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Synopsis
Holography states that a (d + 1)−dimensional gravity theory (bulk theory) has adesription in terms of d−dimensional �eld theory ( boundary theory), where extradimension in the gravity side is identi�ed with energy sale in the �eld theory side.A well understood example is AdS5/CFT4 duality, whih arises in the study of
D3 branes in type IIB string theory. Aording to this duality, type IIB stringtheory on AdS5 × S5 is dual to four dimensional N = 4, SU(N) super Yang-Millstheory. In the strong 't Hooft oupling and large N limit of the gauge theory, dualstring theory an be approximated by supergravity in �ve dimension oupled withKaluza-Klein (KK) modes (lowest lying modes) oming from S5 ompati�ation.Within this duality, one an ask questions suh as whether it is possible to reon-strut bulk spae time using onformal �eld theory (CFT) data or given a bulkspae time, what properties of dual gauge theory an one read o�? For example,heating up the above gauge theory implies that in the bulk we have blak branein AdS5. Further more, adding some gauge harge to the blak brane is equivalentto having some hemial potential for the gauge theory. Stated more preisely,solutions to bulk equations of motion determines the thermodynami variables ofthe dual CFT at equilibrium. One an even introdue a small spae time depen-dent perturbations about equilibrium whih in the domain of linear response leadsto important proesses suh as transport properties of CFT. The basi objet ofinterest is that we want to ompute are retarded Green's funtions whih apturesresponse of the gauge theory to the external perturbation. To illustrate further, letus onsider an interating quantum �eld theory (QFT), in global thermal equilib-rium at temperature T and hemial potentials (µ) for various onserved harges.Now if we perturb the system out of equilibrium by allowing system thermody-nami variables to �utuate in a sale whih is su�iently large ompared to saleset by temperature or energy density in equilibrium, one desribes system in termsof hydrodynamis. Then we expet, around any given point a region where loaltemperature is roughly onstant and one an use basi thermodynami variablesto desribe the physial properties of the region. The role of hydrodynamis isto desribe how these di�erent regions exhange thermodynami quantities amongthemselves. The dynamis in this regime is aptured by onservation of energymomentum tensor and other onserved global harges. The �uid perturbed awayfrom equilibrium, tries to equilibrate through dissipation and the response to theseperturbations are enoded in transport oe�ients suh as shear visosity, eletri-al ondutivity, thermal ondutivity et. Using gauge/gravity duality one anompute retarded greens funtions of dual gauge theory operators from gravityside and use Kubo formulas to relate it to the transport oe�ients.After its disovery, the AdS/CFT duality is generalized for many di�erent sit-uations suh as the ase of non onformal boundary theories whih arises in thestudy of Dp branes (p 6= 3). AdS/CFT duality also has been generalized for manyiv



Synopsisother situations mostly based upon symmetry priniples, not neessarily alwaysthey have a well understood string theory embedding. Some suh examples areases where boundary theory is not required to be relativisti invariant or boundarytheory has Lifshitz like symmetry. In the following disussions we shall onsidergeneri gravity set up assuming a �eld theory dual in a similar spirit.Our motivation and goal an be summarized as follows. Given the fat that,number of models whih exhibits suh dualities are inreasing rapidly, it is desirableto have some features whih are independent (referred as universal) of partiularmodel. For instane, it is well known that shear visosity (η) to entropy densityratio is equal to 1
4π
, in the dimension less units for a large lass of gauge theory hav-ing a gravity dual. Interestingly this falls with in the experimental range observedat RHIC. So, even though these theories in several ways are di�erent from theoriessuh as QCD, they seem to share qualitatively similar behavior. This motivates usto investigate possible universality of other transport oe�ients whih might shedsome light into qualitative features of RHIC physis. We primarily fous on om-putation of eletrial ondutivity at �nite hemial potential (µ) and temperature(T ) whih is related to urrent urrent orrelator through Kubo formula. Assuminggravity theory has a gauge theory dual, under general assumptions in the gravityside we show that eletrial ondutivity at �nite hemial potential is universaland an be expressed in terms of thermodynami quantities of the dual gauge the-ory. We further propose a universality of thermal ondutivity (κT ) to visosityratio (κTµ2

ηT
). We also provide a proof of universality of eletrial ondutivity andshear visosity to entropy density ratio at zero temperature.Our approah towards proving universality of eletrial ondutivity is as fol-lows. First we ompute eletrial ondutivity in the presene of one and morethan one hemial potentials for several models [1℄. What we observe is that, inthe presene of multiple hemial potentials, there is a nontrivial mixing betweenurrent operators whih, from the bulk point of view an be understood to bearising beause of interation through graviton. Then we ompute thermal on-dutivity (de�ned as response to temperature gradient in the absene of eletriurrent) and observe that thermal ondutivity to shear visosity ratio (κT

∑n
i=1 µ

2
i

ηT
)is independent of how many hemial potential one turns on. This observationtogether with observation that at zero hemial potential as well the above ra-tio remains unhanged, lead us to onjeture that κT

∑n
i=1 µ

2
i

ηT
, is universal and weshowed that it an be expressed in terms of entral harges of the dual onfor-mal �eld theory (CFT) [2℄. With the aim of proving above onjeture, in [3℄ wefound out interesting onnetion between the membrane paradigm �uid whih sitsat the horizon e�etively enoding the properties of the blak brane to an exter-nal observer and �uid whih sits at the boundary of the spae time known fromgauge/gravity duality. By exploiting the fat that hanging radial position in thebulk orresponds to RG �ow in the boundary �uid, in [4,5℄, authors proposed av



Synopsisnumber of relations and even interpolations between them. For example, radial in-dependene of ertain quantities is used to show that, the shear visosity to entropydensity ratio for both the �uids is the same, as well as the fat that at zero hem-ial potential, low frequeny limit of eletrial ondutivities of these two distint�uids are related. However the situation hanges signi�antly at �nite hemialpotential in the boundary theory, where radial independene exploited earlier inrelating eletrial ondutivity of these two �uids, gets ompletely destroyed. Oneneeds to solve the �ow equation in order to relate ondutivities of the �uid at theboundary with the �uid at the horizon. In spite of this apparent di�ulty, in [3℄,we observed that for harged Reissner-Nordström blak brane in arbitrary dimen-sion, there exist a simple relation between the ondutivities of these two �uids.Further we omputed eletrial ondutivity on hypothetial hyper surfae at anyradial position out side blak brane horizon to show that there exist a smooth inter-polation between ondutivities of these two �uids. Based on these observationstogether with support from several other omputation of eletrial ondutivityfor asymptotially AdS spaes whih orresponds to dual gauge theory to be CFTlead us to propose a form of eletrial ondutivity whih is universal. We furtherheked that the proposed form of eletrial ondutivity holds for non onformal�eld theories, where the dual gravity theory is not asymptotially AdS (whiharises in the study of Dp brane for p 6= 3), where as for asymptotially Lifshitz likegravity theories where boundary theory enjoy anisotropi saling, it does not hold.This led us to ask, what is the most general gravity set up for whih proposed formof eletrial ondutivity holds. In [6℄, we found that under general assumptionsin the gravity side together with preise ondition on the bulk stress tensor theeletrial ondutivity is the same as one we proposed. The ondition on the bulkstress tensor may be related to the riteria for vauum of dual gauge theory to beLorentz invariant. This immediately explains why Lifshitz like theories does nothave the form of ondutivity as proposed sine vauum of dual gauge theory is notLorentz invariant, where as for asymptotially AdS and some non AdS examplesthat we onsidered has dual gauge theory vauum whih are Lorentz invariant.Further we observed that thermal ondutivity to visosity ratio is again universalfor non onformal theories.We then turn our attention to study of transport oe�ients of gauge theories atzero temperature whih orresponds to extremal blak hole in the bulk. In [1℄, weobserved that for several examples the form of ondutivity at zero temperatureis same. Under the general assumption that extremal blak brane has doublepole struture at the horizon together with requirement that boundary theoryvauum has to be Lorentz invariant, we show that form of eletrial ondutivityis universal. Further in [7℄, we proved that shear visosity to entropy density ratiois 1
4π

even at zero temperature. vi



SynopsisReferenes:[1℄ S. Jain, �Holographi eletrial and thermal ondutivity in strongly oupledgauge theory with multiple hemial potentials,�JHEP 1003, 101 (2010) [arXiv:0912.2228 [hep-th℄℄.[2℄ S. Jain, �Universal properties of thermal and eletrial ondutivity of gaugetheory plasmas from holography,� JHEP 1006, 023 (2010) [arXiv:0912.2719[hep-th℄℄.[3℄ S. Jain, �Universal thermal and eletrial ondutivity from holography,� JHEP1011, 092 (2010) [arXiv:1008.2944 [hep-th℄℄.[4℄ N. Iqbal and H. Liu, �Universality of the hydrodynami limit in AdS/CFT andthe membrane paradigm,� Phys. Rev. D79 (2009) 025023 [arXiv:0809.3808[hep-th℄℄.[5℄ I. Bredberg, C. Keeler, V. Lysov and A. Strominger, �Wilsonian Approah toFluid/Gravity Duality,� JHEP 1103 (2011) 141 [arXiv:1006.1902 [hep-th℄℄.[6℄ S. K. Chakrabarti, S. Chakrabortty, S. Jain, �Proof of universality of eletrialondutivity at �nite hemial potential,�JHEP 1102, 073 (2011) [arXiv:1011.3499 [hep-th℄℄.[7℄ S. K. Chakrabarti, S. Jain, S. Mukherji, �Visosity to entropy ratio at ex-tremality,� JHEP 1001, 068 (2010) [arXiv:0910.5132 [hep-th℄℄.

vii



SynopsisList of Publiations*[1℄ �Proof of universality of eletrial ondutivity at �nite hemial potential�,Sayan K. Chakrabarti, Shankhadeep Chakrabortty, Sahin Jain,JHEP 1102, 073 (2011) [arXiv:1011.3499 [hep-th℄℄.*[2℄ �Universal thermal and eletrial ondutivity from holography�,Sahin Jain,JHEP 1011, 092 (2010) [arXiv:1008.2944 [hep-th℄℄.*[3℄ �Universal properties of thermal and eletrial ondutivity of gauge theoryplasmas from holography�,Sahin Jain,JHEP 1006, 023 (2010) [arXiv:0912.2719 [hep-th℄℄*[4℄ �Holographi eletrial and thermal ondutivity in strongly oupled gauge the-ory with multiple hemial potentials�,Sahin Jain,JHEP 1003, 101 (2010) [arXiv:0912.2228 [hep-th℄℄.*[5℄ �Visosity to entropy ratio at extremality�,Sayan K. Chakrabarti,Sahin Jain, Sudipta Mukherji,JHEP 1001, 068 (2010) [arXiv:0910.5132 [hep-th℄℄.[6℄ � Notes on R-harged blak holes near ritiality and gauge theory�,Sahin Jain, Sudipta Mukherji, Subir Mukhopadhyay,JHEP 0911:051, (2009) arXiv:0906.5134 [hep-th℄.[7℄ � Spiky Strings in AdS4 x CP3 with Neveu-Shwarz Flux�,Sahin Jain, Kamal L. Panigrahi,JHEP 0812:064, (2008) arXiv:0810.3516 [hep-th℄.[8℄ �w∞ 3-algebra �,Shankhadeep Chakrabortty, Alok Kumar, Sahin Jain,JHEP 0809:091, (2008) arXiv:0807.0284 [hep-th℄.A (*) indiates papers on whih this thesis is based.
viii



List of Tables
2.1 Condutivity at equal harges . . . . . . . . . . . . . . . . . . . . . 572.2 Real part of eletrial ondutivity at the horizon (σH) and at theBoundary (σB) are related by σB = σH

(
sT
ǫ+P

)2. . . . . . . . . . . . 574.1 Thermal ondutivity to shear visosity ratio for single harge blakhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.2 Thermal ondutivity to shear visosity ratio for two harge blakhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.3 Thermal ondutivity to shear visosity ratio for three harge blakhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.4 Thermal ondutivity to visosity ratio at �nite hemial potential . 93

ix



1Introdution
1.1 OverviewQuantum hromodynamis (QCD) is a theory of strong interations-one of thefundamental fores in nature that desribes the interations between quarks andgluons making up the hadrons. QCD enjoys two speial properties. First is asymp-toti freedom-at very high energy, quarks and gluons interat very weakly. Seondis on�nement-fores between quarks inrease with their separations. Indiret sup-port of the on�nement omes from the fat that so far no free quarks have beenexperimentally observed. Lattie alulations suggest, on�nement to deon�ne-ment transition in QCD ours at a temperature around T ≃ 175Mev.Reently, in the Relativisti Heavy Ion Collider (RHIC) at Brookhaven NationalLaboratory, a new phase alled Quark-Gluon Plasma (QGP) was believed to havebeen reated by olliding gold nulei at energies of order 100 GeV per nuleon.Estimation suggests that the temperature of this phase reated at RHIC is abouttwo times the deon�nement temperature. In this phase, quarks and gluons behavelike a near perfet strongly oupled �uid. The fat that, QGP at RHIC is stronglyoupled gets support from some unexpeted features observed in the experiment.These inlude but not limited to the observation of strong olletive behaviour(ellipti �ow), large energy loss of high energy partiles moving in this medium (jetquenhing). Clearly this indiates that the plasma, in fat, interats very stronglywith itself and is thus referred to as strongly oupled. Most of our knowledge ofQCD, however, is not appliable in this regime. Known alulational tehniquesinvolve a perturbative expansion of the theory in terms of the oupling onstantand, therefore, it breaks down when the oupling beomes large.One of the remarkable developments during the late last entury was to providea framework where we ould make distint progress in understanding stronglyoupled gauge theories. This goes by the name of gauge/gravity duality. Aordingto this onjetured duality, there is a orrespondene between ertain stronglyoupled gauge theories with the weakly oupled string theories. By this it is meantthat both the theories desribe same physis. However, alulations beome easier1



Chapter 1. Introdutionin one theory than the other1. This immediately opens up a possibility of anappliation: what is the dual of QCD? If we �nd one, we an arry out relevantomputations in the dual theory to gain insights into QCD itself.Unfortunately, till to date, gauge/gravity duality is well developed only for aertain lass of theories whih exludes QCD. These gauge theories share someproperties with QCD, but di�er from QCD in many essential ways. Nevertheless,we an still look for some universal features of these strongly oupled gauge theo-ries. Our hope is that these results might be useful if a dual of QCD is disovered.This will be the entral theme of this thesis.As a onrete illustration, let us onsider one of the most well understood exam-ples of the gauge/gravity orrespondene. It states that N = 4, four dimensional
SU(N) super Yang-Mills (SYM), at �nite temperature is dual to type IIB stringtheory on AdS5 - Shwarzshild blak hole times S5. Both N = 4 and QCD havegluons but they di�er in their other ingredients and properties. On the gravityside of this duality, AdS5 represents the �ve dimensional anti-de Sitter spae whihhas a onstant negative urvature. Finite temperature is introdued by adding ablak hole into this bakground. One an reah this orrespondene by studyingnon-extremal D3 -branes in IIB string theory and we will defer this disussionfor the later setions. The strong oupling behavior of this gauge theory at �-nite temperature is aptured by studying weakly oupled string theory on AdS5 -Shwarzshild blak hole times S5 bakground.In [1℄, using this duality, Poliastro, Son and Starinets performed an elegantand striking alulation of the shear visosity of strongly oupled N = 4 theorywith the result

η

s
=

1

4π

~

kB
∼ 0.08

~

kB
. (1.1)Here, s is the entropy density and kB is the Boltzmann onstant. Interestinglyenough, RHIC data suggests that QGP has very low visosity and the estimatedvalue is

η

s
∼ 0.1

~

kB
. (1.2)The proximity of these two results initiated major ativities in this area. This isnot only beause of its alulational simpliity but also for the universal natureof this result. Indeed, this ratio of shear visosity to the entropy density is foundto be same for all gauge theories with an Einstein gravity dual in the N → ∞and large t'Hooft oupling limit. In fat, it was further onjetured by Kovtun,1Suh an equivalene is possible in string theory beause of the existene of the Dirihletbranes or the D-branes in short. These are the solitons in string theory whih admit desriptionsin terms of both open or losed strings. While the low energy dynamis of the open strings withtheir ends attahed to D-branes (due to the Dirihlet ondition) represent a gauge theory, thelosed string desription surely ontains gravity. In the later setions, we will have oasions tofurther elaborate upon this idea. 2



Chapter 1. IntrodutionSon, Starinets in[2℄, that this number is a universal lower bound for all materialsinluding water and liquid helium!A very natural question is, therefore, to ask if there are other universal quan-tities assoiated with the strongly oupled gauge theories whih have a gravitydual. Indeed, as disussed in [3℄, the R-harge ondutivity (σ) to the harge sus-eptibility ratio (χ) at zero hemial potential is expeted to be another universalquantity. The ratio is given by
σ

χ
≥ ~c2

4πT

d

d− 2
. (1.3)Here c is the veloity of light, d represents the dimension of the gauge theory attemperature T.One of the primary aims of this thesis is to study the universality in eletri-al ondutivity for gauge theories at �nite hemial potentials. The presene ofhemial potential introdues another sale in the theory (besides the tempera-ture) and, onsequently, ompliates the matters in several ways. Let us pausefor a moment and disuss this here. As will be explained later in greater detail,the gauge/gravity orrespondene suggests that gauge theory �utuations at largelength sales are ditated by the behavior of the near horizon geometry of thegravity dual. In the absene of hemial potentials, boundary transport oe�-ients suh as shear visosity or eletrial ondutivity an be omputed solely interms of horizon data. This is beause the response funtion in the low frequenylimit evolves in a very simple manner as we go away from the horizon along theradial diretion[4, 5℄. It is here that the introdution of a hemial potential pri-marily brings in non-trivialities. Although shear visosity an still be omputedsolely in terms of horizon data, for the omputation of eletrial ondutivity, hori-zon data is not enough. The reason is that the evolution of the response funtiondoes no longer remain trivial as above. Rather, it is given by a ompliated �owequation. Nevertheless, our analysis reveals that if the stress-energy tensor relatedto the matter ontent of the bulk satis�es a ompat relation among its spae andtime omponents, the boundary ondutivity at low frequenies is universal. Inthe same spirit, we also disuss the universality of thermal ondutivity to visos-ity ratio at both zero and �nite hemial potentials. Furthermore, this thesis alsoaddreses the issue of transport oe�ients of gauge theories at zero temperature,where the gravity dual is represented by extremal blak holes. Though it is notimmediately obvious, we show that the universality relation in Eq.(1.1) ontinuesto hold at extremality. Finally, we also elaborate upon the universal nature ofeletrial ondutivity at T = 0.Before we go on to present our results in the later hapters, in the next setion,we give a brief introdution to D-branes in string theory and their omplementarydesriptions in terms of open and losed strings. Subsequent setions onern thegauge/gravity orrespondene, the mapping of operators in the gauge theory to the3



Chapter 1. Introdution�elds in the bulk dual. This hapter also inludes a desription of hydrodynamisand the tehniques for the omputation of the hydrodynami response funtions.1.2 Strings and D-branesThe fundamental onstituents in string theory are the strings2 whih an be either
closed, or open and are haraterized by a string tension Tstr whih is related tostring length ls by

Tstr ≡
1

2πα′
with α

′ ≡ l2s . (1.4)In addition, the interations between strings are ontrolled by a dimensionlessoupling onstant gs, related to the expetation value of a dilaton; a �eld thatappears in the massless spetrum of the string. Di�erent vibrational modes ofthe strings give rise to di�erent �elds whih, in the low energy limit, look likepoint partiles. A onsistent relativisti quantum theory of losed strings has, init, a massless spin-2 state whose interation at low energies is governed by generalrelativity. Similarly, open strings gives rise to gauge �elds as it's end points anarry harges. However they do not arry spin-2 massless �eld in their spetrum.Consisteny requires the strings to have supersymmetry and to live in 10 spae-timedimensions. Consisteny also requires �ve di�erent types of superstrings, namelytype IIA, type IIB, type I, SO(32) heteroti and E8 × E8 heteroti. However,via various perturbative and non-perturbative dualities, all of them are found tobe onneted [12℄.In addition to strings, superstring theory also ontains solitoni on�gurationsof various dimensionality. They are known as Dirihlet branes (D-branes)[13, 14℄.A Dp-brane is a (p+1) dimensional hypersurfae in 9+ 1 dimensional spae-time.Both open and losed string an interat with the D-branes and the branes an bede�ned as objets where open string end points live, obeying Neumann boundaryondition along p + 1 spae time diretion and Dirihlet boundary onditions in
(9−p) spatial diretions. Their origin an be understood as follows. In the spetraof losed string, one has left and right moving fermions. Depending on whether weimplement periodi or anti periodi boundary onditions, we an have four setors
(R−R), (R−NS), (NS−R), (NS−NS), where R stands for Ramond and NSstands for Neveu-Shwarz. The (R−R), (NS−NS) setors are spae-time bosonswhereas (R − NS), (NS − R) are spae-time fermions. While the (NS − NS)setor ontains the graviton gµν , a two form �eld Bµν , dilaton φ, the (R−R) setorontains p + 1 form �eld Ap+1, in the massless setor. Depending on whether p iseven or odd, we have type IIA or type IIB theory. The Dp-branes are harged2For an exellent elementary introdution to string theory, see [6℄. For more advaned disus-sions, see[7, 8, 9, 10, 11℄) 4



Chapter 1. Introdutionunder this p + 1 form �eld. The minimal oupling of Dp-branes with form �eldsan be written as
µp

∫
Ap+1, (1.5)where

µp =

∫
∗Fp+2. (1.6)with Fp+2 = dAp+1. Being solitoni in nature, Dp-branes are heavy and its massper unit volume, the tension TDp, an be written as3

TDp =
1

(2π)pgsl
p+1
s

. (1.7)Sine Dp-branes are BPS on�gurations, vanishing fore between them allows usto put N number of branes staked on top of eah other. If N is large, thenthis stak is neessarily very heavy, and onsequently, it urves the spae-time.Sine, in addition, Dp-branes are harged under R-R p + 1 form potential, Dp-branes have desription in terms of some lassial metri and R-R form potential.This is what is known as the losed string desription of D-branes. On the otherhand, D-branes also have a desription in terms of open strings. One an think ofopen strings as exitations of D-brane sine open string spetrum an be identi�edwith the �utuations of the D-brane. The massless spetrum of the open strings,living on N number of Dp-brane, is that of a maximally supersymmetri U(N)gauge theory with fermions and 9 − p massless salar �elds whih together withthe gauge �eld provide an unique supersymmetri ompletion. Thus, we havetwo very di�erent desriptions of a stak of D-branes: one in terms of a gaugetheory and the other in terms of lassial R-R harged p-brane gravity bakground.Exploration of this idea led to the disovery of gauge/gravity duality also knownas AdS/CFT orrespondene[15, 16, 17℄, originally proposed by Maldaena. Thenext two subsetions serve as a brief introdution to this orrespondene.1.2.1 D-branes and gauge theoriesIf we onsider N number of oinident D3-branes in a �at spae-time, the masslessspetrum of open string onsists of a gauge �eld Aµ, six real salar �eld X i andfour Weyl fermion λaα in the adjoint representation4 of U(N) with R-symmetry (asexplained below) index a = 1, ..., 4 and Weyl index α = 1, 2. At two derivative3Let us note that, Dp branes are solitoni objets in string theory, and their mass is relatedinversely to the string oupling , whih is di�erent from usual solitoni objets found in the gaugetheory where mass goes as 1
g2
Y M

. The fator 1

l
p+1
s

that omes in Eq.(1.7) omes from dimensionalgrounds and (2π)p is introdued as a normalization fator.4Let us note that, this theory has no �elds suh as quarks whih transform in the fundamentalrepresentation. 5



Chapter 1. Introdutionlevel, the low energy5 e�etive ation for massless modes turns out to be N = 4super Yang-Mills6 (SYM) with gauge group U(N) in 3 + 1 dimensions. One anthink of SU(N) ⊂ U(N) as relative motion of branes where as U(1) ⊂ U(N) asrigid motion of the branes. Beause of the overall translation invariane[18℄, thismode deouples from SU(N), giving us N = 4 SYM theory with gauge group
SU(N). Let us note that N = 4 has a global symmetry, the SU(4)R symmetryunder whih Aµ transforms as singlet, λaα as 4 and salars X i are rank 2 anti-symmetri tensors in representation 6. One an understand the origin of SU(4)Rglobal symmetry as follows. The diretions transverse to the D-branes is isotropiand these diretions orrespond to salars X i. Isotropy therefore means that thereis a global SO(6) ∼ SU(4) symmetry for X i. The Lagrangian for N = 4 superYang-Mills theory is unique and is given by [19℄
L = Tr

(
− 1

2g2SYM

F µνFµν +
θ

8π2
F µνF̃µν −

∑

a

iλ̄aσ̄µDµλa −
∑

i

DµX
iDµX i

+
∑

a,b,i

gSYMC
ab
i λa[X

i, λb] +
∑

a,b,i

gSYM C̄
ab
i λ̄a[X

i, λ̄b] +
g2SYM

2

∑

i,j

[X i, Xj]2
)
,(1.8)where gSYM is the gauge oupling and θ is instanton angle. The onstants Cab

i and
Ciab are the Clebsh−Gordon oe�ients needed to make a singlet out of fermionsand salars. The overall trae is taken over the SU(N) indies. The gauge ouplingis determined in terms of string oupling by the relation

g2SYM = gs. (1.9)The gauge �eld and salars have mass dimension 1 and fermions have massdimension 3
2
. So all the terms in the ation have mass dimension 4. This impliesthat the theory is lassially sale invariant. This saling symmetry ombines withPoinare symmetry SO(1, 3), resulting in a onformal symmetry SO(2, 4). Thisgroup is generated by translations Pµ, Lorentz transformations Lµν , dilations Dand onformal transformations Kµ. It turns out that, even at the quantum level,this theory remains onformally invariant. This together with supersymmetryand R-symmetry lead to the supergroup7 SU(2, 2|4) as the symmetry group of5By low energy we mean E ≪ 1√

α
′

, so that massive states of the open strings on theD−branesare not aessible.6D-branes preserve 1
2 of the 32 supersymmetries in the bulk. Thus the four dimensional worldvolume of D3-branes has 16 superharges whih implies N = 4 in four dimensions.7Let us note that, the supergroup SU(2, 2|4) an be written as

(
SU(2, 2) ≃ SO(2, 4) Q, S̄

Q̄, S SU(4)R

)
,where Q and S are Poinare supersymmetry generators and onformal supersymmetry generatorsrespetively. 6



Chapter 1. Introdution
N = 4 SYM. We shall see that this symmetry group is again appearing in the nextsubsetion where we onsider D-branes in a di�erent perspetive.We also note that, the Lagrangian in Eq.(1.8) reeives higher derivative orre-tions whih are suppressed by terms of order α′

E2, at an energy E. It also reeivesorretions due to its interations with the losed string setor. The interations ofthe losed string modes with themselves and with the open strings modes are on-trolled by dimensionless oupling onstant α′ 4E8. Hene, in the low energy limit,the Lagrangian that desribes the dynamis is given in Eq.(1.8) plus the deoupledlosed string modes. So we onlude that the low energy e�etive desription for
D3 branes an be given by N = 4 SU(N) SYM theory and deoupled losedstrings or supergravity in the ten dimensional Minkowski spae-time.1.2.2 D-brane spae-time geometryAs we have noted, the D-branes are massive solitoni objets and they are thesoures of various (R-R) �elds. One an obtain the orresponding geometry bysolving the equations of motion that follow from the e�etive low energy type IIsupergravity. Let us onsider the ase of D3-brane in partiular. The D3 brane isa solution in type IIB string theory whih, like generi Dp-branes, preserves halfof the spae-time supersymmetry. In the low energy limit, massless �elds inlude,among the bosoni �elds, metri gMN , dilaton φ, axion C, and a (R-R) �ve formself-dual �eld strength FMNPQR. The trunated ation in the Einstein frame anbe written as

I =
1

16πG10

∫
d10x

√
|g|
(
R − 1

2
∂Mφ∂

Mφ − 1

2
e2φ∂MC∂

MC

− 1

2.5!
FMNPQRF

MNPQR
)
.(1.10)The ten dimensional Newton's onstant is given by8

G10 = 8π6g2s l
8
s . (1.11)The D3-brane solution following from the equations of motion, after imposing self-duality ∗F5 = F5 is,

ds2 = H− 1
2 (−dt2 +

3∑

i=1

(dxi)2) +H
1
2 (dr2 + r2dΩ2

5) (1.12)and
F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1, gs = eφ,

C = Constant, φ = Constant, (1.13)8In Eq.(1.11), l8s omes from the fat that G10 has a dimension of length8. For �xed ls, weexpet gravitational e�et should inrease with inreasing gs. The exat dependene of g2s followsfrom omputation of string sattering amplitude. The fator 8π2 is again a onvention. 7



Chapter 1. Introdutionwith
H(r) = 1 +

L4

r4
, L4 = 4πgsNl

4
s , (1.14)where (t, x1, x2, x3) are the D3-brane world-volume oordinates and r2 =∑6

i=1 y
2
i ,with yi's are orthogonal to brane diretions. This solution is referred to as anextremal D3-brane solution. The non-extremal generalization, disussed later, in-trodues temperature and onsequently breaks spae-time supersymmetry. Thefator L an be thought of as harateristi length of gravitational e�et of N D3-branes. Its exat dependene on ls and gs is explained below. The above solution isknown as supergravity solution sine we have negleted all possible orretions thatmight ome from massive string modes. To be preise, in the limit gsN ≪ 1, thelength L is muh less than ls and thus supergravity approximation is not expetedto be a reliable approximation of the full string solution. On the other hand, inthe limit gsN ≫ 1, the radius L is muh greater than ls and thus supergravityapproximation is expeted to be a reliable approximation to the full string solu-tion. To have a better understanding of the geometry, we onsider the followingtwo limits. In the region r ≫ L, the metri looks like

ds2 = (1 +O(
L4

r4
))(ηMNdx

MdxN), (1.15)whih is ten dimensional Minkowski spae with small orretion of the order of L4

r4
.The appearane of orretion terms an be understood as follows. The mass of Nnumber of D3-branes is M ∝ NTD3. Sine D3-branes extend along three spatialdiretions, their gravitational e�et is similar to that of a point partile with mass

M in the six transverse diretions. So at r ≫ L, we expet a orretion of theform G10M
r4

. Now using Eq.(1.11) and Eq.(1.7), we get
G10M

r4
∼ gsNl

4
s

r4
. (1.16)This explains various fators that appears in L in Eq.(1.14) exept 4π whih is aonvention.Now we onsider the opposite limit, namely r ≪ L. The metri in Eq.(1.12)approximates to

ds2 = ds2AdS5
+ L2dΩ2

5, (1.17)where
ds2AdS5

=
r2

L2
(−dt2 +

3∑

i=1

(dxi)2) +
L2

r2
dr2. (1.18)So to onlude, far away from the branes the spae time is �at, ten-dimensionalMinkowski spae, whereas lose to the branes a throat geometry of the form AdS5×

S5 develops. 8



Chapter 1. IntrodutionLet us now onentrate on two distint sets of modes, one propagating in theMinkowski region and other propagating in the throat region. The low energy limitonsists of fousing on exitations that have arbitrarily low energy with respet toan observer in the asymptotially �at Minkowski region. While in the Minkowskiregion, only massless ten-dimensional graviton super multiplet survives, the wholetower of string exitations ontribute in the throat region. One an understandthis in the following way. The energy of an objet measured by an observer atonstant r (say Er) and energy E measured by an observer at in�nity are relatedby a redshift fator
E =

(
1 +

L4

r4

)− 1
2
Er. (1.19)So a losed string of arbitrarily high proper energy in the throat region may have anarbitrarily low energy as seen by an observer at asymptoti in�nity. To understandhow these two modes interat, one an study the absorption ross setion of massless partiles (say graviton) from the branes sent from asymptoti in�nity. In thelow energy limit, they deouple as the low energy absorption ross setion goes tozero at energy E, as L8E3 [20, 21℄. Similarly the exitations that live deep downthe throat, faes a in�nite gravitational potential barrier so they an not esape tothe asymptoti region. So we onlude that we get two region where, in the �rstregion we get supergravity in Minkowski spae and, in the seond region, we getthe full string theory on AdS5 × S5.Another instrutive way to see this deoupling is as follows. We start with theD3-brane metri given in Eq.(1.12). De�ning a new oordinate

z =
L2

r
, (1.20)we an rewrite the metri as

ds2 =
(
1 +

L4

z4

)− 1
2 L2

z2
ηijdx

idxj + L2
(
1 +

L4

z4

) 1
2
(dz2
z2

+ dΩ2
5

)

≡ L2g̃MNdx
MdxN . (1.21)Here i, j run over the world-volume oordinates of the brane and ηij is the �atmetri. In the last line we introdued gMN = L2g̃MN for the omplete metri inten dimensions with M,N = 0, 1, ..., 9. Let us now onsider a losed string movingin this geometry. The world-sheet ation of whih is

S =
1

4πα′

∫
d2ξ

√
γγαβgMN∂αX

M∂βX
N + ....

=
L2

4πα′

∫
d2ξ

√
γγαβ g̃MN∂αX

M∂βX
N + ...., (1.22)where the dots represent possible other terms whih will not be relevant for thedisussion to follow. In Eq.(1.22), γαβ is the world-sheet metri with α, β running9



Chapter 1. Introdutionover the world-sheet oordinates. Using the relation L4 = 4πgsNl
4
s and α

′

= l2s ,we re-write Eq.(1.22) as
S =

√
λ

4π

∫
d2ξ

√
γγαβ g̃MN∂αX

M∂βX
N + ...., (1.23)where we have used λ = gsN. In view of Eq.(1.9), λ is the 't Hooft's oupling inthe gauge theory. The Eq.(1.23) also implies that the world-sheet higher derivativeorretions (the orretion due to massive string modes) are now ontrolled bydimensionless oupling

α′
effective =

√
1

4πλ
. (1.24)

• Maldaena's limit: Maldaena's limit is de�ned as α′ → 0, keeping λ �xed.This is equivalent to taking L→ 0 sine form (1.22) and (1.23)
L2

4πα′ =

√
λ

4π
. (1.25)Interestingly, in this limit string ation is well de�ned and the resaled metri

g̃MN in Eq.(1.23) redues to
g̃MNdx

MdxN =
1

z2
ηijdx

idxj +
dz2

z2
+ dΩ2

5. (1.26)This is AdS5 × S5 metri with unit radius of urvature, written in z oordi-nate. To summarize, we see that in the Maldaena limit, only the AdS5×S5region of the D3-brane ontributes to the losed string dynamis while asymp-totially �at region e�etively deouples.Before we pass over to the next setion, we end this setion with a brief de-sription of AdS5[22℄. AdS5 is a spae-time with a onstant negative urvature. Itan be represented by a hypersurfae obeying
X2

0 +X2
5 −

4∑

i=1

X2
i = L2, (1.27)in six dimensional �at spae with metri

ds2 = −dX2
0 − dX2

5 +
4∑

i=1

dX2
i . (1.28)In this form, it is obvious that AdS5 metri is endowed with SO(2, 4) isometry.Moreover, S5 has an isometry group SO(6) ∼ SU(4). We have already disussed10



Chapter 1. Introdutionthat, being half-BPS, 16 of 32 supersymmetries are preserved by an array of ND3-branes. In addition to this, in the deoupling limit where we are left with the
AdS part, we have another 16 onformal supersymmetries whih were broken byfull D3-brane geometry. Thus together with supersymmetry, the SU(4)-symmetryand the onformal symmetry SO(2, 4) leads to supergroup SU(2, 2|4). This is alsothe symmetry group of the N = 4 SYM, disussed in the last subsetion.1.3 The AdS/CFT orrespondeneDisussion in the previous setion leads to the two di�erent desriptions of the lowenergy limit of N D3-branes.

• Open string desription: N = 4, SU(N) SYM in four dimensions withgauge oupling gSYM + free supergravity in �at spae-time.
• Closed string desription: Type IIB string theory on AdS5 × S5 withparameters string oupling gs and string length ls + free supergravity in�at spae-time.Both the desriptions have deoupled free supergravity in �at spae-time and Mal-daena proposed to drop this and identify the rest. This leads to the followingorrespondene.

N = 4, SU(N) SYM ≡ Type IIB string theory on AdS5 × S5, (1.29)with the parameters of both side related to eah other by
g2SYM = gs, (1.30)

g2SYMN = λ =
L4

4πl4s
(1.31)and the axion expetation value is given by SYM instanton angle 〈C〉 = θ.Unfortunately, quantization of strings on AdS5 × S5 bakground su�ers frominadequate understanding. We have noted that above spae is supported by theR-R �ve form �ux. While the NS-R approah turns out to be di�ult in preseneof R-R �elds, the Green-Shwarz approah is more suitable. However, �ndingovariant Green-Shwarz ation on urved R-R bakground is again a ompliatedmatter (see [23℄). In these irumstanes, the onjeture is mostly exploited onlyin a partiular region of the oupling spae. This region an be isolated as follows.We note from Eq.(1.24) that the world-sheet derivative orretions are on-trolled by α′

effective. Therefore massive string modes deouple in the limitα′

effective →
0. This, in view of Eq.(1.24), means that we must be in the strongly oupled region11



Chapter 1. Introdutionof the gauge theory with λ being large. We an also suppress string loop orre-tions by taking gs → 0. But sine λ = gsN, to keep it �xed but large, we need totake N → ∞. So gauge theory in question is atually N = 4 SU(N) SYM withvery large number of olours. Sine we have gotten rid of massive stringy modesand also have gs small, we have a lassial type IIB supergravity on AdS5 × S5.This is a very well understood subjet. Consequently, most of the explorations arearried out in this region of AdS/CFT orrespondene. In this thesis, we mostlyexploit this weaker form of the onjeture.1.3.1 The mathing of spetrumWe have seen that the symmetry group of both side of the duality is given by thesupergroup SU(2, 2|4). The AdS/CFT duality implies that the representationsof the same supergroup SU(2, 2|4) should also math on both the sides. Stateddi�erently, there should be a one to one orrespondene between gauge invariantloal operators in the gauge theory with the loal �elds in the gravity. In thefollowing, we brie�y disuss the spetrum of both the sides and then their mapping(see [22℄ for details).The SU(N),N = 4 SYM ontains all the gauge invariant quantities that an bebuilt out of gauge �eld Aµ, salars X i and Weyl fermions λaα. Sine all of the �eldsare in the adjoint representation, the gauge invariant operators must be produt oftraes of produts of those �elds. These an be lassi�ed into single trae and multitrae operators. We only need to onsider single trae operators, sine multi traeoperators appear in the operator produt expansions of single trae operators. Outof single trae operators, only superonformal primary operators are importantsine all others an be built out of them by applying Poinare supersymmetrygenerator Q and translation Pµ. These primaries an further be divided into hiralprimary and non-hiral primary operators. Chiral primaries are those, whih areannihilated by half of the supersymmetry generators. Sine the superharges haveheliities ±1
2
, the other primaries in that representation will have range of heliitiesbetween λ−2 to λ+2 where λ is the heliity of lowest dimensional operator. Thisis known as short multiplet. For example,
OI1I2...In =

[
str(XI1XI2...XIn)

]
, with n = 2, 3, ...N, (1.32)where str means symmetrized trae over gauge algebra whih implies that theabove operator is totally symmetri under SU(4)R, I indies and therefore trans-form in (0, n, 0) representation of SU(4). Further, the third braket in the righthand side of above equation implies that one needs to take only the traeless partin the SU(4)R indies. The saling dimension of these primaries are n, and thehighest dimension primaries in this multiplet have a dimension n + 4, whih is ofthe form Q4Q̄4O. The ases with n ≥ N, are multi trae operators where N is thenumber of olours. 12



Chapter 1. IntrodutionLet us onsider the n = 2 ase, whih is alled supergraviton representation.Sine hiral primary of lowest dimension is built out of salar (λ = 0), this rep-resentation will have the range of heliities between −2 to +2, and the highestdimension primaries in this multiplet have a dimension 4, instead of 6 as primarieswith ∆ > 4 vanishes. This multiplet inludes among others, a vetor, the SU(4)Rsymmetry urrent Jµ of dimension 3, a symmetri tensor �eld, the energy momen-tum tensor T µν of gauge theory of dimension 4.In the gravity side, the short multiplet arises as follows. As we have alreadydesribed, it is not known how to ompute the full type IIB string spetrumon AdS5 × S5. Only the states that arises from the dimensional redution [24℄ ofthe ten dimensional type IIB supergravity multiplet, are known. They all haveheliity range (−2) to 2. Hene we get short multiplet and these �elds are built ona lowest dimensional �eld whih is salar in (0, n, 0) representation of SO(6) with
n = 2 [25℄. This lowest dimensional salar �eld arises from linear ombinationof metri haa along S5 and four form �eld Aabcd, where a, b, c, d are indies along
S5. For the ase of n = 2, one has in it massless graviton �eld gµν , the massless
SU(4)R gauge �eld Aµ. It then immediately follows that the massless graviton �eld
gµν orresponds to energy momentum tensor T µν and the massless SU(4)R gauge�eldAµ orresponds to the SU(4)R symmetry urrent Jµ of the gauge theory.1.3.2 Computing orrelation funtion from AdS/CFTOne of the powerful aspets of duality is that, it maps the problem of �ndingquantum orrelation funtion in the �eld theory to a lassial problem in thegravity. Suppose we are interested in omputing orrelation funtion of a loalgauge invariant operator operator θ in the gauge theory. For that we need todeform the theory by

S → S +

∫
d4xφ(x)0θ(x), (1.33)where φ0(x) is soure onjugate to θ. Aording to AdS/CFT, this soure an beidenti�ed with the boundary value of some bulk �elds Φ, up to appropriate fators(as explained below) suh that[16, 17, 27℄

−log〈e
∫
d4xφ0(x)θ(x)〉CFT ≃ onshell S[φ0(x)]sugra, (1.34)where by on-shell we mean we solve equations of motion in the bulk subjet toDirihlet boundary ondition on the boundary with the spei�ed boundary value,and evaluate the ation on the solution. Now in order to ompute the n-pointorrelation funtion, all we need to do is to take derivative of this on-shell ationwith respet to φ0, n times. More preisely,

〈T [θ(t1, x1)...θ(tn, xn)]〉 =
∂nSSugra

∂φ0(x1, t1)....∂φ0(xn, tn)
. (1.35)13



Chapter 1. IntrodutionWe illustrate this with an example here.Let us onsider a massive bulk salar �eld Φ of mass m in AdS5. This an bethought of as arising from Kaluza-Klein ompati�ation along S5, in whih asethe mass is given by m ∼ 1
L
where L is the radius of S5 whih is same as AdS5radius. For the time being, we shall take m to be a generi value. To be morepreise, let us work with AdS5 in the oordinate system z with z = L2

r
, wheremetri takes the form

ds2 =
L2

z2
(−dt2 +

3∑

i=1

(dxi)2 + dz2). (1.36)The ation is given by
S =

1

2

∫
d5x

√
g[gMN∂MΦ∂Nφ+m2Φ2]

=
1

2

∫ ∞

0

dzd4x
L3

z3
[(∂zΦ)

2 + (∂µΦ)
2 +

m2L2

z2
Φ2], (1.37)where M,N indies takes value along all the bulk diretions where as µ, ν indiestakes value along �eld theory diretions. In the momentum spae

Φ(xµ, z) =

∫
d4keik.xfk(z). (1.38)The equation of motion is given by

f
′′

k − 3

z
f

′

k − (k2 +
m2L2

z2
)fk = 0, (1.39)with k2 = gµνkµkν and prime (′) denotes derivative with respet to z. Solu-tion to equation of motion Eq.(1.39) is a linear superposition of z2I∆−2(kz) and

z2K∆−2(kz). In the interior of AdS spae (z → ∞), the Bessel funtions behave as
I∆−2(kz) ∼ ekz, K∆−2(kz) ∼ e−kz. (1.40)So by imposing regularity at z → ∞ (interior of AdS), we an set the oe�ientof I∆−2(kz) to zero. In the above, we have used the notation that,

∆ = 2 +
√
4 +m2L2. (1.41)To have real exponents in Eq.(??), we require m2L2 ≥ −4 whih is referred asBreitenlohner-Freedman (BF) bound and is required for stability[28, 29, 30℄. Tounderstand the role of ∆ in the boundary theory, let us study the near boundarybehavior of the �eld Φ(x) in Eq.(1.38). Near the boundary (z → ǫ), it behaves as

Φ ∼ z∆. We set the boundary ondition near the boundary to be
Φ(x, z)|z=ǫ = φ0(x)ǫ

4−∆. (1.42)14



Chapter 1. IntrodutionUsing this, we �x the normalization of f to be
fk(z = ǫ) = φ0(k)ǫ

4−∆, (1.43)so that we get
fk(z) = φ0(k)z

2ǫ2−∆K∆−2(k, z)

K∆−2(k, ǫ)
. (1.44)In the position spae, if we write Φ near the boundary, we get

Φ(z, x) → ǫ∆[A(x) +O(ǫ2)] + ǫ4−∆[φ0(x) +O(ǫ2)], (1.45)with
A(x) = π−2 Γ(∆)

Γ(∆− 2)

∫
d4x

′

φ0(x
′

)|x− x
′ |−2∆. (1.46)As mentioned earlier, the term φ0 dominates near the boundary whereas the otherfator always goes to zero, sine by de�nition ∆〉0. So the fator φ0(x) will at assoure for operator θ. Under the saling x → λx, z → λz, the �eld Φ does notget saled, but due to presene of fator ǫ4−∆ in Eq.(1.45), the fator φ0, sales as

φ0(xλ) → λ∆−4φ0(x), and hene by Eq.(1.33), the saling dimension of operator
θ is ∆. So we see that the mass of the dual bulk �eld determines the salingdimension of the boundary operator. In the ontext of the boundary theory, theBF bound arises from requirement of unitarity. Now we turn our attention to theomputation of orrelation funtions of operators θ.Let us �rst evaluate the on-shell ation. By doing integration by parts in theation Eq.(1.37) and using equation of motion Eq.(1.39) we get on-shell ation asa boundary term and is given by

Sonshell =
1

2

∫ ∫
d4kd4k

′

(2π)8
δ4(k + k

′

)φ0(kµ)φ0(k
′

µ)ǫ
4−2∆ z∂zfk,z

f(k, ǫ)

∣∣∣∣∣
z=ǫ

, (1.47)with ǫ → 0. Inserting the solution given by Eq.(1.44) in Eq.(1.47) we get
Sonshell =

1

2

∫ ∫
d4kd4k

′

(2π)8
δ4(k + k

′

)φ0(kµ)φ0(k
′

µ)
( 1

ǫ4−2∆
Polynomial[k2ǫ2]

−21−2(∆−2)(∆− 2)k2(∆−2)Γ(2−∆)

Γ(∆− 2)
+ ...

) (1.48)where ... represents terms whih are zero as ǫ → 0. Let us note that we have,in Eq.(1.48) some divergent piees as ǫ → 0. If we Fourier transform bak in toposition spae, we see that these are the ontat terms. From the dual gauge
15



Chapter 1. Introdutiontheory point of view one an think of these as UV divergenies with UV ut-o�9
ǫ. These an be subtrated o� by adding suitable ounter terms. By taking twoderivatives of the on-shell ation Eq.(1.48) with respet to φ0, we get

< θ(k)θ(k
′

) >= −21−2(∆−2)(∆− 2)k2(∆−2)Γ(2−∆)

Γ(∆− 2)
, (1.50)whih in the position spae gives

< θ(x)θ(x
′

) >= 2π−2 Γ(∆)

Γ(∆− 1)

1

|x− x′ |2∆ . (1.51)We again observe that, the saling dimension of θ is ∆. Although we have disussedthe ase of salar �eld, one an similarly �nd out Greens funtions for other oper-ators in the boundary theory by identifying dual �eld and alulating the on-shellation.Till now we have disussed how to ompute orrelation funtions in the Eu-ledian signature. The AdS/CFT tehniques an very well be used to omputethe same in the Lorentzian signature. The di�erenes between these two are, inthe Eulidean signature we are interested in the time ordered orrelators where asin the Lorentzian signature there are several orrelators of interest (time-ordered,advaned, retarded). We shall return to them in later setions.1.4 Compati�ation along S5In this setion, we desribe brie�y the S5 ompati�ation of the type IIB theory.Results of this setion, and its generalization, will be used repeatedly in the laterpart of the thesis.After dimensional redution on S5, the type IIB supergravity ation an bewritten as
S =

1

16πG5

∫
d5x[Lgrav + Lmatt], (1.52)9Let us note that, ǫ ats as UV ut-o� for gauge theory whih is an IR ut-o� in AdS spae.This is generally goes by the UV/IR relation in AdS/CFT. To illustrate this, let us write AdS5metri in the oordinate r = L2

z
, where it takes the form
ds2 = (

r

L
)2ηµνdx

µdxν + (
dr

r
)2L2. (1.49)Saling symmetry of AdS5 implies, under saling xµ → λxµ of the gauge theory oordinates, theradial oordinate sales as energy sale that is r → r

λ
.Let us note that, as we approah IR of theboundary theory by doing a saling by xµ → λxµ, with λ > 1, we are going deep inside the AdS.In other words, r large in the boundary theory orresponds to UV physis of the gauge theorywhereas r small orresponds to IR physis. Hene, radial diretion in the gravity side, an beidenti�ed as the energy sale in the dual gauge theory. 16



Chapter 1. Introdutionwhere �ve-dimensional Newton's onstantG5 is related to ten dimensional Newtonsonstant through G5 =
G10

π3L5 . By using Eq.(1.11), Eq.(1.30) and Eq.(1.31) we get
G5

L3
=

π

2N2
. (1.53)The part Lmatt in Eq.(1.52) is the Lagrangian for matter �elds whih gets ontribu-tion from in�nite tower of �elds that we get after ompati�ation along S5. In theases where Lmatt = 0, the ten dimensional IIB supergravity redues to Einsteination (∫ Lgrav) in the presene of negative osmologial onstant. Details of theompati�ation goes as follows. We start with the metri,

ds2 = g5µνdx
µdxν + L2dΩ2

5. (1.54)Here g5µν is the �ve dimensional part of the metri and dΩ2
5 is the metri on S5,represented by �ve angular oordinates θ1, θ2, θ3, θ4, θ5. Sine the metri is diagonal,ten dimensional Rii salar is totally deoupled in two independent omponents,one oming from the g5µν part and another from the S5 part. We denote them by

R(5) and R(S) respetively. Sine we are interested to get �ve dimensional ation,we keep �rst omponent as it is and evaluate the seond one from S5 metri. Thenthe value ofR(S) is 20
L2 . Similarly the �ve form �eld strength F (10) has non vanishingomponents F (10)

µ1µ2µ3µ4µ5 = F
(5)
µ1µ2µ3µ4µ5 and F (10)

θ1θ2θ3θ4θ5
= F 5

1 ǫθ1θ2θ3θ4θ5 , where F (5)
1 is azero-form �eld strength on the S5. To write down both the omponents of the form�eld in terms of zero-form �eld in the ation, we use the Hodge dual transformationfor the �rst omponent whih is F (5)

µ1µ2µ3µ4µ5 =
1
L2F

(5)
2 ǫµ1µ2µ3µ4µ5 . Here F (5)

2 is also azero-form �eld strength on the spae given by metri g5µν . After rearranging the all�elds and integrating over the S5, the ten dimensional ation in Eq.(1.10), reduesto the �ve dimensional form as
S =

1

16πG5

∫
d5x
√

|g(5)|
[
R(5) +

20

L2
− 1

2L5
(F

(5)2
1 + F

(5)2
2 )

]
. (1.55)Let us note that there is no ontribution from dilaton φ or axion C sine they areonstants. The value of the last term of the above integral an easily be alulatedusing equations of motion of the �ve form �eld (see [24, 26℄ for details). This omesout to be 8

L2 . Therefore, the �nal form of the �ve dimensional ation is
S =

1

16πG5

∫
d5x
√

|g(5)|
[
R(5) +

12

L2

]
. (1.56)Beause of the presene of osmologial onstant Λ = − 12

L2 , the ation admits AdS5as a solution.In general the above ation reeives other ontributions if we allow rotations orother exitations on S5. In the ase of rotation, for example, the additional termsome in the form of salars and vetors. We will ome to these ontribution inlater setions. 17



Chapter 1. Introdution1.5 Some appliations of AdS/CFT: At equilibriumSo far we have onsidered SYM at zero temperature. In this thesis, we will primar-ily be interested in gauge theories at �nite temperature as well as at �nite hemialpotentials. This setion serves as an attempt to address some of the general fea-tures of N = 4, SU(N) SYM at non-zero temperature and hemial potentials.At non-zero temperatureIn the light of gauge/gravity duality, there are two ways to introdue temper-ature in the gauge theory. First is to ompatify the Eulidean time diretion of
AdS5. The periodiity then determines the temperature of the gauge theory. Thisis known as the thermal AdS spae. Seond way is to inorporate a blak hole intothe AdS geometry. The Hawking temperature and the entropy of the blak holethen determine the temperature and the entropy of the dual. Moreover, aordingto AdS/CFT, the free energy of the gauge theory is determined by the temperaturetimes the on-shell Eulidean supergravity ation. This was omputed in [17℄. For
N = 4, SU(N) SYM, the free energy (density) and the entropy (density), at large
N , were found to have a N2 dependene resulting from the ontributions due toall the degrees of freedom of SU(N). We all this phase as the deon�ned phase.Further, the same omputation on thermal AdS produes a N0 dependene in theorresponding thermodynami quantities. Naturally, this spae is then identi�edas the gravity dual of the on�ned phase. It was further shown in [17℄ that for SYMon S3, the transition from one phase to another takes plae at a �nite non-zerotemperature and an be identi�ed as the Hawking-Page transition from thermalAdS to the blak hole spae-time[31℄. However, for gauge theories on R3 with dualas the blak hole with �at horizon, the deon�ned phase was found to be stableat all non-zero temperature. In what follows, we shall onentrate on the blakholes with the �at horizon. An exellent disussion on gauge theories on S3, inthis ontext an be found in [17℄.At non-zero temperature and hemial potentialAs we have noted previously, N = 4, SU(N) SYM has a global R-symmetrygiven by the group SU(4). Consequently, there an be three independent R-hargesoming from three independent U(1) Cartans of the group. Conjugate of thisharges are the hemial potentials. Therefore, one an study this SYM in thepresene of three non-zero hemial potentials and hene at �nite density of hargesonjugate to this hemial potentials. The gauge/gravity duality says that theglobal symmetries of the gauge theory appear as a loal symmetries on its dual[32℄. It is easy to see as to where from the gauge �elds ould appear in thegeometry. The sphere S5 has a SU(4) symmetry with preisely three independent18



Chapter 1. Introdution
U(1)′s. Rotating the sphere along the three independent diretions would thereforeprodue three gauge �elds on AdS after ompati�ation. So the gravity duals arethe �ve dimensional AdS blak holes with these gauge harges. Following theliterature we all these general lass of blak holes as R-harged blak holes. Inthe last sub-setion of this setion, we present a brief disussion on these holes andtheir gravity duals.1.5.1 Finite temperatureThe AdS Shwarzshild blak holes are the solutions of Eq.(1.56), with

ds2 =
L2

z2
(−f(z)dt2 +

3∑

i=1

(dxi)2 +
1

f(z)
dz2), (1.57)where

f(z) = 1− (
z

zH
)4. (1.58)In the above equation zH is a onstant. Horizon is given by the solution of f(z) = 0.This happens at z = zH . The horizon of the blak hole is �at, and are alled blakbranes. The Hawking temperature of the blak hole an be omputed in thefollowing way. Close to horizon, we de�ne z = zH +

κ z2H
2
ρ2 with κ = f

′

(zH )
2

, alledthe surfae gravity. In the Eulidean spae, where t→ iτ, the metri reads
ds2 = κ2ρ2dτ 2 + dρ2 +

L2

z2H

3∑

i=1

dx2i . (1.59)Comparing the �rst two terms of the right hand side of the above equation with
dρ2 + ρ2dφ2 (where φ = φ+ 2π), we see that to avoid onial singularity, we needto identify

κτ ∼ κτ + 2π

⇒ τ ∼ τ +
2π

κ
. (1.60)The Hawking temperature is simply the inverse of this periodiity and is given by

T =
κ

2π
=

1

πzH
. (1.61)From the gauge theory point of view, this an be interpreted as the temperatureof the SYM. Using the relation between the entropy of the blak hole and the areaof the horizon, we an write entropy density to be10

s =
A

4V G5
=

L3

4G5z3H
. (1.62)10Sine the horizon has an in�nite volume, one needs to put a ut-o� in order to de�ne thermo-dynami quantities. Thermodynami densities are then de�ned by dividing respetive quantitiesby the volume V. 19



Chapter 1. IntrodutionThis is interpreted as the entropy density of the dual gauge theory. Using theexpression for the Hawking temperature we an re-write the entropy as
s =

1

4G5
(πL)3T 3. (1.63)Further, one an ompute the free energy of the gauge theory by using the relation

ZCFT ≡ e
F
T = e−Sg[g], (1.64)where g is the Eulidean saddle point metri whih extremizes the ation inEq.(1.56). However, it turns out that, on-shell ation evaluated on the solutiongiven in Eq.(1.57) is in�nite. Therefore one needs to have a regularization sheme.There are two di�erent way of doing this. First is to subtrat the AdS bakgroundkeeping the geometries of the AdS bakground and blak hole in the asymptotiregion same[17℄. The other way is to introdue ounter terms (see for example[32℄). Though we shall use the ounter term method to alulate on-shell ation,both the ways give the same result.It is well known that, in order to have well de�ned variational priniple andon-shell �nite ation, one needs to add ounter terms to the ation Eq.(1.56). Themodi�ed form of the ation is given by [32℄,

Sg = SE.H. + SG.H. + Sct

= − 1

16πG5

∫
d5x

√
g (R+

12

L2
)

+
1

8πG5

∫

z→0

d4x
√
γ (K − 3

L
), (1.65)where γ is the indued metri at the boundary of the spae time and K is the traeof extrinsi urvature. SG.H. is Gibbons-Hawking term that is required to have awell de�ned variational priniple. However for asymptotially AdS spae Gibbons-Hawking boundary term gives a vanishing ontribution to the on-shell ation. Sct isrequired to render the on-shell ation �nite. Now, in order to evaluate free energyas in Eq.(1.64), we use the solution as given in Eq.(1.57). After plugging this inthe right hand side of Eq.(1.65) and using the de�nition in Eq.(1.64), we get

F

V
= − 1

16G5
(πL)3T 4. (1.66)As mentioned earlier, instead of introduing ounter terms, above expression ouldhave been obtained by subtrating the AdS bakground, keeping the geometriesof the AdS bakground and blak hole in the asymptoti region same. Sine, free20



Chapter 1. Introdutionenergy in Eq.(1.66) is always negative11, it is the blak hole phase and not theAdS that minimizes the free energy. We, therefore, onlude that at any non-zerotemperature, blak hole is the stable phase of the gravity system. Now turningour attention to the gauge theory side, we notie that the free energy in Eq.(1.66)should be identi�ed as the free energy of the gauge theory at the same temperature.On natural ground, we expet for SYM at temperature T, the free energy densityis given by
F

V
= −c′T 4, (1.67)where c′ is a measure of number of degree of freedom of the CFT. Upon omparingthis with Eq.(1.66) and using Eq.(1.53), we get

c
′

=
1

16G5
(πL)3 =

π2N2

8
. (1.68)Sine free energy density has a leading N2 dependene, we onlude that thegauge theory is in the deon�ned phase. Let us note that, in order to de�nethermodynamis properly for gauge theory, we also need to introdue a IR ut-o�.The volume of the spae is V, whih appears in Eq.(1.66) and in Eq.(1.67) .Let us end this subsetion with the following omment. At a muh higherenergy ompared to the sale set by the temperature, we expet SYM to havenegligible e�et of temperature. In this sense, the temperature modi�es the IRphysis. In the gravity dual, the temperature modi�es the geometry by puttinga horizon into the deep interior of the AdS. However asymptotially far away, itpreserves the AdS struture. Hene we expet that the near horizon physis of theblak hole aptures the IR physis of the gauge theory where as the asymptotiregion ditates the UV physis of the theory.1.5.2 Finite temperature and hemial potentialThe S5 redution of type IIB supergravity gives rise to N = 8, D = 5 gaugedsupergravity with SO(6) Yang-Mills gauge group. The omplete details of thisredution is quite omplex (see for example [33℄). However, trunation of this11A more interesting situation arises when we onsider the gauge theory on S1 × S3. In thisase the dual gravity bakground is a blak hole with spherial horizon. Here one �nds thatbelow a ritial temperature, the thermal AdS spae has lesser free energy than the blak holephase and hene there is a phase transition from blak hole to thermal AdS as we lower thetemperature. This, in the gauge theory, is interpreted as deon�nement to on�nement transition,where thermal AdS spae represents the on�ned phase of the gauge theory. Let us note that, thetransition temperature is inversely proportional to the radius of the spae S3 where �eld theorylives. Hene, in the limit where radius of the sphere goes to a very large value, the transitiontemperature tends to zero. This is what we got from the study of thermodynamis of blak holewith �at horizon. 21



Chapter 1. Introdution�ve dimensional theory to N = 2 gauged supergravity with gauge group U(1) ×
U(1) × U(1) whih is the Cartan subgroup of SO(6) is known. In the bosonisetor, it ontains three gauge bosons, the metri and two salars. However, it ismore onvenient to parametrize these two salars in terms of three real salar �eldswith a onstraint. We give a brief desription of the blak holes and their variousthermodynami properties. We refer them as R-harged blak holes. More detailsof R-harged blak holes an be found in [34, 35, 33, 36℄.The trunated ation is given by

S5 =
1

16πG5

∫
d5x

√−g
(
R+

2

L2
V − 1

4
GijF

i
µνF

µν j −Gij∂µX
i∂µXj

+
1

24
√−g ǫ

µνρσλǫijkF
i
µνF

j
ρσA

k
λ

)
, (1.69)where

Gij =
L2

2
diag [(X1)−2, (X2)−2, (X3)−2

]
, (1.70)and the salar potential is given by

V = 2
3∑

i=1

1

X i
. (1.71)The F i

µν with i = 1..3 are the �eld strength of the three U(1) gauge �elds and X iwith i = 1..3 are three real salars subjet to onstraintX1X2X3 = 1. The Newtonsonstant and gauge theory variables are related by 1
16πG5

= N2

8π2L3 , as before. Thesolution of the equations of motions that follow from the ation in Eq.(1.69) aresummarized below. The metri is given by
ds25 = −H−2/3 (πT0L)

2

u
f dt2 +H1/3 (πT0L)

2

u

(
dx2 + dy2 + dz2

)
+H1/3 L2

4fu2
du2 ,(1.72)where

f(u) = H(u)− u2
3∏

i=1

(1 + κi) , Hi = 1 + κiu , H =
3∏

i=1

Hi, (1.73)and
X i =

H1/3

Hi(u)
, (1.74)where as the gauge �eld is given by

Ai
t =

πT0
√
2ki(1 + k1)(1 + k2)(1 + k3)u

Hi(u)
. (1.75)22



Chapter 1. IntrodutionFor onveniene, we have used the oordinate system u in whih u = 1 is thehorizon12 and u = 0 is the boundary whih is AdS5. Let us note that, if we set allthe hemial potential to zero κi = 0, then we see that the u oordinate is relatedto z oordinate of the previous setion by the relation u = z2

z2H
and hene T0 isidenti�ed as the temperature of the blak hole at zero hemial potential. Nowwe summarize various thermodynami quantities. The Hawking temperature andentropy density an be omputed as done in the last subsetion and are given by

TH =
2 + κ1 + κ2 + κ3 − κ1κ2κ3

2
√

(1 + κ1)(1 + κ2)(1 + κ3)
T0 , s =

π2N2T 3
0

2

3∏

i=1

(1 + κi)
1/2 . (1.76)As disussed previously, in order ompute free energy, we need to add appropriateounter terms. Inluding ounter terms, the full ation takes the form

S = S5 +
1

8πG5

∫

boundary

d4x
√
−h K +

1

8πG5

∫

boundary

d4x
√
−hW (X), (1.77)where

W = − 1

L

3∑

i=1

X i, (1.78)and was derived originally in [37℄. Let us note that in four or higher dimension,we do not require any boundary term for the Maxwell �elds. Upon evaluatingon-shell ation, we get free energy of the dual gauge theory. The pressure (P ) ofdual gauge theory, whih is related to free energy by P = −F
V
is given by

P =
π2N2T 4

0

8

3∏

i=1

(1 + κi) . (1.79)The energy density of the gauge theory is related to ADM mass of the blak holeand is given by[38℄
ε =

3π2N2T 4
0

8

3∏

i=1

(1 + κi) , (1.80)and hene we see ǫ = 3P. The densities of physial harges and onjugate hemialpotentials are
ρi =

πN2T 3
0

8

√
2κi

3∏

l=1

(1 + κl)
1/2 , µi = Ai

t(u)

∣∣∣∣∣
u=1

=
πT0

√
2κi

(1 + κi)

3∏

l=1

(1 + κl)
1/2 ,(1.81)12Let us note that f = 0, has three roots. The largest root orresponds to blak hole horizon.23



Chapter 1. IntrodutionOne an now easily hek that the relation
ǫ+ P = sTH +

3∑

i=1

ρiµi (1.82)holds. As is the ase with temperature, introdution of hemial potential e�ets IRphysis of the gauge theory. This is evident from the fat that, solution Eq.(1.72)asymptotially (or near the boundary) approahes AdS5.It is well known that, unless the harges satisfy ertain onstraints, these blakholes undergo a loal instability [39, 38, 40℄. While at high temperature, blakholes remain stable, one we redue the temperature down to a ritial value, thespei� heat and suseptibility diverge. In order to see this, let us ompute thosequantities. The spei� heat assoiated with the blak holes has the following form
C =

(
T
∂s

∂T

)
µ1,µ2,µ3

= (πT0L)
3(2 + κ1 + κ2 + κ3 − κ1κ2κ3)×

3− (κ1 + κ2 + κ3)− (κ1κ2 + κ2κ3 + κ3κ1) + 3κ1κ2κ3

4
√
(1 + κ1)(1 + κ2)(1 + κ3)(2− (κ1 + κ2 + κ3) + κ1κ2κ3)

.
(1.83)The expressions for suseptibility an be found in [41℄. What we note from aboveexpressions that the spei� heat diverges over the ritial hypersurfae

2− (κ1 + κ2 + κ3) + κ1κ2κ3 = 0. (1.84)Same is true for suseptibility as well. Hene the blak hole bakground is ther-modynamially stable provided the κi's satis�es the onstraint
2− (κ1 + κ2 + κ3) + κ1κ2κ3 > 0. (1.85)It turns out that the Lagrangian in Eq.(1.69) an further be trunated down toa smaller one. For example, one an trunate it to a theory with diagonal U(1) ofthe group U(1)3. In this ase the �elds Xi = 1 for i = 1...3. Ation an be writtenas[33℄

S5 =
1

16πG5

∫
d5x

√−g
(
R+

12

L2
− 1

4
F 2
(2) +

1

12
√
3
ǫµνρσλFµνF

ρσAλ

)
. (1.86)The solution of the equations of motions that follows from the above ation isasymptotially AdS Reissner-Nordstrom blak hole in �ve dimensions. The em-bedding of this trunated Lagrangian in D = 10 dimensions an be found in [42℄.In the light of AdS/CFT, thermodynamis and instabilities of these blak holeshave also been disussed in [42℄. 24



Chapter 1. Introdution1.6 Some appliations of AdS/CFT: Dissipation nearthe equilibriumTill now, we have seen how time independent homogeneous gravity bakgroundsan be used to study equilibrium properties of dual gauge theories. We now on-sider the response of the gauge theory to small spae and time dependent externalperturbations about its equilibrium. This has been developed in [43, 44, 1℄ andhas been extremely useful to study the transport properties of strongly oupledgauge theories.The basi quantity that we want to ompute is the retarded Green's funtion.It enodes the ausal response of system to external perturbation. Let us onsidera perturbation of the �eld theory of the form
∆SQFT =

∫
d4xΘa(x)φa(x), (1.87)where φa is soure and Θa is an operator in the �eld theory. When the soure ofthe perturbation φa(t, x) is small then in the linear response regime, we an write

δ〈Θa(x)〉 = −
∫

y

GR
ab(x− y)φb(y)

∣∣∣
φ→0

, (1.88)where by δ〈Θa(x)〉 we mean deviation from the average value of operator at equi-librium. In Eq.(1.88) GR
ab(x − y) is the retarded 13 Greens funtion and an bewritten as

GR(x− y) = −iθ(x0 − y0)〈[Θa(x),Θb(y)]〉. (1.89)Taking a Fourier transform of Eq.(1.89) we get
δ〈Θa〉 = GR

ab(ω, k)φb(ω, k), (1.90)where we have assumed spae-time translation invariane. Similarly taking aFourier transform of Eq.(1.89) and using Eq.(1.90) we get
GR

ab(ω,
−→
k ) = −i

∫
d3xdte−iωt−ik.x〈[Θa(x),Θb(0)]〉. (1.91)In the long wavelength and low frequeny limit, where the �eld theory at �nite tem-perature is de�ned by hydrodynamis, one an use the Kubo's formula (elaboratedlater)

δ〈Θa〉 = iωχabφb

∣∣∣
ω,k→0

, (1.92)13In the Lorentzian signature, we have several hoies for orrelator, namely time-ordered,advaned, retarded. The hoie of retarded Greens funtion here, over others follows from theausality. 25



Chapter 1. Introdutionwhere χab is some response funtion (transport oe�ient) whih haraterizes thehydrodynami regime. The Eq.(1.92) together with Eq.(1.90) implies,
χab = − lim

ω,k→0

1

iω
GR

ab(ω, k). (1.93)If we onsider Θ = T x
y or Θ = J i then χ = η, the shear visosity or χ = σ, theondutivity of the dual gauge theory respetively.In the next few subsetions, we provide a brief review of these developments.In the later hapters of this thesis, we will disuss universal nature of some of thetransport oe�ients of strongly oupled theories using gauge/gravity duality.1.6.1 HydrodynamisLet us onsider an interating QFT, in global thermal equilibrium at tempera-ture (T ) and hemial potentials (µ) dual to various onserved harges. There isa harateristi length sale in QFT, namely the mean free path (lmfp). Now ifwe perturb the system out of equilibrium with �utuations whose wave length islarge ompared to sale set by the mean free path, one desribes the system interms of an e�etive theory alled hydrodynamis, whih is formulated in-terms ofequations of motion. Perturbation away from the equilibrium, in this limit, anbe thought of as if we are allowing the thermodynami variables of the systemto �utuate at a sale su�iently large ompared to sale set by temperature orenergy density in equilibrium. Then its natural to expet, around any given point,a region where loal temperature is roughly onstant and one an use basi ther-modynami variables to desribe the physial properties of the region. The roleof hydrodynamis is to desribe how these di�erent regions exhange thermody-nami quantities among themselves. The dynamis in this regime is aptured byonservation of energy momentum tensor and other onserved global harges. Thedynamial equations are

▽µT
µν = 0, ▽µ J

µ
I = 0, (1.94)where T µν is stress tensor and Jµ

I is the harged urrents and I spei�es numberof onserved harges required to speify the system. Now all that we have to dois to solve Eq.(1.94) for energy momentum tensor and urrent. By the virtue ofloal thermal equilibrium, we should be able to express T µν and Jµ in terms ofthermodynami variables. Sine we would like to understand how thermodynamivariables �ow from one region of loal thermal equilibrium to the other, we asso-iate a veloity �eld uµ(x) to eah region. It turns out that, loal thermodynamivariables together with veloity �eld ompletely desribes the system in the hydro-dynami regime. We therefore need to know as to how the stress tensor and theurrents an be expressed in terms of variables like temperature T , energy den-sity ǫ, pressure P, hemial potentials µ and �uid veloity uµ. We do this for the26



Chapter 1. Introdutionideal �uid and then for the dissipative �uids. For further details, we refer readerto[46, 36, 47, 45℄.Ideal �uidFor an ideal �uid, there is no dissipation. One an go to a loal rest framewhere veloity �eld is aligned in the diretion of energy �ow. In this ase one anwrite
T µν
ideal = ǫuµuν + PP µν, Jµ

I,ideal = ρIu
µ, (1.95)with uµuµ = −1, and P µν = gµν + uµuν whih an be thought of it as projetingorthogonal to veloity. In the loal rest frame, P µν is used to deompose energymomentum tensor into temporal and spatial omponents. In Eq.(1.95), ǫ, P and ρIare the energy density, pressure and onserved harged of the system. Sine thereis no dissipation one expets zero entropy prodution. This an be understood byde�ning entropy urrent

Jµ
∣∣∣
S
= suµ, (1.96)whih keeps trak of how loal entropy density varies in the �uid. In the aboveequation s is the entropy density of the �uid. For ideal ase we have ∂µJµ

∣∣∣
S
= 0,a statement of no entropy prodution.Dissipative �uidThe �uid perturbed away from equilibrium, tries to equilibriate through dissi-pation (see [46, 36, 47, 45℄ for details). Mirosopially dissipation arises beauseof interation term in QFT. In this ase we expet �ow of �uid to reate entropyonsistent with seond law of thermodynamis. To model dissipation, one mightsimply adds extra terms in the energy momentum tensor and urrent as

T µν
Dissipation = T µν

Ideal +Πµν , Jµ
I, Dissipative = Jµ

I, ideal + Y µ
I . (1.97)So we now need to determine Πµν and Y µ

I . One way of doing this is to demandpositivity of entropy urrent and determine set of allowed most general terms in
Πµν , Y µ

I onsistent with symmetries. Here one allows terms that are gradient inveloity and thermodynami variables. In addition we need to hoose the veloity�eld. In the Landau frame [46℄,
uµΠ

µν = uµY
µ
I = 0. (1.98)In other words we �nd T µνuν = −ǫuµ. So uµ an be thought of as eigenvetorwith eigenvalue ǫ. So uµ determines how energy-momentum is transported in thesystem. Before writing down dissipative parts in terms of gradient expansion of27



Chapter 1. Introdutionthermodynami variables and veloity �eld, let us look at the following . We knowthat
▽µT

µν = 0. (1.99)Contrating it with veloity and using expression for ideal part of energy momen-tum tensor, we get
uν ▽µ T

µν
ideal = 0

⇒ (ǫ+ p)▽µ u
µ + uµ ▽µ ǫ = 0. (1.100)Projeting orthogonal to veloity �eld we get
Pνα ▽µ T

µν
Ideal = 0

⇒ P µ
α ▽µ P + (ǫ+ p)Pναu

µ ▽µ u
ν = 0. (1.101)We observe that there is a relation between gradient of thermodynami variablessuh as energy density, pressure to gradient of veloity. So we onlude that energymomentum tensor an only be expressed in terms of derivative of veloity �eld.The veloity gradient an be deomposed along and orthogonal to veloity�eld. The orthogonal part an further be deomposed into trae part (θ), traelesssymmetri (σµν) and antisymmetri parts (ωµν). For a four dimensional systemwe an write,

▽µuν = −aνuµ + σµν + ωµν +
1

3
θP µν , (1.102)where

θ = ▽µu
µ : The divergence part

aµ = uν ▽ν u
µ : The accelaration

σµν =
1

2
(▽µuν +▽νuµ) +

1

2
(uµaν + uνaµ)− 1

3
θP µν (1.103)

ωµν =
1

2
(▽µuν −▽νuµ) +

1

2
(uµaν − uνaµ).It follows from the de�nition that,

uµa
µ = σµνuµ = ωµνuµ = 0. (1.104)We are now ready to write down the most general form of the dissipative part ofthe energy momentum tensor (Πµν) that appears in Eq.(1.97). In order to do so, weshould keep in mind that, the energy momentum tensor should be symmetri andit should obey Landau frame ondition stated in Eq.(1.98). With these onstraintin mind, the dissipative part of energy momentum tensor an be expressed as

Πµν = −2ησµν − ζθP µν, (1.105)28



Chapter 1. Introdutionwhere we have introdued two new parameters, the shear visosity η and the bulkvisosity ζ. Further, if the system is onformally invariant, the bulk visosity ζvanishes. Before onentrating on how to ompute shear visosity η, we shalldisuss the dissipative part Y µ
I that appears in the Eq.(1.97).Keeping in mind the Landau frame ondition stated in Eq.(1.98), one anexpress Y µ

I in terms of aeleration aµ, and derivatives of thermodynami variables.However, using Eq.(1.101), we see that aµ an be written in terms of gradient ofthermodynami variables. For onveniene, Y µ
I is expressed in terms of gradientof intensive variables suh as hemial potentials µI or temperature T, instead ofexpressing it in terms of gradient of energy density, harge densities. The mostgeneral form that is onsistent with Eq.(1.98) is given by

Y µ
I = −κIJP

µν ▽ν
µJ

T
− γIP

µν ▽ν T. (1.106)If we are interested in the ase of a onformal system suh as N = 4 SYM, thenthe only ontribution that should ome from hemial potential and temperatureis in the sale-free ombination µI

T
, and hene γI = 0. The negative signs arehosen to make the divergene of the entropy urrent positive. This is requiredby seond law of thermodynamis sine we have dissipation. To simplify mattersa little more, we onsider the �eld theory to live in �at spae so that ovariantderivatives an be replaed by ordinary derivatives. The oe�ient κIJ an berelated to the thermal ondutivity of the �eld theory in the following way. Thethermal ondutivity[46, 36℄, is de�ned as response to temperature gradient ( whihindues a heat �ow and hene energy �ow T t i 6= 0), in the absene of any hargeurrent i.e. J i

I = 0.14 For small uα, the vanishing of harge urrent, upon usingEq.(1.97) gives
ρIu

i =

m∑

J=1

κIJ∂
iµ

J

T
,From whih one obtains

m∑

I,J=1

ρIκ
−1
IJ ρJu

i =
m∑

I=1

ρI∂
iµ

I

T
, (1.107)hene

ui =
1

m∑
I,J=1

ρIκ
−1
IJ ρJ

m∑

l=1

ρl∂
iµ

l

T
. (1.108)Using thermodynami relations

ǫ+ P = Ts+

m∑

I=1

µIρI , dP = sdT +

m∑

I=1

ρIdµ
I , (1.109)14In our notation i, µ, ν.. are the �eld theory spae-time indies where as I, J are the hargeindies. 29



Chapter 1. Introdutionwe get
m∑

I=1

ρI∂
iµ

I

T
= −ǫ+ P

T 2
∂iT +

∂iP

T
. (1.110)After substitution this in Eq.(1.108), we get

ui = − 1
m∑

I,J=1

ρIκ
−1
IJ ρI

(
ǫ+ P

T 2
)(∂iT − T

ǫ+ P
∂iP ) . (1.111)Therefore

T t i = (ǫ+ P )ui = − 1
m∑

I,J=1

ρIκ
−1
IJ ρJ

(
ǫ+ P

T
)2(∂iT − T

ǫ+ P
∂iP ). (1.112)In the non-relativisti ase, heat �ow is proportional to temperature gradient,where as in the relativisti ase, in addition we have pressure gradient. The pro-portionality oe�ient is known as thermal ondutivity hene [48℄

κT =

(
ǫ+ P

T

)2
1

m∑
I,J=1

ρIκ
−1
IJ ρJ

. (1.113)Let us further note that for systems with a single onserved urrent[36℄, 1
ρIκ

−1
IJ ρJ

=
κ

ρ2
. Therefore one gets[36℄

κT =

(
ǫ+ P

ρT

)2

κ =

(
ǫ+ P

ρ

)2
σ

T
. (1.114)1.6.2 Kubo formula for various transport oe�ientsThe set of transport oe�ients η, the shear visosity, kT , the thermal ondutiv-ity, whih haraterizes the hydrodynami regime and enodes dissipation, an berelated to Greens funtion by using Kubo formula. This is disussed below.Shear visosityLet us onsider �eld theory in �at spae-time and, on it, a spatially homoge-neous time dependent metri perturbation of the form [43, 49℄

gij(t, x) = δij + hij(t), hij ≪ 1.

g00(t, x) = −1, g0i(t, x) = 0. (1.115)30



Chapter 1. IntrodutionIn the rest frame, where uµ = (1, 0, 0, 0), the dissipative part of the energy mo-mentum tensor Eq.(1.105) is given by
Πµν = −2ησµν , (1.116)and up to the linearized order it takes the form (using Eq.(1.104))

Πxy = −η∂0hxy(t), (1.117)giving
⇒ Txy = − η∂0hxy(t). (1.118)Now by going to Fourier spae and omparing with Eq.(1.88) and Eq.(1.92), in thelow frequeny limit and at zero spatial momentum, we get

GR
xy,xy(ω, 0) = −i

∫
dtd3xeiωtθ(t)〈[Txy, Txy]〉

= −iηω, (1.119)implying
η = − lim

ω→0

1

ω
ℑGR

xy,xy(ω). (1.120)Thermal ondutivityConsider putting the system in a slowly varying bakground gauge �elds (Aµ
I )whih ouple to onserved urrents. This �eld will indue a urrent, proportionalto eletri �eld as

J i
I = σIJE

i
J

= σIJ(∂
tAi

J − ∂iAt
J ), (1.121)where the oe�ients σIJ represent the eletrial ondutivity of the system. The�eld At

I an be identi�ed with the hemial potential µI . Now omparison betweenEq.(1.121) and Eq.(1.106) suggests σIJ = κIJ

T
and hene

J i
I =

κIJ

T
(∂tAi

J − ∂iAt
J). (1.122)In the Fourier spae, at zero spatial momentum and low frequeny limit, with (spa-tially homogeneous) time dependent bakground �eld, above equation simpli�es to

J i
I = i

κIJ

T
ωAi

J . (1.123)31



Chapter 1. IntrodutionComparing with the relation J i
I = −GR

IJA
i
J , that follows from linear responsetheory, we get

Gx,x, IJ(ω, 0) =

∫
dtdxeiωtθ(t)〈[Jx,I , Jy,J ]〉

= −iκIJ

T
ω, (1.124)whih implies[36℄

κIJ

T
= σIJ = − lim

ω→0

1

ω
ℑGR

x,x,IJ(ω). (1.125)Now the thermal ondutivity an be related to above using Eq.(1.113).Given a weakly oupled �eld theory, in priniple we should be able to omputeusing perturbation tehnique, the transport oe�ients suh as η,κ. However itturns out to be a di�ult exerise [50, 51℄. Sine we are interested in the transportoe�ients of strongly oupled theories, the known tehniques fails to provideany meaningful results. However for ertain lasses of strongly oupled gaugetheories suh as N = 4 SYM, we an use their gravity duals to ompute transportoe�ients. This is what we disuss in the next setions.1.7 Computation of real time orrelators fromgauge/gravity dualityGauge/gravity duality allows us to ompute gauge theory orrelators using las-sial supergravity omputations whih are other wise hard to ompute. We havedisussed in subsetion (1.3.2) how AdS/CFT an be used to ompute the Eu-lidean orrelator. However, for many purposes suh as omputation of transportoe�ients, we need real time orrelators. One might argue that by doing ana-lyti ontinuation of two point Eulidean orrelators, one an �nd retarded Green'sfuntion. The relation between the retarded and the Eulidean two-point funtionsin momentum spae is given by
GR(ω,

−→
k ) = GE(−i(ω + iǫ),

−→
k ). (1.126)However in most ases, the Eulidean orrelation funtions an only be found nu-merially. Consequently analyti ontinuation to Lorentzian signature beomesdi�ult. In partiular, the problem that one faes in order to extrat the hydro-dynami limit (ω, k → 0) of real time orrelators from Eulidean ones is that oneneeds to perform analyti ontinuation from a disrete set of frequenies (Matsub-ara frequenies) having lowest value ω = 2πT to real and small frequenies suhthat ω ≪ 2πT. Thus, it is important to be able to ompute real-time orrela-tion funtions diretly. A working presription for the omputation of real time32



Chapter 1. Introdutionorrelator was given in [44, 1℄ and later on, in [52℄, it was established rigorously.An alternate way to ompute the real time orrelator was given in [4℄. Here wesummarize both the ways of omputation.1.7.1 Son, Starinets presription for omputing real timeorrelatorsIn this subsetion we shall brie�y desribe the reipe for omputing the real timeorrelator presribed �rst by Son and Starinets in [44, 1℄. Suppose we are interestedin omputing the retarded two point orrelator
G(x− y) = −i〈T Θ(x) Θ(y)〉 (1.127)where Θ is some salar operator in the gauge theory side, whih is dual to somemassless salar �eld (φ) in the gravity side. The boundary value of φ ats as asoure and we have

S → S +

∫
φ0Θ. (1.128)For the time being we shall onsider a generi blak hole bakground given by

ds2 = gtt(z)dt
2 + gzz(z)dz

2 + gxx(z)

d−1∑

i=1

(dxi)2, (1.129)where z is the radial oordinate. The ation for this salar �eld in this bakgroundis given by
S = −1

2

∫
dd−1xdt

∫ zH

z=0

dz
√−g[gzz(∂zφ)2 + gµν∂µφ∂νφ], (1.130)where zH is the loation of horizon. The equation for salar �eld whih follow fromthis ation is

1√−g∂z(
√−ggzz∂zφ) + gµν∂µ∂νφ = 0, (1.131)where µ, ν runs in the �eld theory diretions. The above equation needs to besolved with the boundary ondition

lim
z→0

φ(z) → φ0. (1.132)In momentum spae we an write,
φ(z, x) =

∫
ddk

(2π)d
eik.xfk(z)φ0(k), (1.133)33



Chapter 1. Introdutionwith fk(z → 0) = 1, whih upon using Eq.(1.131) redues to
1√−g∂z(

√−ggzz∂zfk) + gµν∂µ∂νfk = 0. (1.134)In order to get the retarded orrelator, we also need to put inoming wave boundaryondition at the horizon (this is natural, sine lassially we do not expet thingsto ome out of the horizon). The on-shell ation therefore redues to
S = −1

2

∫
ddk

(2π)d
φ0(k)F (k, z)φ0(k)

∣∣∣
zH

z→0
, (1.135)where

F (k, z) =
√−ggzzf−k(z)∂zfk(z). (1.136)Now if we di�erentiate the above ation with respet to boundary value φ0, we get

G(k) = −1

2
F (k, z)

∣∣∣
zH

z→0
− 1

2
F (−k, z)

∣∣∣
zH

z→0
. (1.137)Now using Eq.(1.134) and the fat that, f ∗

k = f−k, we get
∂zℑ(F (k, z)) = 0, (1.138)so we an evaluate imaginary part of F at any radius. Consequently the imaginarypart of Greens funtion in Eq.(1.137) vanishes. To irumvent this problem, in[44, 1℄, the following proposal was put forward

GR(k) = −F (k, z → 0)

= −√−ggzzf−k(z)∂zfk(z). (1.139)In order to verify that the presription works, in[44℄, retarded Greens funtionwas omputed in theories where it is known from other methods. Further theEq.(1.139) was established rigorously in [52℄, using onnetion between losed timepath formulation of real time QFT with dynamis of whole Penrose diagram ofblak hole. Although we have shown here the omputations for a salar �eld,above presription an be followed for other �elds as well. We summarize this inthe following.Suppose we are interested in omputing retarded orrelator of some operator
O whose dual �eld in the gravity side is Ψ.1. Extrat out the oe�ient of kineti term A(z) from the lassial ation of�eld Ψ written in the gravity side. A(z) is de�ned as

Scl =
1

2

∫
dzddxA(z)(∂zΨ)2 + .... (1.140)34



Chapter 1. Introdution2. Find solution to the equation of motion with in-going boundary ondition atthe horizon and a onstant value Ψ(z, k) → Ψ0(k) at the boundary z → 0.Let us assume the solution in the Fourier spae has the form
Ψ(z, k) = fk(z)Ψ0(k), (1.141)where fk(z = 0) = 1.3. The presription then tells that the retarded Greens funtion is

GR(k) = A(z)f−k∂zfk(z)
∣∣∣
z→0

. (1.142)We end this disussion with the omputation of a few transport oe�ients usingpresription mentioned above.Example : The shear visosityFirst we ompute the shear visosity of N = 4 SYM at �nite temperature T .The metri Eq.(1.57) in the oordinate system u = ( z
zH

)2 with zH = 1
πT
, an bewritten as

ds2 =
(πTL)2

u
(−f(u)dt2 + dx2 + dy2 + dz2) +

L2

4u2f(u)
du2, (1.143)where f(u) = 1 − u2, with u = 1 being horizon and u = 0 is the boundary. Theentropy for this ase is given by

s =
π2

2
N2T 3. (1.144)To ompute shear visosity, we need to take the bakground perturbation of theform

gxy → gxy + φ, (1.145)where φ = hxy . The ation and the equation of motion for φ is that of a masslesssalar �eld in the bakground Eq.(1.143). With appropriate normalization, theation is given by
S = − 1

32πG5

∫
d3xdt

∫
du

√−g[guu(∂uφ)2 + gµν∂µφ∂νφ]. (1.146)In the Fourier spae we write
φ(t, xi, u) =

∫
d4k

(2π)4
eik.xφk(u)φ0(k). (1.147)35



Chapter 1. IntrodutionThe objet that we want to ompute is Txy orrelator whih is related to shearvisosity as disussed in the previous setion. In order to �nd the Greens funtion,we now need to solve φk(u). The equation of motion takes the form
φ

′′

k −
1 + u2

uf(u)
φ

′

k +
ω2 − k2f

(2πT )2uf 2
φk = 0, (1.148)where prime denotes derivative with respet to radial oordinate u. This equationan not be solved for all values of ω, q. However in the limit ω

T
, q
T
≪ 1, we anwrite a series solution in ω

T
, q
T
. There are two solution whih are omplex onjugateto eah other, whih represents inoming and out going solutions at the horizon(u = 1). The inoming solution at u = 1 an be written as

φk = (1− u)−i ω
4πT

(
1− i

ω

4πT
ln
1 + u

2
+ O(ω2, q2)

)
. (1.149)Now using the presription as summarized in Eq.(1.142) we get

GR
xy,xy(ω) = −πN

2T 3

8
iω, (1.150)where we have used the relation G5 =

πL3

2N2 as given in Eq.(1.53). Now the Kubo'sformula for η, immediately gives
η =

π

8
N2T 3. (1.151)So we see that

η

s
=

1

4π
. (1.152)Example : eletrial ondutivityAs we have already disussed, if we are interested in omputing urrent-urrentorrelator in N = 4 SYM, we then need to analyze linearized perturbation of U(1)gauge �eld Aµ on the dual gravity bak ground. The �ve dimensional Maxwellation in this bakground an be written as [44, 1℄

S = − N2

16π2L

∫
d5x

1

4

√−gFµνF
µν , (1.153)where Fµν = ∂µAν −∂νAµ. The gauge �elds Aµ obey Maxwell equation of the form

∂ν [
√−ggναgβγFαγ ] = 0. (1.154)36



Chapter 1. IntrodutionWe hoose the gauge where radial omponent of the gauge �eld is zero (Au = 0).As before, we work in the Fourier spae where,
Aµ(t, x, u) =

∫
d4k

(2π)4
e−iωt+i−→q .−→xAµ(ω, q, u). (1.155)For our purpose we hoose perturbation to be spatially homogeneous so that wean set q = 0. Suppose we are interested in omputing 〈JxJx〉 orrelator, thenwe should fous on Ax omponent of the gauge �eld in the bulk. The spatialomponent of the gauge �eld Ax obeys the equation

A
′′

x +
f

′

f
A

′

x +
1

uf 2

ω2

4π2T 2
Ax = 0, (1.156)where prime denotes derivative with respet to radial oordinate u. Upto linearorder in ω, the solution to Eq.(1.156), takes the form

Ax(ω, u) = A0
x(1− u)−i ω

4πT

(
1 + i

ω

4πT
ln
1 + u

2
+ O(ω2, q2)

)
. (1.157)Finally, following the same proedure as for shear visosity along with the use ofappropriate Kubo's formula, we onlude that the response funtion is given by

σ =
N2T

16π
. (1.158)Atually to de�ne the above response funtion as the eletrial ondutivity ofthe SYM, we need to �rst gauge the global U(1) symmetry of SYM with smalleletromagneti gauge oupling (say e). This implies, the urrent operators aremultiplied with a fator of e that is Jµ → eJµ and hene there will be a fator of e2in the two point urrent orrelator [53, 3℄. However we shall drop that extra fatorof e2 from our disussion. Sine e is small, to the leading order in e, the e�et ofgauging an be negleted and response an be omputed from original theory. Fordetails see[53, 18℄.1.7.2 Iqbal-Liu presription for omputing real time orre-latorIt turns out that the Son-Starinets presription an be reformulated in terms ofboundary values of the anonial momenta of the bulk �eld by treating the AdSradial diretion as time. This reformulation has various advantages. For example,many of the boundary transport oe�ients an be expressed in terms of quantitiesevaluated at the horizon. Universality of transport oe�ients an therefore be37



Chapter 1. Introdutionunderstood via ertain universal behavior of the blak hole horizon. Aording toAdS/CFT, the one point funtion is de�ned as
〈Θ〉
∣∣∣
φ0

=
δ

δφ0

Scl[φ0], (1.159)where φ0 is the boundary value of the massless salar �eld dual to operator Θ.Let us note that, in the lassial mehanis derivative of an on-shell ation withrespet to boundary value of a �eld is simply equal to the anonial momentumonjugate to the �eld evaluated at the boundary. For example
S =

∫ X(tf )

X(t0)

dt L, (1.160)and
δ

δX(tf )
Scl = P (tf), (1.161)where P (t) is the momentum onjugate to X(t). For the ase of salar �eld φ, wean write

< Θ(x) >φ =
δ

δφ0

Scl[φ0]

= Π(z, x)
∣∣∣
z→0

, (1.162)where Π(z, x) is the anonial momentum onjugate to φ with respet to radial zfoliation. Equivalently in the Fourier domain, we an write
< Θ(k) >= Π(z, k)

∣∣∣
z→0

. (1.163)In the domain of linear response, we have
< Θ >= −Gret(ω, k) lim

z→0
φ(k, z), (1.164)This implies

Gret = −Π(z, k)

φ(z, k)

∣∣∣
z→0

, (1.165)whih upon using Eq.(1.93) gives,
χ = lim

ω,k→0

Π(z, k)

iωφ(z, k)

∣∣∣
z→0

. (1.166)For illustration, let us onsider the ase of massless salar �eld propagating in thebakground
ds2 = gtt(z)dt

2 + gzz(z)dz
2 + gxx(z)

d−1∑

i=1

(dxi)2, (1.167)38



Chapter 1. Introdutionwhere z is the radial oordinate. We have assumed full rotational symmetry in xidiretions so that gij = gxxδij, where i, j run over all the indies exept z, t. Wealso assume that metri omponents depend only on radial oordinate. We assumethat the metri has an event horizon, where gtt has a �rst order zero and gzz hasa �rst order pole. We also require that all the other metri omponents are �niteas well as non vanishing at the horizon. The ation for the salar �eld is same asgiven in Eq.(1.130). The anonial momenta for this ase is,
Π(z, k) = −√−ggzz∂zφ. (1.168)Using Eq.(1.131), we an ompute
∂zΠ(z, k) =

√−gk2φ(z, k). (1.169)In the limit k → 0, we have both
lim
k→0

∂zΠ(z, k) = 0, lim
k→0

∂z(ωφ(z, k)) = 0. (1.170)So in the limit k → 0, both ωφ(z) and Π(z, k) is independent of z, whih implies
χ(z → 0) = χ(z → zH). (1.171)In other words, the radial evolution of response funtion χ, whih we refer as�ow, is trivial. This an be used to show, in partiular that response funtion ofgauge theory dual to some gravity theory, an be expressed in terms of geometrialquantities evaluated at the horizon. Let us note that, had we onsidered themassive salar �eld of mass m in the bulk, then

lim
k→0

∂zΠ(z, k) ∼ m2φ(k, z) 6= 0, (1.172)whih implies that there is a non-trivial �ow of the transport oe�ient if wego from horizon to boundary. Hene evaluating response funtion at the horizonwill not give same result as boundary response funtion. One suh example is, theomputation of eletrial ondutivity at �nite hemial potential. We shall disussthis issue in later hapters. Following [4℄ and strething the previous disussion abit more, one an de�ne response funtion at any radial position z, through
χ(z) = lim

ω,k→0

Π(z, k)

iωφ(z, k)
(1.173)whih in the limit z → 0 gives AdS/CFT results. It is possible to omputeEq.(1.173) at the horizon and then, by solving �ow equation, we an relate it withAdS/CFT result whih is evaluated at the boundary. This leads to a onnetionbetween dual gauge theory with the �titious �uid living on the horizon. This goes39



Chapter 1. Introdutionby the name membrane paradigm (for a brief disussion on membrane paradigm,see Appendix). Following the Iqbal-Liu proposal, we end this setion with theomputations of two transport oe�ients. Both these two, however, have trivial�ow from the horizon to the boundary AdS.Example : The shear visosityIn order to �nd out the shear visosity, we need to look at �utuation φ = hxyof the metri �eld gxy , where x, y are the �eld theory diretions. As previouslydisussed, the shear �utuation mode deouples from rest of the �utuations andbehaves as massless salar �eld with the ation Eq.(1.146). As before we shall workwith spatially homogeneous �utuations, so that we an set −→q , the spatial part of
k zero and we shall also work in the limit where ω → 0. Evaluating the anonialmomentum, we get

Π(z → 0, ω → 0, q = 0) = Π(z → zH , ω → 0, q = 0)

=

√−g
16πG

1√−gzzgtt

∣∣∣
zH
iωφ(zH , ω → 0, q = 0),(1.174)where G is the Newtons onstant and in the seond line of above equation we haveused in-going boundary ondition at the horizon, whih states

lim
z→zH

d

dz
φ(z) = −iω lim

z→zH

√
gzz
−gtt

φ(z) +O(ω2). (1.175)Now using de�nition of response funtion we get shear visosity η to be
η =

[√−g
16πG

1√−gzzgtt

]
zH
. (1.176)Entropy density of the blak hole is area of the horizon divided by 4G, whih gives

s =
1

4G

√−g√−gzzgtt

∣∣∣
zH
. (1.177)Now the shear visosity to entropy density ratio is given by

η

s
=

1

4π
. (1.178)This result oinides with Eq.(1.152), whih was omputed for partiular bakground dual to N = 4 SYM. So we already see, for large lass of gauge theorieswith gravity dual having metri of the form Eq.(1.167) subjet to ertain onstraint,the shear visosity to entropy density ratio is 1

4π
and is universal. 40



Chapter 1. IntrodutionThe origin of Eq.(1.175), perhaps require some elaboration. Near the horizon,the metri an be written as
gtt = −a(zH − z), gzz =

b

zH − z
. (1.179)In this region, at vanishing spatial momentum −→q = 0, the Eq.(1.134) takes theform √

a

b
(zH − z)∂z(

√
a

b
(zH − z)∂zφ) + ω2φ = 0, (1.180)whih has solutions of the form

φ ∝ e−iω(t±x), dx =

√
gzz
−gtt

dz. (1.181)The in falling boundary ondition on the horizon piks up the positive sign in theexponent. This implies, the solution near the horizon takes the form
φ ∝ e−iωv, dv = dt+

√
gzz
−gtt

dz. (1.182)So solution an only depend on the non singular ombination v. This gives, nearthe horizon
(∂z −

√
gzz
−gtt

∂t)φ = 0. (1.183)This, in turn, means
lim
z→zH

d

dz
φ(z) = −iω lim

z→zH

√
gzz
−gtt

φ(z) +O(ω2). (1.184)Example : eletrial ondutivityLet us onsider a Maxwell �eld propagating in the unharged blak brane bak-ground. The Maxwell �eld ation is
S = −

∫
dd+1x

√−g 1

4g2d+1(z)
FMNF

MN , (1.185)where g2d+1(z) in general is a z dependent gauge oupling, where bakground valueof gauge �eld is zero and we take only nonzero omponent to be Ax. Here again onean show that equation for Ax is same as that for massless �eld with a substitution
√−g → 1

g2d+1(z)

√−ggxx. (1.186)41



Chapter 1. IntrodutionNow using
〈Jx(k)〉 = σ(k) lim

z→0
Ex(z, k), Ex = −iωAx, (1.187)we get

σ =
J(zH)

−iωAx(zH)
=
[ 1

g2d+1(z)

√−g√−gzzgtt
gxx
]
zH
. (1.188)Applying this for N = 4 SYM (dual gravity bakground is the AdS5 Shwarzshildblak hole) we get

σ =
1

g25
(πLT ) (1.189)whih is same as expression in Eq.(1.158) provided we make the identi�ation

1
g25

= N2

16π2L
.Let us note that, in the above omputations, we have not assumed any par-tiular gravity bakground. Rather, we have only imposed few generi onstraintson the gravity bakground. So, above results are appliable to the gravity dualof N = 4 SYM at �nite temperature as well as any other gauge theory at �nitetemperature with a gravity dual and a few generi onstraints. In fat we shallpush these ideas further and present omputations of transport oe�ients for thebakgrounds where Iqbal-Liu presription might not be readily appliable. Ourmain fous will again be on �nding features whih are independent of details ofthese partiular models. Though in some part of the thesis, we shall work withgravity bakgrounds for whih dual gauge theory might not always be well de�ned,we hope our results might be appliable to situations where it is well de�ned. Withthis brief introdution, in the next setion we disuss the plan of the thesis.1.8 Plan of the thesisThe plan of the thesis is as follows. In the next hapter, we ompute eletrialondutivity in the presene of one and more hemial potentials for several models[48, 54℄. What we observe is that, in the presene of multiple hemial potentials,there is a nontrivial mixing between urrent operators whih, from the bulk pointof view, an be understood to be arising beause of interations through graviton.We �nd that the boundary eletrial ondutivity takes a universal form in thepresene of hemial potential for a large lass of blak branes whih inlude R-harged blak branes in various dimensions in asymptotially AdS spaes as wellas harged Dp branes in various dimensions. We also observe that the boundaryondutivity is related to horizon ondutivity by thermodynami quantities. Wefurther note for Lifshitz like blak branes, the form of ondutivity is di�erent thanone observed for other examples. Subsequently, we fous on understanding relationbetween the ondutivity of the �uid desribed by membrane paradigm15. In order15In the appendix A, we give a brief aount of the membrane paradigm. 42



Chapter 1. Introdutionto do that, we ompute ondutivity at arbitrary ut-o� out side the horizon forgauge theory dual to harged asymptotially AdS blak hole and show that there isa smooth interpolation between ondutivity at the horizon and at the boundary.In the third hapter, we provide a proof that under general assumptions in thegravity side together with preise ondition on the bulk stress tensor, the eletri-al ondutivity is the same as one we observed in the seond hapter[55℄. Thisimmediately explains as to why the Lifshitz like theories does not have the form ofondutivity as proposed sine the bulk stress tensor does not satisfy the onstraint.In this hapter we also give a general form of ondutivity matrix enoding themixing between urrent operators, in the presene of multiple hemial hemialpotential.In the fourth hapter, we ompute thermal ondutivities for various �eld the-ories with gravity duals and observe that the thermal ondutivity to the shearvisosity ratio is independent of number of hemial potentials. This observationtogether with observation that at zero hemial potential the above ratio remainsunhanged, lead us to onjeture that it is universal. Further, for CFT's with agravity dual, using thermodynami relations, one an express the above ratio interms of entral harges of the dual onformal �eld theories [56℄. We also observethat the thermal ondutivity to the visosity ratio is again universal for non on-formal theories. All these observations give us a way to express the ondutivitysolely in terms boundary thermodynami variables.We then turn our attention to study of transport oe�ients of gauge theo-ries at zero temperature whih orresponds to extremal blak hole in the bulk, inhapter �ve. We �nd that, for several examples, the form of ondutivity at zerotemperature is same. Under the general assumption that extremal blak brane hasdouble pole struture at the horizon together with requirement that bulk stresstensor satis�es same onstraint as non extremal ases, we show that form of ele-trial ondutivity is universal. We also provide a simple proof that shear visosityto entropy density ratio is 1
4π

even at zero temperature.In hapter six, we give a brief summary of the results presented in this thesis.In the appendix A, we give a brief aount of membrane paradigm, we also providedetails of R-harged blak holes in various dimensions in appendix B.

43



2Eletrial ondutivity at �nite hemialpotential
2.1 IntrodutionBased on several examples, we �nd out a general expression for eletrial ondu-tivity for gauge theories in the presene of hemial potentials having a gravitydual. It turns out that the eletrial ondutivity an be determined in terms ofgeometrial quantities evaluated at the horizon and thermodynami quantities.At �nite temperature and at large length sales, an interating QFT is desribedby hydrodynamis. In the gravity side, �nite temperature amounts to having ablak hole and the long wave length physis of the �eld theory is governed by thenear horizon physis of the blak hole. This idea was employed in [4℄ to showthat, in the low frequeny limit, the linear response of the boundary theory isaptured ompletely by the near horizon physis. In [4℄, the authors studied thetransport oe�ients whih orrespond to the massless modes in the bulk, resultingin trivial �ow from horizon to boundary. This in turn, gave an equality betweenthe boundary and the horizon transport oe�ients. So when there is a nontrivial�ow from the horizon to the boundary (like massive bulk modes), horizon physiswill no longer be able to apture the whole low frequeny AdS/CFT response.Calulation of eletrial ondutivity in the presene of non-zero hemial potentialis one suh example where orresponding mode in the bulk shows a non trivial �owfrom horizon to boundary. These �ows are in general governed by ompliateddi�erential equations (if more than one harge is present they are oupled as well)and, a priori, there is no reason that eletrial ondutivity for di�erent theorieswill show some universal features. In spite of this, as we shall �nd, eletrialondutivity does show some universal features.This hapter is strutured as follows. In setion 2 we disuss the e�etiveation approah in the gravity side to ompute eletrial ondutivity following[48, 57℄. We set it up in way that allows us to study di�erent gravity bakgroundsin a uni�ed way. In setion 3, we take up several examples suh as R-harge44



Chapter 2. Eletrial ondutivity at �nite hemial potentialblak hole in 4, 5 and 7 dimensions. We ompute eletrial ondutivity for singleharge ase as well as multiple harge ases. For multiple harge ase, we observenon-trivial mixing between urrent operators. In setion 4 we demonstrate therelation between horizon and boundary ondutivity, based on these examples. Insetion 5 and 6, we hek that the relation ontinues to hold for Reissner-NordstromAdS blak hole in arbitrary dimension and for blak Dp-branes, whih in generalorresponds to non-onformal gauge theory. However in setion 7, we hek thatLifshitz like blak holes do not satisfy the same relation. In setion 8, we studyradial evolution of eletrial ondutivity. We end this hapter with a disussionof our results.2.2 Holographi omputation of eletrial ondu-tivity at �nite hemial potential: The pertur-bation equationWe start with a gauge theory at �nite temperature with multiple hemial poten-tials with a gravity dual. In the gravity side, this gauge theory orrespond to blakbranes harged under multiple U(1) gauge �elds. In the boundary theory one hasurrent operator dual to every U(1) bulk gauge �eld. At equilibrium, there areno mixing between the di�erent urrent operators. When perturbed away fromequilibrium, in general there might be nontrivial mixing between them. This mix-ing arises naturally in the ontext of gauge/gravity duality due to the preseneof graviton in the bulk whih indues interation between di�erent gauge �eldsmodes, hene nontrivial mixing. To understand that, we onsider the bulk ationof the form
S =

1

2κ2

∫
dd+1x

√−g(R− 1

4
GIJF

I
µνF

µν J + ....), (2.1)where dots ontains other bulk �elds suh as neutral salar �elds. The metri thatwe take is of the form
ds2 = gtt(r)dt

2 + grr(r)dr
2 + gxx(r)

d−1∑

i=1

(dxi)2, (2.2)where r is the radial oordinate. We have assumed full rotational symmetry in
xi diretions so that16 gij = gxxδij , where i, j run over all the indies exept r, t.We also assume that metri omponents depend on radial oordinate only. Weshall work with the metri whih has an event horizon17, where gtt has a �rst orderzero and grr has a �rst order pole18. We also assume that all the other metri16Let us note that, we are using the notation where gµν(r) ≡ gµν .17For harged blak holes, there exists inner horizons also.18Therefore it exludes extremal blak holes 45



Chapter 2. Eletrial ondutivity at �nite hemial potentialomponents are �nite as well as non vanishing at the horizon. The boundary ofthe spae time is at r = ∞. The gauge oupling GIJ may be onstant or in generalan be a funtion of r. The onstant κ is related to Newtons onstant. Maxwellequation an be written as
∂µ

(√−gGIJF
νµ
J

)
= 0. (2.3)If we onsider GIJ to be diagonal and only At(r) omponent to be non zero, wean de�ne harge density to be,

ρI =
1

2κ2
√−gGIIg

rrgttF I
rt. (2.4)Sine our aim is to ompute the eletrial ondutivity using Kubo formula, it issu�ient to onsider perturbations in the tensor (metri) and the vetor (gauge�elds) modes around the blak hole solution and keep other �elds suh as salarsunperturbed. Therefore we onsider perturbation of the form

gµν = g(0)
µν + hµν , AI

µ = AI(0)
µ +AI

µ . (2.5)where g(0)
µν and A

I(0)
µ are bakground metri and gauge �elds. In order to determineeletrial ondutivity it is enough to onsider perturbations in (tx1) and (x1x2)omponent of the metri tensor and x1 omponent of the gauge �elds. Moreoverone an hoose the perturbations to depend on radial oordinate r, time t and oneof the spatial oordinates say x2. A onvenient ansatz, with the above restritionsin mind, is

htx1 = g0x1x1 T (r) e−iωt+iqx2

, hx2x1 = g0xx Z(r) e
−iωt+iqx2

,

AI
x1 = φI(r) e−iωt+iqx2

. (2.6)Here ω and q represent the frequeny and the momentum in x2 diretion respe-tively and we set perturbations in the other omponents to be equal to zero. Nextstep is to �nd linearized equations whih follow from the equations of motion. Itturns out that at the level of linearized equation and at zero momentum limit,metri perturbation Z(r) deouple from the rest [57, 58℄. The linearized equationthat we get are of the form
d

dr
(NI

d

dr
φI(r))− ω2NI grrg

ttφI(r) +NIgxxg
tt d

dr
(gxxhx1t) = 0. (2.7)with

NI =
√−gGIIg

xxgrr, (2.8)and
d

dr
(gxxhxt) =

m∑

J=1

GJJF
J
rtφJ . (2.9)46



Chapter 2. Eletrial ondutivity at �nite hemial potentialWe observe that we an use Eq.(2.9) in Eq.(2.7) to get an equation only in termsof gauge �eld �utuations. Upon substitution we get
d

dr
(NI

d

dr
φI(r))− ω2NI grrg

ttφI(r) +

m∑

J=1

MIJφJ(r) = 0. (2.10)with
MIJ = F I

rt

√−gGIIg
xxgrrgttGJJF

J
rt. (2.11)Let us note that MIJ =MJI .Following [48℄, we now write down the e�etive ation whih reprodues theEq.(2.10) and extrat out the expression for eletrial ondutivity using Kuboformula.2.2.1 E�etive ation and expression for ondutivityThe eletrial ondutivity is usually omputed from urrent-urrent orrelator19

λ = − lim
ω→0

Gxx(ω, q = 0)

iω

= lim
ω→0

1

2ω

∫ ∞

−∞
dt e−iωt

∫
d~x〈[Jx(t, ~x), Jx(0,~0)]〉. (2.13)The urrent-urrent orrelator an be omputed by taking seond derivative ofe�etive ation whih reprodues the Eq.(2.10) with respet to boundary �elds[44, 1℄. The expression for eletrial ondutivity an formally be written as λ =

iσ0 + σ.19If there is more than one onserved urrent then one an de�ne ondutivity matrix using
λij = − lim

ω→0

Gij
xx(ω, q = 0)

iω

= lim
ω→0

1

2ω

∫
∞

−∞

dt e−iωt

∫
d~x〈[J i

x(t, ~x), J
j
x(0,~0)]〉, (2.12)where indies, i, j are for di�erent gauge �elds, for whih the urrents are de�ned.
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Chapter 2. Eletrial ondutivity at �nite hemial potential
• σ(= ℜ(λ)): In order to determine the real part of the ondutivity (σ), wefollow [48℄. E�etive ation 20 an be written as

S =
1

2κ2

∫
ddq

(2π)d
dr
[1
2

m∑

I=1

NI(r)
d

dr
φI(r, ω, q)

d

dr
φI(r,−ω,−q)

+
1

2

m∑

I,J=1

MIJ(r)φI(r, ω, q)φJ(r,−ω,−q)
]
. (2.14)Boundary ation is given by

Sǫ = lim
r→∞

1

2κ2

∫
ddq

(2π)d

(
1

2

m∑

I=1

NI(r)
d

dr
φI(r, ω, q)φI(r,−ω,−q)

)

=

∫
ddq

(2π)d

m∑

I≥K,I,K=1

φ0
I(ω, q)FIK(ω, q)φ

0
K(−ω,−q). (2.15)where the boundary value of the �eld φI(r) is φ0

I(ω, q). Next, the retardedorrelators are given by
GR =

{
−2FJK(ω, q) , J = K,

−FJK(ω, q) , J 6= K.
(2.16)The expression for diagonal and o� diagonal parts of the ondutivity anbe written as

σII = − lim
ω→0

ℑ
(
GR(ω, q = 0)

)

ω

=

2 ℑ
(
FII(ω → 0, q = 0)

)

ω
, (2.17)20One an obtain this e�etive ation, starting from the ation written in Eq.(2.1) and eval-uating it to the quardrati order in �utuations φ, T and using Eq.(2.9). Let us note that, ingeneral Eq.(2.1) inludes other parts suh as ontributions oming from matter �elds other thanthe gauge �elds, whih are denoted by dots. However, they does not play any role in evaluatinge�etive ation.
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Chapter 2. Eletrial ondutivity at �nite hemial potentialand
σIJ = − lim

ω→0

ℑ
(
GR(ω, q = 0)

)

ω

=

ℑ
(
FIJ(ω → 0, q = 0)

)

ω
, (2.18)respetively.In order to �nd out ℑ(F), we need to ompute,

ℑ
[
lim
r→∞

1

2κ2

∫
ddq

(2π)d

(
1

2

m∑

I=1

NI(r)
d

dr
φI(r, ω, q)φI(r,−ω,−q)

)]
. (2.19)Now

d

dr
ℑ
( m∑

I=1

NI(r)
d

dr
φI(r, ω, q)φI(r,−ω,−q)

)

= ℑ
[ m∑

I=1

d

dr
(NI(r)

d

dr
φI(r, ω, q))φI(r,−ω,−q)

+
m∑

I=1

NI(r)
d

dr
φI(r, ω, q)

d

dr
φI(r,−ω,−q)

]
. (2.20)Using (2.10), right hand side of above equation redues to

ℑ
[
−

m∑

I,J=1

MIJ(r)φI(r, ω, q)φ
J(r,−ω,−q)+

m∑

I=1

NI(u)
d

dr
φI(r, ω, q)

d

dr
φI(r,−ω,−q)

]
,(2.21)whih is equal to zero sine the quantity in the braket is real. Then (2.18)an as well be alulated at the horizon i.e. at r = rh. This simpli�esalulations signi�antly. Regularity at the horizon implies

lim
r→rh

d

dr
φI(r) = −iω lim

r→rh

√
−grr
gtt
φI(r) +O(ω2). (2.22)Hene (2.18) redues to

ℑ
[
− iω lim

r→rh

1

2κ2

∫
ddq

(2π)d

√
−grr
gtt

(
1

2

m∑

I=1

NI(r)φI(r, ω, q)φI(r,−ω,−q)
)]

.(2.23)49



Chapter 2. Eletrial ondutivity at �nite hemial potentialLet us note that, if we take the solutions of the form
φI(r, ω, q) =

m∑

A=1

ψI
A(r, ω, q)φ

0
A, (2.24)where

lim
r→∞

φI(r, ω, q) = φ0
I , (2.25)then we get

ℑ
(
FII

)
= ω

1

2κ2

√
−grr
gtt

m∑

A=1

1

2
NAψ

I
A(r)ψ

I
A(r)

∣∣∣∣∣
rh

, (2.26)and
ℑ
(
FIJ

)
= ω

1

2κ2

√
−grr
gtt

m∑

A=1

NAψ
I
A(r)ψ

J
A(r)

∣∣∣∣∣
rh

. (2.27)
• Single harge ase: For single harge ase, onsider φ(r) = ψ(r)φ0, thenwe get

ℑ
(
F
)
= ω

1

2κ2

√
−grr
gtt

1

2
N1ψ(r)ψ(r)

∣∣∣∣∣
rh

. (2.28)Using Eq.(2.16), we get
σ =

1

2κ2

√
−grr
gtt
N1ψ(r)ψ(r)

∣∣∣∣∣
rh

=
1

2κ2
G11(r) g

d−3
2

xx ψ2(r)
∣∣∣
r=rh

= σH ψ2(r)
∣∣∣
r=rh

, (2.29)where
σH =

1

2κ2
G11(r) g

d−3
2

xx

∣∣∣
r=rh

. (2.30)We an also ompute ondutivity at any arbitrary radius say at rc. This isgiven by
σ(rc) =

1

2κ2
G11(r) g

d−3
2

xx

∣∣∣
r=rh

[φ(r = rh)

φ(rc)

]2
. (2.31)Let us note that, at the horizon the expression for ondutivity (whih weshall all as horizon ondutivity) redues to σH , where as at the boundaryondutivity is related to the horizon ondutivity by Eq.(2.28). 50



Chapter 2. Eletrial ondutivity at �nite hemial potential
• Imaginary part of ondutivity σ0(= ℑ(λ)): The imaginary part of theondutivity is

ℑ(λ) = 1

ωφ0
lim
r→∞

1

2κ2
N(r)

d

dr
φ(r). (2.32)Using Eq.(2.10) and Eq.(2.11), we an write

N(r)
d

dr
φ(r)|rh∞ = −(2κ2)2ρ2

∫ rh

∞
dr

grrgtt√−ggxx
φ(r), (2.33)whih implies 21

lim
r→∞

N(r)
d

dr
φ(r) = −(2κ2)2ρ2

∫ rh

∞
dr

grrgtt√−ggxx
φ(r). (2.34)De�ning φ(r) = ψ(r)φ0, we �nd

ℑ(λ) =
1

ωφ0
lim
r→∞

1

2κ2
N(r)

d

dr
φ(r)

= −2κ2ρ2
∫ rh

∞
dr

grrgtt√−ggxx
ψ(r). (2.35)In order to ompute imaginary part of ondutivity, we an use both Eq.(2.31)as well as Eq.(2.34).2.3 Eletrial ondutivity for R-harged blak holein 4,5,7 dimensions in asymptotially AdS spaeIn this setion we ompute eletrial ondutivity for gauge theories dual to 4, 5, 7dimensional R-harge blak branes22. We observe that the behavior of ondutivitywith temperature is σ ∼ T d−3 for d dimensional dual gauge theory whih alsofollows from dimensional analysis. For multi-harge blak hole we get ondutivitymatrix whose o� diagonal parts omes solely due to e�etive interation betweengauge �elds. We �rst ompute ondutivity with single hemial potential andthen turn to multiple hemial potential ases. In the following, we shall use radialoordinate to be u for onveniene and we shall use notation κ2 = 8πGd+1 in d+1dimensions. In this oordinate system, u = 1 and u = 0 are respetively positionof horizon and boundary. The details of these bakground in oordinate system uan be found in [34, 35, 33, 36℄ and are summarized in the Appendix.21Let us note that, N(r = rh) = 0, sine N(r) =

√−gG(r)gxxgrr and grr(r = rh) = 0, and atthe boundary if N(r → ∞) ∼ r1−n then φ(r → ∞) ∼ φ0 + φ1rn.22Blak branes in 4, 7 dimensions arise from rotating M2, M5 brane solutions in a similar as 5dimensional R-harged blak brane arises whih is disussed in hapter 1 setion 1.5.2. 51



Chapter 2. Eletrial ondutivity at �nite hemial potential2.3.1 Single harge blak hole in various dimensionFor single harge blak hole one �nds
(φ1)

′′ +

(
f ′

f
+
H ′

1

H1
− c

u

)
(φ1)

′ − aub(1 + k1)

fH2
1

(
k1φ1

)
= 0. (2.36)The expression for ondutivity redues to

σ =
1

8πGd+1

[√
−guu
gtt

N(u)φ(u, ω, q)φ(u,−ω,−q)
(φ)0(φ)0

]

u→1,q→0

. (2.37)In this ase we have σH =
[

1
8πGd+1

√
−guu

gtt
N(u)

]
u→1

.

• D=4: In this ase one gets c = 0, a = 1, b = 2. Relevant parts are
σH =

N
3
2

24
√
2π

(1 + k)
3
2 , (2.38)

φ(u) = φ01 +
2ku
3

1 + ku
(2.39)whih implies

σ =
(3 + 2k)2N

3
2

63π
√
2(1 + k)

. (2.40)We see that for three dimensional gauge theory, ondutivity is independent oftemperature. Now we an ompare this result with the the result for µ = 0, ase.
σµ
σµ=0

=
(1 + 2k

3
)2√

1 + k
≥ 1. (2.41)Sine there exist a ritial line k = 3

2
[58℄, one an not make ondutivityarbitrarily large. This disussion also holds true for rest of the ases with onlydi�erene in loation of ritial line.

• D=5: Here c = 0, a = 1, b = 1 . Summary of the results are
σH =

N2T0(1 + k)
3
2

16π
, (2.42)

φ(u) = φ0

1 + ku
2

1 + ku
. (2.43)So one gets ondutivity

σ =
(2 + k)2N2T0

64π
√
(1 + k)

=
N2TH(2 + k)

32π
. (2.44)where TH = (2+k)T0

2
√
1+k

is the Hawking temperature of the blak hole. 52



Chapter 2. Eletrial ondutivity at �nite hemial potential
• D=7: In this ase c = −1, a = 4, b = 3 . Relevant parts are

σH =
4N3T 3

0 (1 + k)
3
2

81
, (2.45)

φ(u) = φ0

1 + ku2

3

1 + ku2
. (2.46)Condutivity in this ase is given by

σ =
4(3 + k)2N3T 3

0

36
√

(1 + k)
=

4N3T 3
H(1 + k)

27(3 + k)
. (2.47)where TH = (3+k)T0

3
√
1+k

is the Hawking temperature of the blak hole.2.3.2 Two harge blak hole in various dimensionNow we turn to ases where two hemial potentials are turned on in the boundarygauge theory. Di�erential equations are23
(φ1)

′′ +

(
f ′

f
+ 2

H ′
1

H1

− H′

H − c

u

)
(φ1)

′

−au
b(1 + k1)(1 + k2)

fH2
1

[
k1φ1 +

√
k1k2 φ2

]
= 0, (2.48)and

(φ2)
′′ +

(
f ′

f
+ 2

H ′
2

H2
− H′

H − c

u

)
(φ2)

′

−au
b(1 + k1)(1 + k2)

fH2
2

[
k2φ2 +

√
k1k2 φ1

]
= 0, (2.49)Note that σH,ii =

[
1

8πGd+1

√
−guu

gtt
Ni(u)

]
u→1

where Ni =
fH2

i

umH . Now we omputease by ase.
• D=4: Here one has c = 0, a = 1, b = 2 . Solutions are

φ1 =
(a0 +

2a0k1−b0
√
k1k2

3
u)

1 + k1u
, φ2 =

(b0 +
2b0k2−a0

√
k1k2

3
u)

1 + k2u
, (2.50)and

σH,ii =
N

3
2 (1 + ki)

2

24π
√
2(1 + k1)(1 + k2)

. (2.51)23These form of equations are di�erent than the form written in [41℄ , beause as mentionedearlier that we have done a resaling. 53



Chapter 2. Eletrial ondutivity at �nite hemial potentialUsing these we get following form of ondutivity.



N
3
2 (9+(12+k2)k1+4k21)

63π
√

2(1+k1)(1+k2)
−2N

3
2
√
k1k2(3+k1+k2)

63π
√

2(1+k1)(1+k2)

−2N
3
2
√
k1k2(3+k1+k2)

63π
√

2(1+k1)(1+k2)

N
3
2 (9+(12+k1)k2+4k22)

63π
√

2(1+k1)(1+k2)


 .

• D=5: Here we have c = 0, a = 1, b = 1. In this ase solutions are
φ1 =

(a0 +
a0k1−b0

√
k1k2

2
u)

1 + k1u
, φ2 =

(b0 +
b0k2−a0

√
k1k2

2
u)

1 + k2u
. (2.52)Where as

σH,ii =
N2T0(1 + ki)

2

16π
√
(1 + k1)(1 + k2)

. (2.53)So we get ondutivity as



(4+k21+k1(4+k2))N2To

64π
√

(1+k1)(1+k2)
− (4+k1+k2)N2To

64π

√
k1k2

(1+k1)(1+k2)

− (4+k1+k2)N2To

64π

√
k1k2

(1+k1)(1+k2)

(4+k22+k2(4+k1))N2To

64π
√

(1+k1)(1+k2)


 .So σ inreases linearly with TH .

• D=7: In this ase c = −1, a = 4, b = 3. Solutions are
φ1 =

(a0 +
a0k1−2b0

√
k1k2

3
u2)

1 + k1u2
, φ2 =

(b0 +
b0k2−2a0

√
k1k2

3
u2)

1 + k2u2
(2.54)Now

σH,ii =
4N3T 3

0 (1 + ki)
2

81
√
(1 + k1)(1 + k2)

. (2.55)Using these one �nds ondutivity matrix as



4(9+k1(k1+4k2+6))N3T 3
o

36
√

(1+k1)(1+k2)
− (6+k1+k2)N3T 3

o

36

√
k1k2

(1+k1)(1+k2)

− (6+k1+k2)N3T 3
o

36

√
k1k2

(1+k1)(1+k2)
4(9+k2(k2+4k1+6))N3T 3

o

36
√

(1+k1)(1+k2)


 .

• Notie that o� diagonal omponents of the ondutivity matrix are negativebut they are important, and plays ruial role.
• Observe that o� diagonal omponents goes as

σij ∼ ΩiΩjT
d−3, (2.56)54



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere Ωi =
µi

2πT
. So swithing o� one of the hemial potential will make itzero, where as diagonal parts of ondutivity goes as σii ∼ T d−3fii(Ω1,Ω2),where fii(0, 0) 6= 0 (µ = 0, implies total harge density is zero i.e. thereexist equal number of positive as well as negative harge and applying ex-ternal eletri �eld will indue �ow of both in opposite diretion whih willontribute to eletrial urrent). Sine harged partiles moves in oppositediretion, there will be ollisions among them and it ensures �nite ondu-tivity. As one inreases µ, ondutivity should inrease as relative numberof ollisions between opposite harges are less ompared to zero hemialpotential ase.2.3.3 Three harge blak hole in various dimensionNow we turn to three harge blak hole ases. General form of di�erential equationsare

(φi)
′′ +

(
f ′

f
+ 2

H ′
i

Hi
− H′

H

)
(φi)

′ −
ub

3∏
j=1

(1 + kj)
√
ki

fH2
i

[ 3∑

j=1

√
kjφj

]
= 0, (2.57)where i takes value up to three.

• D=4: For this ase the one gets b = 2 . Relevant results in this ase are
φi =

[
3φ0

i +
√
ki

(
3
√
kiφ

0
i −

3∑
j=1

√
kjφ

0
j

)
u
]

3(1 + kiu)
, σH,ii =

N
3
2 (1 + ki)

2

24π

√
2

3∏
j=1

(1 + kj)

,(2.58)where φ0
i is the boundary value of ith perturbed gauge �eld.Let us introdue, σij = N

3
2

63π
√

2(1+k1)(1+k2)(1+k3)
σ0
ij , where σ0

ij , is given by




9 + (12 + k2 + k3)k1 + 4k21 −
√
k1k2(6 + 2k1 + 2k2 − k3) −

√
k1k3(6 + 2k1 + 2k3 − k2)

−
√
k1k2(6 + 2k1 + 2k2 − k3) 9 + (12 + k1 + k3)k2 + 4k22 −

√
k2k3(6 + 2k2 + 2k3 − k1)

−
√
k1k3(6 + 2k1 + 2k3 − k2) −

√
k2k3(6 + 2k2 + 2k3 − k1) 9 + (12 + k1 + k2)k3 + 4k23




.

• D=5: For this ase b = 1. Results needed for ondutivity alulation are
φi =

[
2φ0

i +
√
ki

(
2
√
kiφ

0
i −

3∑
j=1

√
kjφ

0
j

)
u
]

2(1 + kiu)
, σH,ii =

N2T0(1 + ki)
2

16π
√

(1 + k1)(1 + k2)(1 + k3)
.(2.59)55



Chapter 2. Eletrial ondutivity at �nite hemial potentialDe�ning as before σij = N2T0

64π
√

(1+k1)(1+k2)(1+k3)
σ0
ij , where σ0

ij is given by




4 + k21 + k1(4 + k2 + k3) −
√
k1k2(4 + k1 + k2 − k3) −

√
k1k3(4 + k1 + k3 − k2)

−
√
k1k2(4 + k1 + k2 − k3) 4 + k22 + k2(4 + k1 + k3) −

√
k2k3(4 + k2 + k3 − k1)

−
√
k1k3(4 + k1 + k3 − k2) −

√
k2k3(4 + k2 + k3 − k1) 4 + k23 + k3(4 + k1 + k2)



2.3.4 Four harge blak holeDi�erential equations are
(φi)

′′ +

(
f ′

f
+ 2

H ′
i

Hi
− H′

H

)
(φi)

′ −
u2

4∏
j=1

(1 + kj)
√
ki

fH2
i

[ 4∑

j=1

√
kjφj

]
= 0, (2.60)and solutions are

φi =

[
3φ0

i +
√
ki

(
3
√
kiφ

0
i −

4∑
j=1

√
kjφ

0
j

)
u
]

3(1 + kiu)
, σH,ii =

N
3
2 (1 + ki)

2

24π

√
2

4∏
j=1

(1 + kj)

. (2.61)Using these we get following form of ondutivity.
σij =

N
3
2

63π
√
2(1 + k1)(1 + k2)(1 + k3)(1 + k4)

σ0
ij . (2.62)Where

σ0
ii = 9 +

(
12 +

4∑

j=1

kj

)
ki + 3k2i and σ0

ij = −
(
6−

4∑

l=1

kl + 3
(
ki + kj

))
.

• Some speial ases : Using above results one an study speial ases suhas e�et of small hemial potential or the ase with equal hemial poten-tial. Let us note that in the ase when all the hemial potential are equalthen there exist no seond order phase transition. In this ase, temperaturei.e. T ≥ 0 gives a onstraint on the possible maximum value of hemialpotential.Note that as T → 0, σ → 0 quadratially in the parameter k, irrespetive ofwhih dimension we are in24.24Determinant of ondutivity matrix for general µ also vanishes in similar way one we ap-proah extremality even for M2 brane ase where ondutivity is independent of temperature. 56



Chapter 2. Eletrial ondutivity at �nite hemial potentialDimension Constraint(T ≥ 0) σ5 k ≤ 2 3(2−k)2N2T0

32π(1+k)
3
24 k ≤ 3 (3−k)2N
3
2

27
√
2(1+k)2π7 k ≤ 3

16(3−k)2N3T 3
0

729(1+k)Table 2.1: Condutivity at equal harges2.4 Relating boundary and horizon eletrial on-dutivity:In this setion we reonsider the examples of previous setion (all are asymptot-ially AdS spaes) and show that for eah ase there exist a universal relationbetween boundary and horizon ondutivity. We tabulate the results below (see[54℄).Gravity theory in d+ 1 dimension σH σH(
sT
ǫ+P

)2 σBR-harge blak hole in 4 + 1 dim. N2T (1+k)2

16π(1+ k
2
)

N2T (2+k)
32π

N2T (2+k)
32πR-harge blak hole in 3 + 1 dim. N

3
2

24
√
2π
(1 + k)

3
2

(3+2k)2N
3
2

63π
√

2(1+k)

(3+2k)2N
3
2

63π
√

2(1+k)R-harge blak hole in 6 + 1 dim. 4N3T 3(1+k)3

81(1+ k
3
)3

4N3T 3(1+k)
27(3+k)

4N3T 3(1+k)
27(3+k)Reissner-Nordstrom blak hole in 3 + 1 dim. 1

g2
1
g2
( sT
ǫ+P

)2 1
g2
( sT
ǫ+P

)2Table 2.2: Real part of eletrial ondutivity at the horizon (σH) and at theBoundary (σB) are related by σB = σH

(
sT
ǫ+P

)2.
• Single harge: We propose based on the observation in Table 2.2 that forthe gauge theory with single hemial potential the expression for real partof the ondutivity is given by

σB =
1

2κ2
G11 g

d−3
2

xx

∣∣∣∣∣
rh

( sT

ǫ+ P

)2

= σH

( sT

ǫ+ P

)2
, (2.63)57



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere s, T, P, ǫ are entropy, temperature, pressure and energy density of theboundary �uid respetively. We observe that boundary ondutivity an beexpressed in terms of geometrial quantities evaluated at the horizon andsome ombination of other thermodynami quantities.
• Multiple harge: For multiple harge ase (say there are m number ofhemial potential present in the gauge theory side), then boundary ondu-tivity is m×m symmetri matrix (see [48℄) where as horizon ondutivity is
m×m diagonal matrix. One an hek by expliit omputation that in eahase the relation

1

ρIσ
−1
IJ ρJ

=
1

ρIσ
−1
H,IIρI

( sT

ǫ+ P

)2
, (2.64)holds where σIJ and σH,II are boundary and horizon ondutivity respe-tively. For the ation of the form Eq.(2.1), the expression for horizon on-dutivity an be written as

σH,II =
1

2κ2
GII g

d−3
2

xx

∣∣∣∣∣
rh

. (2.65)Let us note that this expression redues to Eq.(2.62) in the ase when singlehemial potential is present. As disussed in setion 1.5 and Appendix.B.that, one an restrit attention to the diagonal U(1) ase where one obtainsReissner-Nordstrom solution. In the next setion, we fous our attention ongeneral Reissner-Nordstrom solution where one an show that the form ofondutivity is again given by Eq.(2.62). In other words, the ondutivityobtained from setting all the harges same for R-harge blak hole is onsis-tent with that obtained from the Reissner-Nordstrom blak hole.2.5 Reissner-Nordstrom blak hole in arbitrary di-mension:In this setion our main fous will be on the Reissner-Nordstrom blak branes invarious dimensions. For omputation in four dimension see [32, 59, 60℄. Our mainaim is to hek the validity of Eq.(2.62). Ation for Reissner-Nordstrom ase isgiven by
S =

∫
dd+1x

√−g
[ 1

2k2
(R +

d(d− 1)

L2
)− 1

4g2
F 2
]
. (2.66)The expression for the metri and gauge �eld for Reissner-Nordstrom blak holein arbitrary dimension are

ds2 =
L2

r2

(
− f(r)dt2 +

dr2

f(r)
+

d−1∑

i=1

dxidxi
)
, (2.67)58



Chapter 2. Eletrial ondutivity at �nite hemial potentialand
At = µ

[
1− (

r

r+
)d−2

]
, (2.68)where f(r) = 1 − (1 +

r2+µ2

γ2 )( r
r+
)d +

r2+µ2

γ2 ( r
r+
)2(d−1) and γ2 = (d−1)g2L2

(d−2)k2
. Let us notethat boundary is at r = 0 and µ and r+ are hemial potential and horizon radiusrespetively. Various thermodynami quantities are given by

P =
Ld−1

2k2rd+
(1 +

r2+µ
2

γ2
); ρ = (d− 1)

Ld−1

k2rd−2
+

µ

γ2
, (2.69)and

T =
1

4πr+

[
d− (d− 2)r2+µ

2

γ2

]
, s =

2π

k2
Ld−1

rd−1
+

. (2.70)In order to ompute the eletrial ondutivity we have to solve the Eq.(2.10) forthis bak ground. The Eq.(2.10) takes the form (in ω → 0 limit)
d

dr
(
f(r)

rd−3

d

dr
φ(r)) +

2k2µ2(d− 2)2rd−1

g2L2r
2(d−2)
+

φ(r) = 0. (2.71)The solution takes the form
φ(r) = φ0

(
1− rd−2 2(d− 1)(d− 2) k2µ2r4−d

+

d [g2 L2 (d− 1) + (d− 2) k2µ2r2+]

)
, (2.72)where φ0 is the boundary value of the perturbed �eld φ(r). Now aording toEq.(2.28)

σ = σH

(
φ(r = rH)

φ0

)2

= σH

(
(d− 1)dg2L2 − (d− 2)2k2µ2r2+
d[(d− 1)g2L2 + (d− 2)k2µ2r2+]

)2

. (2.73)Now using the fat that ǫ = (d−1)P and the thermodynami quantities in Eq.(2.68)and Eq.(2.69) we an express right hand side of Eq.(2.72) as
σ = σH

(
sT

ǫ+ P

)2

. (2.74)So we have shown expliitly that for Reissner-Nordstrom blak hole in any dimen-sion, the expression for ondutivity in Eq.(2.62) is valid. In the following we shallhek again whether the form of ondutivity in Eq.(2.62) holds if we onsidernon-onformal boundary theory and its dual. 59



Chapter 2. Eletrial ondutivity at �nite hemial potential2.6 Eletrial ondutivity for non-onformal bound-ary theoryAll the examples that we have disussed till now are for asymptotially AdS spaetime whih orresponds to boundary theory to be onformal. In view of relationEq.(2.62), a natural question arises whether similar relation holds for other knowngravity theories whih is supposed to have gauge theory dual. Reently in [61℄,authors studied eletrial ondutivity for harged D1 brane. In the following weshall hek that their results does obey Eq.(2.62). However, before proedding letus note that for D1 brane, it is not possible to have perturbation like hx1x2 asde�ned in Eq.(??) sine there is only one spatial dimension. However, our analysisontinues to hold here sine as we saw, in the limit of zero spatial monetum hx1x2,does not play any role. After analysing D1 brane, we shall hek expliitly thevalidity of Eq.(2.62) and Eq.(2.63) for non-onformal gauge theories dual to generalharged Dp brane.
• Eletrial ondutivity for harged D1 brane: Let us onsider thefollowing ation

I =
1

16πG3

∫
d3x

√−g
[
R(g)− 8

9
∂µφ∂

µφ− 1

4
Ψ2e−

4
3
φFµνF

µν

− 1

2Ψ2
∂µΨ∂

µΨ+
2

3Ψ
∂µφ∂

µΨ+
12

L2
e

4
3
φ(1 + Ψ−1)

]
. (2.75)In the following disussion, the radial oordinate is r and rh is the positionof horizon. The boundary is at r → ∞. The metri, gauge �eld and salar�elds are given by

ds2 =
(
−c2Tdt2 + c2Xdz

2 + c2Rdr
2
)
, (2.76)

c2T =
( r
L

)8
K, c2X =

( r
L

)8
H, c2R =

H

K

( r
L

)2
,

At = − r30l

L2(r2 + l2)
, φ = −3 log

( r
L

)
, Ψ = 1 +

l2

r2
.Here H and K are de�ned as

H = 1 +
l2

r2
, K = 1 +

l2

r2
− r60
r6
. (2.77)Di�erent thermodynami quantities are given by,

T =
1

2πL3

r5h
r30
(3 + 2k), s =

1

4G3

r30rh
L4

, (2.78)60



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere k is given by
k =

l2

r2h
, (2.79)and rh is the radius of the horizon whih is given by the largest root of theequation

r6h + r4hl
2 − r60 = 0. (2.80)The energy density (ǫ) and the pressure (p) is given by

ǫ =
1

4πG3

r60
L7
, p =

1

8πG3

r60
L7

=
ǫ

2
. (2.81)The harge density ρ and its onjugate the hemial potential µ are given by

ρ =
1

8πG3

r30l

L5
, µ = At(r)

∣∣∣
r→∞

− At(r)
∣∣∣
rh

=
lr4h
L2r30

. (2.82)So ondutivity should be ,
σ =

1

16πG3

1

g2eff
g
− 1

2
xx

∣∣∣
r=rh

( sT

ǫ+ P

)2

=
1

16πG3

Ψ2e−
4
3
φg

− 1
2

xx

∣∣∣
r=rh

( sT

ǫ+ P

)2

=
1

16πG3

(2k + 3)2

9
√
1 + k

, (2.83)whih is same as the one omputed in [61℄. In that paper authors alsoomputed eletrial ondutivity for four equal harge ase. The resultsfollow from Eq.(2.62) in a straight forward manner.Now we shall hek Eq.(2.62) and Eq.(2.63) for general Dp branes.2.6.1 Charged Dp braneLet us onsider the bakground obtained from Kaluza-Klein spherial redution ofrotating blak Dp brane to d dimension (see for details [62, 63, 64℄).
ds2 = −(g r)

n+1
d−2 h−

d−3
d−2f(r)dt2 + (g r)

n+1
d−2 h

1
d−2

p∑

i=1

dx2i + (g r)1−n+n+1
d−2 h

1
d−2

1

f(r)
dr2,(2.84)where

f(r) = h− 2m

rn−1
, h =

b∏

i=1

(1 +Hi), Hi = 1 +
l2i
r2
, (2.85)61



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere b is the number of independent gauge �elds (whih is same as numberof independent rotations that a higher dimensional Dp brane an have beforeompati�ation). The ation is of the form
S =

1

16πG

∫
dp+2x

√−g
[
R− 1

4

b∑

i=1

1

X2
i

F i
µνF

i µν + all the other terms..
]
, (2.86)where

Xi = g
− a2(D−2)

4(d−2) r
− a2(D−2)

4(d−2) h
d−3

2(d−2)
1

Hi
, (2.87)and

Ai
t = −

√
2mg

n−3
2

1− 1
Hi

li
. (2.88)In the following we de�ne all the required thermodynami quantities. The expres-sion for harge density is,

ρi =
1

8πG

√
2mg

n+3
2 li, (2.89)the hemial potentials are given by

µi =
√
2mg

n−3
2

li
r2hHi(rh)

. (2.90)The Hawking temperature is given by
T =

√
m√

2πrh
g

n−1
2 (

n− 1

2
− 1

r2h

b∑

j=1

l2i
Hi(rh)

). (2.91)The expression for entropy and other required quantities are
s =

1

4G
g

n+1
2 rh

√
2m, ǫ+ P =

(n− 1)m

8πG
gn. (2.92)The equation25 that we have to solve in order to �nd out ondutivity is given by

d

dr
(Ni

d

dr
φi(r)) +

m∑

j=1

Mijφj(r) = 0. (2.93)where
Ni =

√−g 1

X2
i

gxxgrr, (2.94)and
Mij = F i

rt

√−g 1

X2
i

gxxgrrgtt
1

X2
j

F j
rt. (2.95)25Unless expliitly mentioned, there is no sum over repeated indies i, j. 62



Chapter 2. Eletrial ondutivity at �nite hemial potentialPlugging the bakground values we an show
Ni = g3r3f(r)H2

i

1

h
, Mij = −8m li ljg

3r−n 1

h
. (2.96)

• Single harge ase: Here one an easily hek that
σ =

1

16πG

1

X2
g

p−2
2

xx

∣∣∣
rh

( sT

ǫ+ P

)2
. (2.97)

• Multi harge ase: The expression for eletrial ondutivity at the horizonis given by,
σH,ii =

1

16πG
Gii(r) g

p−2
2

xx

∣∣∣
r=rh

=
1

16πG

1

X2
i

g
p−2
2

xx

∣∣∣
r=rh

=
g

7−n
2 r3hH

2
i (rh)

16
√
2m πG

. (2.98)For simpliity we just give example of D1 brane and a general result will bepresented in the next hapter.
• D1 brane with four unequal harges: In this ase, the oupled set ofequations for ith �eld are given by

d

dr
(Ni

d

dr
φi(r)) +

4∑

j=1

Mijφj(r) = 0, (2.99)where index i, an take value from 1 to 4 (there is no sum over i in the above)and
Ni = g3r3f(r)H2

i

1

h
, Mij = −8m li ljg

3r−7 1

h
, h =

4∏

i=1

(1 +Hi). (2.100)Demanding regularity (in going boundary ondition) at the horizon and atthe boundary φi = φ0
i , we get the solution to 4 oupled equation to be
φi =

φ0
i +

li
6r2

(6liφ
0
i − 2

∑4
j=1 φ

0
j lj)

H2
i

. (2.101)The expression for diagonal part of eletrial ondutivity is given by
σii =

9r4h + 12r2hl
2
i + 3l4i + l2i

∑4
j=1 l

2
j

144
√
2m πGrh

, (2.102)63



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere as o� diagonal part of the ondutivity is given by
σij = − lilj

144
√
2m πGrh

(6r2h +
4∑

k=1

l2k − 3(l2i + l2j )). (2.103)We an now expliitly hek that, for multi harge ase
ρiσ

−1
ij ρj = ρiσ

−1
H,iiρi

(
ǫ+ P

sT

)2

, (2.104)where
σH,ii =

r3hH
2
i (rh)

16
√
2m πG

, (2.105)is the eletrial ondutivity evaluated at the horizon and depends only onthe geometrial quantities evaluated at the horizon.To onlude, we have heked that, at and away from onformality the form ofboundary ondutivity is given by Eq.(2.62) and Eq.(2.63). Next we shall hekwhether the general form of ondutivity holds for Lifshitz like blak holes. Firstwe give a brief details of Lifshitz like blak holes and then we shall ompute on-dutivity for both harged and unharged ases.2.7 Lifshitz like blak holes:Due to possible appliations in ondensed matter systems, there have been lotsof work [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76℄ going on to understandtransport properties of gauge theories dual to both unharged and harged Lifshitzlike blak holes. Motivated by this, our aim in this setion is to explore eletrialondutivities for these lass of blak holes. This setion is organized as follows.First we review the geometry and thermodynamis of unharged Lifshitz like blakholes. Then we disuss transport oe�ients suh as eletrial ondutivity. Forthe harged Lifshitz ase, after disussing geometry and thermodynamis, we fousour attention to the omputation of eletrial ondutivity.2.7.1 Unharged Lifshitz blak holes:The metri for this ase is given by
ds2 = L2[− r

2z
0

u2z
f(u)dt2 +

du2

u2f(u)
+
r20
u2

d∑

i=1

dx2i ], f(u) = 1− uz+d. (2.106)64



Chapter 2. Eletrial ondutivity at �nite hemial potentialThe horizon is loated at u = 1 and the boundary at u = 0. We take unhargedLifshitz blak brane metri in Eq.(2.105) as the bakground and treat the Maxwellation
SF = − 1

4g2d+2

∫
dd+2x

√−gFµνF
µν (2.107)as perturbations. Here gd+2 denotes the gauge oupling onstant. The Maxwellequation is

1√−g∂µ(
√−gF µν) = 0. (2.108)The eletrial ondutivity reads

σB =
1

g2d+1

G(u) g
d−3
2

xx

[φ(u)
φ0

]2∣∣∣
u=1

. (2.109)At ω → 0 , to get ondutivity we need to solve
d

du
(N

d

du
φ(u)) = 0, (2.110)where N(u) =

√−g 1
g2d+1

gxxguu. Solution of Eq.(2.109) that is regular at the horizonis given by φ(u) = φ0, where φ0 is the boundary value of the perturbed �eld. Sineat zero hemial potential, ondutivity at the horizon and at the boundary arethe same (as φ(u = 1) = φ(u = 0)), we get
σH = σB

=
1

g2d+2

g
d−2
2

xx

∣∣∣
u=1

, (2.111)whih upon using metri (2.105), gives
σ =

1

g2d+2

(Lr0)
d−2 = (

4π

z + d
)
d−2
z T

d−2
z . (2.112)Where we have used rz0 = 4π

z+d
T . Using the de�nition of ρ

µ
one �nds,

ρ

µ
=

[ ∫ ∞

r0

dr
grrgttg

2
d+1(r)√−g

]−1

=
Ld−2

g2d+2

(d− z)rd−z
0 . (2.113)For these lass of blak hole, we have

ǫ =
d

z
P, ǫ+ P = Ts. (2.114)65



Chapter 2. Eletrial ondutivity at �nite hemial potentialTaking P = c
′

T
d+z
z we get s = c

′ z+d
z
T

d
z . Moreover rz0 = 4π

z+d
T , so that we an write

χ =
Ld−2

g2d+2

(d− z)(
4π

z + d
)
d−z
z T

d−z
z

= k
′

T
d−z
z . (2.115)In this notation the ondutivity an be expressed as

σ = k
′ 1

d− z
(

4π

z + d
)
z−2
z T

d−2
z

=
1

d− z
(

4π

z + d
)
z−2
z χ T

z−2
z . (2.116)2.7.2 Charged Lifshitz blak holes:It was noted in [70℄ that the following ation

S =
1

16πGd+2

∫
dd+2x

√−g(R− 2Λ− 1

4
F 2 − 1

2
m2A2) (2.117)admits (d+ 2)−dimensional Lifshitz spae-time with arbitrary z

ds2 = L2(−r2zdt2 + 1

r2
dr2 + r2

d∑

i=1

dx2i ) (2.118)as a solution. If one adds a seond Maxwell �eld (F1) i.e.
S =

1

16πGd+2

∫
dd+2x

√−g(R − 2Λ− 1

4
F 2 − 1

2
m2A2 − 1

4
F 2
1 ), (2.119)then the metri of the blak hole turns out to be ,

ds2 = L2(−r2zdt2 + 1

r2
dr2 + r2

d∑

i=1

dx2i ), f(r) = 1− q2

2d2rz
. (2.120)The mass parameter and the osmologial onstant are given by

m2 =
zd

L2
, Λ = − 1

2L2
[z2 + z(d− 1) + d2], (2.121)while the massive vetor �eld and the seond Maxwell �eld strength are given by

At =

√
2(z − 1)

z
Lrzf(r), F1 rt = qLrz−d−1. (2.122)66



Chapter 2. Eletrial ondutivity at �nite hemial potentialLet us note that in the above z = 2d and rz0 ≡ q2/2d2.When z = 1, the above ansatz leads to
ds2 = L2[−r2f(r)dt2 + dr2

r2f(r)
+ r2

d∑

i=1

dx2i ], f(r) = 1− m

rd+1
+

q2

2d(d− 1)r2d
,(2.123)and

At = 0, Frt = 0, (2.124)whih is nothing but asymptotially AdS blak brane. The seond Maxwell �eldand the osmologial onstant are given by
F1 rt =

qL

rd
, Λ = −d(d+ 1)

2L2
. (2.125)In order to omplete our disussion on harged Lifshitz blak hole, we nowdisuss thermodynamis of these solutions. The temperature and entropy are givenby

T =
z

4π
rz0, SBH =

LdVd
4Gd+2

rd0, (2.126)where rz0 ≡ q2/2d2 and Vd denotes the volume of the d−dimensional spatial part.Let us note that
χ =

ρ

µ

=
1

16πGd+2
(z − d)Ld−2rd−z

0

=
1

16πGd+2
(z − d)Ld−2(

4π

z
)
d−z
z T

d−z
z , (2.127)and

ρµ =
1

16πGd+2

q2Ld

z − d
rz−d
0 . (2.128)Now assuming that the �rst law of thermodynamis is satis�ed we get,

ǫ+ P =
1

8πGd+2

zLdr3d0 . (2.129)2.7.3 Eletrial ondutivityFor onveniene we shall use the oordinates u = ( r0
r
)
z
2 . In this oordinate, f(u) =

1− u2. Using the di�erential Eq.(2.10) we reah at,
d2

du2
φ(u) + (

1

f(u)

df(u)

du
+

4− 2z

zu
)φ(u)− 2

f(u)
φ(u) = 0. (2.130)67



Chapter 2. Eletrial ondutivity at �nite hemial potentialThe solution that satis�es regularity at the horizon takes the form
φ(u) = −φ0

u
−4+3z

z Γ
[
−1

2
+ 2

z

]
Γ
[
5
4
− 1

z
−

√
16−8z−7z2

4z

]
Γ
[
5
4
− 1

z
+

√
16−8z−7z2

4z

]

Γ
[
5
2
− 2

z

]
Γ
[
−1

4
+ 1

z
−

√
16−8z−7z2

4z

]
Γ
[
−1

4
+ 1

z
+

√
16−8z−7z2

4z

]

2F1

[
5

4
− 1

z
−

√
16− 8z − 7z2

4z
,
5

4
− 1

z
+

√
16− 8z − 7z2

4z
,
5

2
− 2

z
, u2
] (2.131)

+φ0 2F1

[
−1

4
+

1

z
−

√
16− 8z − 7z2

4z
,−1

4
+

1

z
+

√
16− 8z − 7z2

4z
,−1

2
+

2

z
, u2
]
,where φ0 is the boundary value of φ(u). The boundary ondutivity is given by

σB = σH(
φ(u = 1)

φ(u = 0)
)2

=
1

16πGd+2

(Lr0)
d−2(

φ(u = 1)

φ(u = 0)
)2. (2.132)To ompute ondutivity we need to alulate (φ(u=1)

φ(u=0)
)2.

• z = 4, d = 2: In this ase (φ(u=1)
φ(u=0)

)2 ≈ 0.24, so that ondutivity is given by
σB = 0.24 σH

=
0.24

16πGd+2
. (2.133)

• z = 6, d = 3: Here (φ(u=1)
φ(u=0)

)2 ≈ 0.27, whih gives
σB = 0.27 σH

=
0.27

16πGd+2
(Lr0)

=
0.27

16πGd+2
L(

2π

3
)
1
6T

1
6 . (2.134)In general the ondutivity an be written as

σB = C χ (
4π

z
)
z−2
z T

z−2
z , (2.135)where C = (φ(u=1)

φ(u=0)
)2. It is important to note that above expressions only depends ontemperature (no dependene in hemial potential), sine harge and temperatureare related by T = q2

2πz
. 68



Chapter 2. Eletrial ondutivity at �nite hemial potentialLet us note that using Eq.(2.125) and Eq.(2.128), Eq.(2.62) gives
σBoundary =

(sT )2

(ǫ+ P )2
σHorizon

= 0.25 σH , (2.136)whih is independent of z, d. What we observe is that, eletrial ondutivityof harged Lifshitz like blak holes given in Eq.(2.132) and in Eq.(2.133) di�ersslightly from Eq.(2.135).2.8 Radial evolution of eletrial ondutivityThe aim of this setion is to study eletrial ondutivity at any radial position
r. To make life simple, we shall onsider single harged asymptotially AdS blakhole to �nd out the form of ondutivity. As we shall see, at any radial position
r, the ondutivity is given by a simple expression whih interpolates smoothlybetween the one omputed at the horizon and at the boundary.2.8.1 Relation between universal ondutivity of strethedhorizon and boundary ondutivityConsider the Maxwell part of the ation of the form

S = −
∫
dd+1x

√−g 1

4g2d+1(r)
FMNF

MN , (2.137)where g2d+1(r) in general is a r dependent oupling26. The eletrial ondutivityat any radius is given by (see Eq.(2.30) and for further details see [57, 48℄)
σ(rc) =

(
1

4g2d+1(r)
g

d−3
2

xx

)

r=rh

[φ(r = rh)

φ(rc)

]2
. (2.138)Let us note that at the horizon ondutivity is

σ(rc = rh) =

(
1

4g2d+1(r)
g

d−3
2

xx

)

r=rh

, (2.139)whih is entirely given by geometrial quantities evaluated at the horizon. In orderto understand radial evolution of ondutivity we onsider the ases with vanishingand non-vanishing hemial potential separately.26Let us note that, in the notation used in Eq.(1.69), 1
4g2

d+1
(r)

≡ G(r) 69



Chapter 2. Eletrial ondutivity at �nite hemial potential2.8.2 Radial evolution of ondutivity at zero hemial po-tentialLet us note that at vanishing hemial potential, the term M(r) = 0 in Eq.(2.10).If we impose in going boundary ondition at the horizon and impose φ(r → ∞) =
φ0, at the boundary , then one an show that solution to Eq.(2.10) is given by
φ(r) = φ0, at any radius i.e. φ is a onstant. Now using Eq.(2.137) we get,

σµ=0(rc) =

(
1

4g2d+1(r)
g

d−3
2

xx

)

r=rh

= σµ=0(rh). (2.140)So we onlude that at vanishing hemial potential boundary and horizon on-dutivity is the same.
• Relation with universal ondutivity of the strethed horizon: Theuniversal ondutivity of the strethed horizon is given by (see [4℄) σmb =

1
g2d+1(rh)

. Now we see
σCFT,µ=0 = σmb g

d−3
2

xx (rh), (2.141)where fator g d−3
2

xx (rh) onverts the length sale in CFT to proper length saleat horizon [4, 57℄ (let us note that in d dimension, ondutivity has a massdimension d− 3).2.8.3 Cuto� dependene of ondutivity at �nite hemialpotential:At �nite hemial potential, boundary and horizon ondutivity are no longersame. In this setion we study how ondutivity evolves radially in this ase. In[77℄, it was demonstrated that there is a simple relation even interpolation betweenthe �uid at the horizon de�ned by membrane paradigm and �uid at the boundaryde�ned by gauge/gravity duality. The authors in that paper introdued �uid atany arbitrary radius r outside horizon whih redues to gauge/gravity �uid as
r → ∞. For onveniene we take the metri and gauge �elds as taken in [77℄. Theasymptotially AdS blak harged p-brane solution are of the form

ds2p+2 = −h(r)dt2 + dr2

h(r)
+ e2t(r)dxidxi,

At =
Qrh
p− 1

(
1− rp−1

h

rp−1

)
, (2.142)70



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere
h(r) =

r2

L2

(
1− (1 + αQ2)

rp+1
h

rp+1
+ αQ2 r

2p
h

r2p

)
,

et =
r

rh
. (2.143)What we observe is that these are Reissner-Nordstrom blak hole in p+2 dimensionwith gauge oupling set to one and α = L2κ2

p(p−1)
. Let us onsider a uto� at radius

r = rc outside the horizon. One an de�ne thermodynami quantities there. Ifthe hawking temperature is TH , the loal temperature at the uto� radius anexpressed as
Tc ≡ T (rc) =

TH√
h(rc)

, TH =
h

′

(rh)

4π
. (2.144)The entropy density of the �uid at rc is given by s = 2π

κ2 e
−pt(r), whih redues to

s = 2π
κ2 as rc → rh. One an �nd out loal Brown-York stress tensor27to de�ne

ǫ+ P =

√
h

κ2

(
h

′

2h
− t

′

)
, (2.147)where ǫ and P are energy density and pressure of the �uid at rc. Let us note thatfor rc → rh

ǫ+ P = sTc. (2.148)The hemial potential at rc is
µ =

At√
h
, (2.149)whih vanishes at the horizon. So that the thermodynami relation

ǫ+ P = sTc + ρµ, (2.150)holds at any arbitrary radius. In order to �nd out eletrial ondutivity we need tosolve Eq.(2.10) for this bak ground and then use Eq.(2.30) to �nd out ondutivity27For a hypersurfae Σ with unit normal n, Brown-York stress tensor is de�ned as
tab =

1

κ2
(γabK −Kab + Cγab), (2.145)with γab = gab − nanb, where gab is the spae-time metri. Let us note that tab is ambiguousupto a onstant multiple of indued metri γab on the hypersurfae. However this dependenedoes not appear in the ombination ǫ+ P. The extrinsi urvature Kab is de�ned as
Kab =

1

2
Lnγab, (2.146)where Ln is the Lie derivative along n. 71



Chapter 2. Eletrial ondutivity at �nite hemial potentialat radius rc. The solution an be obtained easily and ondutivity an be writtendown at any radius rc. But here we follow a slightly di�erent route whih mightbe helpful to generalize the results in more general bakground. We propose thatthe form of ondutivity at any radius rc is given by
σc =

(
sT

ǫ+ P

)2∣∣∣∣∣
rc

σH , (2.151)where σc ≡ σ(rc), and σH ≡ σ(rh). The expression for σH is same as given inEq.(2.29). Let us note that, at the boundary Eq.(2.150) reprodues the desiredresult where as at the horizon, beause of Eq.(2.147), σc redues to σH whih itshould. Comparing Eq.(2.150) with Eq.(2.30), we get
φ(rc)

φ(rh)
=

ǫ+ P

sT

∣∣∣∣∣
rc

=
sT + ρµ

sT

∣∣∣∣∣
rc

= 1 +
ρµ

sT

∣∣∣∣∣
rc

, (2.152)where ρ and s, the harge and entropy densities are related to total harge Q andentropy S by a multipliative fator of volume respetively. So we get ρ
s
= Q

S
.It was also noted in [77℄, that S,Q are independent of uto� radius rc. UsingEq.(2.143) and Eq.(2.148) we get28

φ(rc)

φ(rh)
= 1 +

ρ

sTH
At(rc)

= 1 +
Q

STH
At(rc). (2.153)Now only work that is remaining is to �nd whether the solution of the form givenin Eq.(2.152) solves Eq.(2.10) for the partiular bakground that we are interestedin. One an very easily hek that this is indeed the ase (more general ases willbe disussed in the next hapter). So to summarize, the solution to Eq.(2.10) forthis partiular bakground is given by

φ(r) =
ǫ+ P

sT

∣∣∣∣∣
r

φ(rh)

=

(
1 +

ρ

sT
At(r)

)

r

(
sT

ǫ+ P

)

r→∞

φ0, (2.154)28For the ases where At(rh) 6= 0, the solution takes the the form φ(rc)
φ(rh)

= 1 + ρ
sTH

[At(rc) −
At(rh)]. 72



Chapter 2. Eletrial ondutivity at �nite hemial potentialwhere r → ∞ is the boundary and φ0 is the boundary value of φ. The eletrialondutivity for the �uid at any radius rc is given by
σc =

(
sT

ǫ+ P

)2∣∣∣∣∣
rc

σH . (2.155)
• Relation with universal ondutivity of the strethed horizon at �-nite hemial potential: Again the universal ondutivity of the strethedhorizon is given by σmb =

1
g2d+1(rh)

. One again we observe that,
σµ6=0(rh) = σmb g

d−3
2

xx (rh), (2.156)and
σCFT,µ6=0(r → ∞) = σmb g

d−3
2

xx (rh)

(
sTH
ǫ+ P

)2

. (2.157)Let us note that at µ = 0, Eq.(2.156) redues to Eq.(2.140).2.8.4 Imaginary part of ondutivity σ0 = ℑ(λ):In order to gain full knowledge of urrent-urrent orrelator we need to determinethe imaginary part of the eletrial ondutivity. As we will see, this part of theondutivity also behave in a universal way. Using Eq.(2.153) and Eq.(2.151) wean write,
d

dr
φ(r) =

(
sT

ǫ+ P

)

r→∞

(
ρ

sT

)

r→∞

A
′

t(r) φ0

=

(
ρ

ǫ+ P

)

r→∞

A
′

t(r) φ0, (2.158)where primes denote derivative with respet to r. At the boundary, imaginary partof the ondutivity is given by
ℑ(λ) = 1

ωφ0
lim
r→∞

1

2κ2
N(r)

d

dr
φ(r). (2.159)Using Eq.(2.8) and ρ = − 1

2κ2

√−gG11g
ttgrrA

′

t(r), we get
ℑ(λ) = − 1

ω

ρ2

ǫ+ P
. (2.160)It is interesting to ompare Eq.(2.159) with Eq.(2.34). Up on omparison we �nd,

1

ǫ+ P
= 2κ2

∫ 1

0

dr
grrgtt√−ggxx

φ(r)

φ0
. (2.161)73



Chapter 2. Eletrial ondutivity at �nite hemial potentialLet us note that, in the ase when µ = 0, φ(r)
φ0

= 1. So we get
1

ǫ+ P
= 2κ2

∫ 1

0

du
guugtt√−ggxx

, (2.162)whih is the result reported in [4℄.Again one an study the uto� dependene of imaginary part of the ondu-tivity. Rather than providing details, here we write the result
ℑ(λ)rc = − 1

ω

(
gtt
gxx

)

rc

(
ρ2

ǫ+ P

)

r→∞

. (2.163)So at the horizon, imaginary part of the ondutivity vanishes (sine gtt(rh) =
0). To summarize, we see that there emerges a nie and simple piture. Theboundary ondutivity an expressed in terms of geometrial quantities evaluatedat the horizon and thermodynami quantities. At any radial position rc outside thehorizon the expression for uto� dependent eletrial ondutivity (σ(rc)), whihinterpolates smoothly between horizon ondutivity σH(rc → rh) and boundaryondutivity σB(rc → ∞).2.9 DisussionWe onlude that the boundary eletrial ondutivity takes a universal form inthe presene of hemial potential for a large lass of blak branes whih inlude
R−harged blak branes in various dimensions in asymptotially AdS spaes aswell as harged Dp branes in various dimensions. As disussed already, presene ofhemial potential brings limitations on the use of Iqbal, Liu results[4℄. In fat, wehave expliitly seen, boundary and horizon results are no longer the same. In fat,we have seen that there is a smooth interpolation between them. The imaginarypart of ondutivity an be written as

ℑ(λ) = − ρ2

ǫ+ P

1

ω
, (2.164)where ρ, ǫ and P are the harge density, energy density and pressure of the �uidrespetively. Let us mention here that the imaginary part of the ondutivity hasa pole at ω → 0 limit beause of the translational invariane of the system. Theappearane of pole will further be disussed in the next hapter, where we shall alsoshow that the Eq.(2.163) is in fat valid for a wide lass of gauge theory with gravitydual. We have also seen that the Lifshitz like blak brane does not satisfy theuniversal form. The question therefore arises: what is the most general bakgroundfor whih the form of boundary ondutivity as in Eq.(2.62) and Eq.(2.63) aresatis�ed? In the next hapter we look for an answer to this question. 74



3Universality in eletrial ondutivity
3.1 IntrodutionThe �uid/gravity orrespondene provides us with two distint �uids dual to agiven blak hole geometry: �rst, the �uid given by membrane paradigm (disussedin the appendix A), whih is desribed by quantities at the blak hole horizon andseond, the �uid at the boundary of the spae time known from gauge/gravityduality and is desribed by quantities at the boundary. By exploiting the fat thathanging radial position in the bulk orresponds to RG �ow in the boundary �uid,authors of [4, 77℄ proposed a number of relations and even interpolation betweenthem. For example, radial independene of ertain quantities is used to show that,the shear visosity (η) to entropy density (s) ratio (η

s
) for both the �uids on themembrane and at the boundary are the same. It an also be shown that the lowfrequeny limit of eletrial ondutivities of these two �uids omputed at zerohemial potential, are related[4℄. However, the situation hanges signi�antly at�nite hemial potential in the boundary theory (whih orresponds to hargedblak hole in the bulk), where radial independene, exploited earlier in relatingeletrial ondutivities of these two �uids, gets ompletely destroyed. One needsto solve �ow equations in order to relate ondutivities of these two �uids. Inthe last hapter we have seen, for several examples, the eletrial ondutivity isuniversal and that there exists a simple relation between the ondutivities of the�uids at horizon and at boundary. It was also disussed in the previous hapterthat at any radial position r, the ondutivity is given by a simple expressionwhih interpolates smoothly between the one omputed at the horizon and atthe boundary. However, for gauge theories dual to harged Lifshitz like gravitybakgrounds, the above mentioned universality does not hold. The purpose of thishapter is to �nd out the most general bakground for whih the form of boundaryondutivity as in Eq.(2.62) and Eq.(2.63) are satis�ed.This hapter is strutured as follows. Setion 2 is a review of the earlier hapter.This setion also serves us to �gure out, what we should show in order to provethe universality of eletrial ondutivity. In setion 3, we �nd the ondition onthe gravity side energy momentum tensor under whih the dual gauge theory will75



Chapter 3. Universality in eletrial ondutivityshow the universality. This setion also disusses several examples, whih inludetheories at and away from onformality. This setion also explains as to whythe Lifshitz like theories do not show the universality. In setion 4, we work withgauge theories at multiple hemial potentials and give general form of the eletrialondutivity matrix. In appendix 5, we elaborate upon the ondition that we geton energy momentum tensor. Finally we summarize our results of this hapter insetion 6.3.2 What to prove?Consider ation of the form
S =

1

2κ2

∫
dd+1x

√−g(R − 1

4g2eff(u)
FµνF

µν +Other terms), (3.1)and the metri of the form
ds2 = gtt(u)dt

2 + guu(u)du
2 + gxx(u)

d−1∑

i=1

(dxi)2, (3.2)The perturbed gauge �eld satis�es
d

dr
(N(r)

d

dr
φ(r))− ω2N(r) grrg

ttφ(r) +M(r)φ(r) = 0, (3.3)with
N(r) =

√−g 1

g2eff
gxxgrr, (3.4)and

M(r) =
( 1

g2eff

)2√−ggxxgrrgttFrtFrt. (3.5)We an rewrite M(r) in a better way as
M(r) = (2κ2)2ρ2

grrgtt√−ggxx
. (3.6)where,

ρ =
1

2κ2g2eff

√−ggrrgttFrt. (3.7)Let us note that the Maxwell equations an be written as,
∂µ

( 1

g2eff

√−gF νµ
)
= 0, (3.8)76



Chapter 3. Universality in eletrial ondutivityand we hoose the gauge where only At(r) omponent of the bakground gauge�eld is non zero (we work with eletrially harged blak hole).For evaluating the ondutivity in the low frequeny limit and for non-extremalbakgrounds, we only need to solve equations up to zeroth order in ω. To thatorder one �nds,
d

dr
(N(r)

d

dr
φ(r)) +M(r)φ(r) = 0. (3.9)The expression for eletrial ondutivity is given by (see [54, 48, 57℄ for details ),

σ =
1

2κ2

(√
grr
gtt
N(r)

)

r=rh

(
φ(rh)

φ(r → ∞)

)2

=
1

2κ2

(
1

g2eff
g

d−3
2

xx

)

r=rh

(
φ(rh)

φ(r → ∞)

)2

= σH

(
φ(rh)

φ(r → ∞)

)2

, (3.10)where σH is the ondutivity evaluated at the horizon and its expression is givenby,
σH =

1

2κ2g2eff
g

d−3
2

xx

∣∣∣
r=rh

. (3.11)we have disussed in the previous hapter, that boundary ondutivity is given by
σ = σH

(
φ(rh)

φ(r → ∞)

)2

= σH

(
sT

ǫ+ P

)2

. (3.12)Suppose we take the solution of Eq.(3.9) to be
φ(r)

φ(rh)
= 1 +

ρ

sT
(At(r)−At(rh)), (3.13)where Eq.(3.13) at the boundary redues to

φ(r → ∞)

φ(rh)
= 1 +

ρ

sT
µ

=
ǫ+ P

sT
. (3.14)So we onlude that proposed form of solution in Eq.(3.13) reprodues exat formof ondutivity both at horizon and at the boundary. So in order to show Eq.(3.12)we need to prove Eq.(3.13). In the next setion we show that Eq.(3.13) indeed, isthe solution to Eq.(3.9). 77



Chapter 3. Universality in eletrial ondutivity3.3 Proof for Singly harged blak braneThe way we shall proeed is, �rst we shall assume that the solution to Eq.(3.9) isgiven by Eq.(3.13). Then we shall use Einstein equation to �nd out the onstraintthat our assumption leads to. Then we show how this onstraints an be expressedin a ompat form in terms of the stress energy momentum tensor of the matterontent of the system. We shall also disuss possible meaning of this onstraint inthe boundary gauge theory.We start by plugging Eq.(3.13) in Eq.(3.9). This gives
d

dr

(√−g 1

g2eff
gxxgrr

ρ

sT

d

dr
At(r)

)
+(2κ2)2ρ2

grrgtt√−ggxx

(
1 +

ρ

sT

(
At(r)− At(rh)

))
= 0.Using Frt =

d
dr
At and de�nition of harge density as in Eq.(3.7) we obtain

2κ2
ρ2

sT

d

dr
(gxxgtt) + (2κ2)2ρ2

grrgtt√−ggxx
(
1 +

ρ

sT

(
At(r)− At(rh)

))
= 0,

or,
1

2κ2

√−ggxx
grrgtt

d

dr
(gxxgtt) = −sT

(
1 +

ρ

sT

(
At(r)− At(rh)

))
. (3.15)Evaluating Eq.(3.15) at r = rh,we get

1

2κ2

√−ggxx
grrgtt

d

dr
(gxxgtt)

∣∣∣∣∣
rh

= −sT. (3.16)Subtrating Eq.(3.15) from Eq.(3.16) we get
√−ggxx
grrgtt

d

dr
(gxxgtt)

∣∣∣∣∣

r

rh

= −2κ2ρ
(
At(r)−At(rh)

)

⇒
[
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

]r

rh

= −2κ2ρAt

∣∣∣∣∣

r

rh

. (3.17)Now we use Einstein equations to �nd out onditions under whih Eq.(3.17) isvalid. Let us onsider the bakground of the form given in Eq.(A.2). The Einsteinequation is given by
Rµν −

1

2
gµνR = TE.M.

µν + TMatter
µν

=
1

2g2eff

(
FµλF

λ
ν − 1

4
gµνFρσF

ρσ

)
+ TMatter

µν , (3.18)78



Chapter 3. Universality in eletrial ondutivitywhere TMatter
µν (r), will inlude all the other stu�s whih may ome from salar�elds, osmologial onstant or any other �elds present in the theory. Sine only

At(r) is non-zero, we have Frt 6= 0. Using Eq.(3.18), we an write
Rt

t −
1

2
gttR =

1

2g2eff

(
FtrF

tr − 1

4
gttFρσF

ρσ

)
+ T t, Matter

t , (3.19)
Rx

x −
1

2
gxxR = − 1

2g2eff

1

4
gxxFρσF

ρσ + T x, Matter
x . (3.20)After subtrating Eq.(3.19) from Eq.(3.20), we get

√−gRt
t −

√−gRx
x =

1

2g2eff

√−gF rtFrt +
√−g(T t, Matter

t (r)− T x, Matter
x (r)). (3.21)For the metri of the form in Eq.(A.2), following relations hold

√−gRt
t = − d

dr


g

d−1
2

xx
d
dr
gtt

2g
1
2
rrg

1
2
tt


 , (3.22)

√−gRx
x = − d

dr

(
g

d−3
2

xx g
1
2
tt

2g
1
2
rr

d

dr
gxx

)
, (3.23)whih, after substituting in Eq.(3.21), we get,

− d

dr

(
g

d−1
2

xx

2g
1
2
rrg

1
2
tt

d

dr
gtt

)
+

d

dr

(
g

d−3
2

x g
1
2
tt

2g
1
2
rr

d

dr
gxx

)
=

1

2g2eff

√−gF rtFrt

+
√−g(T t,Matter

t − T x,Matter
x ).(3.24)Upon further simpli�ation, this redues to

− d

dr

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

)
= 2κ2ρ

d

dr
At + 2

√−g(T t, Matter
t (r)− T x, Matter

x (r)).(3.25)Integrating above equation we get
(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

) ∣∣∣∣∣

r

rh

= −2κ2ρAt

∣∣∣∣∣

r

rh

+ 2

∫ r

rh

dr
√−g(T t, Matter

t (r)− T x, Matter
x (r)).(3.26)Thus, if we impose the ondition that

T t, Matter
t (r) = T x, Matter

x (r), (3.27)79



Chapter 3. Universality in eletrial ondutivitythen we get (
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

)∣∣∣∣∣

r

rh

= −2κ2ρAt

∣∣∣∣∣

r

rh

, (3.28)whih29 is same as Eq.(3.17). Hene we have shown that, if the gravity bakgroundsatis�es Eq.(3.27), then the dual gauge theory will satisfy Eq.(3.10). We suspetthat whenever the boundary theory is in the Minkowski spae, the ondition im-posed by Eq.(3.27) on the stress-energy tensor (barring the eletromagneti part)will hold true. This was also observed in [78, 79℄ in the ontext of proving the uni-versality of shear visosity. In the following setion, we elaborate upon the aboveondition onsidering several examples.3.3.1 ExamplesIn all of our examples in this setion we will take the metri, gauge �elds andother form �elds as the funtions of oordinate r only. It was observed in [78, 79℄that if the salar and other form �elds are funtions of the oordinate r only andif the boundary theory lives on the Minkowski spae, then T Matter
µν ∼ gµν(· · · ),(where µ, ν are gauge theory indies) whih in turn implies the ondition given byEq.(3.27). In what follows, in this setion, we �rst disuss the boundary theorieswhih live on Minkowski spae-time where we will �nd expliitly that the Eq.(3.27)holds good. Next, we disuss one example where the boundary theory does not liveon the Minkowski spae-time, namely the asymptotially Lifshitz like spae-time,where the ondition in Eq.(3.27) does not hold.

• Boundary theories living on Minkowski spae-time� Conformal boundary theories: Let us note that Reissner Nordströmand R-harged blak holes in various dimensions in asymptotially AdSspae (as already heked in [54℄) and in the previous setion as well asany other bakground whih satis�es Eq.(3.27), should satisfy Eq.(3.10).� Non-onformal boundary theory: Non-onformal theories suh asgauge theory dual to harged Dp brane satis�es both Eq.(3.27) andEq.(3.10).29For the bakgrounds whih satis�es Eq.(3.27), it is interesting to note that, if we set r → ∞,and use �rst law of thermodynamis as well as the fat that sTH = 1
2κ2

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d
dr
(gxxgtt)

) ∣∣∣∣∣
rh

,we have ǫ + P = 1
2κ2

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d
dr
(gxxgtt)

) ∣∣∣∣∣
r→∞

from Eq.(3.17). Let us note that we should addthe Gibbons-Hawking term and ounter terms (see [37℄) in order to get �nite values. 80



Chapter 3. Universality in eletrial ondutivity
• Boundary theory dual to harged Lifshitz like blak hole: For thisase it was shown in previous hapter and in [54℄ that

σB 6= σH

( sT

ǫ+ P

)2
. (3.29)Now the above result an be understood easily. Let us onsider the followingation in (d+ 2)-dimensional spae time (see for details in [70, 75℄)

S =
1

16πGd+2

∫
dd+2x

√−g(R− 2Λ− 1

4
F 2 − 1

2
m2A2 − 1

4
F 2
1 ). (3.30)The orresponding equations of motion are given as follows,

∂µ(
√−gF µν) = m2

√−gAν , ∂µ(
√−gF µν

1 ) = 0,

Rµν =
2

d
Λgµν +

1

2
FµλFν

λ +
1

2
F1,µλF

λ
1,ν +

1

2
m2AµAν

− 1

4d
F 2gµν −

1

4d
F 2
1 gµν . (3.31)From the above equation we an �nd the energy momentum tensor. Let uswrite it in the form T total

µν = TE.M.
µν + TMatter

µν , where TE.M.
µν ontains ontribu-tion from gauge �eld F1,µν whereas other �elds ontributes to TMatter

µν . Let usnote that the massive gauge �eld Aµ, was introdued to get the Lifshitz likesaling. If we take only non-vanishing omponents of gauge �eld to be At,then it is easy to see that
T t,Matter
t − T x,Matter

x =
1

2
FtrF

tr +
1

2
m2AtA

t

6= 0, (3.32)where Frt =
d
dr
At and also note that gtt = gxx = 1. This provides us with anexplanation of Eq.(3.29).3.4 Universality of eletrial ondutivity with mul-tiple hargesNow we turn our attention to multiple harged blak brane. For onveniene weone again write down th equation that governs the perturbed gauge �eld. Wehave

d

dr
(NI

d

dr
φI(r))− ω2NI grrg

ttφI(r) +
m∑

J=1

MIJφJ(r) = 0, (3.33)with
MIJ = F I

rt

√−gGIIg
xxgrrgttGJJF

J
rt. (3.34)81



Chapter 3. Universality in eletrial ondutivityLet us note that MIJ = MJI . One an show that, the solution to the Eq.(3.33)an be written as
φi = φ0

i

(
1− ρi

ǫ+ p
(Ai

t(r)− Ai
t(r = 0))

)
− Ai

t(r)− Ai
t(r = 0)

ǫ+ p

m∑

J=1

ρjφ
0
j , (3.35)where φ0

i is the boundary value of i'th perturbed gauge �eld and again the onditionon bulk energy momentum tensor as stated as in Eq.(3.27), has to be satis�ed30.Here we write the diagonal and o� diagonal terms of the ondutivity matrix.
σii =

1

8πG
g

d−3
2

xx

∣∣∣
r=rh

[
Gii(rh)(1−

2µiρi
ǫ+ p

) + ρ2i

m∑

j=1

Gjj(rh)µ
2
j

(ǫ+ p)2

]
, (3.36)and o� diagonal omponents with i 6= j, we have

σij =
1

16πG
g

d−3
2

xx

∣∣∣
r=rh

[
−Gii(rh)

2µiρj
ǫ+ p

−Gjj(rh)
2µjρi
ǫ+ p

+ρiρj

m∑

j=1

Gjj(rh)µ
2
j

(ǫ+ p)2

]
. (3.37)One an now easily hek that,

ρiσ
−1
ij ρj = ρiσ

−1
H,iiρi

(
ǫ+ P

sT

)2

, (3.38)as well as
µiσijµj = µiσH,iiµi

(
sT

ǫ+ P

)2

. (3.39)One an also �nd out the imaginary part of ondutivity and it is given by
ℑ(λ(ω)ij) = − i

ω

(
gtt
gxx

)

r→∞

1

16πG

ρiρj
ǫ+ P

. (3.40)3.5 Condition on energy momentum tensorLet us onsider a onstant r hyper surfae outside the horizon. The unit normalvetor to that hyper surfae is nµ∂µ = nr∂r, where nr =
√
grr. One an de�ne theextrinsi urvature Θµν of the hyper surfae to be

Θµν = −1

2
(▽µnν +▽νnµ). (3.41)30To be more spei�, the matter part of the energy momentum tensor that needs to satisfyEq.(3.27), does not inlude the any of the U(1) gauge �eld. 82



Chapter 3. Universality in eletrial ondutivityUsing the form of the metri as in Eq.(A.2), we get
Θtt = −1

2

√
grr

d

dr
gtt , Θxx = −1

2

√
grr

d

dr
gxx. (3.42)Using Eq.(3.20) and Eq.(3.19), we an write

√
gRt

t =
d

dr
(
√
hΘt

t),
√
gRx

x =
d

dr
(
√
hΘx

x), (3.43)where h is the determinant of the indued metri on the hyper surfae. The induedmetri on the onstant r hyper surfae is given by
ds2∑ = httdt

2 + hxx

d−1∑

i=1

(dxi)2

= gttdt
2 + gxx

d−1∑

i=1

(dxi)2. (3.44)Let us de�ne a tangent null vetor lµ∂µ =
√−gtt∂t +

√
gxx∂x. Now we an writeEq.(3.21) and onsequently Eq.(3.26) as

√−gRµν l
µlν =

√−gT Total
µν lµlν

=
√−gTE.M.

µν lµlν +
√−gTMatter

µν lµlν , (3.45)
√
−hΘµνl

µlν
∣∣∣
r

rh
=

∫ r

rh

dr
√−gTE.M.

µν lµlν +

∫ r

rh

dr
√−gTMatter

µν lµlν

= −κ2ρAt

∣∣∣
r

rh
+

∫ r

rh

dr
√−gTMatter

µν lµlν , (3.46)respetively. Upon using the Einstein equation (3.18) and the fat that for themetri of the form given in Eq.(A.2), the Rxt omponent of the Rii tensor iszero, we get TMatter
tx = 0, sine TE.M.

tx = 0. So the ondition that we get on theenergy momentum tensor31 in Eq.(3.27) an be written as
TMatter
µν lµlν = 0. (3.47)31Aording to null energy ondition, T total
µν lµlν ≥ 0, with lµ a null vetor. Sine TE.M

µν lµlν ≥
0, the ontribution from the matter part TMatter

µν lµlν may be negative as well. However itis interesting to note that, if we take a limit where harge of the blak hole vanishes then
TE.M
µν lµlν = 0, so that null energy ondition gives TMatter

µν lµlν ≥ 0. So if we are interested in thebakgrounds where matter setor does not at as a soure for eletromagneti �eld, it appearsthat TMatter
µν lµlν ≥ 0, irrespetive of the presene of gauge �elds. 83



Chapter 3. Universality in eletrial ondutivityWe get a better understanding of the Eq.(3.27), by looking for simplest ase of noblak hole and unharged solution. The Eq.(3.25) redues to,
− d

dr

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

)
= 2

√−g(T t, Matter
t (r)− T x, Matter

x (r)). (3.48)So if we demand
T t, Matter
t (r)− T x, Matter

x (r) = 0, (3.49)then we get gxxgtt ∼ −1. This might be related to the fat that vauum of dualgauge theory being Lorentz invariant.3.6 DisussionWe have shown that, for µ 6= 0, given that the form of Maxwell part of the ationis
S = −

∫
dd+1x

√−g 1

4g2eff
FMNF

MN , (3.50)the eletrial ondutivity at the boundary is given by
σB =

1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2

= σH
(sT )2

(ǫ+ P )2
, (3.51)where σH = 1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

, is the eletrial ondutivity evaluated radially at thehorizon. We an argue that one the real part of the ondutivity is known,the imaginary part of ondutivity is automatially �xed. To summarize, in thepresene of hemial potential the eletrial ondutivity an be expressed as
λ = − i

ω

(
gtt
gxx

)

r→∞

ρ2

ǫ+ P
+

1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2
. (3.52)Let us mention here that the imaginary part of the ondutivity has a pole at

ω → 0 limit beause of the translational invariane of the system. If one uses theKrammers-Kronig relation
ℑ(λ(ω)) = −1

π
P
∫ ∞

−∞

ℜ(λ(ω′))

ω′ − ω
dω′, (3.53)then one an �nd that the real part of the ondutivity ontains a delta funtionif the imaginary part has a pole. As we have found a pole in the imaginary part of84



Chapter 3. Universality in eletrial ondutivitythe ondutivity, it follows that real part has a delta funtion singularity at ω = 0.So, stritly speaking DC ondutivity that we have omputed is low frequenylimit of AC ondutivity or more preisely expression for ondutivity is valid for
ω → 0+, see [32, 61℄ for a nie disussion.It is interesting to note that the uto� dependent ondutivity an be omputedand it interpolates smoothly between the results at the horizon and at the bound-ary. At any uto� rc the expression for eletrial ondutivity32 an be writtenas

λ = − i

ω

(
gtt
gxx

)

rc

(
ρ2

ǫ+ P

)

r→∞

+
1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2

∣∣∣
r=rc

, (3.54)where r → ∞ is the boundary of the spae time. It is interesting to ompare ourresults with the results obtained from the membrane paradigm arguments. Wehave seen, that irrespetive of the theory, the horizon ondutivity is given by
σH =

1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

, (3.55)whereas the universal ondutivity of the membrane is given by
σmembrane =

1

g2eff

∣∣∣
r=rh

. (3.56)So we onlude that the horizon ondutivity is given by,
σH = σmemg

d−3
2

xx

∣∣∣
r=rh

. (3.57)We have also seen that for the bakgrounds that satis�es Eq.(3.27), the bound-ary eletrial ondutivity an be related to horizon ondutivity using thermody-nami quantities. More preisely we an write,
σB = σH

(sT )2

(ǫ+ P )2

= σmem g
d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2
. (3.58)32Let us note that, at any radius rc, the loal temperature and the hemial potential an begiven by Tc =

TH√
gtt(rc)

and µc =
At(rc)−At(rh)√

gtt(rc)
respetively. Assuming �rst law of thermodynamis

ǫ(rc) + P (rc) = sTc + ρµc to hold at and radius and using Eq.(3.13) we get
φ(rc)

φ(rh)
=

sT

ǫ+ P

∣∣∣
r=rc

,and onsequently Eq.(3.54). 85



Chapter 3. Universality in eletrial ondutivitySine mass dimension of eletrial ondutivity is d − 3, one an understand thefator g d−3
2

xx as the onverter of the length sale of the boundary to the proper lengthat the horizon [4, 57℄. It would be very interesting to understand the meaningof extra fator ( sT
ǫ+P

)2 that appears in the formula due to presene of hemialpotential. At this moment it is not quite lear to us how to interpret it diretlyfrom the onstraint Eq.(3.27) whih appears to be related to Lorentz invariane ofthe vauum of the �eld theory. Let us note that, at zero hemial potential
σB = σH

= σmem g
d−3
2

xx

∣∣∣
r=rh

, (3.59)as was shown in [4℄.In our result of the eletrial ondutivity, σH is given entirely in terms of thegeometrial quantities evaluated at the horizon. A natural question that arises,whether it is possible to give an intrinsi meaning to the expression of ondutivityin terms of �eld theory quantities? This will bring the formula for eletrial on-dutivity in the same footing as elebrated universal result for η
s
. Answer to thisomes from the expression of thermal ondutivity to visosity ratio. As it wasshown in [48℄ and will be disussed in the next hapter that, eletrial ondutivityan be expressed in terms of the �eld theory quantities alone.
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4Universality in thermal ondutivity tovisosity ratio
4.1 IntrodutionIn the previous hapter we have shown that eletrial ondutivity an be expressedin terms of geometrial quantities evaluated at the horizon and thermodynamivariables. A natural question therefore arises: is it possible to give an expression foreletrial ondutivity solely in terms of boundary gauge theory variables? In thishapter we provide an a�rmative answer to this question. With supports omingfrom various examples, we further onlude that the thermal ondutivity alsoshows some universal behavior. More preisely, we propose that for a d dimensionalstrongly oupled gauge theory

κT
ηT

m∑

j=1

(µj)2 =
d2

d− 2

( c′

k′

)
= 8π2 d− 1

d3(d+ 1)

c

k
, (4.1)where κT is the thermal ondutivity (the heat urrent response to thermal gra-dient in the absene of eletrial urrent), T is the temperature, µ the hemialpotential, η the shear visosity and c, k are entral harges of dual gauge theory.The dimensionless onstants c′ and k

′ are roughly related to total and hargeddegrees of freedom and are related to to pressure and harge suseptibility of thesystem at equlibrium. We test our proposal against several examples. However ageneral proof of this result is still laking. Using this universality we also �nd outeletrial ondutivity in terms of boundary thermodynami variables.This hapter is organized as follows. In the next setion, thermal ondutivityand thermal ondutivity to visosity ratio is omputed for several examples. In thethird setion, after reviewing the standard result for visosity to ondutivity ratioat vanishing hemial potential, we show that Eq.(4.1) holds at µ = 0.33 Then,based on few examples, we onjeture that Eq.(4.1) holds true even for arbitrary33Let us note that in the presene of equal number of positive and negative harges, hemialpotential is zero. 87



Chapter 4. Universality in thermal ondutivity to visosity rationonzero hemial potential. Subsequently in setion 4, using Eq.(4.1), we providea way to ompute eletrial ondutivity in terms of thermodynamial quantitiesalone even in the presene of non-zero hemial potential. In setion 5, we omputethermal ondutivity to visosity ration for several non-onformal gauge theoriesand observe that they again behave universally. We end this hapter with a briefsummary of the results.4.2 Thermal ondutivityOne of the aim of this setion is to study thermal ondutivity (κT ) as de�ned inEq.(1.113). In the following we shall start with the examples of omputation ofthe thermal ondutivity and thermal ondutivity to visosity ratio (κT

ηT

m∑
j=1

(µj)2)for R−harged blak holes in 4, 5, 7 dimensions.4.2.1 Single harge blak holeNote that for single harge blak hole 1
ρiκ

−1
ij ρj

= κ

ρ2
. So that one gets

κT =

(
ǫ+ P

ρT

)2

κ =

(
ǫ+ P

ρ

)2
σ

T
(4.2)Rather than providing details we here tabulate the thermal ondutivity and di-mension less ratio κTµ2

ηT
, where η is the shear visosity.Dimension κT

κTµ2

ηT5 (1+k)2N2T 2π
k(2+k)

8π24 2
√
2(1+k)3/2N3/2Tπ

3k
32π27 8(1+k)3N3T 4π2

3k(3+k)3
2π2Table 4.1: Thermal ondutivity to shear visosity ratio for single harge blakhole
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Chapter 4. Universality in thermal ondutivity to visosity ratio4.2.2 Two harge blak holeIn the ratio κTµ2

ηT
, µ2 is replaed by µ2

1 + µ2
2. Note that µi → −µi is a symmetry 34whih implies reversing the sign of harge density.Dimension κT

κT (µ2
1+µ2

2)

ηT5 N2T 2π(
2+

2∑
j=1

kj

)(
2∑

j=1

kj

(1+kj)
2

) 8π24 (2N)
3
2 Tπ(

2∑
j=1

3kj

(1+kj )
2

)√
2∏

i=1
(1+ki)

32π2

7 (2N)3T 4π2
2∏

i=1
(1+ki)

(
2∑

j=1

3kj

(1+kj )
2

)(
3+

2∑
j=1

kj−
2∏

j=1
kj

)3 2π2Table 4.2: Thermal ondutivity to shear visosity ratio for two harge blak hole
4.2.3 Three harge blak holeIn this ase the results are summarized below4.2.4 Four harge blak hole (4 Dimensional blak hole)The thermal ondutivity is given by

κT =
(2N)

3
2Tπ

( 4∑
j=1

3kj
(1+kj)2

)√ 4∏
i=1

(1 + ki)

, (4.3)and
κT (µ

2
1 + µ2

2 + µ2
3 + µ2

4)

ηT
= 32π2. (4.4)34The expression for κT in Eq.(1.113) is invariant under SO(m) rotation among ρi's. 89



Chapter 4. Universality in thermal ondutivity to visosity ratioDimension κT
κT (µ2

1+µ2
2+µ2

3)

ηT5 N2T 2π(
2+

3∑
j=1

kj−
3∏

j=1
kj

)(
3∑

j=1

kj

(1+kj)
2

) 8π24 (2N)
3
2 Tπ(

3∑
j=1

3kj

(1+kj )
2

)√
3∏

i=1
(1+ki)

32π2Table 4.3: Thermal ondutivity to shear visosity ratio for three harge blakhole
• µ 6= 0 : We observe that irrespetive of number of hemial potential turnedon, thermal ondutivity to visosity ratio shows same value although expres-sion for thermal ondutivity hanges with number of hemial potentials.
• µ = 0 : We also observe that as µ → 0 i.e. ρ → 0, thermal ondutivitygiven in Eq.(4.2), diverges whih implies �nite, non deaying momentum. Inspite of this divergene, we shall observe in the next setion that thermalondutivity to visosity ratio remains same as in the non zero hemialpotential ase. In the following we shall �rst onentrate at zero hemialpotential ase.4.3 Universality in thermal ondutivity to visos-ity ratioIn the following we �rst review the relation between eletrial ondutivity andshear visosity at vanishing hemial potential [3℄. In a CFT, short distane physisis desribed by singularities of orrelation funtions where entral harges of thetheory appear expliitly (in this energy sale e�ets of temperature are irrelevant).For example let us onsider orrelation funtions of energy momentum tensor Tµνand U(1) onserved urrent Jµ

〈J(x)J(0)〉 ∼ k

x2(d−1)
, 〈T (x)T (0)〉 ∼ c

x2d
, (4.5)where entral harges c, k measure the number of total degrees of freedom andthe number of harged degree of freedom of the system35 respetively. We alsoknow that at long distanes physis is desribed by thermodynamis and transport35So we expet k ≤ c. 90



Chapter 4. Universality in thermal ondutivity to visosity ratiooe�ients. In this sale, the e�et of temperature beomes important. To desribeequilibrium at T 6= 0, we look at pressure and harge suseptibility χ = ρ
µ
where

ρ(T, µ) is the harge density . If T is the only sale in the theory 36, then
P = c

′

T d, χ = k
′

T d−2, (4.6)where c′, k′ measure the number of total degree of freedom and number of hargeddegree of freedom at that sale. For d > 2, in general there is no relation between
c, c

′ and k, k′. But it was shown in [3℄ that for CFT's whih admit gravity duals,there exist suh relation and are given by
c
′

c
=

1

4π
d
2

(4π
d

)dΓ(d/2)3
Γ(d)

d− 1

d(d− 1)
,

k
′

k
=

1

2π
d
2

(4π
d

)d−2Γ(d/2)3

Γ(d)
(4.7)where37d ≥ 3.It is well known that, in this lass of CFT's, even ertain transport oe�ientsare determined in-terms of thermodynamial quantities (for example η = s
4π
).Other suh relation between visosity and ondutivity (σ) at vanishing hemialpotential (µ = 0) is

η

σT 2
= (d− 2)

( c′

k′

)
= 8π2 (d− 1)

(d− 2)d(d+ 1)

c

k
. (4.8)Eq.(4.8) implies at vanishing hemial potential i.e. at µ = 0, eletrial ondu-tivity an be omputed in terms of entral harges only. Using Eq.(4.8), (4.6) and

s = d c
′

T d−1 one gets
η =

d

4π
c
′

T d−1, σ =
1

d− 2

d

4π
k

′

T d−3. (4.9)Sine thermodynamis is determined by the entral harges, we onlude that themomentum (η) and harge (σ) transport are �xed by thermodynamis38. Existene36to de�ne χ, one an introdue small hemial potential and see the e�et in ρ .37In our notation d is the dimension of gauge theory.38As an aside lets review membrane paradigm arguments. It was shown in [4℄ using membraneparadigm arguments that at µ = 0, eletrial ondutivity an be determined in terms of geometryonly. If we use the results in [4℄, we immediately reah at
η

σT 2
=

1

T 2

g2d+1

16πGN

gxx(r0). (4.10)As an example onsider a CFT with the gravity dual given by AdSd+1 with d 6= 3, whih has ametri
ds2 =

r2

R2

(
− f(r)dt2 + dx2

1 + · · ·+ dx2
d−1

)
+

R2

f(r)r2
dr2, (4.11)91



Chapter 4. Universality in thermal ondutivity to visosity ratioof suh relations between thermodynamis and transport oe�ient are interest-ing 39, sine transport oe�ients are haraterized by inelasti ollisions amongthermally exited arriers (of energy ∼ T ) hene they are not �xed in terms ofthermodynamis. What we onlude from above disussion is that, at non zerotemperature and at µ = 0, ertain transport oe�ients are determined by ther-modynamis. It is interesting to ask whether for µ 6= 0 and at �nite temperature,transport oe�ients an be determined from thermodynamis. We note that inthis ase it is already known that η
s
= 1

4π
still holds i.e. momentum transportan be determined solely by thermodynamis. It would be interesting if one anexpress the eletrial ondutivity whih enodes the harge transport, in terms ofthermodynamis.We now proeed to provide evidenes in favor of Eq.(4.1). In what follows, we�rst derive equation for µ = 0 and then provide support for ases with µ 6= 0.

• Derivation of Eq.(4.1) for µ = 0 : Let us onsider theory at small (single)hemial potential and onsider the ratio κT

ηT
µ2. Using the relation40 κT =(

ǫ+P
ρ

)2
σ
T
, one obtains

κT
ηT

µ2 =
(
ǫ+ P

)2 1
(

ρ
µ

)2
1(
η

σT 2

) 1

T 4
. (4.13)Now taking µ→ 0, using ǫ = (d− 1)P , χ = ρ

µ
we immediately get

κT
ηT

µ2 =
d2

d− 2

( c′

k′

)
= 8π2 d− 1

d3(d+ 1)

c

k
. (4.14)with f(r) = 1− ( r0

r
)d and hawking temperature is TH = d

4π
r0
R2 where r0 and R are the positionof horizon and AdS urvature sale respetively. Using the above relations we obtain,

η

σT 2
=

π

d2
R2g2d+1

Gd+1
(4.12)whih is same as reported in [3℄.39We note that hydrodynamis desription is valid in the energy range ω ≪ T whih is ollisiondominated regime [80, 81℄40Let us note that, at µ = 0, the harge density vanishes suh that ρ

µ
remains �nite. So,in this limit, the thermal ondutivity diverges, whih implies �nite non-deaying momentum.Naively, one an understand this in the following way. At �nite hemial potential, there is a netharge density. Now we imagine having a temperature gradient, under whih there will be �ow ofharges from lower temperature to higher temperature region. This will imply a net urrent. So,one needs to apply voltage gradient in order to have zero urrent, whih will e�etively resultsin deaying momenta due to ollision. In the ase when there is no net hrage, there is nonet urrent �ow under temperature gradient and hene one does not require to apply a voltagegradient. This ause a �nite but non-deaying momenta (see[80, 81℄, for further details). 92



Chapter 4. Universality in thermal ondutivity to visosity ratio
• Support for Eq.(4.1) for µ 6= 0 : For non zero hemial potential, wereall some of the results already reported in the literature. In eah asewe show that they follow Eq.(4.1). Here we tabulate the results for stronglyoupled gauge theories having gravity duals in the presene of single non zerohemial potential [32, 36, 48℄.Gravity theory in d+ 1 dimension κTµ2

ηT
d2

d−2

(
c
′

k′

)R-harge B.H. in 4 + 1 dim. 8π2 8π2R-harge B.H. in 3 + 1 dim. 32π2 32π2R-harge B.H. in 6 + 1 dim. 2π2 2π2Reissner-Nordstrom B.H. in 3 + 1 dim. 4π2γ2 4π2γ2Table 4.4: Thermal ondutivity to visosity ratio at �nite hemial potentialIt was further reported in [48℄ that for the R-harged blak holes in �ve,four and seven dimensions the appropriate ratio of thermal ondutivity andvisosity, regardless of the number of harge ontents, are 8π2, 32π2 and
2π2 respetively. Based on these observations we propose that, even in thepresene of �nite hemial potential (and arbitrary number of them) we anwrite

κT
ηT

m∑

j=1

(µj)2 =
d2

d− 2

( c′

k′

)
= 8π2 d− 1

d3(d+ 1)

c

k
. (4.15)In the next setion we use (4.15) to express eletri ondutivity in terms ofthe thermodynamial quantities alone.4.4 Eletrial ondutivityLet us �rst write down various expressions for thermodynamial quantities, trans-port oe�ients suh as visosity, eletrial ondutivity in the presene of singlehemial potential. In our de�nition, χ = ρ

µ
. In ase of nonzero hemial potentialwe expet di�erent thermodynamial quantities and transport oe�ients to getmodi�ed from that of Eq.(4.6), (4.9) . In general these an be written as

P = c
′

T dfp(m), χ = k
′

T d−2fχ(m), (4.16)and
σ =

1

d− 2

d

4π
k

′

T d−3fσ(m), η =
d

4π
c
′

T d−1fη(m), (4.17)93



Chapter 4. Universality in thermal ondutivity to visosity ratiowhere m = µ
T
and f(m)'s are de�ned suh that f(m = 0) = 1. Now using

κTµ
2

ηT
=

(
(ǫ+ P )µ

ρ

)2
σ

ηT 2
=

d2

d− 2

( c′

k′

)
, (4.18)we get an important onstraint between the funtion f(m)'s

f 2
p fσ

f 2
χfη

= 1, (4.19)whih gives fσ =
f2
χfη
f2
p
. We then obtain expression for ondutivity41

σ =
1

d− 2

d

4π
k

′

T d−3
f 2
χfη

f 2
p

, (4.20)whih is entirely �xed in terms of entral harges (and thermodynami quantities).4.4.1 ExamplesHere we present omputations whih led to the results of Table 3 in the previoussetion. We shall also illustrate with an example, how to use Eq.(4.20) to determineondutivity.
• AdS4 Reissner-Nordstrom blakhole: The ation is

S =

∫
d4x

√−g
[ 1

2κ2
(R +

6

L2
)− 1

4g2
F 2
]
. (4.21)Metri is given by (for details see [32℄)

ds2 =
L2

r2
(−f(r)dt2 + dr2

f(r)
+ dxidxi). (4.22)Thermodynamial quantities are given by

T =
1

4πr+
(3− r2+µ

2

γ2
), P =

L2

2κ2r3+
(1 +

r2+µ
2

γ2
) (4.23)and

S =
2π

κ2
L2

r2+
, χ =

ρ

µ
=

2L2

κ2
1

r+γ2
(4.24)41We may also write it as, σ = d2

d−2

(
c
′

k
′

)
χ2 ηT 2

(ǫ+P )2 , where χ = ρ
µ
. 94



Chapter 4. Universality in thermal ondutivity to visosity ratiowhere r+ is the horizon radius and γ2 = 2g2L2

κ2 . To �nd out c′ and k′ best isto set µ to zero (then express r+ in terms of T) and ompare with Eq.(4.6).After doing this one �nds
c
′

=
L2

2κ2
(
4π

3
)3, k

′

=
8π

3

L2

κ2γ2
. (4.25)For this bakground with nonzero hemial potential, eletrial ondutivityis given by σ = (sT )2

(ǫ+P )2
1
g2
. Using this result we an �nd out thermal ondu-tivity. On evaluating the ratio κTµ2

ηT
one �nds it to be equal to 4π2γ2. Up onevaluating the ratio d2

d−2

(
c
′

k′

) we get the same result (note that here d=3).Let us note that, as for the speial ase of setting all the R-harges equalfor R-harged blak hole, one obtains Reissner-Nordstrom blak hole withthe identi�ation γ2 = 8 (see Appendix.B.). So we get κTµ2

ηT
= 32π2 whihmathes with that written for R-harged blak hole in four dimensions (seeTable.4.4).

• Five dimensional R-harged blak hole: Visosity and various thermo-dynamial quantities are given by
T =

2 + κ1

2
√

(1 + κ1)
T0 , (4.26)

η =
πN2T 3

8

(1 + κ1)
2

(1 + κ1

2
)2
, (4.27)

P =
π2N2T 4

8

(1 + κ1)
3

(1 + κ1

2
)4
. (4.28)where T0 is the temperature at vanishing κ1 i.e. at vanishing hemial po-tential. The harge density is given by

ρ =
πN2T 3

0

8

√
2κ1(1 + κ1)

1/2 . (4.29)The hemial potential onjugate to ρ is de�ned as
µ = At(u)

∣∣∣∣∣
u=1

=
πT0

√
2κ1

(1 + κ1)
(1 + κ1)

1/2 , (4.30)so that suseptibility is given by
χ =

ρ

µ
=
N2T 2

8

(1 + κ1)
2

(1 + κ1

2
)2
, (4.31)95



Chapter 4. Universality in thermal ondutivity to visosity ratiowhere we have used Eq.(4.26) to express T0 in terms of T .Upon omparing Eq.(4.16) and Eq.(4.17) with Eq.(4.27), Eq.(4.28) and Eq.(4.31)we get
fχ(m) =

(1 + κ1)
2

(1 + κ1

2
)2
, fη(m) =

(1 + κ1)
2

(1 + κ1

2
)3
, fp(m) =

(1 + κ1)
3

(1 + κ1

2
)4
, (4.32)and

c
′

=
π2N2

8
, k

′

=
N2

8
. (4.33)Using Eq.(4.20) and fχ, fη, fp and k

′ written in the above equations, weobtain
σ = N2T

(2 + κ1
32π

)
, (4.34)where κ1 an be expressed in terms of m. This is same as the result reportedin the literature [58, 48℄.

• 4 and 7 dimensional R-harge blak holes: In order to avoid repetition,here we just list values of c′ and k′ whih were used in the Table 3. In fourdimensions we have k′

= N
3
2

18
√
2
, and c′ = √

2π2

3

(
2
3

)3
N3/2. In seven dimensionswe have k′

=
(
2
3

)5
N3π, and c′ = π3

2

(
2
3

)7
N3.4.5 Away from onformalityIn the above disussion we onsidered ases where bulk geometries are asymptot-ially AdS. Now we turn our attention to the ases where bulk geometries areasymptotially non AdS. We show that, in this ase as well the ratio κT

ηT

m∑
j=1

(µj)2is independent of number of hemial potential and same as unharged ases. Theexamples that we have in mind is harged and unharged Dp branes. The relevantdetails of geometry was disussed in the seond hapter. We �rst disuss unhargedases. The eletrial ondutivity is given by
σ =

1

16πG

1

g2eff
g

p−2
2

xx

∣∣∣
rh

=
1

16πG
(grh)

7−n
2 . (4.35)It is easy to see that,

DR =
σ

χ

=
7− p

8πT
, (4.36)96



Chapter 4. Universality in thermal ondutivity to visosity ratioas was shown in [5℄, where
χ =

ρ

µ

=
1

8πG
g3r2h. (4.37)Let us note that, though ρ and µ go to zero separately for unharged Dp brane,

χ in Eq.(4.37), remains non-zero. Now using expression for thermal ondutivity,
κT = (ǫ+p)2σ

ρ2T
, we get

κT
ηT

µ2 = 4π

(
σ

χ

)2
s

σ

=
4π2

g2
. (4.38)Note that, from Eq.(4.38), we see that thermal ondutivity to visosity ratio issame for any unharged Dp brane. Also note, to math with harged D1 brane,replae η by bulk visosity and g = 1

L
.Our next aim is to see whether for harged non-onformal theories dual toharged Dp brane, thermal ondutivity to visosity ratio remains 4π2

g2
.

• Single harge ase: Here we have
σ =

1

16πG

1

X2
g

p−2
2

xx

∣∣∣
rh

( sT

ǫ+ P

)2
. (4.39)Next using the fat that,

ρ

µ
=

1

8πG
g3r2hH(rh), (4.40)we get

KTµ
2

ηT
=

4π2

g2
, (4.41)whih is same as we get for unharged ase.

• Multi harge ase: For multi harge ase
ρiσ

−1
ij ρj = ρiσ

−1
H,iiρi

(
ǫ+ P

sT

)2

, (4.42)
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Chapter 4. Universality in thermal ondutivity to visosity ratiowhere σ−1
H,ii is the inverse of eletrial ondutivity evaluated at the horizonand only depends on geometrial quantities evaluated at the horizon. Theexpression for eletrial ondutivity at the horizon is given by,

σH,ii =
1

16πG
Gii(r) g

p−2
2

xx

∣∣∣
r=rh

=
1

16πG

1

X2
i

g
p−2
2

xx

∣∣∣
r=rh

=
g

7−n
2 r3hH

2
i (rh)

16
√
2m πG

. (4.43)Using this result, it an be easily shown that,
KT

∑b
i=1 µ

2
i

ηT
=

4π2

g2
. (4.44)For D1 brane η is replaed by s

4π
( whih is same as bulk visosity for singleharge ase or equally harged D1 brane ase as shown in [61℄).4.6 DisussionIn this hapter we have disussed the universality of thermal ondutivity to vis-osity ratio at and away from onformality. We have proved this in the ase ofvanishing hemial potential, though general proof at non zero hemial potentialis still laking. At �nite hemial potential, the ratio is

κT
ηT

µ2 = 8π2 1

2κ2g2eff(r)
gd−2
xx

∣∣∣
r=rH

1

( ρ
µ
)2
. (4.45)Right hand side of above equation should be independent of T, µ and some universalnumber. Although we have heked it against several examples, we ould notprovide a general proof of the result. Using the proposed universality in Eq.(4.1),we have also disussed how eletrial ondutivity an be expressed solely in termsof boundary data.
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5Universality of transport oe�ients atextremality
5.1 IntrodutionSo far, our disussions on previous hapters onerned blak holes away from ex-tremality. This was assumed expliitly by onsidering only those metri whoseomponent along the radial diretion has single pole at the horizon. Our empha-size in this setion will be on extremal blak holes. This in turn means that wewill study the behavior of various transport oe�ients of gauge theories at zerotemperature.Extremal blak holes are speial in many ways. Often, various omputationstend to break down as one tries to extrat out results assoiated with extremalblak holes via `extremal limit' of non-extremal blak holes. One suh examplereently has appeared in the alulation of shear visosity (η) to entropy (s) ratiofor gauge theory that is dual to extremal bulk geometry. In partiular, in the lowfrequeny limit ( ω → 0 limit or in other words the IR limit of the boundary gaugetheory), used for non extremal bak ground in previous setion , the perturbationin ω breaks down. In [82℄, a presription was given whih an be used to treatthese extremal holes. Subsequently, in [83℄42, following this presription, η/s, on-dutivity (σ) was omputed for four dimensional Reissner-Nördtstrom blak holesin AdS. The result for η

s
turned out to be 1/(4π); same as their non-extremalpartners. It was further argued that, regardless of the dimensions of spae-time,the result would remain unhanged for Reissner-Nördtstrom blak hole.Enouraged by these developments, in the following we provide a omputationof eletrial ondutivity (σ) and η/s for a generi extremal blak hole in arbitrarydimensions having metri of the form

ds2d+1 = gttdt
2 + guudu

2 + gijdx
idxj , (5.1)42For ertain lass of blak holes on AdS5, a disussion on η/s an be found in [84℄.
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Chapter 5. Universality of transport oe�ients at extremalitywith
gtt = −(1 − u)2γ0(u), guu =

γu(u)

(1− u)2
. (5.2)In terms of oordinate u, the horizon is loated at u = 1 while the boundaryis at u = 0. We take funtions γ0(u), γu(u) to be �nite on the horizon. Extremalnature of this geometry shows up in the double pole at the horizon. We assumethat these gravity bakgrounds have an assoiated gauge theory on the boundary.Among others, this lass of metri inludes asymptotially AdS spaes. Besidesthe metri in Eq.(5.1), there might be gauge �elds and salars. The detail formsof these quantities will not be required for the following disussion. As will beshown, the knowledge of the metri near the horizon is su�ient for determinationof various quantities of interest. The geometry is haraterized by the fat thatits entropy is �nite even though the temperature is zero [85℄. We now proeed toompute η/s and the eletrial ondutivity assoiated with this geometry.5.2 Shear visosity to entropy density ratio at ex-tremalityFirst, to ompute the shear visosity, one onsiders some spei� �utuations ofthe metri and uses Kubo formula as in [44, 36, 83℄. This formula relates thevisosity to the orrelation funtion of the stress-energy tensor at zero spatialmomentum.Take the perturbation of the form g

′

µν = gµν + hµν with gµν given inEq.(5.1), and Einstein equation leads to the following equation for hxy (whih turnsout to be same as that of massless real salar �eld. In what follows, we all it Φ.)
∂µ

(√−g gµν∂ν
)
Φ = 0. (5.3)Further, using the ansatz Φ = e−iωtφ(u), we get

∂2uφ+ ∂uln(g
uu
√−g)∂uφ− gtt

guu
ω2φ = 0. (5.4)Using expliit forms of gtt, guu, we �nally reah at an equation of the form

∂2uφ+ ∂uln
(√−g(1− u)2

γu

)
∂uφ− ω2γu

(1− u)4γ0
φ = 0. (5.5)We solve the above equation in the inner region (near the horizon) as well as inthe outer region (away from the horizon). We then math both at the so alledmathing region [83℄. We �rst look for solution in the inner region.Due to the double pole singularity in guu(u), the usual low frequeny (ω) ex-pansion of φ beomes subtle [82, 83℄. One then de�nes ξ as u = 1 − ω/ξ and100



Chapter 5. Universality of transport oe�ients at extremalityorganizes the solution as an expansion in ω where ω → 0 and ξ → 0 in suh a waythat ω/ξ → 0, see [82, 83, 87, 88, 86℄ for details. The Eq.(5.5) then simpli�es to(keeping only zeroth order in ω)
∂2φ

∂ξ2
+
γu
γ0
φ = 0, (5.6)Next, de�ning α = γu

γ0
ξ above equation redues to standard form in AdS2

∂2φ

∂α2
+ φ = 0. (5.7)The inoming wave solution is then

φin = a0Ie
iα ∼ a0I(1 + iα) = a0I +

g(ω)

1− u
a0I . (5.8)with

g(ω) = i

√
γu
γ0
ω. (5.9)In Eq.(5.8), a0I is a onstant. Sine Eq.(5.8) represents inoming solution near thehorizon, this is often alled the solution in the inner region or the solution in theIR of the boundary gauge theory.As for the solution in the outer region or in other words away from the horizon,we go bak to Eq.(5.5). Note that in this ase, to zeroth order in ω, we get

∂2uφ+ ∂uln(g
uu
√−g)∂uφ = 0. (5.10)Integrating one,

∂uφ = c1
guu√−g , (5.11)where c1 is a onstant. This implies

φout = c2 + c1

[ γu(u)

(1− u)
√−g −

∫ (γu(u)√−g
)′ 1

1− u
du
]
, (5.12)In Eq.(5.12), c2 is an integration onstant. In order to get the omplete lowfrequeny pro�le of φ, we need to math Eq.(5.12) and Eq.(5.8) at u → 1. Outerregion solution gives

φout = c2 + c1B + c1
γu

(1− u)
√
−g(u = 1)

, (5.13)with
B =

[
−
∫ (γu(u)√−g

)′ 1

1− u
du
]
u→1

(5.14)101



Chapter 5. Universality of transport oe�ients at extremalityNow omparing Eq.(5.13) with Eq.(5.8), we get
c1 =

√−gg(ω)
γu

a0I , c2 = a0I

(
1− B

√−gg(ω)
γu

)
. (5.15)Substituting these onstants in Eq.(5.12)

φout = a0I

(
1− B

√−gg(ω)
γu

)
+ a0IB

√−gg(ω)
γu

+ a0I

√−gg(ω)
γu

γu

(1− u)
√
−g(u = 1)

. (5.16)Hene
∂uφout = a0I

√−gg(ω)
γu

guu√−g . (5.17)Now it is straightforward to ompute the boundary ation and then the orrelationfuntion following [44℄. As for the boundary ation, we get
Sboundary = −1

2

1

16πG

[
guu

√−gφout∂uφout

]
u=ǫ→0

= −g(ω)
√−g(a0I)2

32πGγu
. (5.18)Hene, to �rst order in ω

Gxy,xy =
∂Sboundary

∂a0I∂a
0
I

= −g(ω)
√−g

16πGγu
= − iω

16πG

[√ −g
gttguu

]
u=1

. (5.19)Here G is the d+ 1 dimensional Newton's onstant. In the last line we have usedthe form of g(ω) given in Eq.(5.9). Now the Kubo formula gives us the shearvisosity 43
η =

1

16πG

[√ −g
guugtt

]

u=1

. (5.20)Sine the entropy density of blak hole is given by
s =

√
detgij

∣∣∣
u=1

4G
=

1

4G

[√ −g
guugtt

]
u=1

(5.21)we get
η

s
=

1

4π
. (5.22)In the following we give a di�erent derivation of the η

s
= 1

4π
in the same spiritof [4℄). Let us note that in [4℄, the single pole struture of the metri played a43We observe that the form of η is same as that obtained in the non-extremal ases [4℄. Thestrutural similarity leads us to speulate that there might be a Iqbal-Liu like presription[86℄for extremal blak holes having non-zero entropy. 102



Chapter 5. Universality of transport oe�ients at extremalityruial role in determining transport oe�ient, where as we are onsidering thedouble pole struture. In spite of this di�erene, as we will see below, one anapply argument similar to that in [4℄. Consider the bulk ation for a masslesssalar Φ:
Sbulk =

1

2

∫
dd+1x

√−g∂AΦ∂
AΦ

16πG
(5.23)Using linear response theory one an write the transport oe�ient as

χ = lim
ω→0

lim
u→0

(
ΠΦ(u, ω)

iωΦ(u, ω)

)
, (5.24)where ΠΦ(u, t) = ∂Lbulk

∂(∂uΦ)
[4℄. Note that ΠΦ(u, ω) is the Fourier transform of thefuntion ΠΦ(u, t). If we take Φ(u, t) = hxy , then we get η as the transport oe�ient.Following our previous disussion, we note that the �eld momentum is of the form

ΠΦ(u, ω) =

√−g
16πG

guu∂uφ. (5.25)Now using the fat that
∂uφI = i

∂α

∂u
φI = i

ω

(1− u)2

√
γu
γt
φI , (5.26)and Eq.(5.17), we see

η = lim
ω→0

lim
u→0

(
ΠΦ(u, ω)

iωΦ(u, ω)

)
= lim

ω→0
lim
u→1

(
ΠΦ(u, ω)

iωΦ(u, ω)

)
=

1

16πG

√ −g
guugtt

∣∣∣
u→1

. (5.27)This is same as what we got previously Eq.(5.20). To evaluate the above expression,we have used Eq.(5.26) for φ in u → 1 region and Eq.(5.17) for u → 0 region. Soin spite of double pole nature of the geometry, membrane paradigm like argumentgives the same result.5.2.1 Radial independene of the response funtionWe have seen that the response funtion (χ(u, ω) = Π(u,ω)
iωφ(u,ω)

) for shear visosityevaluates to same value whether one omputes it at the horizon or at the boundary.In fat one an onvine oneself that the response funtion is independent of radialdiretion. To show that, let us de�ne Σ(u, ω) = 1
16πG

√
−g

guugtt
. Now following [4℄and using Eq.(??) we an write

∂uχ = iω

√
guu
gtt

( χ2

Σφ
− Σφ

)
. (5.28)103



Chapter 5. Universality of transport oe�ients at extremalityNear the horizon we have already heked that χ = Σ where as away from horizonbeause of expliit ω dependene in the above equation, in the limit ω → 0, we get
∂uχ = 0, and hene radial independene. To strenthen the argument further let usompute the response funtion in the outer region at arbitrary radial position.Using Eq.(5.9,5.17) one obtains

Π = a0I

√ −g
guugtt

∣∣∣
u→1

+O(ω2) (5.29)and using Eq.(??) we get
ωφ = ωa0I +O(ω2) (5.30)and hene

χ =
1

16πG

√ −g
guugtt

∣∣∣
u→1

(5.31)and radially independent.5.3 Condutivity for extremal blak holeIn this setion we ompute eletrial ondutivity for extremal bakground. Weshall �rst give some examples whih motivate us to determine ondutivity formore general ases. At extremality metri in the viinity of horizon takes the form
gtt = −(1− u)2γ0, guu =

γu
(1− u)2

, (5.32)where γ0 = γ0(u = 1) and γu = γu(u = 1). Near the horizon Eq.(2.10) redues to
d2

du2
φi(u)−

2

1− u

d

du
φi(u) +

γu
γ0

ω2

(1− u)4
φi(u)−

ci
(1− u)2

(
m∑
j=1

djφj(u))

γ0
= 0 (5.33)Note that ci = F i

ut(u = 1) and dj = Gjj(u)F
j
ut(u) at u = 1. Following [82, 83℄ letus de�ne u = 1− ω

ξ
. In this oordinate system Eq.(5.29) redues to
d2

dξ2
φi(ξ) +

γu
γ0
φi(ξ)−

ci
ξ2

(
m∑
j=1

djφj(ξ))

γ0
= 0 (5.34)Above equation is in general a ompliated oupled di�erential equation. To solveit we observe that

d2

dξ2
φi(ξ) +

γu
γ0
φi(ξ)

ci
=

(
m∑
j=1

djφj(ξ))

γ0ξ2
(5.35)104



Chapter 5. Universality of transport oe�ients at extremalityIn the ase when more than one �eld is present then we get
d2

dξ2
φ1(ξ) +

γu
γ0
φ1(ξ)

c1
=

d2

dξ2
φ2(ξ) +

γu
γ0
φ2(ξ)

c2
= .... (5.36)We take solution of the form

φ1(ξ)

c1
=
φ2(ξ)

c2
= .... (5.37)Plugging Eq.(5.33) in Eq.(5.30) one obtains

d2

dξ2
φi(ξ) +

γu
γ0
φi(ξ)−

(
m∑
j=1

djcj)

γ0ξ2
φi(ξ) = 0 (5.38)Introdue η =

√
γu
γ0
ξ and a =

(
m∑

j=1
djcj)

γ0
, so that one gets ( from Eq.(5.34))

d2

dη2
φi(η) + φi(η)−

a

η2
φi(η) = 0 (5.39)The inoming solution to Eq.(5.35) takes the form

φi(η) = CH1
ν (η), (5.40)where H1

ν (η) is Henkel funtion and ν =
√
1+4a
2

. Taking η → 0 limit one gets
lim
η→0

φi(η) = η
1
2
+ν2−ν(

1

Γ[1 + ν]
− i

cos(πν)Γ[−ν]
π

)− iη
1
2
−ν2ν

Γ[ν]

π
(5.41)Using η =

√
γu
γ0

ω
(1−u)

, and some properties of Gamma funtions as well as doingsome re saling one �nds
φi(u→ 1) = A0

[ 1

(1− u)
1
2
−ν

+ (

√
γu
γ0

)2ν(
ω

2
)2ν
π(i− cot(νπ))

Γ[1 + ν]Γ[ν]

1

(1− u)
1
2
+ν

]
. (5.42)Again using properties of Gamma funtions we get

φi(u→ 1) = A0

[ 1

(1− u)
1
2
−ν

− (

√
γu
γ0

)2ν(
ω

2
)2ν

Γ[1− ν]

Γ[1 + ν]

e−iνπ

(1− u)
1
2
+ν

]

= A0

[ 1

(1− u)
1
2
−ν

+ g(ω)
1

2ν(1− u)
1
2
+ν

]
, (5.43)105



Chapter 5. Universality of transport oe�ients at extremalitywhere for notational simpliity we introdued
g(ω) = −2νe−iνπ(

√
γu
γ0

)2ν(
ω

2
)2ν

Γ[1− ν]

Γ[1 + ν]
. (5.44)Following the standard proedure, we obtain ondutivity to be proportionalto

σ ∝ lim
ω→0

1

ω
ℑ[g(ω)] ∝ (ω)2ν−1, (5.45)where

2ν =
√
1 + 4a

=

√√√√1 + (
4

γ0
)

m∑

j=1

djcj

=

√√√√1 + (
4

γ0
)

m∑

j=1

Gjj(F
j
ut)

2. (5.46)In the above expression every quantity is alulated at the horizon (u = 1). Hene,we see only way to get non-zero ondutivity in the limit ω → 0 at extremality is
ν ≤ 1

2
where as σ → 0 if ν > 1

2
.

• To obtain above form of g(ω), we have only assumed that extremal blak holeexhibits double pole. So the expression for operator dimension in generalfollows only from riteria of extremality i.e. it is independent of partiularbakground. In all the examples onsidered below (see Appendix for detailsabout bulk geometry) we �nd ν = 3
2
⇒ δ = ν + 1

2
= 2. There are otherlasses of blak hole as well (dialatoni blak hole [89, 90, 91, 92, 93, 94, 95℄)where one �nds δ = 2.

• R-harged blak brane in four dimension: In this ase
2ν =

√√√√√√√√
1 + 4

4∏
i=1

(1 + ki)

3 +
4∑

j=1

kj +
4∏

i=1

ki

( 4∑

j=1

ki
(1 + ki)2

) (5.47)Using extremality ondition44(see appendix) we get 2ν = 3.44k1 = 3+2(k2+k3+k4)+k2(k3+k4)+k3k4
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Chapter 5. Universality of transport oe�ients at extremality
• R-harged blak brane in �ve dimension: In this ase

2ν =

√√√√√√√1 + 4

3∏
i=1

(1 + ki)

1 +
3∏

i=1

ki

( 3∑

j=1

ki
(1 + ki)2

) (5.48)Using extremality ondition45 one �nds 2ν = 3. Whih implies δ = ν+ 1
2
= 2.Note that above result also appliable for 5d Reissner-Nordstrom blak hole(for whih k1 = k2 = k3) onsidered in other plaes [82℄.

• R-harged blak brane in seven dimension: In this ase
2ν =

√
1 + 4

4(1 + k1)(1 + k2)

3 + k1k2
(

k1
(1 + k1)2

+
k2

(1 + k2)2
) (5.49)Now extremality ondition implies k1 = 3+k2

k2−1
. So one gets 2ν = 3.

• Above results implies that for blak hole at extremality obeys
(
1

γ0
)

m∑

j=1

Gjj(F
j
ut)

2 = 2. (5.50)It would be interesting to �nd out under what onditions extremal bak-grounds obeys this relation.What we observe is that, form of ondutivity is insensitive to the details of ge-ometry and mostly determined by the fat that the metri has double pole orzero.We onsider metri with near horizon behavior to be
ds2 = −(1 − u)2γ0dt

2 +
γu

(1− u)2
du2 + γx

d−1∑

i=1

(dxi)2, (5.51)and gauge oupling has no zero or pole as we approah horizon. For this bulk bakground, temperature is zero but the entropy is �nite.The Einstein equation is given by
Rµν −

1

2
gµνR = TE.M.

µν + TMatter
µν

=
1

2g2eff

(
FµλF

λ
ν − 1

4
gµνFρσF

ρσ

)
+ TMatter

µν , (5.52)45k3 = 2+k1+k2
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Chapter 5. Universality of transport oe�ients at extremalitywhere TMatter
µν (u), will inlude all the other stu�s whih may ome from salar�elds, osmologial onstant or any other �elds present in the theory. Sine only

At(u) is non-zero, we have Fut 6= 0. Using Eq.(5.48), we an write
Rt

t −
1

2
gttR =

1

2g2eff

(
FtuF

tu − 1

4
gttFρσF

ρσ

)
+ T t, Matter

t , (5.53)
Rx

x −
1

2
gxxR = − 1

2g2eff

1

4
gxxFρσF

ρσ + T x, Matter
x . (5.54)After subtrating Eq.(5.49) from Eq.(5.50), we get

√−gRt
t−

√−gRx
x =

1

2g2eff

√−gF utFut+
√−g(T t, Matter

t (u)−T x, Matter
x (u)). (5.55)For the metri of the form in Eq.(A.2), following relations hold

√−gRt
t = − d

du


g

d−1
2

xx
d
du
gtt

2g
1
2
uug

1
2
tt


 , (5.56)

√−gRx
x = − d

du

(
g

d−3
2

xx g
1
2
tt

2g
1
2
uu

d

du
gxx

)
, (5.57)whih, after substituting in Eq.(5.51), we get,

− d

du

(
g

d−1
2

xx

2g
1
2
uug

1
2
tt

d

du
gtt

)
+

d

du

(
g

d−3
2

xx g
1
2
tt

2g
1
2
uu

d

du
gxx

)
=

1

2g2eff

√−gF utFut

+
√−g(T t,Matter

t − T x,Matter
x ).(5.58)If we impose the ondition that

T t, Matter
t (u) = T x, Matter

x (u), (5.59)then we get
− d

du

(
g

d+1
2

xx

g
1
2
ttg

1
2
uu

d

du
(gxxgtt)

)
=

1

g2eff

√−gF utFut. (5.60)In the near horizon limit we get
1

g2eff(u = 1)

F 2
ut(u = 1)

γ0
= − γu√−g

d

du

(
g

d+1
2

xx

g
1
2
ttg

1
2
uu

d

du
(gxxgtt)

) ∣∣∣∣∣
u=1

= 2. (5.61)108



Chapter 5. Universality of transport oe�ients at extremalitySo we have proved that
σ ∼ ω2for the metri with double pole in guu and double zero in gtt. The ase of multiplyharged extremal blak brane is totally analogues and an be shown that under thesame ondition on the energy momentum tensor of bulk spae time, the form ofondutivity is again ω2. Let us note that, the ondition on the energy momentumtensor Eq.(5.55), has the interpretation that dual gauge theory vauum is Lorentzinvariant as was the ase for non extremal ase.5.3.1 Imaginary part of the ondutivityWe an even �nd out the imaginary part of ondutivity. This is given by

ℑ(σ) = − 1

ω

ρ2

ǫ+ P
= − 1

ω

ρ

µ
. (5.62)Let us note that, this is very similar to �nite temperature ase and has a pole as

ω goes to zero.5.4 DisussionWe have shown that the visosity to entropy ratio as well as the eletrial ondu-tivity are insensitive to many details of the extremal blak brane geometry. For ouromputation, we only required the double pole nature of guu and double zero of gttat the horizon. Rest of the quantities assoiated with the metri are only assumedto be �nite and non-zero on the horizon. Given these information, we argued thateletrial ondutivity goes as ω2. We have also seen that analyti expression forshear visosity and the visosity to entropy ratio remain same as that of manynon-extremal blak holes where near horizon geometry is radially di�erent. Wehave also observed that a analog of Iqbal-Liu like arguments for omputation ofthe shear visosity go through in the extremal ase with double pole nature ofmetri, even though the omputations of [4℄ seem to depend ruially on the thesingle pole nature of the geometry.
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6Summary
The gauge/gravity duality allows us to gain insights into various properties ofstrongly oupled gauge theories both at zero and non-zero temperature. In parti-ular, the transport oe�ients of strongly oupled gauge theories, whih are hardto ompute otherwise, an now be omputed using gauge/gravity duality. Further-more, for many ases, in the low frequeny limit, at the level of linear response, thehorizon geometry of the gravity dual determines the behavior of the gauge theory.This an, in partiular, be used to show that the shear visosity to entropy densityratio for strongly oupled gauge theories at �nite temperature with a gravity dualis universal and takes value 1

4π
. One an further show that, the eletrial ondu-tivity of the gauge theory at �nite temperature but zero hemial potential an bedetermined in terms of geometrial quantities evaluated at the horizon. This is sobeause the response funtion in the low frequeny limit evolves in a very simplemanner as we go away from the horizon along the radial diretion. However, theintrodution of a hemial potential primarily brings in several non-trivialities inthe evolution of response funtion from the horizon to the boundary. Althoughthe shear visosity an still be omputed solely in terms of horizon data, for theomputation of eletrial ondutivity, horizon data is not enough. Nevertheless,our analysis reveals that if the stress-energy tensor related to the matter ontentof the bulk satis�es a ompat relation among its spae and time omponents, theboundary ondutivity at low frequenies is universal and an be written in termsof geometrial quantities evaluated at the horizon and thermodynami quantities.In this thesis, we also have shown that at any radial position out side the horizon,the ondutivity is given by a simple expression whih interpolates smoothly be-tween the one omputed at the horizon and at the boundary. We also omputedthe eletrial ondutivity in the presene of more than one hemial potentialsfor several models. What we observe is that, in the presene of multiple hemialpotentials, there is a nontrivial mixing between urrent operators whih, from thebulk point of view, an be understood to be arising beause of the interationsthrough graviton. We have also shown that one an write a general expression forondutivity matrix in the presene of multiple hemial potentials provided dualgravity bakground satis�es some onstraints. By using the relation with eletrial110



Chapter 6. Summaryondutivity, we have also omputed the thermal ondutivity and observed thatthermal ondutivity to shear visosity ratio (κT
∑n

i=1 µ
2
i

ηT
) is independent of the num-ber of hemial potentials turned on. This ratio remains same even in the limit ofzero hemial potential. We also disussed, how for CFT's with gravity dual, thisratio an be expressed in terms of entral harges of the CFT. Using these results,we ould express the eletrial ondutivity solely in terms of the thermodynamiquantities of the gage theory. We then turn our attention to study of transportoe�ients of gauge theories at zero temperature whih orresponds to extremalblak hole in the bulk. We have shown that eletrial ondutivity goes as ω2.We have also seen that analyti expression for shear visosity and the visosity toentropy ratio remain same as that of many non-extremal blak holes where nearhorizon geometry is radially di�erent.We hope that our explorations regarding the universalities of various trans-port oe�ients will be useful in understanding generi behaviour of the stronglyoupled quantum �eld theories at zero and non-zero temperature.
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AMembrane paradigm
To an external observer, a blak hole appears as dynamial �uid membrane sit-ting at the horizon, with mehanial and eletrial properties. They also showdissipation and one an ompute quantities suh as ondutivity, shear visosity.In the following we shall give a brief introdution to membrane paradigm in thespirit of [4, 96℄. See [5℄ and [97, 98, 99, 100, 101, 102℄ for disussion on same topi.Classially an outside observer does not see inside the horizon. E�etively, for anexternal observer one an write

Seff = Sout + Ssurf , (A.1)where Sout is the part of ation de�ned out side the horizon where as Ssurf representse�etively the e�et of blak hole to external universe. Ssurf is a boundary term tothe horizon, and an be determined by demanding Seff to be stationary with respetto solution to the equation of motion. Rather than putting the membrane exatlyat the horizon, one an put it slightly away and thus avoiding omplexity thatarises due to null hypersurfae. In the following we shall disuss brie�y eletrialand mehanial properties of the membrane.A.1 Eletrial properties of the membraneLet us onsider the metri of the form
ds2 = gtt(r)dt

2 + grr(r)dr
2 + gxx(r)

d−1∑

i=1

(dxi)2, (A.2)where r is the radial oordinate. We have assumed full rotational symmetry in xidiretions so that gij = gxxδij , where i, j run over all the indies exept r, t. Wealso assume that metri omponents depend on radial oordinate only. We shallwork with the metri whih has an event horizon, where gtt has a �rst order zeroand grr has a �rst order pole. We also assume that all the other metri omponents
112



Appendix A. Membrane paradigmare �nite as well as non vanishing at the horizon. Consider a bulk U(1) gauge �eldfor whih the ation is of the form
SOut = −

∫

r>rh

dd+1x
√−g 1

4g2d+1(r)
FMNF

MN . (A.3)Now varying this ation we get,
δSout = −2

∫

r>rh

dd+1x
√−g 1

4g2d+1(r)
δFMNF

MN

= −4

∫

r>rh

dd+1x
√−g▽M (

1

4g2d+1(r)
δANF

MN)

+ 4

∫

r>rh

dd+1x
√−gδAN ▽M (

1

4g2d+1(r)
FMN). (A.4)Using Maxwell equation

▽M(
1

4g2d+1(r)
FMN) = 0, (A.5)and the fat that for any vetor V A, we have

▽MV
M =

1√−g∂A(
√−gV A), (A.6)we get

δSout = −
∫
ddx

√−g 1

g2d+1

δAMF
rM
∣∣∣
r→∞

r=rh
. (A.7)Using the fat that at the boundary δAB = 0, and staying slightly away from thehorizon we get,

δSout = −
∫
ddx

√
−h
(√−g√

−h
1

g2d+1

δAMF
rM
)
r=rh+ǫ

= −
∫
ddx

√
−hδAMJ

M
membrane(x). (A.8)where hµν is the indued metri at the strethed horizon and

JB
membrane =

√
grr

g2d+1

F rB
∣∣∣
r=rh+ǫ

. (A.9)In order to have a well de�ned variational priniple, we need to anel the boundaryterm. For that purpose we add SSurf suh that
δSSurf = −δSOut. (A.10)113



Appendix A. Membrane paradigmOne an write SSurf , as
SSurf =

∫
ddx

√
−hδAMJ

M
membrane(x). (A.11)Let us note that Maxwell equation an be written as

▽M(
√−g 1

g2d+1

F rM) = 0

⇒ ▽MJ
M
membrane = 0, (A.12)where JM

membrane an be interpreted as the membrane urrent. Total integral of
J0
membrane over the horizon will give harge of the blak hole. The spatial omponentof the membrane urrent is given by

J i
membrane =

√
grr

g2d+1

F ri
∣∣∣
r=rh+ǫ

. (A.13)In order to proeed further, let us hoose the gauge Ar = 0. Sine horizon is aregular plae for an in falling observer, the Ai should be regular at the horizon.This implies that, gauge �eld should only depend on a non singular ombination
v with

dv = dt+

√
grr
−gtt

dr. (A.14)This gives,
(∂r −

√
grr
−gtt

∂t)Ai = 0

⇒ Fri =

√
grr
−gtt

Fti. (A.15)Plugging it in Eq.(A.13) we get,
J i
mem =

1

g2d+1

√
−gttF i

t =
1

g2d+1

Êi, (A.16)where Êi is the eletri �eld measured in an orthonormal frame of a physialobserver hovering just outside of the blak hole. J i
mem an be interpreted as theresponse of the membrane to eletri �eld Êi. Now omparing with −→

J = σ
−→
E weget

σmem =
1

g2d+1(rh)
, (A.17)where σ is the eletrial ondutivity of the membrane. 114



Appendix A. Membrane paradigmA.2 Mehanial properties of the membraneFlutuation of gravitational �eld will indue energy momentum tensor T µν in themembrane. To illustrate this with an example, let us onsider a metri �utuation
h12(x). The ation of this to the quadrati order is that of a free mass less salar�eld ,

Sgrav
out =

1

2

∫
dd+1x

√−g 1

16πGN
(▽φ)2, (A.18)with φ = h12. Following previous disussion, we need to add a surfae term

Ssurf =

∫

horizon

ddx
√
−hΠr(x)√

−h φ(x), (A.19)with Πr =
√−ggrr∂rφ

16πGN
. This will indue a urrent J(x) in the membrane J(x) ∝ T 1

2 .Regularity implies
∂rφ =

√
grr
−gtt

∂tφ, (A.20)so that one an write
Πmem =

Πr(x)√
−h
∣∣∣
rh

= − 1√
gtt

1

16πGN
∂tφ

= − 1

16πGN
∂t̂φ. (A.21)In the last line, we again have passed to ortho-normal basis. As in the eletromag-neti ase (see Eq.(A.11)), we an interpret Πmem in Eq.(A.18) as the membraneresponse of the �eld φ, with response funtion η = 1

16πG
, the shear visosity sine

Πmem = (Tmem)
x
y . Sine the entropy density (s) per unit volume of membrane �uidis smem = 1

4G
, we get

η

s
=

1

4π
. (A.22)So we see that one an onsider horizon as �uid with response �utuations suhas ηmem, σmem. Let us note that omputation done using gauge gravity duality forboundary �uid also shows

η

s
=

1

4π
. (A.23)
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BR-harged blak holes in variousdimensions
Here we ollet all the relevant information about four and seven dimensionalR-harged blak hole [33℄. The ase of �ve dimensional blak hole was alreadydisussed in the introdution. The R-harged blak hole solutions in asymptoti-ally AdS4 and AdS7 an be obtained by doing dimensional redution of rotating
M2 brane and M5 branes on S7 and S4 respetively. The relevant part of theLagrangian is

L√−g = R− 1

4
GijF

i
µνF

µν j −Gij∂µX
i∂µXj + ..... (B.1)B.1 Four dimensional blak holeMetri and gauge �elds in this ase are

ds24 =
16(πT0L)

2

9u2
H1/2

(
− f

Hdt2 + dx2 + dz2
)
+

L2

fu2
H1/2 du2 , (B.2)

Ai
t =

4

3
πT0

√√√√2κi

4∏

i=1

(1 + κi)
u

Hi
, Hi = 1 + kiu , (B.3)

H =
4∏

i=1

Hi, f = H−
4∏

i=1

(1 + κi)u
3. (B.4)Thermodynami quantities are given by
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Appendix B. R-harged blak holes in various dimensions
ǫ =

√
2π2

(
2

3

)4

N3/2 T 3
0

4∏

i=1

(1 + κi) , P =

√
2 π2

3

(
2

3

)3

N3/2 T 3
0

4∏

i=1

(1 + κi) ,(B.5a)
s =

√
2π2

(
2

3

)3

N3/2 T 2
0

4∏

i=1

√
1 + κi , T =

T0

(
3 + 2

4∑
j=1

ki +
4∑

j>i,i,j=1

kikj −
4∏

i=1

ki

)

3

√
4∏

i=1

(1 + κi)(B.5b)
ρi =

√
2π

(
1

3

)3

N3/2 T 2
0

√√√√2 ki

4∏

j=1

(1 + κj) , µi =
4π T0
3

1

1 + ki

√√√√2 κi

4∏

i=1

(1 + κi) ,(B.5)Other relevant expressions are
Gij =

L2

2
diag [(X1)−2, (X2)−2, (X3)−2, (X4)−2

]
X i =

H1/4

Hi(u)
. (B.6)and 1

16πG4
= N

3
2

24
√
2L2 . As was disussed in setion (1.5.2), in this ase as well, onean go to a ase where one has diagonal U(1) of the group U(1)4. In this ase, allthe salar �eld vanishes and one is left with the ation of the form

S4 =
1

16πG4

∫
d4x

√−g(R − 1

4
F 2 + ...) (B.7)whih is exatly same as with Resinner-Nordstrom blak hole in four dimension.Now omparing this ation Eq.(??) gives us 1

2κ2 = 1
16πG4

and γ2 = 8.B.2 Seven dimensional blak hole
ds27 =

4(πT0L)
2

9u
H1/5

(
− f

Hdt2 + dx21 + · · ·+ dx24 + dz2
)
+

L2

4fu2
H1/5 du2 , (B.8)

At =
2

3
πT0

√√√√2κi

2∏

i=1

(1 + κi)
u2

Hi

, Hi = 1 + κiu
2 , (B.9)117



Appendix B. R-harged blak holes in various dimensions
Hi = 1 + κiu

2 , H =
2∏

i=1

Hi, f = H−
2∏

i=1

(1 + κi)u
3 , (B.10)Thermodynami quantities are given by

ǫ =
5 π3

2

(
2

3

)7

N3 T 6
0

2∏

i=1

(1+κi) , P =
π3

2

(
2

3

)7

N3 T 6
0

2∏

i=1

(1+κi) , (B.11)
s = 3 π3

(
2

3

)7

N3 T 5
0

√√√√
2∏

i=1

(1 + κi) , T =
T0 (3 + κ1 + κ2 − κ1κ2)

3

√
2∏

i=1

(1 + κi)

, (B.12)
ρi = π2

(
2

3

)6

N3 T 5
0

√√√√2 κi

2∏

i=1

(1 + κi) , µi =
2π T0

3(1 + κi)

√√√√2 κi

2∏

i=1

(1 + κi) .(B.13)Other relevant results are
Gij =

L2

2
diag [(X1)−2, (X2)−2

]
, X i =

H2/5

Hi(u)
, (B.14)and 1

16πG7
= N3

6π3L5 .B.3 R-harged blak holes at extremalityAbove blak holes at extremality was onstruted in [85℄. Take
ḡtt = −f(u)A1(u), ḡuu = A2(u)f

−1(u), f(u) = (1− u)2V (u). (B.15)Here we just give relevant information about f .Dimension Extremality ondition V (u)5 2 + κ1 + κ2 + κ3 − κ1κ2κ3 = 0 (1 + κ1κ2κ3u)4 3 +
4∑

j=1

ki +
4∑

i<j,i,j=1

kikj −
4∏

i=1

ki = 0 (1 + (2 +
4∑

j=1

ki)u+
4∏

i=1

kiu
2)7 3 + κ1 + κ2 − κ1κ2 = 0 (1 + 2u+ κ1κ2u

2)
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