ F:) . (2.53)
167/ (1 + k1) (1 + k2)
So we get conductivity as
(44k2+k1 (44k2))N2T,  (4tki+k2)N2T, \/T
64/ (1+k1)(1+k2) 64w (1+k1)(1+k2)
_ (44k1+ko)N2T, k2 (4+k34k2 (44k1))N2T,
647 (I4k1)(14k2) 647r\/(1+k1)(1+k:2)
So o increases linearly with T}.
e D=7: In this case c = —1,a = 4,b = 3. Solutions are
(CLO + aokl—ngvk1k2u2) (bO + b0k2—2(§0vk1/€2u2)
= = 2.54
Row ANBT3(1 + k;)?
81/(1+ k1)(1 + ka)
Using these one finds conductivity matrix as
4(94k1 (k1 +4ko+6))N3T3 _ (6+k1+ko)N3T3 k1ko
364/(1+k1)(1+k2) 30 (L+k1)(1+k2)
o (6+k1 +k2)N3T5’ k1ko 4(9+k2 (k2+4k1 +6))N3T5’
30 (I+k1)(1+k2) 364/ (1+k1)(1+k2)

e Notice that off diagonal components of the conductivity matrix are negative
but they are important, and plays crucial role.

e Observe that off diagonal components goes as

Oi5 ~ QinTd_g, (256)
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where ; = 5. So switching off one of the chemical potential will make it
zero, where as diagonal parts of conductivity goes as oy ~ T973 f;;(Qy, Qy),
where f;;(0,0) # 0 (u = 0, implies total charge density is zero i.e. there
exist equal number of positive as well as negative charge and applying ex-
ternal electric field will induce flow of both in opposite direction which will
contribute to electrical current). Since charged particles moves in opposite
direction, there will be collisions among them and it ensures finite conduc-
tivity. As one increases pu, conductivity should increase as relative number
of collisions between opposite charges are less compared to zero chemical

potential case.

2.3.3 Three charge black hole in various dimension

Now we turn to three charge black hole cases. General form of differential equations
are
3

W L+ k)Y

/ ' / L 3
(¢:)" + (7 +27 - %) (¢) — —— e [Z \/l?jgbj} =0, (2.57)
7 i =1

where i takes value up to three.

e D=4: For this case the one gets b = 2 . Relevant results in this case are

) 1369 + Vi (3VEo! - jil VEd)u] N3(1 + k;)?

(bi - 3(1 + klu) , OHui = 3 )
247, [2 [T (1+ k;)
7=1

(2.58)
where ¢! is the boundary value of ith perturbed gauge field.
3
i = N2 0 0 s i
Let us introduce, o;; 63”/2(1%1)(1%2)(1%3)aw, where o5, is given by

9+ (12 + k2 + k3)k1 +4k% —Vk1ko(6 + 2k1 + 2ka — k3)  —v/k1k3(6 + 2k1 + 2k3s — k2)
—Vk1k2(6 + 2k1 + 2ko — k3) 9+ (12 + k1 + ka)kz +4k‘% —Vkak3(6 + 2ka + 2k — k1)

7\/k1k3(6+2k1+2k37k2) 7\/k2k3(6+2k2+2k37k1) 9+(12+k1+k2)k3+4k§

e D=5: For this case b = 1. Results needed for conductivity calculation are

B [2¢? + \/5(2\//%‘_@@25? - ]il \/]?ﬂb?)u] N2Ty(1 + k;)?

0i = 2(1 + k;u) » OHj

(2.59)
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N2Ty
647/ (1+k1) (L+k2)(1+ks) W’

0

Defining as before o;; = where o;; is given by

A+ k2 +ki(4+ko+ks) —VEkika(d+ki +ko—ks) —vkiks(4+k1 + ks — k2)
—VEkik2(4+ k1 + ko —ks) A+ k3 +ko(d+ ki +k3) —vVhoks(4d+ ko + ks — k1)

—Vhik3(4+ k1 + ks — ko) —koks(4+ko+ks —ki) 4+k3+ ks(4d+ k1 + k2)

2.3.4 Four charge black hole

Differential equations are

/ / , u? ﬁ(l + k; )\/7 4
(¢0)" + (]; +2% —~ %) (¢n) — —= 1 [Z \/l?quj} =0, (2.60)

and solutions are

1369 + VE: (3v/Fie? — jil VEd)ul N3(1 + ky)?

P = ) i = . (2,61
¢ 3(1+ k) o i (2.61)
247, [2 [T(1+k;)
j=1
Using these we get following form of conductivity.
N3
oy = p (2.62)

Tij-
637 /2(1 + k1) (1 + ko) (1 + k3) (1 + k)
Where

4 4
0% =9+ (1243 ki )i+ 3k and of = —(6- Y ki+3(k +1)).
j=1 =1

e Some special cases : Using above results one can study special cases such
as effect of small chemical potential or the case with equal chemical poten-
tial. Let us note that in the case when all the chemical potential are equal
then there exist no second order phase transition. In this case, temperature
i.e. T > 0 gives a constraint on the possible maximum value of chemical
potential.

Note that as T"— 0, 0 — 0 quadratically in the parameter k, irrespective of
which dimension we are in*.

24 Determinant of conductivity matrix for general p also vanishes in similar way once we ap-
proach extremality even for M2 brane case where conductivity is independent of temperature.
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Chapter 2. Electrical conductivity at finite chemical potential

Dimension Constraint(7" > 0) o
5 < 9 3(2—k)2N2T),
= 32m(14k) 3
(3-k)2N 3
1 <3 V(LR
; <3 16(3—k)2 N33

729(14k)

Table 2.1: Conductivity at equal charges

2.4 Relating boundary and horizon electrical con-
ductivity:

In this section we reconsider the examples of previous section (all are asymptot-
ically AdS spaces) and show that for each case there exist a universal relation
between boundary and horizon conductivity. We tabulate the results below (see
[54]).

Gravity theory in d + 1 dimension oH UH(;—TP)Q op
. . 2 2 2 ]
R-charge black hole in 4 4+ 1 dim. ]\1/ 6:81; N géffk) N géffk)
: : N3 3 (342K)2N3  (342k)2N3
R-charge black hole in 3 + 1 dim. 24\@r(l + k)2 /20D /20
. . AN3T3 (1+k)3 AN3T3(1+k) AN3T3(1+k)
R-charge black hole in 6 + 1 dim. SEERSE SIEE) 5T E)
Reissner-Nordstrom black hole in 3 + 1 dim. > =25 2(5h)

Table 2.2: Real part of electrical conductivity at the horizon (o) and at the

2
Boundary (o) are related by op = oy (:5:) )

e Single charge: We propose based on the observation in Table 2.2 that for
the gauge theory with single chemical potential the expression for real part
of the conductivity is given by

(55)
e+ P

Th

sT 2
= 2.63
UH<6+P) ’ ( )

L g, o
op = Q—HQGH Jzz
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Chapter 2. Electrical conductivity at finite chemical potential

where s,7T, P, ¢ are entropy, temperature, pressure and energy density of the
boundary fluid respectively. We observe that boundary conductivity can be
expressed in terms of geometrical quantities evaluated at the horizon and
some combination of other thermodynamic quantities.

e Multiple charge: For multiple charge case (say there are m number of
chemical potential present in the gauge theory side), then boundary conduc-
tivity is m x m symmetric matrix (see [48]) where as horizon conductivity is
m x m diagonal matrix. One can check by explicit computation that in each

case the relation . . T
S
] - 1 ( P) s (264)

PICO1;Ps  PIO P1 NE T
holds where o;; and oy ;; are boundary and horizon conductivity respec-

tively. For the action of the form Eq.(2.1), the expression for horizon con-
ductivity can be written as

1 d—3
— 2
oI = 92 Grr Goi

(2.65)

Th

Let us note that this expression reduces to Eq.(2.62) in the case when single
chemical potential is present. As discussed in section 1.5 and Appendix.B.
that, one can restrict attention to the diagonal U(1) case where one obtains
Reissner-Nordstrom solution. In the next section, we focus our attention on
general Reissner-Nordstrom solution where one can show that the form of
conductivity is again given by Eq.(2.62). In other words, the conductivity
obtained from setting all the charges same for R-charge black hole is consis-
tent with that obtained from the Reissner-Nordstrom black hole.

2.5 Reissner-Nordstrom black hole in arbitrary di-
mension:

In this section our main focus will be on the Reissner-Nordstrom black branes in
various dimensions. For computation in four dimension see [32, 59, 60]. Our main
aim is to check the validity of Eq.(2.62). Action for Reissner-Nordstrom case is
given by : )
B drl 1 dld—1 1 5

S—/d =g (R T - o I
The expression for the metric and gauge field for Reissner-Nordstrom black hole
in arbitrary dimension are

(2.66)

. L7 ,  dr? S i g i
ds :T—2<—f('r)dt +m+;dazdw), (2.67)
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and

Ac=p|1- <£>d—z] , (2.68)

7’2 2 7,,2 2 _
where f(r)=1— (1 + :—Z)(ﬁ)d + ;—Z(ﬁ)z(d_l) and 2 = (Céd_l);;jf. Let us note

that boundary is at » = 0 and g and r, are chemical potential and horizon radius
respectively. Various thermodynamic quantities are given by

Ldfl 7,2 M2 Ldfl L
P = 14+ L), =(d-1)—== 2.69
QkQTi( + /y2 )7 p ( )]{/'2’[“1_2 /)/2’ ( )
and (d 2) 2,2 Ld 1
1 —2)rip 2m L%~
T = T [d— — |, s= T2 AT (2.70)
+ v ry

In order to compute the electrical conductivity we have to solve the Eq.(2.10) for
this back ground. The Eq.(2.10) takes the form (in w — 0 limit)
f(r) d

i 2k32u2(d— 2)2Td71

———o(r o(r)=0. 2.71
dr(rd—3 dr (r)) g2L2Ti(d*2) (r) ( )
The solution takes the form
_ 2(d — 1)(d — 2) kK*p?rie
= 1—rd2 + 2.72
o) ¢0< AP A=)+ (d—2) k22 ) (2.72)

where ¢ is the boundary value of the perturbed field ¢(r). Now according to

Eq.(2.28)
g = 0 7¢(T:TH) 2
" %o

. ( (d — 1)dg?L? — (d — 2)%%%3) | (273)

d[(d—1)g?L? + (d — 2)k?p>r?]

Now using the fact that e = (d—1) P and the thermodynamic quantities in Eq.(2.68)
and Eq.(2.69) we can express right hand side of Eq.(2.72) as

2
T
0:0H<Eip> . (2.74)

So we have shown explicitly that for Reissner-Nordstrom black hole in any dimen-
sion, the expression for conductivity in Eq.(2.62) is valid. In the following we shall
check again whether the form of conductivity in Eq.(2.62) holds if we consider
non-conformal boundary theory and its dual.
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2.6 Electrical conductivity for non-conformal bound-
ary theory

All the examples that we have discussed till now are for asymptotically AdS space
time which corresponds to boundary theory to be conformal. In view of relation
Eq.(2.62), a natural question arises whether similar relation holds for other known
gravity theories which is supposed to have gauge theory dual. Recently in [61],
authors studied electrical conductivity for charged D1 brane. In the following we
shall check that their results does obey Eq.(2.62). However, before procedding let
us note that for D1 brane, it is not possible to have perturbation like h,i,2 as
defined in Eq.(?7?) since there is only one spatial dimension. However, our analysis
continues to hold here since as we saw, in the limit of zero spatial monetum A 1,2,
does not play any role. After analysing D1 brane, we shall check explicitly the
validity of Eq.(2.62) and Eq.(2.63) for non-conformal gauge theories dual to general
charged Dp brane.

e Electrical conductivity for charged D1 brane: Let us consider the
following action

1 8 1, s
I = d3ay/— — —0,00"¢ — ~W?e 3F  FM
167TG3/ v g[R(g) gOn00'e — Vet
_ L awenu + 20,0000 + Zeto(n + xp—l)] (2.75)
2y2 " 3y " 2 ' '

In the following discussion, the radial coordinate is r and 7, is the position
of horizon. The boundary is at 7 — oo. The metric, gauge field and scalar
fields are given by

ds* = (—cpdt® + cxdz” + cpdr?) (2.76)
7\8 7\8 H /r\2
= ()& A=(p)n d-%(7)
ral r ?
b= o (D), wreh
t LQ(T2+l2)7 ¢ Og L ) _'_ T2

Here H and K are defined as

2 2o
H:1+T—2, K:1+ﬁ—ﬁ. (2.77)

Different thermodynamic quantities are given by,

1 rorn
4G5 LA

5
L

T —
27 L3rd

(3+2k), s (2.78)
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where k is given by
l2
k=—, (2.79)
and ry, is the radius of the horizon which is given by the largest root of the
equation

i — 1S =0. (2.80)
The energy density (¢) and the pressure (p) is given by

6 6
1 7 I rg e

— 0 = — = —. 2.81
47TG3 L7’ p 87TGg L7 2 ( 8 )

The charge density p and its conjugate the chemical potential y are given by

p= 87T1C;3 %3;7 o= At(r) r—00 B At(,r) Th - [{;ilg (282)
So conductivity should be ,
1 [ ST \2
= 167TG3 g2 g2 9o r=rp <€ + P)
1 _1 ST 2
= oG, ot r:rh<e+ P)
_ 1 (2k+3)? (2.83)

167G5 9v/1 + k'

which is same as the one computed in [61]. In that paper authors also
computed electrical conductivity for four equal charge case. The results
follow from Eq.(2.62) in a straight forward manner.

Now we shall check Eq.(2.62) and Eq.(2.63) for general Dp branes.

2.6.1 Charged Dp brane

Let us consider the background obtained from Kaluza-Klein spherical reduction of
rotating black Dp brane to d dimension (see for details [62, 63, 64]).

n n n 1 ]_
d 2 qgr d+;h g gf dt2 g T d+21hd 2 de‘ + g T 1 n+d+21hd 2’
~(g7) ) Z =
(2.84)
where
b l2
fry=h-—==, n=[J0+ Hi=1+ 3, (2.85)

i=1
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where b is the number of independent gauge fields (which is same as number
of independent rotations that a higher dimensional Dp brane can have before
compactification). The action is of the form

b

1
167TG /dp”a:\/ [ - E —XQFZWFZ M + all the other terms..|, (2.86)
where
_a?2(p-2) _o%(p-2) _d4-3 1]
X; = ¢ W2 pwdD hQ(d_Q)ﬁ’ (2.87)

and

sl
—\2myg"z (2.88)

In the following we define all the required thermodynamic quantities. The expres-
sion for charge density is,

1 n+3
= ——V2mg 2 I;, 2.89
pi= g mVimy (2.89)

the chemical potentials are given by

=12m —_— 2.90
mg"® r,%HZ-('r’h) (2:90)
The Hawking temperature is given by
b
g -1 1 1?
7o YT e (== — Z (2.91)
Vo Th [
The expression for entropy and other required quantities are
1 (n—1)m
P=—g" 2.92
4Gg Frvam, e+ oY (2.92)

The equation® that we have to solve in order to find out conductivity is given by

d
N;,—; 2.93
(VLo Z (293)
where
N; =+/— X2 g”g”, (2.94)
and .
= Fin/ 30”0 e (2.95)

25Unless explicitly mentioned, there is no sum over repeated indices i, j.
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Chapter 2. Electrical conductivity at finite chemical potential

Plugging the background values we can show
1 3 _nl
= ¢*r f(r)H; M;; = =8m l; l;g°r 7 (2.96)

e Single charge case: Here one can easily check that

B 1 1 p2 <3T )2 (297)
_167rGX2gm m\e+ P/ )

e Multi charge case: The expression for electrical conductivity at the horizon
is given by,
1 G -2
OHii = m u(?“) Gz
1 1 ez
—— 5 Jad
167G X?
7T—n
g = rpi(rn)

16V2m 7G

For simplicity we just give example of D1 brane and a general result will be
presented in the next chapter.

r=rp

T=Tp

(2.98)

e D1 brane with four unequal charges: In this case, the coupled set of
equations for i field are given by

%(Ni%¢i(r)) + Z M;;p;(r) =0, (2.99)

where index i, can take value from 1 to 4 (there is no sum over i in the above)
and

I
z%

)1 1
Ni=g" P’ f(r)H}+, My =—=8m i Lig* ">, h (1+ H,;). (2.100)

i=1

Demanding regularity (in going boundary condition) at the horizon and at
the boundary ¢; = ¢?, we get the solution to 4 coupled equation to be

¢? 67»2(6lz¢0 22?:1 (b?lj)
H? '

)

(2.101)

b =

The expression for diagonal part of electrical conductivity is given by
Ord +12r202 + 312 + 12 Z] 5

144/2m ©Gry, ’

(2.102)

Oy =
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Chapter 2. Electrical conductivity at finite chemical potential

where as off diagonal part of the conductivity is given by

4
lilj 2 2 2 2
O = — 6r+§ L, =37 +15)). 2.103
! 144+/2m ﬂGrh( g P F ( ])) ( )

We can now explicitly check that, for multi charge case

2
_ _ e+ P
Pz“%’jl/)j = piaH,liipi (s—T> ; (2.104)
where
3H2
OmHii = riHi(r) (2.105)

16v2m G’

is the electrical conductivity evaluated at the horizon and depends only on
the geometrical quantities evaluated at the horizon.

To conclude, we have checked that, at and away from conformality the form of
boundary conductivity is given by Eq.(2.62) and Eq.(2.63). Next we shall check
whether the general form of conductivity holds for Lifshitz like black holes. First
we give a brief details of Lifshitz like black holes and then we shall compute con-
ductivity for both charged and uncharged cases.

2.7 Lifshitz like black holes:

Due to possible applications in condensed matter systems, there have been lots
of work [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] going on to understand
transport properties of gauge theories dual to both uncharged and charged Lifshitz
like black holes. Motivated by this, our aim in this section is to explore electrical
conductivities for these class of black holes. This section is organized as follows.
First we review the geometry and thermodynamics of uncharged Lifshitz like black
holes. Then we discuss transport coefficients such as electrical conductivity. For
the charged Lifshitz case, after discussing geometry and thermodynamics, we focus
our attention to the computation of electrical conductivity.

2.7.1 Uncharged Lifshitz black holes:

The metric for this case is given by

ds? — 12110 pinar 4 BTN g =1yt 2.106
s = [ u2z‘f(u) + u2f(u) + u2 Z xi]? f(u) - u : ( : )
=1
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Chapter 2. Electrical conductivity at finite chemical potential

The horizon is located at v = 1 and the boundary at u = 0. We take uncharged

Lifshitz black brane metric in Eq.(2.105) as the background and treat the Maxwell

action

—% / A"z =gF,, F" (2.107)
4941

as perturbations. Here g4, denotes the gauge coupling constant. The Maxwell
equation is

Sp =

1
N

The electrical conductivity reads

8, (v/—gF"™) = 0. (2.108)

L o))
o5 = ——G(u) g2 [—} . 2.109
B g§+1 ( ) ¢0 u=1 ( )
At w— 0, to get conductivity we need to solve
d d
—(N— = 2.11
(N2 (u) =0, (2110)

where N(u) = \/—g#ﬂg”guu. Solution of Eq.(2.109) that is regular at the horizon

is given by ¢(u) = ¢g, where ¢ is the boundary value of the perturbed field. Since
at zero chemical potential, conductivity at the horizon and at the boundary are
the same (as ¢(u = 1) = ¢(u = 0)), we get,

og = OB
g 2.111)
= . , 2.111
gd2+2 u=1
which upon using metric (2.105), gives
1 4 da-2 a2
o=——(Lrog)"? = = T= . 2.112
A = () (2112)
Where we have used 7§ = %T. Using the definition of ﬁ one finds,
P [ / < grrgttng—l—l(T)]l
1% o vV — 9
[d=2
= S—(d—2)ry " (2.113)
9d+2
For these class of black hole, we have
d
e=-P, e+ P="Ts. (2.114)
z
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Chapter 2. Electrical conductivity at finite chemical potential

Taking P = TS we get s = c’%iT%. Moreover r§ = %T, so that we can write
L2 A7 d—z _ d—z
X = ol ()T
9o z+
= KT, (2.115)
In this notation the conductivity can be expressed as
| 4 z2—2 __d—2
= k = T =
7 d—z ( z+ d)
]_ 47T z—2 z—2
= =y T = 2.116
—o3ad X (2.116)
2.7.2 Charged Lifshitz black holes:
It was noted in [70] that the following action
S— 1 /dd”x\/—g(R N tp 1m2A2) (2.117)
167G g2 4 2 '
admits (d 4+ 2)—dimensional Lifshitz space-time with arbitrary z
1 d
2 20 22,2 2, .2 2
ds® = L*(—r®di* + —dr? + 7 Z;dxi) (2.118)
as a solution. If one adds a second Maxwell field (F}) i.e.
S—— 1 /dd“x\/—g(R DY - B 1F?) (2.119)
167G g4 4 2 4717 ‘
then the metric of the black hole turns out to be ,
1 d q*
2 12/ 22,2 2, .2 2 _
ds® = L*(—r**dt* + ﬁdr + 7 ;dxi), f(r)y=1- S (2.120)
The mass parameter and the cosmological constant are given by
o  2d 1, 9

while the massive vector field and the second Maxwell field strength are given by

2(z—1)

A = Lrf(r), Fy,q=qLr %" (2.122)

66



Chapter 2. Electrical conductivity at finite chemical potential

Let us note that in the above z = 2d and r§ = ¢*/2d>.
When z = 1, the above ansatz leads to

2 2 2 2 dr? 2 ’ 2 m ¢
ds® = L°[— dt dz: =1-
8= Dl=r*f(r)dt* + s 4 Z ol 1) =1 Gt gy
(2.123)
and
A, =0, F.,=0, (2.124)

which is nothing but asymptotically AdS black brane. The second Maxwell field
and the cosmological constant are given by

qL A:_d(d—i-l)

Fth:ﬁ’ 2L2

: (2.125)

In order to complete our discussion on charged Lifshitz black hole, we now
discuss thermodynamics of these solutions. The temperature and entropy are given
by

z
T:E'f’g, SBH:

where ri = ¢*/2d* and Vj denotes the volume of the d—dimensional spatial part.
Let us note that

(2.126)

X = L
L
1
— —d Ld—2 d—z
TonGa, -~ DT
]_ 47T d—z d—z
_ — L2 T T 2.127
167er+2<2 LT () : (2.127)
and
1 q¢*L? —d
= Za 2.128
Pr 167TGd+QZ—dTO ( )

Now assuming that the first law of thermodynamics is satisfied we get,

e+ P= 2 L3, (2.129)

87TGd+2

2.7.3 Electrical conductivity

For convenience we shall use the coordinates u = (22)z. In this coordinate, f(u) =
1 — u?. Using the differential Eq.(2.10) we reach at,

d? 1 d 4 -2 2
f(u) | 4-2

a0 + (G T+ o )0l) = o) =0 (2130)
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The solution that satisfies regularity at the horizon takes the form

wEET [_l + 2] r [% _ % _ \/16—55—7z2] T [g 1y \/1678z77z2]

4 z 4z

(b(u):_(b 2 2

D[3—2)7 |4+ 1 - ST | 4+ L S

5 1 V16—-82—-7225 1 V16—8z—-7225 2

Fl-—=-- - — - e T 2.131
21{4 2 4z 1zt 4z "2 z’u] ( )
+oF 1_'_1 V16 — 82 — 722 1_'_14_\/16—82’—722 1_'_2 9
—+ - — —— 4 - —— 4+ —,u
027y T, 4z T4z 4z T2 2 ’

where ¢q is the boundary value of ¢(u). The boundary conductivity is given by

¢(u=1)
¢(u = 0)
1

- m(mo)d—z(w)? (2.132)

op = O'H(

)2

To compute conductivity we need to calculate (%33)2

e 2 =4,d=2: In this case (%)2 ~ 0.24, so that conductivity is given by

op = 0.24 oy
0.24

= —. 2.133
].677Gd+2 ( )

e 2 =06,d=3: Here (%)2 ~ 0.27, which gives

op = 0.27 oHy
0.27
- L
167TGd+2( TO)
0.27 27
167TGCH_2 3

o=
D=

)T, (2.134)

In general the conductivity can be written as

4 z— zZ—
op =C y (L)1, (2.135)

z

where C' = (igié% )2. Tt is important to note that above expressions only depends on

temperature (no dependence in chemical potential), since charge and temperature
are related by T' = @

27wz "
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Chapter 2. Electrical conductivity at finite chemical potential

Let us note that using Eq.(2.125) and Eq.(2.128), Eq.(2.62) gives

(sT)?
O Horizon
(e+Pp7"
= 025 oy, (2.136)

O Boundary

which is independent of z,d. What we observe is that, electrical conductivity
of charged Lifshitz like black holes given in Eq.(2.132) and in Eq.(2.133) differs
slightly from Eq.(2.135).

2.8 Radial evolution of electrical conductivity

The aim of this section is to study electrical conductivity at any radial position
r. To make life simple, we shall consider single charged asymptotically AdS black
hole to find out the form of conductivity. As we shall see, at any radial position
r, the conductivity is given by a simple expression which interpolates smoothly
between the one computed at the horizon and at the boundary.

2.8.1 Relation between universal conductivity of stretched
horizon and boundary conductivity

Consider the Maxwell part of the action of the form

1
S = _/dd+1:c V=9g—5———FunF"", (2.137)
Agg41(r)

where g3, ,(r) in general is a r dependent coupling®. The electrical conductivity
at any radius is given by (see Eq.(2.30) and for further details see [57, 48])

B 1 43 (r =1p)72
o(r.) = (—%ﬂ o 0ot >: [T(n) | (2.138)

Let us note that at the horizon conductivity is

d—3

o(re=ry) = (% ggf) , (2.139)

4g§+1 (r

which is entirely given by geometrical quantities evaluated at the horizon. In order
to understand radial evolution of conductivity we consider the cases with vanishing
and non-vanishing chemical potential separately.

26Let us note that, in the notation used in Eq.(1.69), ﬁ =G(r)
d+1
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Chapter 2. Electrical conductivity at finite chemical potential

2.8.2 Radial evolution of conductivity at zero chemical po-
tential

Let us note that at vanishing chemical potential, the term M (r) = 0 in Eq.(2.10).
If we impose in going boundary condition at the horizon and impose ¢(r — oo0) =
¢o, at the boundary , then one can show that solution to Eq.(2.10) is given by
o(r) = ¢o, at any radius i.e. ¢ is a constant. Now using Eq.(2.137) we get,

1 e
N b I
T=Th
= 0,=0(71). (2.140)

So we conclude that at vanishing chemical potential boundary and horizon con-
ductivity is the same.

¢ Relation with universal conductivity of the stretched horizon: The
universal conductivity of the stretched horizon is given by (see [4]) o, =
. Now we see

g(21+1 (Th)
d—3

OCFT,u=0 = Omb ng (Th), (2-141)
d—3
where factor g, (rp) converts the length scale in CFT to proper length scale

at horizon [4, 57| (let us note that in d dimension, conductivity has a mass
dimension d — 3).

2.8.3 Cutoff dependence of conductivity at finite chemical
potential:

At finite chemical potential, boundary and horizon conductivity are no longer
same. In this section we study how conductivity evolves radially in this case. In
[77], it was demonstrated that there is a simple relation even interpolation between
the fluid at the horizon defined by membrane paradigm and fluid at the boundary
defined by gauge/gravity duality. The authors in that paper introduced fluid at
any arbitrary radius r outside horizon which reduces to gauge/gravity fluid as
r — oo. For convenience we take the metric and gauge fields as taken in [77]. The
asymptotically AdS black charged p-brane solution are of the form

dr? N g
ds2,, = —h(r)dt*+ o) + 2 daida;,
r rPt
A = pQ—hl (1 _ Tf;1>, (2.142)
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where

2

r 2 TfLH QTZP
h(T) = ﬁ 1—(1+OZQ) ‘|‘O[Qm s

prp+1

et = L. (2.143)

T
What we observe is that these are Reissner-Nordstrom black hole in p+2 dimension
with gauge coupling set to one and a = f;’jj). Let us consider a cutoff at radius
r = r. outside the horizon. One can define thermodynamic quantities there. If
the hawking temperature is Ty, the local temperature at the cutoff radius can

expressed as

T.=T(r.) = Zf(fr - Ty = hi:’). (2.144)

The entropy density of the fluid at r. is given by s = i—ge—W), which reduces to

s = i—’; as r. — 15,. One can find out local Brown-York stress tensor?’to define

ﬂ(hl t/>, (2.147)

p="Y(2 _
et k2 \ 2h

where € and P are energy density and pressure of the fluid at r.. Let us note that
for r, — r,

e+ P =sT.,. (2.148)
The chemical potential at r. is
_ A (2.149)
H N .
which vanishes at the horizon. So that the thermodynamic relation
e+ P =sT,.+ pp, (2.150)

holds at any arbitrary radius. In order to find out electrical conductivity we need to
solve Eq.(2.10) for this back ground and then use Eq.(2.30) to find out conductivity

2TFor a hypersurface ¥ with unit normal n, Brown-York stress tensor is defined as

1
tab = ?('Yablc - Icab + C’yab)a (2145)
with Y, = gap — nanp, where ggp is the space-time metric. Let us note that ¢, is ambiguous
upto a constant multiple of induced metric ~,, on the hypersurface. However this dependence

does not appear in the combination € + P. The extrinsic curvature ICyp is defined as

1
Kap = §£n7ab; (2.146)

where £,, is the Lie derivative along n.
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Chapter 2. Electrical conductivity at finite chemical potential

at radius r.. The solution can be obtained easily and conductivity can be written
down at any radius r.. But here we follow a slightly different route which might
be helpful to generalize the results in more general background. We propose that
the form of conductivity at any radius r. is given by

2
sT
O, =
e+ P

where 0. = o(r.), and oy = o(r,). The expression for oy is same as given in
Eq.(2.29). Let us note that, at the boundary Eq.(2.150) reproduces the desired
result where as at the horizon, because of Eq.(2.147), 0. reduces to oy which it
should. Comparing Eq.(2.150) with Eq.(2.30), we get

p(re) e+ P
o(ry) ST .

ST + pp
sT

on (2.151)

Tec

Tc

P
= 1+—= 2.152
7| (2.152)

where p and s, the charge and entropy densities are related to total charge () and
entropy S by a multiplicative factor of volume respectively. So we get £ = %
It was also noted in [77|, that S, @ are independent of cutoff radius r.. Using
Eq.(2.143) and Eq.(2.148) we get®

zé;:;)) = 1+%At(rc)
- 1+ S?HAt(rc). (2.153)

Now only work that is remaining is to find whether the solution of the form given
in Eq.(2.152) solves Eq.(2.10) for the particular background that we are interested
in. One can very easily check that this is indeed the case (more general cases will
be discussed in the next chapter). So to summarize, the solution to Eq.(2.10) for
this particular background is given by

e+ P

o) = =

¢(’f’h)

T

B p sT
= <1+S—TAt('r)> <€+P> ) oo, (2.154)

) 2(8F())]r the cases where A;(r,) # 0, the solution takes the the form ig:;i)) =1+ = [A(re) -
t\T'n )|
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where r — oo is the boundary and ¢, is the boundary value of ¢. The electrical
conductivity for the fluid at any radius r. is given by

2
sT
O, =
e+ P

e Relation with universal conductivity of the stretched horizon at fi-
nite chemical potential: Again the universal conductivity of the stretched

o (2.155)

Te

horizon is given by ,,, = m. Once again we observe that,
d+1
d—3
020(Th) = Omp gai (Th), (2.156)
and
d—3 T 2
OCFTp0(T — 00) = Tpp gzz (1) (eih})) . (2.157)

Let us note that at u = 0, Eq.(2.156) reduces to Eq.(2.140).

2.8.4 Imaginary part of conductivity oy = J(\):

In order to gain full knowledge of current-current correlator we need to determine
the imaginary part of the electrical conductivity. As we will see, this part of the
conductivity also behave in a universal way. Using Eq.(2.153) and Eq.(2.151) we

can write,
d sT p /
Lo < () (2) s

- ( P ) Al(r) o, (2.158)

e+ P
where primes denote derivative with respect to r. At the boundary, imaginary part
of the conductivity is given by
1 1 d

J(N) = o rllrlgo 2—H2N(T)%gb(r) (2.159)

Using Bq.(2.8) and p = —515/—gG11g"g"" A, (r), we get

1 p?
we+ P’

S(A) = (2.160)

It is interesting to compare Eq.(2.159) with Eq.(2.34). Up on comparison we find,

1 1 rr
— 9,2 dr 9rr it ¢(7(;)
€+ P 0 V =99z gb

(2.161)
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Let us note that, in the case when p = 0, d;gg) = 1. So we get
1 ! Guubtt
—— =2k* | du =, (2.162)
e+ P 0 V —9Yzx

which is the result reported in [4].
Again one can study the cutoff dependence of imaginary part of the conduc-
tivity. Rather than providing details, here we write the result

L[ gu /)2
SN, = ——| — . 2.163

So at the horizon, imaginary part of the conductivity vanishes (since gy (r,) =
0). To summarize, we see that there emerges a nice and simple picture. The
boundary conductivity can expressed in terms of geometrical quantities evaluated
at the horizon and thermodynamic quantities. At any radial position r. outside the
horizon the expression for cutoff dependent electrical conductivity (o(r.)), which
interpolates smoothly between horizon conductivity oy (r. — 75,) and boundary
conductivity op(r. — 00).

2.9 Discussion

We conclude that the boundary electrical conductivity takes a universal form in
the presence of chemical potential for a large class of black branes which include
R—charged black branes in various dimensions in asymptotically AdS spaces as
well as charged Dp branes in various dimensions. As discussed already, presence of
chemical potential brings limitations on the use of Igbal, Liu results|4]. In fact, we
have explicitly seen, boundary and horizon results are no longer the same. In fact,
we have seen that there is a smooth interpolation between them. The imaginary
part of conductivity can be written as

N

() = P (2.164)

where p, € and P are the charge density, energy density and pressure of the fluid
respectively. Let us mention here that the imaginary part of the conductivity has
a pole at w — 0 limit because of the translational invariance of the system. The
appearance of pole will further be discussed in the next chapter, where we shall also
show that the Eq.(2.163) is in fact valid for a wide class of gauge theory with gravity
dual. We have also seen that the Lifshitz like black brane does not satisfy the
universal form. The question therefore arises: what is the most general background
for which the form of boundary conductivity as in Eq.(2.62) and Eq.(2.63) are
satisfied? In the next chapter we look for an answer to this question.
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Universality in electrical conductivity

3.1 Introduction

The fluid/gravity correspondence provides us with two distinct fluids dual to a
given black hole geometry: first, the fluid given by membrane paradigm (discussed
in the appendix A), which is described by quantities at the black hole horizon and
second, the fluid at the boundary of the space time known from gauge/gravity
duality and is described by quantities at the boundary. By exploiting the fact that
changing radial position in the bulk corresponds to RG flow in the boundary fluid,
authors of [4, 77| proposed a number of relations and even interpolation between
them. For example, radial independence of certain quantities is used to show that,
the shear viscosity (1) to entropy density (s) ratio (Z) for both the fluids on the
membrane and at the boundary are the same. It can also be shown that the low
frequency limit of electrical conductivities of these two fluids computed at zero
chemical potential, are related|4]. However, the situation changes significantly at
finite chemical potential in the boundary theory (which corresponds to charged
black hole in the bulk), where radial independence, exploited earlier in relating
electrical conductivities of these two fluids, gets completely destroyed. One needs
to solve flow equations in order to relate conductivities of these two fluids. In
the last chapter we have seen, for several examples, the electrical conductivity is
universal and that there exists a simple relation between the conductivities of the
fluids at horizon and at boundary. It was also discussed in the previous chapter
that at any radial position r, the conductivity is given by a simple expression
which interpolates smoothly between the one computed at the horizon and at
the boundary. However, for gauge theories dual to charged Lifshitz like gravity
backgrounds, the above mentioned universality does not hold. The purpose of this
chapter is to find out the most general background for which the form of boundary
conductivity as in Eq.(2.62) and Eq.(2.63) are satisfied.

This chapter is structured as follows. Section 2 is a review of the earlier chapter.
This section also serves us to figure out, what we should show in order to prove
the universality of electrical conductivity. In section 3, we find the condition on
the gravity side energy momentum tensor under which the dual gauge theory will
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Chapter 3. Universality in electrical conductivity

show the universality. This section also discusses several examples, which include
theories at and away from conformality. This section also explains as to why
the Lifshitz like theories do not show the universality. In section 4, we work with
gauge theories at multiple chemical potentials and give general form of the electrical
conductivity matrix. In appendix 5, we elaborate upon the condition that we get
on energy momentum tensor. Finally we summarize our results of this chapter in
section 6.

3.2 What to prove?

Consider action of the form

1

S = 5.3 /dd“x v—g9(R — To(u )FWF‘“’ + Other terms), (3.1)
and the metric of the form
d—1
ds® = gu(u)dt® + guu(u)du® + gu(u) Z(d:p’)Q, (3.2)
i=1
The perturbed gauge field satisfies
d d
CNGY S 5(r)) ~ N () 6000 + MO0 =0, (3
with '
N(r) =-9—59"9", (3.4)
Geft
and .
M(r) = (7) V=99"9" 9" Fri Fyy. (3.5)
eff
We can rewrite M(r) in a better way as
M(r) = (2x2)2p2 -9t (3.6)

vV 99z
where,

2 2 — /. grrgttFrt (37)
Yeft

Let us note that the Maxwell equations can be written as,

@L(ﬁ\/—_gf?”“) — 0, (3.8)
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Chapter 3. Universality in electrical conductivity

and we choose the gauge where only A;(r) component of the background gauge
field is non zero (we work with electrically charged black hole).

For evaluating the conductivity in the low frequency limit and for non-extremal
backgrounds, we only need to solve equations up to zeroth order in w. To that

order one finds, ; ;
2 (N (r)=¢(r)) + M(r)¢(r) = 0. (3.9)

The expression for electrical conductivity is given by (see |54, 48, 57| for details ),

o 1 Grr (b(Th) i
T Tﬁ(ﬁm’”ﬁh@mow)
_ (L g% ¢(rn) 2
2K2 ggﬂ o s o(r — 00)

o(r) \

where oy is the conductivity evaluated at the horizon and its expression is given

by,
1 d—3

2
0 Gzz

(3.11)

=537 :
2’%2geff r=rp

we have discussed in the previous chapter, that boundary conductivity is given by

c = 0 _ o) 2
o o(r — 00)

sT ’
= UH<6+P> . (3.12)

Suppose we take the solution of Eq.(3.9) to be

o(r) .. P B
o(rn) Lt g (Aur) = Arn)), (3.13)
where Eq.(3.13) at the boundary reduces to
¢(r — o0) - ¥
W = STM
e+ P
ST (3.14)

So we conclude that proposed form of solution in Eq.(3.13) reproduces exact form
of conductivity both at horizon and at the boundary. So in order to show Eq.(3.12)
we need to prove Eq.(3.13). In the next section we show that Eq.(3.13) indeed, is
the solution to Eq.(3.9).
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3.3 Proof for Singly charged black brane

The way we shall proceed is, first we shall assume that the solution to Eq.(3.9) is
given by Eq.(3.13). Then we shall use Einstein equation to find out the constraint
that our assumption leads to. Then we show how this constraints can be expressed
in a compact form in terms of the stress energy momentum tensor of the matter
content of the system. We shall also discuss possible meaning of this constraint in
the boundary gauge theory.

We start by plugging Eq.(3.13) in Eq.(3.9). This gives

1
p
V = 9Y9zx

Using F,, = £ A, and definition of charge density as in Eq.(3.7) we obtain

dr 9ok sT dr

2
d rr
o "+ B 2R (14440 - i) =

L \/__ggmi(gmgtt) = —sT <1 + SﬁT(At(r) — At(rh))> : (3.15)

o 2H2 GrrJtt d’f’

Evaluating Eq.(3.15) at r = r,,we get

L V=99 4

= —gT. 3.16
2H2 Grr it d’f’ § ( )

Th

(gmgtt)

Subtracting Eq.(3.15) from Eq.(3.16) we get

vV —9Gzx i

e @ =20 (A(r) ~ Adn)

(gmgtt)

T

T (317)

s r
= [ Gz (g:mgtt>] — —252/71415
Gt Grr

Th

Now we use Einstein equations to find out conditions under which Eq.(3.17) is
valid. Let us consider the background of the form given in Eq.(A.2). The Einstein
equation is given by

1
R,uzx o ég,ul/R — TﬁM 4 T%attar

1 1 g atter
= 27 (EMRA = 19w pe " ) + T (3.18)
eff

- (HTg”g”ﬁiAxr))ﬂz#)z P (14 L (Ar) = Aulra)) ) = 0.
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Chapter 3. Universality in electrical conductivity

where T2/’ (r), will include all the other stuffs which may come from scalar
fields, cosmological constant or any other fields present in the theory. Since only
Ay(r) is non-zero, we have F,; # 0. Using Eq.(3.18), we can write

1 1 r 1 o t, Matter
Ry — 5g,;fR = o (FtrFt 4g§FpUFP ) + T; , (3.19)
1 11
RE—Z-¢*R= ————4*F UFpo T Matter. 3.20
T 29;1: 29621{ 49:1: P + T ( )

After subtracting Eq.(3.19) from Eq.(3.20), we get
1
) /_ng _ /_gRi — ﬁ /_gFrtFrt + /__g<jvtt, Matter<r) o T;f’ Matter<r>). (321)
eff

For the metric of the form in Eq.(A.2), following relations hold

d—1
d [ g2 Lg
VegR = | T ] (3.22)

dr 29/ 95

d—3 1

. d [ g.2 g2 d

V _gRg; - _d_ < 1 L d_gxx> > (323)
T 297?7’ T

which, after substituting in Eq.(3.21), we get,

d—1 1
‘?(Ld >+d_<g lgttdw) = g VI
r 2g7"7"92 T 2g7"7" r geff

+ /—_g<jvtt,Matter . T;}:,Matte(rg)_24)

Upon further simplification, this reduces to

dt1

d ng d d atter x, Matter

‘%( et 9tt>) = 2 p A 20/=g (T M () = T M (1)(3.25)
9irgrr

*wl»—‘

Integrating above equation we get

T

ﬁ r
xx d Tx " atter T atter
( g ar —(9g gm)) = —2r%pA| + 2/ dry/=g(T} M (r) = T Moter(r)).
gt2tg7?7’ Th Th Th ( )
3.26
Thus, if we impose the condition that
T M (r) = T M (), (3.27)
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Sy
Jzz T
( 1 (g gtt))

9497

which? is same as Eq.(3.17). Hence we have shown that, if the gravity background
satisfies Eq.(3.27), then the dual gauge theory will satisfy Eq.(3.10). We suspect
that whenever the boundary theory is in the Minkowski space, the condition im-
posed by Eq.(3.27) on the stress-energy tensor (barring the electromagnetic part)
will hold true. This was also observed in |78, 79| in the context of proving the uni-
versality of shear viscosity. In the following section, we elaborate upon the above
condition considering several examples.

then we get

s T

= —2Kk%pA,

Th

, (3.28)

Th

3.3.1 Examples

In all of our examples in this section we will take the metric, gauge fields and
other form fields as the functions of coordinate r only. It was observed in [78, 79|
that if the scalar and other form fields are functions of the coordinate r only and
if the boundary theory lives on the Minkowski space, then TWMatter ~ G (),
(where p, v are gauge theory indices) which in turn implies the condition given by
Eq.(3.27). In what follows, in this section, we first discuss the boundary theories
which live on Minkowski space-time where we will find explicitly that the Eq.(3.27)
holds good. Next, we discuss one example where the boundary theory does not live
on the Minkowski space-time, namely the asymptotically Lifshitz like space-time,
where the condition in Eq.(3.27) does not hold.

e Boundary theories living on Minkowski space-time

— Conformal boundary theories: Let us note that Reissner Nordstrom
and R-charged black holes in various dimensions in asymptotically AdS
space (as already checked in [54]|) and in the previous section as well as
any other background which satisfies Eq.(3.27), should satisfy Eq.(3.10).

— Non-conformal boundary theory: Non-conformal theories such as
gauge theory dual to charged Dp brane satisfies both Eq.(3.27) and
Eq.(3.10).

2For the backgrounds which satisfies Eq.(3.27), it is interesting to note that, if we set 7 — oo,
d+1

and use first law of thermodynamics as well as the fact that sTy = # (g”f“gl %(gwmgtt)>

1 1 )

9it 97‘2’7‘

Th

from Eq.(3.17). Let us note that we should add

2
9t 9rr r—00

the Gibbons-Hawking term and counter terms (see [37]) in order to get finite values.

at1
1 o d
we have e + P = 55 (g% T 5(9”9&))
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Boundary theory dual to charged Lifshitz like black hole: For this
case it was shown in previous chapter and in [54] that

sT )2

3.29
e+ P ( )

opB 7& OH (
Now the above result can be understood easily. Let us consider the following
action in (d 4 2)-dimensional space time (see for details in [70, 75])
1 1 1

/dd“x\/—g(R —2A — ZF2 — §m2A2 — ZFf). (3.30)

1
S=——
167TGCH_2

The corresponding equations of motion are given as follows,

Ou(V=gF") = m’V=gA”", 0.(V—gFl") =0,

2 1 1 1
RMV EAgMV + 5 u)\Fu)\ + §F1,M)\F1>:y + émQAMAV
1 1
——F? —F2q,,. 31

From the above equation we can find the energy momentum tensor. Let us
write it in the form T}0'* = T7M 4 Tater where T, contains contribu-
tion from gauge field Fy ,,, whereas other fields contributes to T}/***". Let us
note that the massive gauge field A,, was introduced to get the Lifshitz like
scaling. If we take only non-vanishing components of gauge field to be A,
then it is easy to see that

1 1
jvtt,MatteT . Tmm,Matter — §FtrFtr + §m2AtAt
£ 0, (3.32)

where F.; = d%At and also note that g = g = 1. This provides us with an
explanation of Eq.(3.29).

3.4 Universality of electrical conductivity with mul-

tiple charges

Now we turn our attention to multiple charged black brane. For convenience we
once again write down th equation that governs the perturbed gauge field. We

have

with

%(Nf%cm(r)) — W’ Ny grg"01(r) + ) Misops(r) =0, (3.33)
J=1

M]J = FrIt\/ —gG[[gxxgrrgttG‘]JFri. (334)
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Let us note that M;; = M;y;. One can show that, the solution to the Eq.(3.33)
can be written as

=1 = L) — At =op) - FOEEEDS gt 035)

where ¢ is the boundary value of 7’th perturbed gauge field and again the condition
on bulk energy momentum tensor as stated as in Eq.(3.27), has to be satisfied.
Here we write the diagonal and off diagonal terms of the conductivity matrix.

d—3
2
Gz

044

24 p; 2 - ij(rh)#?
[Gz‘i(rh)(l - er) +p; ; W]a (3.36)

- G

r=rp

and off diagonal components with ¢ # j, we have

=3 21155 2115 p; - ij(rh);ﬁ
i = ———=Gxa -Gy ! -Gy, L 4 pip; 7]} 3.37
i 167rGg rrh|: (Th)e+p ”(Th)e—i-p Pibs = (e+p)? ( )
One can now easily check that,
P 2
_ _ €+
pigijlpj = piOH,liipi< T ) 5 (3.38)
as well as )
sT
Wil = MzUH,ziui<€+ P) . (3.39)
One can also find out the imaginary part of conductivity and it is given by
i g 1 PipP;j
S ANw);) =—— — —_ 3.40
SAw)i) w(gm> 167G e+ P (340)
r—r00

3.5 Condition on energy momentum tensor
Let us consider a constant r hyper surface outside the horizon. The unit normal

vector to that hyper surface is n#0, = n"0,, where n” = /g"". One can define the
extrinsic curvature ©,, of the hyper surface to be

1
@,uz/ - _§<v,unu + vynu>' (341)

30To be more specific, the matter part of the energy momentum tensor that needs to satisfy
Eq.(3.27), does not include the any of the U(1) gauge field.
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Using the form of the metric as in Eq.(A.2), we get

1 d 1 d
= ——\/q""— = ——\/q"— . 42
Ou 5 g dr git Ozz 5 g dr Jxx (3 )

Using Eq.(3.20) and Eq.(3.19), we can write

d d
VIR = —-(Vhe)), R} = - (Vhey), (3.43)
where h is the determinant of the induced metric on the hyper surface. The induced
metric on the constant r hyper surface is given by
d—1

dsy = hydt® + hyy Yy (da')?
=1

d—1

i=1

Let us define a tangent null vector I*0, = /—g¢"0; + \/g**0,. Now we can write
Eq.(3.21) and consequently Eq.(3.26) as

VEgR MY = =gT

= V=gT M 4 =g T eI, (3.45)
\/—h@uyl“l”r = /dr\/—gTﬁ,‘M'l“l”Jr/ dr\/—gT%“tt”l“l”
Th Th Th
= —KpA, ' +/ dr\/—gT%“tml“l”, (3.46)
Th rh

respectively. Upon using the Einstein equation (3.18) and the fact that for the
metric of the form given in Eq.(A.2), the R,; component of the Ricci tensor is
zero, we get TMater — (0 since TZM = 0. So the condition that we get on the
energy momentum tensor®! in Eq.(3.27) can be written as

TMatterjupr — ), (3.47)

31 According to null energy condition, Tﬁff“ll“l” > 0, with {* a null vector. Since Tfy'Ml“l” >
0, the contribution from the matter part Tﬁ“””l“l” may be negative as well. However it
is interesting to note that, if we take a limit where charge of the black hole vanishes then
T MM = 0, so that null energy condition gives TA*"*"[#¥ > (. So if we are interested in the
backgrounds where matter sector does not act as a source for electromagnetic field, it appears
that T%““”l“l” > 0, irrespective of the presence of gauge fields.
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We get a better understanding of the Eq.(3.27), by looking for simplest case of no
black hole and uncharged solution. The Eq.(3.25) reduces to,

d+1
d g:m? d Tx atter T atter
_5< s gtt>> = oy mg(T () - T () (3.48)
e Grr

So if we demand
nt, Matter(,r) . T:;;v, Matter(r) — 0’ (349)

then we get g**g;; ~ —1. This might be related to the fact that vacuum of dual
gauge theory being Lorentz invariant.

3.6 Discussion

We have shown that, for u # 0, given that the form of Maxwell part of the action
is

1
2

S = —/dd+1x \/—_g4
Gers

the electrical conductivity at the boundary is given by

Fun MY, (3.50)

d=3 (sT)?
op = —5 Ui T P2
geff =T} (€+P)
(sT)?
= — 3.51
d—3
where oy = g21 Jza , is the electrical conductivity evaluated radially at the
eff r=rp

horizon. We can argue that once the real part of the conductivity is known,
the imaginary part of conductivity is automatically fixed. To summarize, in the
presence of chemical potential the electrical conductivity can be expressed as

. 2 1 d-3 T 2
- <&> L e (3.52)

W\ Gux e+P gy r=ry, (€ + P)%’

Let us mention here that the imaginary part of the conductivity has a pole at
w — 0 limit because of the translational invariance of the system. If one uses the
Krammers-Kronig relation

F(A\w)) = —173/OO de', (3.53)

s o W —w

then one can find that the real part of the conductivity contains a delta function
if the imaginary part has a pole. As we have found a pole in the imaginary part of
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the conductivity, it follows that real part has a delta function singularity at w = 0.
So, strictly speaking DC conductivity that we have computed is low frequency
limit of AC conductivity or more precisely expression for conductivity is valid for
w — 0T, see [32, 61] for a nice discussion.

It is interesting to note that the cutoff dependent conductivity can be computed
and it interpolates smoothly between the results at the horizon and at the bound-
ary. At any cutoff r. the expression for electrical conductivity®? can be written

as
, 9 )
L[ Gu p 1 s (sT)
A=——| = + 5 Gad —— 5 3.54
v (gzz>r (6 + P)r%oo ggff J "=Th (E + P)2 r=Te ( )

where r — oo is the boundary of the space time. It is interesting to compare our
results with the results obtained from the membrane paradigm arguments. We
have seen, that irrespective of the theory, the horizon conductivity is given by

d—3
Yets =T
whereas the universal conductivity of the membrane is given by
1
Omembrane — ~5 . (356)
Gepg 'r=rn
So we conclude that the horizon conductivity is given by,
d—3
og = O'memgxx2 (357)
T=Thp

We have also seen that for the backgrounds that satisfies Eq.(3.27), the bound-
ary electrical conductivity can be related to horizon conductivity using thermody-
namic quantities. More precisely we can write,

o = g TP
b H(6+P)2
d=3 (sT)?

mem Gui — . 3.58
7 g r=rp (6 + P)2 ( )

32Let us note that, at any radius r., the local temperature and the chemical potential can be

given by T, = \/% and p. = % respectively. Assuming first law of thermodynamics
gtt(T'e gtt(Te

e(re) + P(re) = sT. + pp. to hold at and radius and using Eq.(3.13) we get
o(re) sT

¢(Th) o 6+P 'r‘:'r‘c7

and consequently Eq.(3.54).
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Since mass dimension of electrical conductivity is d — 3, one can understand the

factor g;xT?) as the converter of the length scale of the boundary to the proper length
at the horizon [4, 57]. It would be very interesting to understand the meaning
of extra factor (;TP)2 that appears in the formula due to presence of chemical
potential. At this moment it is not quite clear to us how to interpret it directly
from the constraint Eq.(3.27) which appears to be related to Lorentz invariance of
the vacuum of the field theory. Let us note that, at zero chemical potential

Op = OH

Omem G : (3.59)

as was shown in [4].

In our result of the electrical conductivity, oy is given entirely in terms of the
geometrical quantities evaluated at the horizon. A natural question that arises,
whether it is possible to give an intrinsic meaning to the expression of conductivity
in terms of field theory quantities? This will bring the formula for electrical con-
ductivity in the same footing as celebrated universal result for . Answer to this
comes from the expression of thermal conductivity to viscosity ratio. As it was
shown in [48] and will be discussed in the next chapter that, electrical conductivity
can be expressed in terms of the field theory quantities alone.
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Universality in thermal conductivity to
viscosity ratio

4.1 Introduction

In the previous chapter we have shown that electrical conductivity can be expressed
in terms of geometrical quantities evaluated at the horizon and thermodynamic
variables. A natural question therefore arises: is it possible to give an expression for
electrical conductivity solely in terms of boundary gauge theory variables? In this
chapter we provide an affirmative answer to this question. With supports coming
from various examples, we further conclude that the thermal conductivity also
shows some universal behavior. More precisely, we propose that for a d dimensional
strongly coupled gauge theory

m P) !’

rr jz_d_(c_)_ 2 d-1 ¢

W) ==\F) = Far o w (4.1)
where kr is the thermal conductivity (the heat current response to thermal gra-
dient in the absence of electrical current), T is the temperature, u the chemical
potential, 1 the shear viscosity and c, k are central charges of dual gauge theory.
The dimensionless constants ¢ and & are roughly related to total and charged
degrees of freedom and are related to to pressure and charge susceptibility of the
system at equlibrium. We test our proposal against several examples. However a
general proof of this result is still lacking. Using this universality we also find out
electrical conductivity in terms of boundary thermodynamic variables.

This chapter is organized as follows. In the next section, thermal conductivity
and thermal conductivity to viscosity ratio is computed for several examples. In the
third section, after reviewing the standard result for viscosity to conductivity ratio
at vanishing chemical potential, we show that Eq.(4.1) holds at x4 = 0.** Then,
based on few examples, we conjecture that Eq.(4.1) holds true even for arbitrary

33Let us note that in the presence of equal number of positive and negative charges, chemical
potential is zero.
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nonzero chemical potential. Subsequently in section 4, using Eq.(4.1), we provide
a way to compute electrical conductivity in terms of thermodynamical quantities
alone even in the presence of non-zero chemical potential. In section 5, we compute
thermal conductivity to viscosity ration for several non-conformal gauge theories
and observe that they again behave universally. We end this chapter with a brief
summary of the results.

4.2 Thermal conductivity

One of the aim of this section is to study thermal conductivity (kr) as defined in

Eq.(1.113). In the following we shall start with the examples of computation of

the thermal conductivity and thermal conductivity to viscosity ratio (2% 3 (17)?)
j=1

for R—charged black holes in 4,5, 7 dimensions.

4.2.1 Single charge black hole

Note that for single charge black hole —L— = %.

pi%ij Pj P

e+ P 2 e+ P g
— - — 4.2
" ( pT ) ” ( P ) T (42)

Rather than providin% details we here tabulate the thermal conductivity and di-

So that one gets

mension less ratio "‘% , where 7 is the shear viscosity.

) : o2
Dimension K ;—j‘f

(I+k)2N?T2x 2

D k(2+k) 87

3/2 nr3/2
7 8(1+k)>N3T4x? 92
3k(31k)3

Table 4.1: Thermal conductivity to shear viscosity ratio for single charge black
hole
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4.2.2 Two charge black hole

2
KTp

In the ratio “Z%=, 1i* is replaced by 4§ + p3. Note that p1; — —p; is a symmetry >
which implies reversing the sign of charge density.

K 2 2
Dimension K %
5 N3T27¢ 87'('2
(2+J§1 kfj) (ng (1+kj)2)
3
4 T 3272
3k ;
(E <1+kj>2> [ (+#s)
(2N)3T*7? 12[ (1+k;)
7 = 27’(’2

Table 4.2: Thermal conductivity to shear viscosity ratio for two charge black hole

4.2.3 Three charge black hole

In this case the results are summarized below

4.2.4 Four charge black hole (4 Dimensional black hole)

The thermal conductivity is given by

_— (2N)2 T | (43)

4 3 4
(& witp)y L0+ 8

and 2 2 2 2
K (pg + py + M3+ 13)
nT

= 327°. (4.4)

34The expression for k7 in Eq.(1.113) is invariant under SO(m) rotation among p;’s.
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T nT
N2T2x 2
5 (g im) (£ i) K
204 L . 7
P R AN =N CETE
2N) 2T
4 ( 7 3272
<1+k W2 \/1_I L)

Table 4.3: Thermal conductivity to shear viscosity ratio for three charge black
hole

e 11 # 0 : We observe that irrespective of number of chemical potential turned
on, thermal conductivity to viscosity ratio shows same value although expres-
sion for thermal conductivity changes with number of chemical potentials.

e 1 =0: We also observe that as 4 — 0 i.e. p — 0, thermal conductivity
given in Eq.(4.2), diverges which implies finite, non decaying momentum. In
spite of this divergence, we shall observe in the next section that thermal
conductivity to viscosity ratio remains same as in the non zero chemical
potential case. In the following we shall first concentrate at zero chemical
potential case.

4.3 Universality in thermal conductivity to viscos-
ity ratio

In the following we first review the relation between electrical conductivity and
shear viscosity at vanishing chemical potential [3]. In a CFT, short distance physics
is described by singularities of correlation functions where central charges of the
theory appear explicitly (in this energy scale effects of temperature are irrelevant).
For example let us consider correlation functions of energy momentum tensor 7},
and U(1) conserved current J,

(T@IO) ~ s (T@)T0)) ~ o (45)

where central charges ¢,k measure the number of total degrees of freedom and
the number of charged degree of freedom of the system® respectively. We also
know that at long distances physics is described by thermodynamics and transport

35S0 we expect k < c.
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coefficients. In this scale, the effect of temperature becomes important. To describe
equilibrium at 7" # 0, we look at pressure and charge susceptibility xy = ﬁ where

p(T, 11) is the charge density . If T is the only scale in the theory 3¢, then
P=cT?, x = kT2 (4.6)

where ¢, k' measure the number of total degree of freedom and number of charged
degree of freedom at that scale. For d > 2, in general there is no relation between
c,c and k,k'. But it was shown in [3] that for CFT’s which admit gravity duals,
there exist such relation and are given by

J (%>df(d/2)3 d—1 Koo (%)dm%/d?))?’ (A7)

- d
c 472

I(d) dd—1)  k 954

where3’d > 3.
It is well known that, in this class of CFT’s, even certain transport coefficients

are determined in-terms of thermodynamical quantities (for example n = ;).

Other such relation between viscosity and conductivity (o) at vanishing chemical

potential (= 0) is

n c

7 =02

)-82 (d—1) c
~ T d—2)dd+ )k

(4.8)

Eq.(4.8) implies at vanishing chemical potential i.e. at g = 0, electrical conduc-
tivity can be computed in terms of central charges only. Using Eq.(4.8), (4.6) and
s=d T one gets

—cT™, o= —r kT (4.9)

Since thermodynamics is determined by the central charges, we conclude that the
momentum (n) and charge () transport are fixed by thermodynamics®®. Existence

36t0 define v, one can introduce small chemical potential and see the effect in p .

37In our notation d is the dimension of gauge theory.

38 As an aside lets review membrane paradigm arguments. It was shown in [4] using membrane
paradigm arguments that at y = 0, electrical conductivity can be determined in terms of geometry
only. If we use the results in [4], we immediately reach at

2
Ui 1 954
N = - (r0). 41
o2 = T2 Toncy 92+ (10) (4.10)

As an example consider a CFT with the gravity dual given by AdSyy; with d # 3, which has a

metric

T2

TR

R2
ds® (ff(r)dt2 +dz%+~--+d$§_1) + WdTQ, (4.11)
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of such relations between thermodynamics and transport coefficient are interest-
ing 3% since transport coefficients are characterized by inelastic collisions among
thermally excited carriers (of energy ~ T') hence they are not fixed in terms of
thermodynamics.

What we conclude from above discussion is that, at non zero
temperature and at g = 0, certain transport coefficients are determined by ther-
modynamics. It is interesting to ask whether for ; # 0 and at finite temperature,
transport, coefficients can be determined from thermodynamics. We note that in
this case it is already known that 1 = ﬁ still holds i.e. momentum transport
can be determined solely by thermodynamics. It would be interesting if one can
express the electrical conductivity which encodes the charge transport, in terms of
thermodynamics.

We now proceed to provide evidences in favor of Eq.(4.1). In what follows, we
first derive equation for ;4 = 0 and then provide support for cases with u # 0.

e Derivation of Eq.(4.1) for ;1 = 0 : Let us consider theory at small (single)
chemical potential and consider the ratio g—jT,,u?. Using the relation?® xp =

2
<ﬂ> 2 one obtains
P T

BTz ( P)2 SN N 4.13

" “ (p)2 (L) T (4.13)
m oT?

Now taking p — 0, using e = (d — 1)P, x = ﬁ we immediately get

’

KT d? (c ) , d—1 ¢

— = (=) =87 4.14

gt T a—2\F) T Bk (4.14)
with f(r) =1 — (2)¢ and hawking temperature is T = 4= 2% where ro and R are the position

of horizon and AdS curvature scale respectively. Using the above relations we obtain,

2 2
o * i (4.12)
0’T2 d2 Gd+1
which is same as reported in [3].

39We note that hydrodynamics description is valid in the energy range w < T which is collision
dominated regime [80, 81]

40Let us note that, at u = 0, the charge density vanishes such that £ remains finite. So,
in this limit, the thermal conductivity diverges, which implies finite non-decaying momentum.
Naively, one can understand this in the following way. At finite chemical potential, there is a net
charge density. Now we imagine having a temperature gradient, under which there will be flow of
charges from lower temperature to higher temperature region. This will imply a net current. So,
one needs to apply voltage gradient in order to have zero current, which will effectively results
in decaying momenta due to collision. In the case when there is no net chrage, there is no
net current flow under temperature gradient and hence one does not require to apply a voltage
gradient. This cause a finite but non-decaying momenta (see[80, 81], for further details).

92



Chapter 4. Universality in thermal conductivity to viscosity ratio

e Support for Eq.(4.1) for p # 0 : For non zero chemical potential, we
recall some of the results already reported in the literature. In each case
we show that they follow Eq.(4.1). Here we tabulate the results for strongly
coupled gauge theories having gravity duals in the presence of single non zero
chemical potential [32, 36, 48].

Gravity theory in d + 1 dimension “rT]—j‘fQ ddTQQ <z—/,>
R-charge B.H. in 4 + 1 dim. 872 872
R-charge B.H. in 3 + 1 dim. 3272 3272
R-charge B.H. in 6 + 1 dim. 272 272

Reissner-Nordstrom B.H. in 3 + 1 dim. 4729?4722

Table 4.4: Thermal conductivity to viscosity ratio at finite chemical potential

It was further reported in [48] that for the R-charged black holes in five,
four and seven dimensions the appropriate ratio of thermal conductivity and
viscosity, regardless of the number of charge contents, are 872, 3272 and
272 respectively. Based on these observations we propose that, even in the
presence of finite chemical potential (and arbitrary number of them) we can
write

KT 2 ? /c , d—1 ¢
= (=) = - 4.1
T 2_() d—2<k’) ST Bk (4.15)

In the next section we use (4.15) to express electric conductivity in terms of
the thermodynamical quantities alone.

4.4 Electrical conductivity

Let us first write down various expressions for thermodynamical quantities, trans-
port coefficients such as viscosity, electrical conductivity in the presence of single
chemical potential. In our definition, Y = £. In case of nonzero chemical potential
we expect different thermodynamical quantities and transport coefficients to get
modified from that of Eq.(4.6), (4.9) . In general these can be written as

P =T, (m), v = KT, (m), (4.16)
and
_ld/d_3 _d’d—l
0= KT (m) = CTE ), ()
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Chapter 4. Universality in thermal conductivity to viscosity ratio

where m = £ and f(m)’s are defined such that f(m = 0) = 1. Now using

’

o’ (e P\ o & <C_) (4.18)
nT p nT?  d—2\k'/)’ '

we get an important constraint between the function f(m)’s

feto
—1, (4.19)
f3
which gives f, = f’jﬁf". We then obtain expression for conductivity*!
ya
1 d g fif
= ) 473 XT 4.20
’ T d—2ir 2 (4.20)

which is entirely fixed in terms of central charges (and thermodynamic quantities).

4.4.1 Examples

Here we present computations which led to the results of Table 3 in the previous
section. We shall also illustrate with an example, how to use Eq.(4.20) to determine
conductivity.

e AdS, Reissner-Nordstrom blackhole: The action is

1 6 1
Metric is given by (for details see [32])
L? dr? i1
ds® = ﬁ(—f(r)dﬁ + o) + dz'dx"). (4.22)
Thermodynamical quantities are given by
1 r2 2 12 r2 2
T = - P = 14— 4.23
and 2 L? 207 1
S=3 X=L=Tai (4.24)
- +

. . 2 J 2
“We may also write it as, o = = (?)XQ(_EZTPT , where y = £.
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where 7 is the horizon radius and 72 = 29:52. To find out ¢ and k" best is

to set p to zero (then express ;. in terms of T) and compare with Eq.(4.6).
After doing this one finds

’ L2 47 3 ’ 81 L2
¢ =555 T g 242
2k%° 3 3 K4y

(4.25)

For this background with nonzero chemical potential, electrical conductivity
(s1)% 1
(e+P)? g%

tivity. On evaluating the ratio “;—;2 one finds it to be equal to 47242, Up on

is given by o = Using this result we can find out thermal conduc-

evaluating the ratio ddTZ(;—l/) we get the same result (note that here d=3).
Let us note that, as for the special case of setting all the R-charges equal
for R-charged black hole, one obtains Reissner-Nordstrom black hole with
the identification 7 = 8 (see Appendix.B.). So we get “rT]—j‘fQ = 327% which
matches with that written for R-charged black hole in four dimensions (see

Table.4.4).

Five dimensional R-charged black hole: Viscosity and various thermo-
dynamical quantities are given by

2
TR (4.26)
2 (1 +/‘€1)

TN2T3 (1 + K1)?

_ 4.27
2 \T24 3

po TN r)” (4.28)
8 (1+4)1

where Tj is the temperature at vanishing s, i.e. at vanishing chemical po-
tential. The charge density is given by

N2T3
T2 20 2 (1 + )2 (4.29)

p =
The chemical potential conjugate to p is defined as

n= Aw)| = %(1 )2, (4.30)

so that susceptibility is given by

p N?T? (14 ky)? (4.31)
po 8 (144 '

X:
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Chapter 4. Universality in thermal conductivity to viscosity ratio

where we have used Eq.(4.26) to express Tp in terms of 7.
Upon comparing Eq.(4.16) and Eq.(4.17) with Eq.(4.27), Eq.(4.28) and Eq.(4.31)

we get
(1 + /{1)2 (1 + /{1)2 (1 + /{1)3
m) = —— m) =~ m) =~V (432
and 2 2 N2
c=" = (4.33)
8 8
Using Eq.(4.20) and f,, f,, f, and k' written in the above equations, we
obtain 94
- N2T< “1) 4.34
o 39 ) (4.34)

where ;1 can be expressed in terms of m. This is same as the result reported
in the literature [58, 48].

e 4 and 7 dimensional R-charge black holes: In order to avoid repetition,

here we just list values of ¢ and k" which were used in the Table 3. In four

272
3

3

we have k' = (%)SN?’?T, and ¢ = = (%)7 N3,

3
. . ’ 9 ’ 3 . .
dimensions we have k' = %\%, and ¢ = (2)" N3/2. In seven dimensions

4.5 Away from conformality

In the above discussion we considered cases where bulk geometries are asymptot-

ically AdS. Now we turn our attention to the cases where bulk geometries are
m

asymptotically non AdS. We show that, in this case as well the ratio 2% 3~ (1)
j=1

is independent of number of chemical potential and same as uncharged cases. The

examples that we have in mind is charged and uncharged Dp branes. The relevant

details of geometry was discussed in the second chapter. We first discuss uncharged

cases. The electrical conductivity is given by

1 1 ez
g = 3 Jaz
167TGg€ff Th
= o) T (4.35)
BT e '
It is easy to see that,
Dp = 2
X
7—p
= — = 4.36
ST (4.36)
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as was shown in [5], where

X = L
1
L5,
= — ) 4.37
877Gg Ty ( )

Let us note that, though p and p go to zero separately for uncharged Dp brane,
x in Eq.(4.37), remains non-zero. Now using expression for thermal conductivity,

€ 20’
K o\’ s
T 2
o — 47 (=) 2
nlu 7T(x) o
47

, we get

(4.38)

Note that, from Eq.(4.38), we see that thermal conductivity to viscosity ratio is
same for any uncharged Dp brane. Also note, to match with charged D1 brane,
replace n by bulk viscosity and g = %
Our next aim is to see whether for charged non-conformal theories dual to
.. . . . . 2
charged Dp brane, thermal conductivity to viscosity ratio remains 4gi2.
e Single charge case: Here we have
1 1 e=2

2

77 lorG x29%

NESE o

Next using the fact that,

P L 5,
- = — H 4.40
we get
Krp? 42
e T (4.41)
nT 92

which is same as we get for uncharged case.

e Multi charge case: For multi charge case

2
_ _ e+ P
pigijlpj :piaH,liipi< T ) ) (4.42)
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where o, is the inverse of electrical conductivity evaluated at the horizon
and only depends on geometrical quantities evaluated at the horizon. The
expression for electrical conductivity at the horizon is given by,

1 G p=2
m u('f’) Gzz
1 1 p2
N2 gma:
167G X;
g 2 riHA(ry)
16V2m 7G

Using this result, it can be easily shown that,

OHii —

T=Tp

T=Th

(4.43)

Kr Z?=1 /%2 _ 4_772 (4.44)

nT 9
For D1 brane 7 is replaced by ;- ( which is same as bulk viscosity for single
charge case or equally charged D1 brane case as shown in [61]).

4.6 Discussion

In this chapter we have discussed the universality of thermal conductivity to vis-
cosity ratio at and away from conformality. We have proved this in the case of
vanishing chemical potential, though general proof at non zero chemical potential
is still lacking. At finite chemical potential, the ratio is

RT 9 2 1 d—2 1
n—T,u = 8T 5~ — (4.45)

2"{‘2geff<r)
Right hand side of above equation should be independent of T', 1 and some universal
number. Although we have checked it against several examples, we could not
provide a general proof of the result. Using the proposed universality in Eq.(4.1),
we have also discussed how electrical conductivity can be expressed solely in terms
of boundary data.
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Universality of transport coefficients at
extremality

5.1 Introduction

So far, our discussions on previous chapters concerned black holes away from ex-
tremality. This was assumed explicitly by considering only those metric whose
component along the radial direction has single pole at the horizon. Our empha-
size in this section will be on extremal black holes. This in turn means that we
will study the behavior of various transport coefficients of gauge theories at zero
temperature.

Extremal black holes are special in many ways. Often, various computations
tend to break down as one tries to extract out results associated with extremal
black holes via ‘extremal limit’ of non-extremal black holes. One such example
recently has appeared in the calculation of shear viscosity (7) to entropy (s) ratio
for gauge theory that is dual to extremal bulk geometry. In particular, in the low
frequency limit (w — 0 limit or in other words the IR limit of the boundary gauge
theory), used for non extremal back ground in previous section , the perturbation
in w breaks down. In [82], a prescription was given which can be used to treat
these extremal holes. Subsequently, in [83]*?, following this prescription, 1/s, con-
ductivity (o) was computed for four dimensional Reissner-Nordtstrom black holes
in AdS. The result for ? turned out to be 1/(4m); same as their non-extremal
partners. It was further argued that, regardless of the dimensions of space-time,
the result would remain unchanged for Reissner-Nordtstrom black hole.

Encouraged by these developments, in the following we provide a computation
of electrical conductivity (o) and n/s for a generic extremal black hole in arbitrary
dimensions having metric of the form

dsi. 1 = gudt® + guudu® + g;;da'da’, (5.1)

“2For certain class of black holes on AdSs, a discussion on 7/s can be found in [84].
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Chapter 5. Universality of transport coefficients at extremality

with
= =1 = P50, g = A (5.2
In terms of coordinate u, the horizon is located at « = 1 while the boundary
is at u = 0. We take functions vo(u), 7.(u) to be finite on the horizon. Extremal
nature of this geometry shows up in the double pole at the horizon. We assume
that these gravity backgrounds have an associated gauge theory on the boundary.
Among others, this class of metric includes asymptotically AdS spaces. Besides
the metric in Eq.(5.1), there might be gauge fields and scalars. The detail forms
of these quantities will not be required for the following discussion. As will be
shown, the knowledge of the metric near the horizon is sufficient for determination
of various quantities of interest. The geometry is characterized by the fact that
its entropy is finite even though the temperature is zero [85]. We now proceed to
compute 77/s and the electrical conductivity associated with this geometry.

5.2 Shear viscosity to entropy density ratio at ex-
tremality

First, to compute the shear viscosity, one considers some specific fluctuations of
the metric and uses Kubo formula as in [44, 36, 83|. This formula relates the
viscosity to the correlation function of the stress-energy tensor at zero spatial
momentum.Take the perturbation of the form g;“, = G + hy, with g, given in
Eq.(5.1), and Einstein equation leads to the following equation for ~*, (which turns
out to be same as that of massless real scalar field. In what follows, we call it ®.)

J, (\/—_g gﬂ”ay>c1> — 0. (5.3)

Further, using the ansatz ® = e ™“!¢(u), we get

tt
00+ Buln(g"™'V=9)0u6 — o = 0. (5.4)
Using explicit forms of g%, g“*, we finally reach at an equation of the form
—a(1 — 2 2 »
020 + au1n<—vg(“))au¢ S TR} (5.5)
Yu (1 - u) Yo

We solve the above equation in the inner region (near the horizon) as well as in
the outer region (away from the horizon). We then match both at the so called
matching region [83]. We first look for solution in the inner region.

Due to the double pole singularity in g,,(u), the usual low frequency (w) ex-
pansion of ¢ becomes subtle [82, 83]. One then defines £ as v = 1 — w/¢ and
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Chapter 5. Universality of transport coefficients at extremality

organizes the solution as an expansion in w where w — 0 and £ — 0 in such a way
that w/& — 0, see [82, 83, 87, 88, 86| for details. The Eq.(5.5) then simplifies to
(keeping only zeroth order in w)

¢

7 + ¢—0 (5.6)

Next, defining a = 1—35 above equation reduces to standard form in AdS,

92
6—¢ +¢=0. (5.7)

The incoming wave solution is then

W
b = e ~ a1+ i0) = af + L gy (5.5
with
o

g(w) =1 %w. (5.9)

In Eq.(5.8), a? is a constant. Since Eq.(5.8) represents incoming solution near the
horizon, this is often called the solution in the inner region or the solution in the
IR of the boundary gauge theory.

As for the solution in the outer region or in other words away from the horizon,
we go back to Eq.(5.5). Note that in this case, to zeroth order in w, we get

i + Quln(g""v/=g)du¢ = 0. (5.10)

Integrating once,
Guu

V=9

O =1 (5.11)

where ¢; is a constant. This implies

g /yu()ur ﬁ ).

In Eq.(5.12), ¢y is an integration constant. In order to get the complete low
frequency profile of ¢, we need to match Eq.(5.12) and Eq.(5.8) at v — 1. Outer
region solution gives

Pout = C2 + 1 (5.12)

Gout = C2 + 1B+ ¢y ) (5.13)

(1 —u)y/—g(u=1)

with

b= [_/(z;(—ig)>,1iu duL_}l (5.14)
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Now comparing Eq.(5.13) with Eq.(5.8), we get

01:@610 C2za0<1_w) (5.15)
Yoo ! Yoo ) '

Substituting these constants in Eq.(5.12)
B.J= -
a9<1 By gg(W)) +atBY 99(w)
Yu Yu

B R T W pruy s

¢out -

Hence

Dutoout = Y —I9) G (5.17)
Yu v —4
Now it is straightforward to compute the boundary action and then the correlation
function following [44]. As for the boundary action, we get

1 1

_ _ = |auu __g(w)\/_g(al)2
Sboundary = 216G [g g¢0“t8u¢OUt] u=es0 327Gy, (5.18)

Hence, to first order in w

G _ 8Sbounda7"y _ _g(w)\/ —4g _ tw [ -9 :| (5 19)
Y 0a%9a? 167Gy, 167G\ guguud u=1" )

Here (G is the d 4+ 1 dimensional Newton’s constant. In the last line we have used
the form of g(w) given in Eq.(5.9). Now the Kubo formula gives us the shear

viscosity *3
1 | —9
= ) 5.20
! 167TG[ Guuit | (5:20)

Since the entropy density of black hole is given by

\/detg;;
SILIL[/ _g] (5.21)
4G 4G Juugtt  u=1

n 1
1

In the following we give a different derivation of the 7 = -~ in the same spirit

of [4]). Let us note that in [4], the single pole structure of the metric played a

we get

43We observe that the form of 7 is same as that obtained in the non-extremal cases [4]. The
structural similarity leads us to speculate that there might be a Igbal-Liu like prescription[86]
for extremal black holes having non-zero entropy.
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Chapter 5. Universality of transport coefficients at extremality

crucial role in determining transport coefficient, where as we are considering the
double pole structure. In spite of this difference, as we will see below, one can
apply argument similar to that in [4]. Consider the bulk action for a massless
scalar @:

1 OA PO
Spuik = = | d¥ e/ —g———r 5.23
bulk = 5 / Ty —4g 16202 ( )
Using linear response theory one can write the transport coefficient as
. . g (u7 w)
N G 24

where g (u,t) = g(%zug) [4]. Note that Ilg(u,w) is the Fourier transform of the

function Iy (u,t). If we take ®(u,t) = hy, then we get 7 as the transport coefficient.
Following our previous discussion, we note that the field momentum is of the form

v
IT = T ——g"0,0. 2
Now using the fact that
Oa w Y
b = i—p = o1, 5.26
Oupr =iz 01 a—ur\ o (5.26)

and Eq.(5.17), we see

I II 1 _

W0 u—s0 Z'w(I)(u’w) w—0u—1 iw@(u,w) B 167G GuuJtt

(5.27)

u—1

This is same as what we got previously Eq.(5.20). To evaluate the above expression,
we have used Eq.(5.26) for ¢ in u — 1 region and Eq.(5.17) for u — 0 region. So
in spite of double pole nature of the geometry, membrane paradigm like argument
gives the same result.

5.2.1 Radial independence of the response function

We have seen that the response function (x(u,w) = %) for shear viscosity
evaluates to same value whether one computes it at the horizon or at the boundary.

In fact one can convince oneself that the response function is independent of radial

direction. To show that, let us define Y(u,w) = -5 —2—. Now following [4]

and using Eq.(??) we can write

2
Dux = it /% (§—¢ - 2¢). (5.28)
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Chapter 5. Universality of transport coefficients at extremality

Near the horizon we have already checked that y = ¥ where as away from horizon

because of explicit w dependence in the above equation, in the limit w — 0, we get

0,x = 0, and hence radial independence. To strenthen the argument further let us

compute the response function in the outer region at arbitrary radial position.
Using Eq.(5.9,5.17) one obtains

II = a?, / —9
guugtt

wo = wa) + O(w?) (5.30)

I/ —yg
= 5.31
X 167G\ Guugit lu—1 ( )

5.3 Conductivity for extremal black hole

+ O(w?) (5.29)

u—1

and using Eq.(??) we get

and hence

and radially independent.

In this section we compute electrical conductivity for extremal background. We
shall first give some examples which motivate us to determine conductivity for
more general cases. At extremality metric in the vicinity of horizon takes the form

Tu
g = —(1—u)*y0, Guu = ma (5.32)

where 79 = 70(u = 1) and -, = 7,(u = 1). Near the horizon Eq.(2.10) reduces to
d_Q(b(u) _ 2 iﬁb(u) + Tu w? ¢(u) B ¢ (]; ]ij( ))
du? T L mudu Ty (LT (w2

Note that ¢; = F',(u = 1) and d; = G;;(u)F?,(u) at uw = 1. Following [82, 83] let

us define w =1 — ¢. In this coordinate system Eq.(5.29) reduces to

=0 (5.33)

(22 d;;(€))
Bi(€) + 1404(6) - T =0 (5.34)
' Yo &? Yo
Above equation is in general a complicated coupled differential equation. To solve
it we observe that

d2
dg?

Loe) +mae (G900
o = o (5.35)
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In the case when more than one field is present then we get

20O+ 20O _ fh(6) + 2h(d)

o o = ... (5.36)
We take solution of the form
(&1 Co
Plugging Eq.(5.33) in Eq.(5.30) one obtains
- (3 dyey)
506 + i) — T i(€) = 0 (5.38)
dg? Yo Yo&?

(3 dyey)
Introduce n =, /2* { and a = %, so that one gets ( from Eq.(5.34))

d2

d—nz@(n) + ¢i(n) — ?cbi(n) =0 (5.39)

The incoming solution to Eq.(5.35) takes the form
¢i(n) = CH,(n), (5.40)
where H!(n) is Henkel function and v = —”;4“. Taking 7 — 0 limit one gets

1 _cos(mv)T[—v] N

lim ¢, () = 227" - — g 5.41
lim ¢;(1) =11 (F[1 ik - ) —in - (5.41)
Using n = % (li)u)’ and some properties of Gamma functions as well as doing
some re scaling one finds
1 Vaurngy W, T(1 — cot(vm)) 1
iu—>1:A[7+ Tuyw(Eyav ] 5.42
e D=l T WA Ty ol O

Again using properties of Gamma functions we get

o 1 Yu 2v w QVF[l - Ij] e*l’lﬂT
¢i(u—1) = Ao[m—( %) (5) T+ ] (1_u)%+y}
1 1
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where for notational simplicity we introduced

ofe) = —2ve (Rt (5.44)

Following the standard procedure, we obtain conductivity to be proportional
to

o o lim i%[g(w)] o ()21, (5.45)

where

2v =+v1+4a
1+(4)§m:d
f— —_— »C.
\ Yo ] 7

&S (5.46)

\ Yoo i3

In the above expression every quantity is calculated at the horizon (u = 1). Hence,
we see only way to get non-zero conductivity in the limit w — 0 at extremality is
v <1 whereaso —0if v > 1.

e To obtain above form of g(w), we have only assumed that extremal black hole
exhibits double pole. So the expression for operator dimension in general
follows only from criteria of extremality i.e. it is independent of particular
background. In all the examples considered below (see Appendix for details
about bulk geometry) we find v = 2 = § = v+ 1 = 2. There are other
classes of black hole as well (dialatonic black hole [89, 90, 91, 92, 93, 94, 95])
where one finds 6 = 2.

e R-charged black brane in four dimension: In this case

W= |1+4—— - 24: (5.47)
e g G

Using extremality condition?*(see appendix) we get 2v = 3.

44k _ 3+2(k2+k3+k4)+k2(k3+k4)+k3k4
- k2k3k3 kZ ks k4
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e R-charged black brane in five dimension: In this case

3

H(1+kz)

3
= |[1+4=4—— (5.48)
b
i=1

Using extremality condition®® one finds 2v = 3. Which implies § = v+3 = 2.
Note that above result also applicable for 5d Reissner-Nordstrom black hole
(for which ki = ko = k3) considered in other places [82].

e R-charged black brane in seven dimension: In this case

B 41+ Fy)(1 4+ k) ky ko
2V—\/1+4 3 kik ((1+k21)2+(1+k2)2> (5.49)

3+k2

Now extremality condition implies k; = . So one gets 2v = 3.

e Above results implies that for black hole at extremality obeys
1, w— :
(=) > Gy(FL)? =2 (5.50)

It would be interesting to find out under what conditions extremal back-
grounds obeys this relation.

What we observe is that, form of conductivity is insensitive to the details of ge-
ometry and mostly determined by the fact that the metric has double pole or
7ero.

We consider metric with near horizon behavior to be

5 d—1
— M _du® + A, dz?)?, 5.51

and gauge coupling has no zero or pole as we approach horizon. For this bulk back
ground, temperature is zero but the entropy is finite.
The Einstein equation is given by

ds* = —(1 — u)?yodt* +

1
R,uu o §g,uuR — TﬁM 4 T%atter

1 1 g atter
= ﬁ (FMFV)\ - ZQWFPUFP ) + T;% ter, (5.52)
eff

45k _ 2+4kitko
kiko—1
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where T)J4"¢"(u), will include all the other stuffs which may come from scalar
fields, cosmological constant or any other fields present in the theory. Since only
Ay(u) is non-zero, we have F,; # 0. Using Eq.(5.48), we can write

1 1 1
R — 59 R = TR (FtuFt“ — 10 F’”) + 1) Matter, (5.53)
eff
1 11
R =50 R = =g 4 g9k I + T Matter, (5.54)
eff

After subtracting Eq.(5.49) from Eq.(5.50), we get
VIR = VIR = 5 G Fy G (T M () T M (). (5.55)
Yest
For the metric of the form in Eq.(A.2), following relations hold

d—1

d g$£ %gtt
29iug;

d—3 1
d xraxT d
V—gR: = <g g dugm> : (5.57)

which, after substituting in Eq.(5.51), we get,

da—1 d—3 1
d [ g2 d d (g:2 g4 d 1 "
| - 0| = ——\/—gF“F,
( Ju gtt) + ( T dug 293& g t

du 29uugtt du 2giu

+ /—_g(/_z—'tt,Matter . Tf’Mat%.ﬁS)
If we impose the condition that
jvtt, Matter(u) _ Txx, Matter(u)7 (559)

then we get

d+1
d ez d , .. 1 u
< (9 gtt)> = gT\/ —gF tFut-

du 92 G2u du i
(5.60)
In the near horizon limit we get
d+1
st (o d,)
2 () - — T 1
gog(u=1) Yo V—gdu 9292, du .

= 2 (5.61)
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So we have proved that

0~w2

for the metric with double pole in g,, and double zero in g;;. The case of multiply
charged extremal black brane is totally analogues and can be shown that under the
same condition on the energy momentum tensor of bulk space time, the form of
conductivity is again w?. Let us note that, the condition on the energy momentum
tensor Eq.(5.55), has the interpretation that dual gauge theory vacuum is Lorentz
invariant as was the case for non extremal case.

5.3.1 Imaginary part of the conductivity

We can even find out the imaginary part of conductivity. This is given by

S(o) = —— = ——L (5.62)

Let us note that, this is very similar to finite temperature case and has a pole as
w goes to zero.

5.4 Discussion

We have shown that the viscosity to entropy ratio as well as the electrical conduc-
tivity are insensitive to many details of the extremal black brane geometry. For our
computation, we only required the double pole nature of g,, and double zero of g
at the horizon. Rest of the quantities associated with the metric are only assumed
to be finite and non-zero on the horizon. Given these information, we argued that
electrical conductivity goes as w?. We have also seen that analytic expression for
shear viscosity and the viscosity to entropy ratio remain same as that of many
non-extremal black holes where near horizon geometry is radically different. We
have also observed that a analog of Igbal-Liu like arguments for computation of
the shear viscosity go through in the extremal case with double pole nature of
metric, even though the computations of [4] seem to depend crucially on the the
single pole nature of the geometry.
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Summary

The gauge/gravity duality allows us to gain insights into various properties of
strongly coupled gauge theories both at zero and non-zero temperature. In partic-
ular, the transport coefficients of strongly coupled gauge theories, which are hard
to compute otherwise, can now be computed using gauge/gravity duality. Further-
more, for many cases, in the low frequency limit, at the level of linear response, the
horizon geometry of the gravity dual determines the behavior of the gauge theory.
This can, in particular, be used to show that the shear viscosity to entropy density
ratio for strongly coupled gauge theories at finite temperature with a gravity dual
is universal and takes value ﬁ. One can further show that, the electrical conduc-
tivity of the gauge theory at finite temperature but zero chemical potential can be
determined in terms of geometrical quantities evaluated at the horizon. This is so
because the response function in the low frequency limit evolves in a very simple
manner as we go away from the horizon along the radial direction. However, the
introduction of a chemical potential primarily brings in several non-trivialities in
the evolution of response function from the horizon to the boundary. Although
the shear viscosity can still be computed solely in terms of horizon data, for the
computation of electrical conductivity, horizon data is not enough. Nevertheless,
our analysis reveals that if the stress-energy tensor related to the matter content
of the bulk satisfies a compact relation among its space and time components, the
boundary conductivity at low frequencies is universal and can be written in terms
of geometrical quantities evaluated at the horizon and thermodynamic quantities.
In this thesis, we also have shown that at any radial position out side the horizon,
the conductivity is given by a simple expression which interpolates smoothly be-
tween the one computed at the horizon and at the boundary. We also computed
the electrical conductivity in the presence of more than one chemical potentials
for several models. What we observe is that, in the presence of multiple chemical
potentials, there is a nontrivial mixing between current operators which, from the
bulk point of view, can be understood to be arising because of the interactions
through graviton. We have also shown that one can write a general expression for
conductivity matrix in the presence of multiple chemical potentials provided dual
gravity background satisfies some constraints. By using the relation with electrical
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Chapter 6. Summary

conductivity, we have also computed the thermal conductivity and observed that
thermal conductivity to shear viscosity ratio (%;:1’“2) is independent of the num-
ber of chemical potentials turned on. This ratio remains same even in the limit of
zero chemical potential. We also discussed, how for CF'T’s with gravity dual, this
ratio can be expressed in terms of central charges of the CFT. Using these results,
we could express the electrical conductivity solely in terms of the thermodynamic
quantities of the gage theory. We then turn our attention to study of transport
coefficients of gauge theories at zero temperature which corresponds to extremal
black hole in the bulk. We have shown that electrical conductivity goes as w?.
We have also seen that analytic expression for shear viscosity and the viscosity to
entropy ratio remain same as that of many non-extremal black holes where near
horizon geometry is radically different.

We hope that our explorations regarding the universalities of various trans-
port coefficients will be useful in understanding generic behaviour of the strongly

coupled quantum field theories at zero and non-zero temperature.
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Membrane paradigm

To an external observer, a black hole appears as dynamical fluid membrane sit-
ting at the horizon, with mechanical and electrical properties. They also show
dissipation and one can compute quantities such as conductivity, shear viscosity.
In the following we shall give a brief introduction to membrane paradigm in the
spirit of [4, 96]. See [5] and [97, 98, 99, 100, 101, 102] for discussion on same topic.
Classically an outside observer does not see inside the horizon. Effectively, for an
external observer one can write

Seff = Sout + Ssurf7 (A]-)

where S, is the part of action defined out side the horizon where as Sg,.f represents
effectively the effect of black hole to external universe. Sg.¢ is a boundary term to
the horizon, and can be determined by demanding S.g to be stationary with respect
to solution to the equation of motion. Rather than putting the membrane exactly
at the horizon, one can put it slightly away and thus avoiding complexity that
arises due to null hypersurface. In the following we shall discuss briefly electrical
and mechanical properties of the membrane.

A.1 Electrical properties of the membrane

Let us consider the metric of the form

U

—1
ds® = gtt(r)dtz + gM(T)dT2 + Gz (T) (dxi)z, (A.2)

i=1

where r is the radial coordinate. We have assumed full rotational symmetry in z°
directions so that g;; = g,40;;, where 4, j run over all the indices except r,t. We
also assume that metric components depend on radial coordinate only. We shall
work with the metric which has an event horizon, where g;; has a first order zero
and g, has a first order pole. We also assume that all the other metric components
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Appendix A. Membrane paradigm

are finite as well as non vanishing at the horizon. Consider a bulk U(1) gauge field
for which the action is of the form

Sout = — / d™e —g———FunF"". (A.3)
r>rp 4 d+1( )
Now varying this action we get,
8Sout = —2 / Ay \/_g SEpy FMN
r>rp d+1( )
= —4 / dtr /=g Vi (15— SANFMN)
r>Th gd—l—l( )
1
+ 4/ dd+1.§lf iV —gdAN \VaY (27FMN) (A4)
r>rp 4gd+1<r>
Using Maxwell equation
1
Vul———=F"") =0, (A.5)
4g31(r)

and the fact that for any vector V4, we have

0a(v/=gV?), (A.6)

1
vuVh =
Vv

we get

1 T—00
8Sout = — / d'r/—g——06 Ay F™ (A.7)

d+1 T=Th
Using the fact that at the boundary 6 Ag = 0, and staying slightly away from the
horizon we get,

V=g 1
0ot = / d*zv/—h SAyF™M
t <\/— d+1 )r:thre

= _/ddx" _h’(sAMJmembrane<x>' (AS)

where h,, is the induced metric at the stretched horizon and

Jrfembrane - grr FTB . (Ag)
d+1 r=rp+e

In order to have a well defined variational principle, we need to cancel the boundary
term. For that purpose we add Ss,,; such that

5SSurf = _5SOut- (A]_O)
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Appendix A. Membrane paradigm

One can write Ssyf, as
SSurf = /ddx \ _héAMJI]r\émbrane('r)' (All)
Let us note that Maxwell equation can be written as

1
Vu(V=g——F™") =0

d+1

= VMJ embrane 0, (A12)
where JM . can be interpreted as the membrane current. Total integral of
T2 irane OVET the horizon will give charge of the black hole. The spatial component

of the membrane current is given by

rinembrane - 97"7" FM : (A13)
d+1 r=rp+e€
In order to proceed further, let us choose the gauge A, = 0. Since horizon is a
regular place for an in falling observer, the A; should be regular at the horizon.
This implies that, gauge field should only depend on a non singular combination
v with

dv = dt + | L ar. (A.14)
— Gt

This gives,

@, — /] ZmayA = o
— Gt

= by = \/ﬂFn‘- (A.15)
—Gu

Plugging it in Eq.(A.13) we get,

mem = V _gttFl = EZ (A16)
d+1

9d+1

where ' is the electric field measured in an orthonormal frame of a physical

observer hovering just outside of the black hole. J¢  can be interpreted as the

response of the membrane to electric field Ei. Now comparing with 7 = O'E we
get

1
9 ()’

where o is the electrical conductivity of the membrane.

(A.17)

Omem =
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A.2 Mechanical properties of the membrane

Fluctuation of gravitational field will induce energy momentum tensor 7*” in the
membrane. To illustrate this with an example, let us consider a metric fluctuation

hi(x). The action of this to the quadratic order is that of a free mass less scalar

field |
1 1
grav __ — d+1 —
Sout = 2/d NI 6rGy

with ¢ = hi. Following previous discussion, we need to add a surface term

(Vo) (A.18)

Seurt = /h | ddx\/——hnrfggb(x), (A.19)

with I, = %. This will induce a current .J(z) in the membrane J(x) o Tj.
G N

Regularity implies

06 = | = y0, (A.20)
— it
so that one can write
Hr(x)
Hmem =
N —h lry
1 1
= — —0,
\/ Gtt 167TGN t(b
1
- _ . A.21
167TGN5%¢ (A.21)

In the last line, we again have passed to ortho-normal basis. As in the electromag-
netic case (see Eq.(A.11)), we can interpret ITe, in Eq.(A.18) as the membrane
response of the field ¢, with response function n = ﬁ, the shear viscosity since
Mem = (Tinem ) - Since the entropy density (s) per unit volume of membrane fluid
1S Smem = i, we get,
n_ b (A.22)
s Arm
So we see that one can consider horizon as fluid with response fluctuations such
aS Mmem, Omem- L€t US note that computation done using gauge gravity duality for

boundary fluid also shows
n 1
-=—. A.23
s 4w ( )
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R-charged black holes in various
dimensions

Here we collect all the relevant information about four and seven dimensional
R-charged black hole [33]. The case of five dimensional black hole was already
discussed in the introduction. The R-charged black hole solutions in asymptoti-
cally AdS, and AdS; can be obtained by doing dimensional reduction of rotating
M?2 brane and M5 branes on S7 and S* respectively. The relevant part of the
Lagrangian is

1 i vj i j
e R - ZGUF FM ) — GijGMX 8MX] + ... (B].)

1%

B.1 Four dimensional black hole

Metric and gauge fields in this case are

16(7T,L)>2 f L?
dsi = (9ug—) HI2 (_ﬁdtz +da? + dzz) + WHW du , (B.2)
4 . u
A; = onTyy | 26, H(l th) g Hi=Ll+ka, (B3)
4 4
Y = HHi f=H— H(1 + k). (B.4)
=1 =1

Thermodynamic quantities are given by
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2\* ! V2r2 (2)* .
e =2r? (g) N33 H(1+m), P= ; (g) N33 H(1+m),
=1 =1

(B.ba)
4
4 (3—1—2]2:1]{: +]>ZXZ:] 1/<:l<; 1H1k2>
s=2m () ]\73/2T02 H\/l—l—/{z, T =
- 4
= 3¢/ T1(L + k)
i=1
(B.5b)
IR = anT, 1 =
- - /2 2 0 ‘ .
pi= o (3) N 1;[ B e e MEOMZ)’
(B.5¢)
Other relevant expressions are
L? =2 (y2)-2 (y3\-2 (yv4)\-2 MW
Gi; = —di X575 (X)) 75, (X)) 75, (X)) X' = : B.6
= Sdiag [(X)2, (X7)7%, (X2, (X)) e (B9
3
and 16716‘4 = 24]\%”. As was discussed in section (1.5.2), in this case as well, one

can go to a case where one has diagonal U(1) of the group U(1)*. In this case, all
the scalar field vanishes and one is left with the action of the form

1 1
Sy = d'z/—g(R —=F + ... B.7
4 167Gy / z 9( 1 + ) ( )
which is exactly same as with Resinner-Nordstrom black hole in four dimension.
Now comparing this action Eq.(??) gives us 55 = 167rG and 7% = 8.

B.2 Seven dimensional black hole

A(nT, 2

dS% = %Hlﬁ ( }flldﬁ + dl’% + -+ dl’i + d22) —+ W,HI/E) du2 3 (BS)
2 2 u?

Ay = §7TT0 25 H(l + ki) 7 Hi=1+ Kiu® (B.9)

i=1
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2 2
Hi = 1—|—K,Z‘U,2 s H:HHUf:H_H(l—i_’%l)U‘B s (BlO)
i=1 i=1
Thermodynamic quantities are given by
s

2\’ 3 6 2 ™ 2\’ 3 6 -
€= (5) N=1T, H(1+l-€i), P:? (g) N Ty H(1+/‘€z‘)7 (B.11)

i=1 i=1

H(1+/{) T:T0<3+/€1+/i2—/i1/<&2)

= 3, /fm + ki)

(B.12)

/)':7T2 2 6N3T5 2 ks ﬁ(1_|_m) M,:LTO 2%&'13[(1-0—/6‘)
7 3 0 1 i i) 1 3(1 + FJ@') zi:1 i) -
(B.13)
Other relevant results are
L? 25
= —di XH=2 (X2 X' = B.14
GU 2 lag [( ) ) ( ) ] ) Hl(u)’ ( )

1 N3

and = = 5575

B.3 R-charged black holes at extremality
Above black holes at extremality was constructed in [85]. Take

gu = —f (WA (W), Juu=As(u)f (u), flu)=(1—u)V(u). (B.15)

Here we just give relevant information about f.

Dimension Extremality condition V(u)
5 2+ Ky + Ko + k3 — Kikaks = 0 (1 + R1Rok3u)
4 4 4 4 4
j=1 i<jig=1 i=1 j=1 i=1
7 3+ K1+ Ko — Kika =0 (1 + 2u + Kikou?)
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