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Synopsis
Holography states that a (d + 1)−dimensional gravity theory (bulk theory) has ades
ription in terms of d−dimensional �eld theory ( boundary theory), where extradimension in the gravity side is identi�ed with energy s
ale in the �eld theory side.A well understood example is AdS5/CFT4 duality, whi
h arises in the study of
D3 branes in type IIB string theory. A

ording to this duality, type IIB stringtheory on AdS5 × S5 is dual to four dimensional N = 4, SU(N) super Yang-Millstheory. In the strong 't Hooft 
oupling and large N limit of the gauge theory, dualstring theory 
an be approximated by supergravity in �ve dimension 
oupled withKaluza-Klein (KK) modes (lowest lying modes) 
oming from S5 
ompa
ti�
ation.Within this duality, one 
an ask questions su
h as whether it is possible to re
on-stru
t bulk spa
e time using 
onformal �eld theory (CFT) data or given a bulkspa
e time, what properties of dual gauge theory 
an one read o�? For example,heating up the above gauge theory implies that in the bulk we have bla
k branein AdS5. Further more, adding some gauge 
harge to the bla
k brane is equivalentto having some 
hemi
al potential for the gauge theory. Stated more pre
isely,solutions to bulk equations of motion determines the thermodynami
 variables ofthe dual CFT at equilibrium. One 
an even introdu
e a small spa
e time depen-dent perturbations about equilibrium whi
h in the domain of linear response leadsto important pro
esses su
h as transport properties of CFT. The basi
 obje
t ofinterest is that we want to 
ompute are retarded Green's fun
tions whi
h 
apturesresponse of the gauge theory to the external perturbation. To illustrate further, letus 
onsider an intera
ting quantum �eld theory (QFT), in global thermal equilib-rium at temperature T and 
hemi
al potentials (µ) for various 
onserved 
harges.Now if we perturb the system out of equilibrium by allowing system thermody-nami
 variables to �u
tuate in a s
ale whi
h is su�
iently large 
ompared to s
aleset by temperature or energy density in equilibrium, one des
ribes system in termsof hydrodynami
s. Then we expe
t, around any given point a region where lo
altemperature is roughly 
onstant and one 
an use basi
 thermodynami
 variablesto des
ribe the physi
al properties of the region. The role of hydrodynami
s isto des
ribe how these di�erent regions ex
hange thermodynami
 quantities amongthemselves. The dynami
s in this regime is 
aptured by 
onservation of energymomentum tensor and other 
onserved global 
harges. The �uid perturbed awayfrom equilibrium, tries to equilibrate through dissipation and the response to theseperturbations are en
oded in transport 
oe�
ients su
h as shear vis
osity, ele
tri-
al 
ondu
tivity, thermal 
ondu
tivity et
. Using gauge/gravity duality one 
an
ompute retarded greens fun
tions of dual gauge theory operators from gravityside and use Kubo formulas to relate it to the transport 
oe�
ients.After its dis
overy, the AdS/CFT duality is generalized for many di�erent sit-uations su
h as the 
ase of non 
onformal boundary theories whi
h arises in thestudy of Dp branes (p 6= 3). AdS/CFT duality also has been generalized for manyiv



Synopsisother situations mostly based upon symmetry prin
iples, not ne
essarily alwaysthey have a well understood string theory embedding. Some su
h examples are
ases where boundary theory is not required to be relativisti
 invariant or boundarytheory has Lifshitz like symmetry. In the following dis
ussions we shall 
onsidergeneri
 gravity set up assuming a �eld theory dual in a similar spirit.Our motivation and goal 
an be summarized as follows. Given the fa
t that,number of models whi
h exhibits su
h dualities are in
reasing rapidly, it is desirableto have some features whi
h are independent (referred as universal) of parti
ularmodel. For instan
e, it is well known that shear vis
osity (η) to entropy densityratio is equal to 1
4π
, in the dimension less units for a large 
lass of gauge theory hav-ing a gravity dual. Interestingly this falls with in the experimental range observedat RHIC. So, even though these theories in several ways are di�erent from theoriessu
h as QCD, they seem to share qualitatively similar behavior. This motivates usto investigate possible universality of other transport 
oe�
ients whi
h might shedsome light into qualitative features of RHIC physi
s. We primarily fo
us on 
om-putation of ele
tri
al 
ondu
tivity at �nite 
hemi
al potential (µ) and temperature(T ) whi
h is related to 
urrent 
urrent 
orrelator through Kubo formula. Assuminggravity theory has a gauge theory dual, under general assumptions in the gravityside we show that ele
tri
al 
ondu
tivity at �nite 
hemi
al potential is universaland 
an be expressed in terms of thermodynami
 quantities of the dual gauge the-ory. We further propose a universality of thermal 
ondu
tivity (κT ) to vis
osityratio (κTµ2

ηT
). We also provide a proof of universality of ele
tri
al 
ondu
tivity andshear vis
osity to entropy density ratio at zero temperature.Our approa
h towards proving universality of ele
tri
al 
ondu
tivity is as fol-lows. First we 
ompute ele
tri
al 
ondu
tivity in the presen
e of one and morethan one 
hemi
al potentials for several models [1℄. What we observe is that, inthe presen
e of multiple 
hemi
al potentials, there is a nontrivial mixing between
urrent operators whi
h, from the bulk point of view 
an be understood to bearising be
ause of intera
tion through graviton. Then we 
ompute thermal 
on-du
tivity (de�ned as response to temperature gradient in the absen
e of ele
tri

urrent) and observe that thermal 
ondu
tivity to shear vis
osity ratio (κT

∑n
i=1 µ

2
i

ηT
)is independent of how many 
hemi
al potential one turns on. This observationtogether with observation that at zero 
hemi
al potential as well the above ra-tio remains un
hanged, lead us to 
onje
ture that κT

∑n
i=1 µ

2
i

ηT
, is universal and weshowed that it 
an be expressed in terms of 
entral 
harges of the dual 
onfor-mal �eld theory (CFT) [2℄. With the aim of proving above 
onje
ture, in [3℄ wefound out interesting 
onne
tion between the membrane paradigm �uid whi
h sitsat the horizon e�e
tively en
oding the properties of the bla
k brane to an exter-nal observer and �uid whi
h sits at the boundary of the spa
e time known fromgauge/gravity duality. By exploiting the fa
t that 
hanging radial position in thebulk 
orresponds to RG �ow in the boundary �uid, in [4,5℄, authors proposed av



Synopsisnumber of relations and even interpolations between them. For example, radial in-dependen
e of 
ertain quantities is used to show that, the shear vis
osity to entropydensity ratio for both the �uids is the same, as well as the fa
t that at zero 
hem-i
al potential, low frequen
y limit of ele
tri
al 
ondu
tivities of these two distin
t�uids are related. However the situation 
hanges signi�
antly at �nite 
hemi
alpotential in the boundary theory, where radial independen
e exploited earlier inrelating ele
tri
al 
ondu
tivity of these two �uids, gets 
ompletely destroyed. Oneneeds to solve the �ow equation in order to relate 
ondu
tivities of the �uid at theboundary with the �uid at the horizon. In spite of this apparent di�
ulty, in [3℄,we observed that for 
harged Reissner-Nordström bla
k brane in arbitrary dimen-sion, there exist a simple relation between the 
ondu
tivities of these two �uids.Further we 
omputed ele
tri
al 
ondu
tivity on hypotheti
al hyper surfa
e at anyradial position out side bla
k brane horizon to show that there exist a smooth inter-polation between 
ondu
tivities of these two �uids. Based on these observationstogether with support from several other 
omputation of ele
tri
al 
ondu
tivityfor asymptoti
ally AdS spa
es whi
h 
orresponds to dual gauge theory to be CFTlead us to propose a form of ele
tri
al 
ondu
tivity whi
h is universal. We further
he
ked that the proposed form of ele
tri
al 
ondu
tivity holds for non 
onformal�eld theories, where the dual gravity theory is not asymptoti
ally AdS (whi
harises in the study of Dp brane for p 6= 3), where as for asymptoti
ally Lifshitz likegravity theories where boundary theory enjoy anisotropi
 s
aling, it does not hold.This led us to ask, what is the most general gravity set up for whi
h proposed formof ele
tri
al 
ondu
tivity holds. In [6℄, we found that under general assumptionsin the gravity side together with pre
ise 
ondition on the bulk stress tensor theele
tri
al 
ondu
tivity is the same as one we proposed. The 
ondition on the bulkstress tensor may be related to the 
riteria for va
uum of dual gauge theory to beLorentz invariant. This immediately explains why Lifshitz like theories does nothave the form of 
ondu
tivity as proposed sin
e va
uum of dual gauge theory is notLorentz invariant, where as for asymptoti
ally AdS and some non AdS examplesthat we 
onsidered has dual gauge theory va
uum whi
h are Lorentz invariant.Further we observed that thermal 
ondu
tivity to vis
osity ratio is again universalfor non 
onformal theories.We then turn our attention to study of transport 
oe�
ients of gauge theories atzero temperature whi
h 
orresponds to extremal bla
k hole in the bulk. In [1℄, weobserved that for several examples the form of 
ondu
tivity at zero temperatureis same. Under the general assumption that extremal bla
k brane has doublepole stru
ture at the horizon together with requirement that boundary theoryva
uum has to be Lorentz invariant, we show that form of ele
tri
al 
ondu
tivityis universal. Further in [7℄, we proved that shear vis
osity to entropy density ratiois 1
4π

even at zero temperature. vi
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1Introdu
tion
1.1 OverviewQuantum 
hromodynami
s (QCD) is a theory of strong intera
tions-one of thefundamental for
es in nature that des
ribes the intera
tions between quarks andgluons making up the hadrons. QCD enjoys two spe
ial properties. First is asymp-toti
 freedom-at very high energy, quarks and gluons intera
t very weakly. Se
ondis 
on�nement-for
es between quarks in
rease with their separations. Indire
t sup-port of the 
on�nement 
omes from the fa
t that so far no free quarks have beenexperimentally observed. Latti
e 
al
ulations suggest, 
on�nement to de
on�ne-ment transition in QCD o

urs at a temperature around T ≃ 175Mev.Re
ently, in the Relativisti
 Heavy Ion Collider (RHIC) at Brookhaven NationalLaboratory, a new phase 
alled Quark-Gluon Plasma (QGP) was believed to havebeen 
reated by 
olliding gold nu
lei at energies of order 100 GeV per nu
leon.Estimation suggests that the temperature of this phase 
reated at RHIC is abouttwo times the de
on�nement temperature. In this phase, quarks and gluons behavelike a near perfe
t strongly 
oupled �uid. The fa
t that, QGP at RHIC is strongly
oupled gets support from some unexpe
ted features observed in the experiment.These in
lude but not limited to the observation of strong 
olle
tive behaviour(ellipti
 �ow), large energy loss of high energy parti
les moving in this medium (jetquen
hing). Clearly this indi
ates that the plasma, in fa
t, intera
ts very stronglywith itself and is thus referred to as strongly 
oupled. Most of our knowledge ofQCD, however, is not appli
able in this regime. Known 
al
ulational te
hniquesinvolve a perturbative expansion of the theory in terms of the 
oupling 
onstantand, therefore, it breaks down when the 
oupling be
omes large.One of the remarkable developments during the late last 
entury was to providea framework where we 
ould make distin
t progress in understanding strongly
oupled gauge theories. This goes by the name of gauge/gravity duality. A

ordingto this 
onje
tured duality, there is a 
orresponden
e between 
ertain strongly
oupled gauge theories with the weakly 
oupled string theories. By this it is meantthat both the theories des
ribe same physi
s. However, 
al
ulations be
ome easier1



Chapter 1. Introdu
tionin one theory than the other1. This immediately opens up a possibility of anappli
ation: what is the dual of QCD? If we �nd one, we 
an 
arry out relevant
omputations in the dual theory to gain insights into QCD itself.Unfortunately, till to date, gauge/gravity duality is well developed only for a
ertain 
lass of theories whi
h ex
ludes QCD. These gauge theories share someproperties with QCD, but di�er from QCD in many essential ways. Nevertheless,we 
an still look for some universal features of these strongly 
oupled gauge theo-ries. Our hope is that these results might be useful if a dual of QCD is dis
overed.This will be the 
entral theme of this thesis.As a 
on
rete illustration, let us 
onsider one of the most well understood exam-ples of the gauge/gravity 
orresponden
e. It states that N = 4, four dimensional
SU(N) super Yang-Mills (SYM), at �nite temperature is dual to type IIB stringtheory on AdS5 - S
hwarzs
hild bla
k hole times S5. Both N = 4 and QCD havegluons but they di�er in their other ingredients and properties. On the gravityside of this duality, AdS5 represents the �ve dimensional anti-de Sitter spa
e whi
hhas a 
onstant negative 
urvature. Finite temperature is introdu
ed by adding abla
k hole into this ba
kground. One 
an rea
h this 
orresponden
e by studyingnon-extremal D3 -branes in IIB string theory and we will defer this dis
ussionfor the later se
tions. The strong 
oupling behavior of this gauge theory at �-nite temperature is 
aptured by studying weakly 
oupled string theory on AdS5 -S
hwarzs
hild bla
k hole times S5 ba
kground.In [1℄, using this duality, Poli
astro, Son and Starinets performed an elegantand striking 
al
ulation of the shear vis
osity of strongly 
oupled N = 4 theorywith the result

η

s
=

1

4π

~

kB
∼ 0.08

~

kB
. (1.1)Here, s is the entropy density and kB is the Boltzmann 
onstant. Interestinglyenough, RHIC data suggests that QGP has very low vis
osity and the estimatedvalue is

η

s
∼ 0.1

~

kB
. (1.2)The proximity of these two results initiated major a
tivities in this area. This isnot only be
ause of its 
al
ulational simpli
ity but also for the universal natureof this result. Indeed, this ratio of shear vis
osity to the entropy density is foundto be same for all gauge theories with an Einstein gravity dual in the N → ∞and large t'Hooft 
oupling limit. In fa
t, it was further 
onje
tured by Kovtun,1Su
h an equivalen
e is possible in string theory be
ause of the existen
e of the Diri
hletbranes or the D-branes in short. These are the solitons in string theory whi
h admit des
riptionsin terms of both open or 
losed strings. While the low energy dynami
s of the open strings withtheir ends atta
hed to D-branes (due to the Diri
hlet 
ondition) represent a gauge theory, the
losed string des
ription surely 
ontains gravity. In the later se
tions, we will have o

asions tofurther elaborate upon this idea. 2



Chapter 1. Introdu
tionSon, Starinets in[2℄, that this number is a universal lower bound for all materialsin
luding water and liquid helium!A very natural question is, therefore, to ask if there are other universal quan-tities asso
iated with the strongly 
oupled gauge theories whi
h have a gravitydual. Indeed, as dis
ussed in [3℄, the R-
harge 
ondu
tivity (σ) to the 
harge sus-
eptibility ratio (χ) at zero 
hemi
al potential is expe
ted to be another universalquantity. The ratio is given by
σ

χ
≥ ~c2

4πT

d

d− 2
. (1.3)Here c is the velo
ity of light, d represents the dimension of the gauge theory attemperature T.One of the primary aims of this thesis is to study the universality in ele
tri-
al 
ondu
tivity for gauge theories at �nite 
hemi
al potentials. The presen
e of
hemi
al potential introdu
es another s
ale in the theory (besides the tempera-ture) and, 
onsequently, 
ompli
ates the matters in several ways. Let us pausefor a moment and dis
uss this here. As will be explained later in greater detail,the gauge/gravity 
orresponden
e suggests that gauge theory �u
tuations at largelength s
ales are di
tated by the behavior of the near horizon geometry of thegravity dual. In the absen
e of 
hemi
al potentials, boundary transport 
oe�-
ients su
h as shear vis
osity or ele
tri
al 
ondu
tivity 
an be 
omputed solely interms of horizon data. This is be
ause the response fun
tion in the low frequen
ylimit evolves in a very simple manner as we go away from the horizon along theradial dire
tion[4, 5℄. It is here that the introdu
tion of a 
hemi
al potential pri-marily brings in non-trivialities. Although shear vis
osity 
an still be 
omputedsolely in terms of horizon data, for the 
omputation of ele
tri
al 
ondu
tivity, hori-zon data is not enough. The reason is that the evolution of the response fun
tiondoes no longer remain trivial as above. Rather, it is given by a 
ompli
ated �owequation. Nevertheless, our analysis reveals that if the stress-energy tensor relatedto the matter 
ontent of the bulk satis�es a 
ompa
t relation among its spa
e andtime 
omponents, the boundary 
ondu
tivity at low frequen
ies is universal. Inthe same spirit, we also dis
uss the universality of thermal 
ondu
tivity to vis
os-ity ratio at both zero and �nite 
hemi
al potentials. Furthermore, this thesis alsoaddreses the issue of transport 
oe�
ients of gauge theories at zero temperature,where the gravity dual is represented by extremal bla
k holes. Though it is notimmediately obvious, we show that the universality relation in Eq.(1.1) 
ontinuesto hold at extremality. Finally, we also elaborate upon the universal nature ofele
tri
al 
ondu
tivity at T = 0.Before we go on to present our results in the later 
hapters, in the next se
tion,we give a brief introdu
tion to D-branes in string theory and their 
omplementarydes
riptions in terms of open and 
losed strings. Subsequent se
tions 
on
ern thegauge/gravity 
orresponden
e, the mapping of operators in the gauge theory to the3



Chapter 1. Introdu
tion�elds in the bulk dual. This 
hapter also in
ludes a des
ription of hydrodynami
sand the te
hniques for the 
omputation of the hydrodynami
 response fun
tions.1.2 Strings and D-branesThe fundamental 
onstituents in string theory are the strings2 whi
h 
an be either
closed, or open and are 
hara
terized by a string tension Tstr whi
h is related tostring length ls by

Tstr ≡
1

2πα′
with α

′ ≡ l2s . (1.4)In addition, the intera
tions between strings are 
ontrolled by a dimensionless
oupling 
onstant gs, related to the expe
tation value of a dilaton; a �eld thatappears in the massless spe
trum of the string. Di�erent vibrational modes ofthe strings give rise to di�erent �elds whi
h, in the low energy limit, look likepoint parti
les. A 
onsistent relativisti
 quantum theory of 
losed strings has, init, a massless spin-2 state whose intera
tion at low energies is governed by generalrelativity. Similarly, open strings gives rise to gauge �elds as it's end points 
an
arry 
harges. However they do not 
arry spin-2 massless �eld in their spe
trum.Consisten
y requires the strings to have supersymmetry and to live in 10 spa
e-timedimensions. Consisten
y also requires �ve di�erent types of superstrings, namelytype IIA, type IIB, type I, SO(32) heteroti
 and E8 × E8 heteroti
. However,via various perturbative and non-perturbative dualities, all of them are found tobe 
onne
ted [12℄.In addition to strings, superstring theory also 
ontains solitoni
 
on�gurationsof various dimensionality. They are known as Diri
hlet branes (D-branes)[13, 14℄.A Dp-brane is a (p+1) dimensional hypersurfa
e in 9+ 1 dimensional spa
e-time.Both open and 
losed string 
an intera
t with the D-branes and the branes 
an bede�ned as obje
ts where open string end points live, obeying Neumann boundary
ondition along p + 1 spa
e time dire
tion and Diri
hlet boundary 
onditions in
(9−p) spatial dire
tions. Their origin 
an be understood as follows. In the spe
traof 
losed string, one has left and right moving fermions. Depending on whether weimplement periodi
 or anti periodi
 boundary 
onditions, we 
an have four se
tors
(R−R), (R−NS), (NS−R), (NS−NS), where R stands for Ramond and NSstands for Neveu-S
hwarz. The (R−R), (NS−NS) se
tors are spa
e-time bosonswhereas (R − NS), (NS − R) are spa
e-time fermions. While the (NS − NS)se
tor 
ontains the graviton gµν , a two form �eld Bµν , dilaton φ, the (R−R) se
tor
ontains p + 1 form �eld Ap+1, in the massless se
tor. Depending on whether p iseven or odd, we have type IIA or type IIB theory. The Dp-branes are 
harged2For an ex
ellent elementary introdu
tion to string theory, see [6℄. For more advan
ed dis
us-sions, see[7, 8, 9, 10, 11℄) 4



Chapter 1. Introdu
tionunder this p + 1 form �eld. The minimal 
oupling of Dp-branes with form �elds
an be written as
µp

∫
Ap+1, (1.5)where

µp =

∫
∗Fp+2. (1.6)with Fp+2 = dAp+1. Being solitoni
 in nature, Dp-branes are heavy and its massper unit volume, the tension TDp, 
an be written as3

TDp =
1

(2π)pgsl
p+1
s

. (1.7)Sin
e Dp-branes are BPS 
on�gurations, vanishing for
e between them allows usto put N number of branes sta
ked on top of ea
h other. If N is large, thenthis sta
k is ne
essarily very heavy, and 
onsequently, it 
urves the spa
e-time.Sin
e, in addition, Dp-branes are 
harged under R-R p + 1 form potential, Dp-branes have des
ription in terms of some 
lassi
al metri
 and R-R form potential.This is what is known as the 
losed string des
ription of D-branes. On the otherhand, D-branes also have a des
ription in terms of open strings. One 
an think ofopen strings as ex
itations of D-brane sin
e open string spe
trum 
an be identi�edwith the �u
tuations of the D-brane. The massless spe
trum of the open strings,living on N number of Dp-brane, is that of a maximally supersymmetri
 U(N)gauge theory with fermions and 9 − p massless s
alar �elds whi
h together withthe gauge �eld provide an unique supersymmetri
 
ompletion. Thus, we havetwo very di�erent des
riptions of a sta
k of D-branes: one in terms of a gaugetheory and the other in terms of 
lassi
al R-R 
harged p-brane gravity ba
kground.Exploration of this idea led to the dis
overy of gauge/gravity duality also knownas AdS/CFT 
orresponden
e[15, 16, 17℄, originally proposed by Malda
ena. Thenext two subse
tions serve as a brief introdu
tion to this 
orresponden
e.1.2.1 D-branes and gauge theoriesIf we 
onsider N number of 
oin
ident D3-branes in a �at spa
e-time, the masslessspe
trum of open string 
onsists of a gauge �eld Aµ, six real s
alar �eld X i andfour Weyl fermion λaα in the adjoint representation4 of U(N) with R-symmetry (asexplained below) index a = 1, ..., 4 and Weyl index α = 1, 2. At two derivative3Let us note that, Dp branes are solitoni
 obje
ts in string theory, and their mass is relatedinversely to the string 
oupling , whi
h is di�erent from usual solitoni
 obje
ts found in the gaugetheory where mass goes as 1
g2
Y M

. The fa
tor 1

l
p+1
s

that 
omes in Eq.(1.7) 
omes from dimensionalgrounds and (2π)p is introdu
ed as a normalization fa
tor.4Let us note that, this theory has no �elds su
h as quarks whi
h transform in the fundamentalrepresentation. 5
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tionlevel, the low energy5 e�e
tive a
tion for massless modes turns out to be N = 4super Yang-Mills6 (SYM) with gauge group U(N) in 3 + 1 dimensions. One 
anthink of SU(N) ⊂ U(N) as relative motion of branes where as U(1) ⊂ U(N) asrigid motion of the branes. Be
ause of the overall translation invarian
e[18℄, thismode de
ouples from SU(N), giving us N = 4 SYM theory with gauge group
SU(N). Let us note that N = 4 has a global symmetry, the SU(4)R symmetryunder whi
h Aµ transforms as singlet, λaα as 4 and s
alars X i are rank 2 anti-symmetri
 tensors in representation 6. One 
an understand the origin of SU(4)Rglobal symmetry as follows. The dire
tions transverse to the D-branes is isotropi
and these dire
tions 
orrespond to s
alars X i. Isotropy therefore means that thereis a global SO(6) ∼ SU(4) symmetry for X i. The Lagrangian for N = 4 superYang-Mills theory is unique and is given by [19℄
L = Tr

(
− 1

2g2SYM

F µνFµν +
θ

8π2
F µνF̃µν −

∑

a

iλ̄aσ̄µDµλa −
∑

i

DµX
iDµX i

+
∑

a,b,i

gSYMC
ab
i λa[X

i, λb] +
∑

a,b,i

gSYM C̄
ab
i λ̄a[X

i, λ̄b] +
g2SYM

2

∑

i,j

[X i, Xj]2
)
,(1.8)where gSYM is the gauge 
oupling and θ is instanton angle. The 
onstants Cab

i and
Ciab are the Clebsh−Gordon 
oe�
ients needed to make a singlet out of fermionsand s
alars. The overall tra
e is taken over the SU(N) indi
es. The gauge 
ouplingis determined in terms of string 
oupling by the relation

g2SYM = gs. (1.9)The gauge �eld and s
alars have mass dimension 1 and fermions have massdimension 3
2
. So all the terms in the a
tion have mass dimension 4. This impliesthat the theory is 
lassi
ally s
ale invariant. This s
aling symmetry 
ombines withPoin
are symmetry SO(1, 3), resulting in a 
onformal symmetry SO(2, 4). Thisgroup is generated by translations Pµ, Lorentz transformations Lµν , dilations Dand 
onformal transformations Kµ. It turns out that, even at the quantum level,this theory remains 
onformally invariant. This together with supersymmetryand R-symmetry lead to the supergroup7 SU(2, 2|4) as the symmetry group of5By low energy we mean E ≪ 1√

α
′

, so that massive states of the open strings on theD−branesare not a

essible.6D-branes preserve 1
2 of the 32 supersymmetries in the bulk. Thus the four dimensional worldvolume of D3-branes has 16 super
harges whi
h implies N = 4 in four dimensions.7Let us note that, the supergroup SU(2, 2|4) 
an be written as

(
SU(2, 2) ≃ SO(2, 4) Q, S̄

Q̄, S SU(4)R

)
,where Q and S are Poin
are supersymmetry generators and 
onformal supersymmetry generatorsrespe
tively. 6
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tion
N = 4 SYM. We shall see that this symmetry group is again appearing in the nextsubse
tion where we 
onsider D-branes in a di�erent perspe
tive.We also note that, the Lagrangian in Eq.(1.8) re
eives higher derivative 
orre
-tions whi
h are suppressed by terms of order α′

E2, at an energy E. It also re
eives
orre
tions due to its intera
tions with the 
losed string se
tor. The intera
tions ofthe 
losed string modes with themselves and with the open strings modes are 
on-trolled by dimensionless 
oupling 
onstant α′ 4E8. Hen
e, in the low energy limit,the Lagrangian that des
ribes the dynami
s is given in Eq.(1.8) plus the de
oupled
losed string modes. So we 
on
lude that the low energy e�e
tive des
ription for
D3 branes 
an be given by N = 4 SU(N) SYM theory and de
oupled 
losedstrings or supergravity in the ten dimensional Minkowski spa
e-time.1.2.2 D-brane spa
e-time geometryAs we have noted, the D-branes are massive solitoni
 obje
ts and they are thesour
es of various (R-R) �elds. One 
an obtain the 
orresponding geometry bysolving the equations of motion that follow from the e�e
tive low energy type IIsupergravity. Let us 
onsider the 
ase of D3-brane in parti
ular. The D3 brane isa solution in type IIB string theory whi
h, like generi
 Dp-branes, preserves halfof the spa
e-time supersymmetry. In the low energy limit, massless �elds in
lude,among the bosoni
 �elds, metri
 gMN , dilaton φ, axion C, and a (R-R) �ve formself-dual �eld strength FMNPQR. The trun
ated a
tion in the Einstein frame 
anbe written as

I =
1

16πG10

∫
d10x

√
|g|
(
R − 1

2
∂Mφ∂

Mφ − 1

2
e2φ∂MC∂

MC

− 1

2.5!
FMNPQRF

MNPQR
)
.(1.10)The ten dimensional Newton's 
onstant is given by8

G10 = 8π6g2s l
8
s . (1.11)The D3-brane solution following from the equations of motion, after imposing self-duality ∗F5 = F5 is,

ds2 = H− 1
2 (−dt2 +

3∑

i=1

(dxi)2) +H
1
2 (dr2 + r2dΩ2

5) (1.12)and
F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1, gs = eφ,

C = Constant, φ = Constant, (1.13)8In Eq.(1.11), l8s 
omes from the fa
t that G10 has a dimension of length8. For �xed ls, weexpe
t gravitational e�e
t should in
rease with in
reasing gs. The exa
t dependen
e of g2s followsfrom 
omputation of string s
attering amplitude. The fa
tor 8π2 is again a 
onvention. 7
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tionwith
H(r) = 1 +

L4

r4
, L4 = 4πgsNl

4
s , (1.14)where (t, x1, x2, x3) are the D3-brane world-volume 
oordinates and r2 =∑6

i=1 y
2
i ,with yi's are orthogonal to brane dire
tions. This solution is referred to as anextremal D3-brane solution. The non-extremal generalization, dis
ussed later, in-trodu
es temperature and 
onsequently breaks spa
e-time supersymmetry. Thefa
tor L 
an be thought of as 
hara
teristi
 length of gravitational e�e
t of N D3-branes. Its exa
t dependen
e on ls and gs is explained below. The above solution isknown as supergravity solution sin
e we have negle
ted all possible 
orre
tions thatmight 
ome from massive string modes. To be pre
ise, in the limit gsN ≪ 1, thelength L is mu
h less than ls and thus supergravity approximation is not expe
tedto be a reliable approximation of the full string solution. On the other hand, inthe limit gsN ≫ 1, the radius L is mu
h greater than ls and thus supergravityapproximation is expe
ted to be a reliable approximation to the full string solu-tion. To have a better understanding of the geometry, we 
onsider the followingtwo limits. In the region r ≫ L, the metri
 looks like

ds2 = (1 +O(
L4

r4
))(ηMNdx

MdxN), (1.15)whi
h is ten dimensional Minkowski spa
e with small 
orre
tion of the order of L4

r4
.The appearan
e of 
orre
tion terms 
an be understood as follows. The mass of Nnumber of D3-branes is M ∝ NTD3. Sin
e D3-branes extend along three spatialdire
tions, their gravitational e�e
t is similar to that of a point parti
le with mass

M in the six transverse dire
tions. So at r ≫ L, we expe
t a 
orre
tion of theform G10M
r4

. Now using Eq.(1.11) and Eq.(1.7), we get
G10M

r4
∼ gsNl

4
s

r4
. (1.16)This explains various fa
tors that appears in L in Eq.(1.14) ex
ept 4π whi
h is a
onvention.Now we 
onsider the opposite limit, namely r ≪ L. The metri
 in Eq.(1.12)approximates to

ds2 = ds2AdS5
+ L2dΩ2

5, (1.17)where
ds2AdS5

=
r2

L2
(−dt2 +

3∑

i=1

(dxi)2) +
L2

r2
dr2. (1.18)So to 
on
lude, far away from the branes the spa
e time is �at, ten-dimensionalMinkowski spa
e, whereas 
lose to the branes a throat geometry of the form AdS5×

S5 develops. 8



Chapter 1. Introdu
tionLet us now 
on
entrate on two distin
t sets of modes, one propagating in theMinkowski region and other propagating in the throat region. The low energy limit
onsists of fo
using on ex
itations that have arbitrarily low energy with respe
t toan observer in the asymptoti
ally �at Minkowski region. While in the Minkowskiregion, only massless ten-dimensional graviton super multiplet survives, the wholetower of string ex
itations 
ontribute in the throat region. One 
an understandthis in the following way. The energy of an obje
t measured by an observer at
onstant r (say Er) and energy E measured by an observer at in�nity are relatedby a redshift fa
tor
E =

(
1 +

L4

r4

)− 1
2
Er. (1.19)So a 
losed string of arbitrarily high proper energy in the throat region may have anarbitrarily low energy as seen by an observer at asymptoti
 in�nity. To understandhow these two modes intera
t, one 
an study the absorption 
ross se
tion of massless parti
les (say graviton) from the branes sent from asymptoti
 in�nity. In thelow energy limit, they de
ouple as the low energy absorption 
ross se
tion goes tozero at energy E, as L8E3 [20, 21℄. Similarly the ex
itations that live deep downthe throat, fa
es a in�nite gravitational potential barrier so they 
an not es
ape tothe asymptoti
 region. So we 
on
lude that we get two region where, in the �rstregion we get supergravity in Minkowski spa
e and, in the se
ond region, we getthe full string theory on AdS5 × S5.Another instru
tive way to see this de
oupling is as follows. We start with theD3-brane metri
 given in Eq.(1.12). De�ning a new 
oordinate

z =
L2

r
, (1.20)we 
an rewrite the metri
 as

ds2 =
(
1 +

L4

z4

)− 1
2 L2

z2
ηijdx

idxj + L2
(
1 +

L4

z4

) 1
2
(dz2
z2

+ dΩ2
5

)

≡ L2g̃MNdx
MdxN . (1.21)Here i, j run over the world-volume 
oordinates of the brane and ηij is the �atmetri
. In the last line we introdu
ed gMN = L2g̃MN for the 
omplete metri
 inten dimensions with M,N = 0, 1, ..., 9. Let us now 
onsider a 
losed string movingin this geometry. The world-sheet a
tion of whi
h is

S =
1

4πα′

∫
d2ξ

√
γγαβgMN∂αX

M∂βX
N + ....

=
L2

4πα′

∫
d2ξ

√
γγαβ g̃MN∂αX

M∂βX
N + ...., (1.22)where the dots represent possible other terms whi
h will not be relevant for thedis
ussion to follow. In Eq.(1.22), γαβ is the world-sheet metri
 with α, β running9
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tionover the world-sheet 
oordinates. Using the relation L4 = 4πgsNl
4
s and α

′

= l2s ,we re-write Eq.(1.22) as
S =

√
λ

4π

∫
d2ξ

√
γγαβ g̃MN∂αX

M∂βX
N + ...., (1.23)where we have used λ = gsN. In view of Eq.(1.9), λ is the 't Hooft's 
oupling inthe gauge theory. The Eq.(1.23) also implies that the world-sheet higher derivative
orre
tions (the 
orre
tion due to massive string modes) are now 
ontrolled bydimensionless 
oupling

α′
effective =

√
1

4πλ
. (1.24)

• Malda
ena's limit: Malda
ena's limit is de�ned as α′ → 0, keeping λ �xed.This is equivalent to taking L→ 0 sin
e form (1.22) and (1.23)
L2

4πα′ =

√
λ

4π
. (1.25)Interestingly, in this limit string a
tion is well de�ned and the res
aled metri


g̃MN in Eq.(1.23) redu
es to
g̃MNdx

MdxN =
1

z2
ηijdx

idxj +
dz2

z2
+ dΩ2

5. (1.26)This is AdS5 × S5 metri
 with unit radius of 
urvature, written in z 
oordi-nate. To summarize, we see that in the Malda
ena limit, only the AdS5×S5region of the D3-brane 
ontributes to the 
losed string dynami
s while asymp-toti
ally �at region e�e
tively de
ouples.Before we pass over to the next se
tion, we end this se
tion with a brief de-s
ription of AdS5[22℄. AdS5 is a spa
e-time with a 
onstant negative 
urvature. It
an be represented by a hypersurfa
e obeying
X2

0 +X2
5 −

4∑

i=1

X2
i = L2, (1.27)in six dimensional �at spa
e with metri


ds2 = −dX2
0 − dX2

5 +
4∑

i=1

dX2
i . (1.28)In this form, it is obvious that AdS5 metri
 is endowed with SO(2, 4) isometry.Moreover, S5 has an isometry group SO(6) ∼ SU(4). We have already dis
ussed10



Chapter 1. Introdu
tionthat, being half-BPS, 16 of 32 supersymmetries are preserved by an array of ND3-branes. In addition to this, in the de
oupling limit where we are left with the
AdS part, we have another 16 
onformal supersymmetries whi
h were broken byfull D3-brane geometry. Thus together with supersymmetry, the SU(4)-symmetryand the 
onformal symmetry SO(2, 4) leads to supergroup SU(2, 2|4). This is alsothe symmetry group of the N = 4 SYM, dis
ussed in the last subse
tion.1.3 The AdS/CFT 
orresponden
eDis
ussion in the previous se
tion leads to the two di�erent des
riptions of the lowenergy limit of N D3-branes.

• Open string des
ription: N = 4, SU(N) SYM in four dimensions withgauge 
oupling gSYM + free supergravity in �at spa
e-time.
• Closed string des
ription: Type IIB string theory on AdS5 × S5 withparameters string 
oupling gs and string length ls + free supergravity in�at spa
e-time.Both the des
riptions have de
oupled free supergravity in �at spa
e-time and Mal-da
ena proposed to drop this and identify the rest. This leads to the following
orresponden
e.

N = 4, SU(N) SYM ≡ Type IIB string theory on AdS5 × S5, (1.29)with the parameters of both side related to ea
h other by
g2SYM = gs, (1.30)

g2SYMN = λ =
L4

4πl4s
(1.31)and the axion expe
tation value is given by SYM instanton angle 〈C〉 = θ.Unfortunately, quantization of strings on AdS5 × S5 ba
kground su�ers frominadequate understanding. We have noted that above spa
e is supported by theR-R �ve form �ux. While the NS-R approa
h turns out to be di�
ult in presen
eof R-R �elds, the Green-S
hwarz approa
h is more suitable. However, �nding
ovariant Green-S
hwarz a
tion on 
urved R-R ba
kground is again a 
ompli
atedmatter (see [23℄). In these 
ir
umstan
es, the 
onje
ture is mostly exploited onlyin a parti
ular region of the 
oupling spa
e. This region 
an be isolated as follows.We note from Eq.(1.24) that the world-sheet derivative 
orre
tions are 
on-trolled by α′

effective. Therefore massive string modes de
ouple in the limitα′

effective →
0. This, in view of Eq.(1.24), means that we must be in the strongly 
oupled region11



Chapter 1. Introdu
tionof the gauge theory with λ being large. We 
an also suppress string loop 
orre
-tions by taking gs → 0. But sin
e λ = gsN, to keep it �xed but large, we need totake N → ∞. So gauge theory in question is a
tually N = 4 SU(N) SYM withvery large number of 
olours. Sin
e we have gotten rid of massive stringy modesand also have gs small, we have a 
lassi
al type IIB supergravity on AdS5 × S5.This is a very well understood subje
t. Consequently, most of the explorations are
arried out in this region of AdS/CFT 
orresponden
e. In this thesis, we mostlyexploit this weaker form of the 
onje
ture.1.3.1 The mat
hing of spe
trumWe have seen that the symmetry group of both side of the duality is given by thesupergroup SU(2, 2|4). The AdS/CFT duality implies that the representationsof the same supergroup SU(2, 2|4) should also mat
h on both the sides. Stateddi�erently, there should be a one to one 
orresponden
e between gauge invariantlo
al operators in the gauge theory with the lo
al �elds in the gravity. In thefollowing, we brie�y dis
uss the spe
trum of both the sides and then their mapping(see [22℄ for details).The SU(N),N = 4 SYM 
ontains all the gauge invariant quantities that 
an bebuilt out of gauge �eld Aµ, s
alars X i and Weyl fermions λaα. Sin
e all of the �eldsare in the adjoint representation, the gauge invariant operators must be produ
t oftra
es of produ
ts of those �elds. These 
an be 
lassi�ed into single tra
e and multitra
e operators. We only need to 
onsider single tra
e operators, sin
e multi tra
eoperators appear in the operator produ
t expansions of single tra
e operators. Outof single tra
e operators, only super
onformal primary operators are importantsin
e all others 
an be built out of them by applying Poin
are supersymmetrygenerator Q and translation Pµ. These primaries 
an further be divided into 
hiralprimary and non-
hiral primary operators. Chiral primaries are those, whi
h areannihilated by half of the supersymmetry generators. Sin
e the super
harges haveheli
ities ±1
2
, the other primaries in that representation will have range of heli
itiesbetween λ−2 to λ+2 where λ is the heli
ity of lowest dimensional operator. Thisis known as short multiplet. For example,
OI1I2...In =

[
str(XI1XI2...XIn)

]
, with n = 2, 3, ...N, (1.32)where str means symmetrized tra
e over gauge algebra whi
h implies that theabove operator is totally symmetri
 under SU(4)R, I indi
es and therefore trans-form in (0, n, 0) representation of SU(4). Further, the third bra
ket in the righthand side of above equation implies that one needs to take only the tra
eless partin the SU(4)R indi
es. The s
aling dimension of these primaries are n, and thehighest dimension primaries in this multiplet have a dimension n + 4, whi
h is ofthe form Q4Q̄4O. The 
ases with n ≥ N, are multi tra
e operators where N is thenumber of 
olours. 12



Chapter 1. Introdu
tionLet us 
onsider the n = 2 
ase, whi
h is 
alled supergraviton representation.Sin
e 
hiral primary of lowest dimension is built out of s
alar (λ = 0), this rep-resentation will have the range of heli
ities between −2 to +2, and the highestdimension primaries in this multiplet have a dimension 4, instead of 6 as primarieswith ∆ > 4 vanishes. This multiplet in
ludes among others, a ve
tor, the SU(4)Rsymmetry 
urrent Jµ of dimension 3, a symmetri
 tensor �eld, the energy momen-tum tensor T µν of gauge theory of dimension 4.In the gravity side, the short multiplet arises as follows. As we have alreadydes
ribed, it is not known how to 
ompute the full type IIB string spe
trumon AdS5 × S5. Only the states that arises from the dimensional redu
tion [24℄ ofthe ten dimensional type IIB supergravity multiplet, are known. They all haveheli
ity range (−2) to 2. Hen
e we get short multiplet and these �elds are built ona lowest dimensional �eld whi
h is s
alar in (0, n, 0) representation of SO(6) with
n = 2 [25℄. This lowest dimensional s
alar �eld arises from linear 
ombinationof metri
 haa along S5 and four form �eld Aabcd, where a, b, c, d are indi
es along
S5. For the 
ase of n = 2, one has in it massless graviton �eld gµν , the massless
SU(4)R gauge �eld Aµ. It then immediately follows that the massless graviton �eld
gµν 
orresponds to energy momentum tensor T µν and the massless SU(4)R gauge�eldAµ 
orresponds to the SU(4)R symmetry 
urrent Jµ of the gauge theory.1.3.2 Computing 
orrelation fun
tion from AdS/CFTOne of the powerful aspe
ts of duality is that, it maps the problem of �ndingquantum 
orrelation fun
tion in the �eld theory to a 
lassi
al problem in thegravity. Suppose we are interested in 
omputing 
orrelation fun
tion of a lo
algauge invariant operator operator θ in the gauge theory. For that we need todeform the theory by

S → S +

∫
d4xφ(x)0θ(x), (1.33)where φ0(x) is sour
e 
onjugate to θ. A

ording to AdS/CFT, this sour
e 
an beidenti�ed with the boundary value of some bulk �elds Φ, up to appropriate fa
tors(as explained below) su
h that[16, 17, 27℄

−log〈e
∫
d4xφ0(x)θ(x)〉CFT ≃ onshell S[φ0(x)]sugra, (1.34)where by on-shell we mean we solve equations of motion in the bulk subje
t toDiri
hlet boundary 
ondition on the boundary with the spe
i�ed boundary value,and evaluate the a
tion on the solution. Now in order to 
ompute the n-point
orrelation fun
tion, all we need to do is to take derivative of this on-shell a
tionwith respe
t to φ0, n times. More pre
isely,

〈T [θ(t1, x1)...θ(tn, xn)]〉 =
∂nSSugra

∂φ0(x1, t1)....∂φ0(xn, tn)
. (1.35)13



Chapter 1. Introdu
tionWe illustrate this with an example here.Let us 
onsider a massive bulk s
alar �eld Φ of mass m in AdS5. This 
an bethought of as arising from Kaluza-Klein 
ompa
ti�
ation along S5, in whi
h 
asethe mass is given by m ∼ 1
L
where L is the radius of S5 whi
h is same as AdS5radius. For the time being, we shall take m to be a generi
 value. To be morepre
ise, let us work with AdS5 in the 
oordinate system z with z = L2

r
, wheremetri
 takes the form

ds2 =
L2

z2
(−dt2 +

3∑

i=1

(dxi)2 + dz2). (1.36)The a
tion is given by
S =

1

2

∫
d5x

√
g[gMN∂MΦ∂Nφ+m2Φ2]

=
1

2

∫ ∞

0

dzd4x
L3

z3
[(∂zΦ)

2 + (∂µΦ)
2 +

m2L2

z2
Φ2], (1.37)where M,N indi
es takes value along all the bulk dire
tions where as µ, ν indi
estakes value along �eld theory dire
tions. In the momentum spa
e

Φ(xµ, z) =

∫
d4keik.xfk(z). (1.38)The equation of motion is given by

f
′′

k − 3

z
f

′

k − (k2 +
m2L2

z2
)fk = 0, (1.39)with k2 = gµνkµkν and prime (′) denotes derivative with respe
t to z. Solu-tion to equation of motion Eq.(1.39) is a linear superposition of z2I∆−2(kz) and

z2K∆−2(kz). In the interior of AdS spa
e (z → ∞), the Bessel fun
tions behave as
I∆−2(kz) ∼ ekz, K∆−2(kz) ∼ e−kz. (1.40)So by imposing regularity at z → ∞ (interior of AdS), we 
an set the 
oe�
ientof I∆−2(kz) to zero. In the above, we have used the notation that,

∆ = 2 +
√
4 +m2L2. (1.41)To have real exponents in Eq.(??), we require m2L2 ≥ −4 whi
h is referred asBreitenlohner-Freedman (BF) bound and is required for stability[28, 29, 30℄. Tounderstand the role of ∆ in the boundary theory, let us study the near boundarybehavior of the �eld Φ(x) in Eq.(1.38). Near the boundary (z → ǫ), it behaves as

Φ ∼ z∆. We set the boundary 
ondition near the boundary to be
Φ(x, z)|z=ǫ = φ0(x)ǫ

4−∆. (1.42)14



Chapter 1. Introdu
tionUsing this, we �x the normalization of f to be
fk(z = ǫ) = φ0(k)ǫ

4−∆, (1.43)so that we get
fk(z) = φ0(k)z

2ǫ2−∆K∆−2(k, z)

K∆−2(k, ǫ)
. (1.44)In the position spa
e, if we write Φ near the boundary, we get

Φ(z, x) → ǫ∆[A(x) +O(ǫ2)] + ǫ4−∆[φ0(x) +O(ǫ2)], (1.45)with
A(x) = π−2 Γ(∆)

Γ(∆− 2)

∫
d4x

′

φ0(x
′

)|x− x
′ |−2∆. (1.46)As mentioned earlier, the term φ0 dominates near the boundary whereas the otherfa
tor always goes to zero, sin
e by de�nition ∆〉0. So the fa
tor φ0(x) will a
t assour
e for operator θ. Under the s
aling x → λx, z → λz, the �eld Φ does notget s
aled, but due to presen
e of fa
tor ǫ4−∆ in Eq.(1.45), the fa
tor φ0, s
ales as

φ0(xλ) → λ∆−4φ0(x), and hen
e by Eq.(1.33), the s
aling dimension of operator
θ is ∆. So we see that the mass of the dual bulk �eld determines the s
alingdimension of the boundary operator. In the 
ontext of the boundary theory, theBF bound arises from requirement of unitarity. Now we turn our attention to the
omputation of 
orrelation fun
tions of operators θ.Let us �rst evaluate the on-shell a
tion. By doing integration by parts in thea
tion Eq.(1.37) and using equation of motion Eq.(1.39) we get on-shell a
tion asa boundary term and is given by

Sonshell =
1

2

∫ ∫
d4kd4k

′

(2π)8
δ4(k + k

′

)φ0(kµ)φ0(k
′

µ)ǫ
4−2∆ z∂zfk,z

f(k, ǫ)

∣∣∣∣∣
z=ǫ

, (1.47)with ǫ → 0. Inserting the solution given by Eq.(1.44) in Eq.(1.47) we get
Sonshell =

1

2

∫ ∫
d4kd4k

′

(2π)8
δ4(k + k

′

)φ0(kµ)φ0(k
′

µ)
( 1

ǫ4−2∆
Polynomial[k2ǫ2]

−21−2(∆−2)(∆− 2)k2(∆−2)Γ(2−∆)

Γ(∆− 2)
+ ...

) (1.48)where ... represents terms whi
h are zero as ǫ → 0. Let us note that we have,in Eq.(1.48) some divergent pie
es as ǫ → 0. If we Fourier transform ba
k in toposition spa
e, we see that these are the 
onta
t terms. From the dual gauge
15



Chapter 1. Introdu
tiontheory point of view one 
an think of these as UV divergen
ies with UV 
ut-o�9
ǫ. These 
an be subtra
ted o� by adding suitable 
ounter terms. By taking twoderivatives of the on-shell a
tion Eq.(1.48) with respe
t to φ0, we get

< θ(k)θ(k
′

) >= −21−2(∆−2)(∆− 2)k2(∆−2)Γ(2−∆)

Γ(∆− 2)
, (1.50)whi
h in the position spa
e gives

< θ(x)θ(x
′

) >= 2π−2 Γ(∆)

Γ(∆− 1)

1

|x− x′ |2∆ . (1.51)We again observe that, the s
aling dimension of θ is ∆. Although we have dis
ussedthe 
ase of s
alar �eld, one 
an similarly �nd out Greens fun
tions for other oper-ators in the boundary theory by identifying dual �eld and 
al
ulating the on-shella
tion.Till now we have dis
ussed how to 
ompute 
orrelation fun
tions in the Eu-
ledian signature. The AdS/CFT te
hniques 
an very well be used to 
omputethe same in the Lorentzian signature. The di�eren
es between these two are, inthe Eu
lidean signature we are interested in the time ordered 
orrelators where asin the Lorentzian signature there are several 
orrelators of interest (time-ordered,advan
ed, retarded). We shall return to them in later se
tions.1.4 Compa
ti�
ation along S5In this se
tion, we des
ribe brie�y the S5 
ompa
ti�
ation of the type IIB theory.Results of this se
tion, and its generalization, will be used repeatedly in the laterpart of the thesis.After dimensional redu
tion on S5, the type IIB supergravity a
tion 
an bewritten as
S =

1

16πG5

∫
d5x[Lgrav + Lmatt], (1.52)9Let us note that, ǫ a
ts as UV 
ut-o� for gauge theory whi
h is an IR 
ut-o� in AdS spa
e.This is generally goes by the UV/IR relation in AdS/CFT. To illustrate this, let us write AdS5metri
 in the 
oordinate r = L2

z
, where it takes the form
ds2 = (

r

L
)2ηµνdx

µdxν + (
dr

r
)2L2. (1.49)S
aling symmetry of AdS5 implies, under s
aling xµ → λxµ of the gauge theory 
oordinates, theradial 
oordinate s
ales as energy s
ale that is r → r

λ
.Let us note that, as we approa
h IR of theboundary theory by doing a s
aling by xµ → λxµ, with λ > 1, we are going deep inside the AdS.In other words, r large in the boundary theory 
orresponds to UV physi
s of the gauge theorywhereas r small 
orresponds to IR physi
s. Hen
e, radial dire
tion in the gravity side, 
an beidenti�ed as the energy s
ale in the dual gauge theory. 16



Chapter 1. Introdu
tionwhere �ve-dimensional Newton's 
onstantG5 is related to ten dimensional Newtons
onstant through G5 =
G10

π3L5 . By using Eq.(1.11), Eq.(1.30) and Eq.(1.31) we get
G5

L3
=

π

2N2
. (1.53)The part Lmatt in Eq.(1.52) is the Lagrangian for matter �elds whi
h gets 
ontribu-tion from in�nite tower of �elds that we get after 
ompa
ti�
ation along S5. In the
ases where Lmatt = 0, the ten dimensional IIB supergravity redu
es to Einsteina
tion (∫ Lgrav) in the presen
e of negative 
osmologi
al 
onstant. Details of the
ompa
ti�
ation goes as follows. We start with the metri
,

ds2 = g5µνdx
µdxν + L2dΩ2

5. (1.54)Here g5µν is the �ve dimensional part of the metri
 and dΩ2
5 is the metri
 on S5,represented by �ve angular 
oordinates θ1, θ2, θ3, θ4, θ5. Sin
e the metri
 is diagonal,ten dimensional Ri

i s
alar is totally de
oupled in two independent 
omponents,one 
oming from the g5µν part and another from the S5 part. We denote them by

R(5) and R(S) respe
tively. Sin
e we are interested to get �ve dimensional a
tion,we keep �rst 
omponent as it is and evaluate the se
ond one from S5 metri
. Thenthe value ofR(S) is 20
L2 . Similarly the �ve form �eld strength F (10) has non vanishing
omponents F (10)

µ1µ2µ3µ4µ5 = F
(5)
µ1µ2µ3µ4µ5 and F (10)

θ1θ2θ3θ4θ5
= F 5

1 ǫθ1θ2θ3θ4θ5 , where F (5)
1 is azero-form �eld strength on the S5. To write down both the 
omponents of the form�eld in terms of zero-form �eld in the a
tion, we use the Hodge dual transformationfor the �rst 
omponent whi
h is F (5)

µ1µ2µ3µ4µ5 =
1
L2F

(5)
2 ǫµ1µ2µ3µ4µ5 . Here F (5)

2 is also azero-form �eld strength on the spa
e given by metri
 g5µν . After rearranging the all�elds and integrating over the S5, the ten dimensional a
tion in Eq.(1.10), redu
esto the �ve dimensional form as
S =

1

16πG5

∫
d5x
√

|g(5)|
[
R(5) +

20

L2
− 1

2L5
(F

(5)2
1 + F

(5)2
2 )

]
. (1.55)Let us note that there is no 
ontribution from dilaton φ or axion C sin
e they are
onstants. The value of the last term of the above integral 
an easily be 
al
ulatedusing equations of motion of the �ve form �eld (see [24, 26℄ for details). This 
omesout to be 8

L2 . Therefore, the �nal form of the �ve dimensional a
tion is
S =

1

16πG5

∫
d5x
√

|g(5)|
[
R(5) +

12

L2

]
. (1.56)Be
ause of the presen
e of 
osmologi
al 
onstant Λ = − 12

L2 , the a
tion admits AdS5as a solution.In general the above a
tion re
eives other 
ontributions if we allow rotations orother ex
itations on S5. In the 
ase of rotation, for example, the additional terms
ome in the form of s
alars and ve
tors. We will 
ome to these 
ontribution inlater se
tions. 17



Chapter 1. Introdu
tion1.5 Some appli
ations of AdS/CFT: At equilibriumSo far we have 
onsidered SYM at zero temperature. In this thesis, we will primar-ily be interested in gauge theories at �nite temperature as well as at �nite 
hemi
alpotentials. This se
tion serves as an attempt to address some of the general fea-tures of N = 4, SU(N) SYM at non-zero temperature and 
hemi
al potentials.At non-zero temperatureIn the light of gauge/gravity duality, there are two ways to introdu
e temper-ature in the gauge theory. First is to 
ompa
tify the Eu
lidean time dire
tion of
AdS5. The periodi
ity then determines the temperature of the gauge theory. Thisis known as the thermal AdS spa
e. Se
ond way is to in
orporate a bla
k hole intothe AdS geometry. The Hawking temperature and the entropy of the bla
k holethen determine the temperature and the entropy of the dual. Moreover, a

ordingto AdS/CFT, the free energy of the gauge theory is determined by the temperaturetimes the on-shell Eu
lidean supergravity a
tion. This was 
omputed in [17℄. For
N = 4, SU(N) SYM, the free energy (density) and the entropy (density), at large
N , were found to have a N2 dependen
e resulting from the 
ontributions due toall the degrees of freedom of SU(N). We 
all this phase as the de
on�ned phase.Further, the same 
omputation on thermal AdS produ
es a N0 dependen
e in the
orresponding thermodynami
 quantities. Naturally, this spa
e is then identi�edas the gravity dual of the 
on�ned phase. It was further shown in [17℄ that for SYMon S3, the transition from one phase to another takes pla
e at a �nite non-zerotemperature and 
an be identi�ed as the Hawking-Page transition from thermalAdS to the bla
k hole spa
e-time[31℄. However, for gauge theories on R3 with dualas the bla
k hole with �at horizon, the de
on�ned phase was found to be stableat all non-zero temperature. In what follows, we shall 
on
entrate on the bla
kholes with the �at horizon. An ex
ellent dis
ussion on gauge theories on S3, inthis 
ontext 
an be found in [17℄.At non-zero temperature and 
hemi
al potentialAs we have noted previously, N = 4, SU(N) SYM has a global R-symmetrygiven by the group SU(4). Consequently, there 
an be three independent R-
harges
oming from three independent U(1) Cartans of the group. Conjugate of this
harges are the 
hemi
al potentials. Therefore, one 
an study this SYM in thepresen
e of three non-zero 
hemi
al potentials and hen
e at �nite density of 
harges
onjugate to this 
hemi
al potentials. The gauge/gravity duality says that theglobal symmetries of the gauge theory appear as a lo
al symmetries on its dual[32℄. It is easy to see as to where from the gauge �elds 
ould appear in thegeometry. The sphere S5 has a SU(4) symmetry with pre
isely three independent18
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tion
U(1)′s. Rotating the sphere along the three independent dire
tions would thereforeprodu
e three gauge �elds on AdS after 
ompa
ti�
ation. So the gravity duals arethe �ve dimensional AdS bla
k holes with these gauge 
harges. Following theliterature we 
all these general 
lass of bla
k holes as R-
harged bla
k holes. Inthe last sub-se
tion of this se
tion, we present a brief dis
ussion on these holes andtheir gravity duals.1.5.1 Finite temperatureThe AdS S
hwarzs
hild bla
k holes are the solutions of Eq.(1.56), with

ds2 =
L2

z2
(−f(z)dt2 +

3∑

i=1

(dxi)2 +
1

f(z)
dz2), (1.57)where

f(z) = 1− (
z

zH
)4. (1.58)In the above equation zH is a 
onstant. Horizon is given by the solution of f(z) = 0.This happens at z = zH . The horizon of the bla
k hole is �at, and are 
alled bla
kbranes. The Hawking temperature of the bla
k hole 
an be 
omputed in thefollowing way. Close to horizon, we de�ne z = zH +

κ z2H
2
ρ2 with κ = f

′

(zH )
2

, 
alledthe surfa
e gravity. In the Eu
lidean spa
e, where t→ iτ, the metri
 reads
ds2 = κ2ρ2dτ 2 + dρ2 +

L2

z2H

3∑

i=1

dx2i . (1.59)Comparing the �rst two terms of the right hand side of the above equation with
dρ2 + ρ2dφ2 (where φ = φ+ 2π), we see that to avoid 
oni
al singularity, we needto identify

κτ ∼ κτ + 2π

⇒ τ ∼ τ +
2π

κ
. (1.60)The Hawking temperature is simply the inverse of this periodi
ity and is given by

T =
κ

2π
=

1

πzH
. (1.61)From the gauge theory point of view, this 
an be interpreted as the temperatureof the SYM. Using the relation between the entropy of the bla
k hole and the areaof the horizon, we 
an write entropy density to be10

s =
A

4V G5
=

L3

4G5z3H
. (1.62)10Sin
e the horizon has an in�nite volume, one needs to put a 
ut-o� in order to de�ne thermo-dynami
 quantities. Thermodynami
 densities are then de�ned by dividing respe
tive quantitiesby the volume V. 19



Chapter 1. Introdu
tionThis is interpreted as the entropy density of the dual gauge theory. Using theexpression for the Hawking temperature we 
an re-write the entropy as
s =

1

4G5
(πL)3T 3. (1.63)Further, one 
an 
ompute the free energy of the gauge theory by using the relation

ZCFT ≡ e
F
T = e−Sg[g], (1.64)where g is the Eu
lidean saddle point metri
 whi
h extremizes the a
tion inEq.(1.56). However, it turns out that, on-shell a
tion evaluated on the solutiongiven in Eq.(1.57) is in�nite. Therefore one needs to have a regularization s
heme.There are two di�erent way of doing this. First is to subtra
t the AdS ba
kgroundkeeping the geometries of the AdS ba
kground and bla
k hole in the asymptoti
region same[17℄. The other way is to introdu
e 
ounter terms (see for example[32℄). Though we shall use the 
ounter term method to 
al
ulate on-shell a
tion,both the ways give the same result.It is well known that, in order to have well de�ned variational prin
iple andon-shell �nite a
tion, one needs to add 
ounter terms to the a
tion Eq.(1.56). Themodi�ed form of the a
tion is given by [32℄,

Sg = SE.H. + SG.H. + Sct

= − 1

16πG5

∫
d5x

√
g (R+

12

L2
)

+
1

8πG5

∫

z→0

d4x
√
γ (K − 3

L
), (1.65)where γ is the indu
ed metri
 at the boundary of the spa
e time and K is the tra
eof extrinsi
 
urvature. SG.H. is Gibbons-Hawking term that is required to have awell de�ned variational prin
iple. However for asymptoti
ally AdS spa
e Gibbons-Hawking boundary term gives a vanishing 
ontribution to the on-shell a
tion. Sct isrequired to render the on-shell a
tion �nite. Now, in order to evaluate free energyas in Eq.(1.64), we use the solution as given in Eq.(1.57). After plugging this inthe right hand side of Eq.(1.65) and using the de�nition in Eq.(1.64), we get

F

V
= − 1

16G5
(πL)3T 4. (1.66)As mentioned earlier, instead of introdu
ing 
ounter terms, above expression 
ouldhave been obtained by subtra
ting the AdS ba
kground, keeping the geometriesof the AdS ba
kground and bla
k hole in the asymptoti
 region same. Sin
e, free20



Chapter 1. Introdu
tionenergy in Eq.(1.66) is always negative11, it is the bla
k hole phase and not theAdS that minimizes the free energy. We, therefore, 
on
lude that at any non-zerotemperature, bla
k hole is the stable phase of the gravity system. Now turningour attention to the gauge theory side, we noti
e that the free energy in Eq.(1.66)should be identi�ed as the free energy of the gauge theory at the same temperature.On natural ground, we expe
t for SYM at temperature T, the free energy densityis given by
F

V
= −c′T 4, (1.67)where c′ is a measure of number of degree of freedom of the CFT. Upon 
omparingthis with Eq.(1.66) and using Eq.(1.53), we get

c
′

=
1

16G5
(πL)3 =

π2N2

8
. (1.68)Sin
e free energy density has a leading N2 dependen
e, we 
on
lude that thegauge theory is in the de
on�ned phase. Let us note that, in order to de�nethermodynami
s properly for gauge theory, we also need to introdu
e a IR 
ut-o�.The volume of the spa
e is V, whi
h appears in Eq.(1.66) and in Eq.(1.67) .Let us end this subse
tion with the following 
omment. At a mu
h higherenergy 
ompared to the s
ale set by the temperature, we expe
t SYM to havenegligible e�e
t of temperature. In this sense, the temperature modi�es the IRphysi
s. In the gravity dual, the temperature modi�es the geometry by puttinga horizon into the deep interior of the AdS. However asymptoti
ally far away, itpreserves the AdS stru
ture. Hen
e we expe
t that the near horizon physi
s of thebla
k hole 
aptures the IR physi
s of the gauge theory where as the asymptoti
region di
tates the UV physi
s of the theory.1.5.2 Finite temperature and 
hemi
al potentialThe S5 redu
tion of type IIB supergravity gives rise to N = 8, D = 5 gaugedsupergravity with SO(6) Yang-Mills gauge group. The 
omplete details of thisredu
tion is quite 
omplex (see for example [33℄). However, trun
ation of this11A more interesting situation arises when we 
onsider the gauge theory on S1 × S3. In this
ase the dual gravity ba
kground is a bla
k hole with spheri
al horizon. Here one �nds thatbelow a 
riti
al temperature, the thermal AdS spa
e has lesser free energy than the bla
k holephase and hen
e there is a phase transition from bla
k hole to thermal AdS as we lower thetemperature. This, in the gauge theory, is interpreted as de
on�nement to 
on�nement transition,where thermal AdS spa
e represents the 
on�ned phase of the gauge theory. Let us note that, thetransition temperature is inversely proportional to the radius of the spa
e S3 where �eld theorylives. Hen
e, in the limit where radius of the sphere goes to a very large value, the transitiontemperature tends to zero. This is what we got from the study of thermodynami
s of bla
k holewith �at horizon. 21
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tion�ve dimensional theory to N = 2 gauged supergravity with gauge group U(1) ×
U(1) × U(1) whi
h is the Cartan subgroup of SO(6) is known. In the bosoni
se
tor, it 
ontains three gauge bosons, the metri
 and two s
alars. However, it ismore 
onvenient to parametrize these two s
alars in terms of three real s
alar �eldswith a 
onstraint. We give a brief des
ription of the bla
k holes and their variousthermodynami
 properties. We refer them as R-
harged bla
k holes. More detailsof R-
harged bla
k holes 
an be found in [34, 35, 33, 36℄.The trun
ated a
tion is given by

S5 =
1

16πG5

∫
d5x

√−g
(
R+

2

L2
V − 1

4
GijF

i
µνF

µν j −Gij∂µX
i∂µXj

+
1

24
√−g ǫ

µνρσλǫijkF
i
µνF

j
ρσA

k
λ

)
, (1.69)where

Gij =
L2

2
diag [(X1)−2, (X2)−2, (X3)−2

]
, (1.70)and the s
alar potential is given by

V = 2
3∑

i=1

1

X i
. (1.71)The F i

µν with i = 1..3 are the �eld strength of the three U(1) gauge �elds and X iwith i = 1..3 are three real s
alars subje
t to 
onstraintX1X2X3 = 1. The Newtons
onstant and gauge theory variables are related by 1
16πG5

= N2

8π2L3 , as before. Thesolution of the equations of motions that follow from the a
tion in Eq.(1.69) aresummarized below. The metri
 is given by
ds25 = −H−2/3 (πT0L)

2

u
f dt2 +H1/3 (πT0L)

2

u

(
dx2 + dy2 + dz2

)
+H1/3 L2

4fu2
du2 ,(1.72)where

f(u) = H(u)− u2
3∏

i=1

(1 + κi) , Hi = 1 + κiu , H =
3∏

i=1

Hi, (1.73)and
X i =

H1/3

Hi(u)
, (1.74)where as the gauge �eld is given by

Ai
t =

πT0
√
2ki(1 + k1)(1 + k2)(1 + k3)u

Hi(u)
. (1.75)22



Chapter 1. Introdu
tionFor 
onvenien
e, we have used the 
oordinate system u in whi
h u = 1 is thehorizon12 and u = 0 is the boundary whi
h is AdS5. Let us note that, if we set allthe 
hemi
al potential to zero κi = 0, then we see that the u 
oordinate is relatedto z 
oordinate of the previous se
tion by the relation u = z2

z2H
and hen
e T0 isidenti�ed as the temperature of the bla
k hole at zero 
hemi
al potential. Nowwe summarize various thermodynami
 quantities. The Hawking temperature andentropy density 
an be 
omputed as done in the last subse
tion and are given by

TH =
2 + κ1 + κ2 + κ3 − κ1κ2κ3

2
√

(1 + κ1)(1 + κ2)(1 + κ3)
T0 , s =

π2N2T 3
0

2

3∏

i=1

(1 + κi)
1/2 . (1.76)As dis
ussed previously, in order 
ompute free energy, we need to add appropriate
ounter terms. In
luding 
ounter terms, the full a
tion takes the form

S = S5 +
1

8πG5

∫

boundary

d4x
√
−h K +

1

8πG5

∫

boundary

d4x
√
−hW (X), (1.77)where

W = − 1

L

3∑

i=1

X i, (1.78)and was derived originally in [37℄. Let us note that in four or higher dimension,we do not require any boundary term for the Maxwell �elds. Upon evaluatingon-shell a
tion, we get free energy of the dual gauge theory. The pressure (P ) ofdual gauge theory, whi
h is related to free energy by P = −F
V
is given by

P =
π2N2T 4

0

8

3∏

i=1

(1 + κi) . (1.79)The energy density of the gauge theory is related to ADM mass of the bla
k holeand is given by[38℄
ε =

3π2N2T 4
0

8

3∏

i=1

(1 + κi) , (1.80)and hen
e we see ǫ = 3P. The densities of physi
al 
harges and 
onjugate 
hemi
alpotentials are
ρi =

πN2T 3
0

8

√
2κi

3∏

l=1

(1 + κl)
1/2 , µi = Ai

t(u)

∣∣∣∣∣
u=1

=
πT0

√
2κi

(1 + κi)

3∏

l=1

(1 + κl)
1/2 ,(1.81)12Let us note that f = 0, has three roots. The largest root 
orresponds to bla
k hole horizon.23



Chapter 1. Introdu
tionOne 
an now easily 
he
k that the relation
ǫ+ P = sTH +

3∑

i=1

ρiµi (1.82)holds. As is the 
ase with temperature, introdu
tion of 
hemi
al potential e�e
ts IRphysi
s of the gauge theory. This is evident from the fa
t that, solution Eq.(1.72)asymptoti
ally (or near the boundary) approa
hes AdS5.It is well known that, unless the 
harges satisfy 
ertain 
onstraints, these bla
kholes undergo a lo
al instability [39, 38, 40℄. While at high temperature, bla
kholes remain stable, on
e we redu
e the temperature down to a 
riti
al value, thespe
i�
 heat and sus
eptibility diverge. In order to see this, let us 
ompute thosequantities. The spe
i�
 heat asso
iated with the bla
k holes has the following form
C =

(
T
∂s

∂T

)
µ1,µ2,µ3

= (πT0L)
3(2 + κ1 + κ2 + κ3 − κ1κ2κ3)×

3− (κ1 + κ2 + κ3)− (κ1κ2 + κ2κ3 + κ3κ1) + 3κ1κ2κ3

4
√
(1 + κ1)(1 + κ2)(1 + κ3)(2− (κ1 + κ2 + κ3) + κ1κ2κ3)

.
(1.83)The expressions for sus
eptibility 
an be found in [41℄. What we note from aboveexpressions that the spe
i�
 heat diverges over the 
riti
al hypersurfa
e

2− (κ1 + κ2 + κ3) + κ1κ2κ3 = 0. (1.84)Same is true for sus
eptibility as well. Hen
e the bla
k hole ba
kground is ther-modynami
ally stable provided the κi's satis�es the 
onstraint
2− (κ1 + κ2 + κ3) + κ1κ2κ3 > 0. (1.85)It turns out that the Lagrangian in Eq.(1.69) 
an further be trun
ated down toa smaller one. For example, one 
an trun
ate it to a theory with diagonal U(1) ofthe group U(1)3. In this 
ase the �elds Xi = 1 for i = 1...3. A
tion 
an be writtenas[33℄

S5 =
1

16πG5

∫
d5x

√−g
(
R+

12

L2
− 1

4
F 2
(2) +

1

12
√
3
ǫµνρσλFµνF

ρσAλ

)
. (1.86)The solution of the equations of motions that follows from the above a
tion isasymptoti
ally AdS Reissner-Nordstrom bla
k hole in �ve dimensions. The em-bedding of this trun
ated Lagrangian in D = 10 dimensions 
an be found in [42℄.In the light of AdS/CFT, thermodynami
s and instabilities of these bla
k holeshave also been dis
ussed in [42℄. 24



Chapter 1. Introdu
tion1.6 Some appli
ations of AdS/CFT: Dissipation nearthe equilibriumTill now, we have seen how time independent homogeneous gravity ba
kgrounds
an be used to study equilibrium properties of dual gauge theories. We now 
on-sider the response of the gauge theory to small spa
e and time dependent externalperturbations about its equilibrium. This has been developed in [43, 44, 1℄ andhas been extremely useful to study the transport properties of strongly 
oupledgauge theories.The basi
 quantity that we want to 
ompute is the retarded Green's fun
tion.It en
odes the 
ausal response of system to external perturbation. Let us 
onsidera perturbation of the �eld theory of the form
∆SQFT =

∫
d4xΘa(x)φa(x), (1.87)where φa is sour
e and Θa is an operator in the �eld theory. When the sour
e ofthe perturbation φa(t, x) is small then in the linear response regime, we 
an write

δ〈Θa(x)〉 = −
∫

y

GR
ab(x− y)φb(y)

∣∣∣
φ→0

, (1.88)where by δ〈Θa(x)〉 we mean deviation from the average value of operator at equi-librium. In Eq.(1.88) GR
ab(x − y) is the retarded 13 Greens fun
tion and 
an bewritten as

GR(x− y) = −iθ(x0 − y0)〈[Θa(x),Θb(y)]〉. (1.89)Taking a Fourier transform of Eq.(1.89) we get
δ〈Θa〉 = GR

ab(ω, k)φb(ω, k), (1.90)where we have assumed spa
e-time translation invarian
e. Similarly taking aFourier transform of Eq.(1.89) and using Eq.(1.90) we get
GR

ab(ω,
−→
k ) = −i

∫
d3xdte−iωt−ik.x〈[Θa(x),Θb(0)]〉. (1.91)In the long wavelength and low frequen
y limit, where the �eld theory at �nite tem-perature is de�ned by hydrodynami
s, one 
an use the Kubo's formula (elaboratedlater)

δ〈Θa〉 = iωχabφb

∣∣∣
ω,k→0

, (1.92)13In the Lorentzian signature, we have several 
hoi
es for 
orrelator, namely time-ordered,advan
ed, retarded. The 
hoi
e of retarded Greens fun
tion here, over others follows from the
ausality. 25



Chapter 1. Introdu
tionwhere χab is some response fun
tion (transport 
oe�
ient) whi
h 
hara
terizes thehydrodynami
 regime. The Eq.(1.92) together with Eq.(1.90) implies,
χab = − lim

ω,k→0

1

iω
GR

ab(ω, k). (1.93)If we 
onsider Θ = T x
y or Θ = J i then χ = η, the shear vis
osity or χ = σ, the
ondu
tivity of the dual gauge theory respe
tively.In the next few subse
tions, we provide a brief review of these developments.In the later 
hapters of this thesis, we will dis
uss universal nature of some of thetransport 
oe�
ients of strongly 
oupled theories using gauge/gravity duality.1.6.1 Hydrodynami
sLet us 
onsider an intera
ting QFT, in global thermal equilibrium at tempera-ture (T ) and 
hemi
al potentials (µ) dual to various 
onserved 
harges. There isa 
hara
teristi
 length s
ale in QFT, namely the mean free path (lmfp). Now ifwe perturb the system out of equilibrium with �u
tuations whose wave length islarge 
ompared to s
ale set by the mean free path, one des
ribes the system interms of an e�e
tive theory 
alled hydrodynami
s, whi
h is formulated in-terms ofequations of motion. Perturbation away from the equilibrium, in this limit, 
anbe thought of as if we are allowing the thermodynami
 variables of the systemto �u
tuate at a s
ale su�
iently large 
ompared to s
ale set by temperature orenergy density in equilibrium. Then its natural to expe
t, around any given point,a region where lo
al temperature is roughly 
onstant and one 
an use basi
 ther-modynami
 variables to des
ribe the physi
al properties of the region. The roleof hydrodynami
s is to des
ribe how these di�erent regions ex
hange thermody-nami
 quantities among themselves. The dynami
s in this regime is 
aptured by
onservation of energy momentum tensor and other 
onserved global 
harges. Thedynami
al equations are

▽µT
µν = 0, ▽µ J

µ
I = 0, (1.94)where T µν is stress tensor and Jµ

I is the 
harged 
urrents and I spe
i�es numberof 
onserved 
harges required to spe
ify the system. Now all that we have to dois to solve Eq.(1.94) for energy momentum tensor and 
urrent. By the virtue oflo
al thermal equilibrium, we should be able to express T µν and Jµ in terms ofthermodynami
 variables. Sin
e we would like to understand how thermodynami
variables �ow from one region of lo
al thermal equilibrium to the other, we asso-
iate a velo
ity �eld uµ(x) to ea
h region. It turns out that, lo
al thermodynami
variables together with velo
ity �eld 
ompletely des
ribes the system in the hydro-dynami
 regime. We therefore need to know as to how the stress tensor and the
urrents 
an be expressed in terms of variables like temperature T , energy den-sity ǫ, pressure P, 
hemi
al potentials µ and �uid velo
ity uµ. We do this for the26
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tionideal �uid and then for the dissipative �uids. For further details, we refer readerto[46, 36, 47, 45℄.Ideal �uidFor an ideal �uid, there is no dissipation. One 
an go to a lo
al rest framewhere velo
ity �eld is aligned in the dire
tion of energy �ow. In this 
ase one 
anwrite
T µν
ideal = ǫuµuν + PP µν, Jµ

I,ideal = ρIu
µ, (1.95)with uµuµ = −1, and P µν = gµν + uµuν whi
h 
an be thought of it as proje
tingorthogonal to velo
ity. In the lo
al rest frame, P µν is used to de
ompose energymomentum tensor into temporal and spatial 
omponents. In Eq.(1.95), ǫ, P and ρIare the energy density, pressure and 
onserved 
harged of the system. Sin
e thereis no dissipation one expe
ts zero entropy produ
tion. This 
an be understood byde�ning entropy 
urrent

Jµ
∣∣∣
S
= suµ, (1.96)whi
h keeps tra
k of how lo
al entropy density varies in the �uid. In the aboveequation s is the entropy density of the �uid. For ideal 
ase we have ∂µJµ

∣∣∣
S
= 0,a statement of no entropy produ
tion.Dissipative �uidThe �uid perturbed away from equilibrium, tries to equilibriate through dissi-pation (see [46, 36, 47, 45℄ for details). Mi
ros
opi
ally dissipation arises be
auseof intera
tion term in QFT. In this 
ase we expe
t �ow of �uid to 
reate entropy
onsistent with se
ond law of thermodynami
s. To model dissipation, one mightsimply adds extra terms in the energy momentum tensor and 
urrent as

T µν
Dissipation = T µν

Ideal +Πµν , Jµ
I, Dissipative = Jµ

I, ideal + Y µ
I . (1.97)So we now need to determine Πµν and Y µ

I . One way of doing this is to demandpositivity of entropy 
urrent and determine set of allowed most general terms in
Πµν , Y µ

I 
onsistent with symmetries. Here one allows terms that are gradient invelo
ity and thermodynami
 variables. In addition we need to 
hoose the velo
ity�eld. In the Landau frame [46℄,
uµΠ

µν = uµY
µ
I = 0. (1.98)In other words we �nd T µνuν = −ǫuµ. So uµ 
an be thought of as eigenve
torwith eigenvalue ǫ. So uµ determines how energy-momentum is transported in thesystem. Before writing down dissipative parts in terms of gradient expansion of27
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tionthermodynami
 variables and velo
ity �eld, let us look at the following . We knowthat
▽µT

µν = 0. (1.99)Contra
ting it with velo
ity and using expression for ideal part of energy momen-tum tensor, we get
uν ▽µ T

µν
ideal = 0

⇒ (ǫ+ p)▽µ u
µ + uµ ▽µ ǫ = 0. (1.100)Proje
ting orthogonal to velo
ity �eld we get
Pνα ▽µ T

µν
Ideal = 0

⇒ P µ
α ▽µ P + (ǫ+ p)Pναu

µ ▽µ u
ν = 0. (1.101)We observe that there is a relation between gradient of thermodynami
 variablessu
h as energy density, pressure to gradient of velo
ity. So we 
on
lude that energymomentum tensor 
an only be expressed in terms of derivative of velo
ity �eld.The velo
ity gradient 
an be de
omposed along and orthogonal to velo
ity�eld. The orthogonal part 
an further be de
omposed into tra
e part (θ), tra
elesssymmetri
 (σµν) and antisymmetri
 parts (ωµν). For a four dimensional systemwe 
an write,

▽µuν = −aνuµ + σµν + ωµν +
1

3
θP µν , (1.102)where

θ = ▽µu
µ : The divergence part

aµ = uν ▽ν u
µ : The accelaration

σµν =
1

2
(▽µuν +▽νuµ) +

1

2
(uµaν + uνaµ)− 1

3
θP µν (1.103)

ωµν =
1

2
(▽µuν −▽νuµ) +

1

2
(uµaν − uνaµ).It follows from the de�nition that,

uµa
µ = σµνuµ = ωµνuµ = 0. (1.104)We are now ready to write down the most general form of the dissipative part ofthe energy momentum tensor (Πµν) that appears in Eq.(1.97). In order to do so, weshould keep in mind that, the energy momentum tensor should be symmetri
 andit should obey Landau frame 
ondition stated in Eq.(1.98). With these 
onstraintin mind, the dissipative part of energy momentum tensor 
an be expressed as

Πµν = −2ησµν − ζθP µν, (1.105)28



Chapter 1. Introdu
tionwhere we have introdu
ed two new parameters, the shear vis
osity η and the bulkvis
osity ζ. Further, if the system is 
onformally invariant, the bulk vis
osity ζvanishes. Before 
on
entrating on how to 
ompute shear vis
osity η, we shalldis
uss the dissipative part Y µ
I that appears in the Eq.(1.97).Keeping in mind the Landau frame 
ondition stated in Eq.(1.98), one 
anexpress Y µ

I in terms of a

eleration aµ, and derivatives of thermodynami
 variables.However, using Eq.(1.101), we see that aµ 
an be written in terms of gradient ofthermodynami
 variables. For 
onvenien
e, Y µ
I is expressed in terms of gradientof intensive variables su
h as 
hemi
al potentials µI or temperature T, instead ofexpressing it in terms of gradient of energy density, 
harge densities. The mostgeneral form that is 
onsistent with Eq.(1.98) is given by

Y µ
I = −κIJP

µν ▽ν
µJ

T
− γIP

µν ▽ν T. (1.106)If we are interested in the 
ase of a 
onformal system su
h as N = 4 SYM, thenthe only 
ontribution that should 
ome from 
hemi
al potential and temperatureis in the s
ale-free 
ombination µI

T
, and hen
e γI = 0. The negative signs are
hosen to make the divergen
e of the entropy 
urrent positive. This is requiredby se
ond law of thermodynami
s sin
e we have dissipation. To simplify mattersa little more, we 
onsider the �eld theory to live in �at spa
e so that 
ovariantderivatives 
an be repla
ed by ordinary derivatives. The 
oe�
ient κIJ 
an berelated to the thermal 
ondu
tivity of the �eld theory in the following way. Thethermal 
ondu
tivity[46, 36℄, is de�ned as response to temperature gradient ( whi
hindu
es a heat �ow and hen
e energy �ow T t i 6= 0), in the absen
e of any 
harge
urrent i.e. J i

I = 0.14 For small uα, the vanishing of 
harge 
urrent, upon usingEq.(1.97) gives
ρIu

i =

m∑

J=1

κIJ∂
iµ

J

T
,From whi
h one obtains

m∑

I,J=1

ρIκ
−1
IJ ρJu

i =
m∑

I=1

ρI∂
iµ

I

T
, (1.107)hen
e

ui =
1

m∑
I,J=1

ρIκ
−1
IJ ρJ

m∑

l=1

ρl∂
iµ

l

T
. (1.108)Using thermodynami
 relations

ǫ+ P = Ts+

m∑

I=1

µIρI , dP = sdT +

m∑

I=1

ρIdµ
I , (1.109)14In our notation i, µ, ν.. are the �eld theory spa
e-time indi
es where as I, J are the 
hargeindi
es. 29
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tionwe get
m∑

I=1

ρI∂
iµ

I

T
= −ǫ+ P

T 2
∂iT +

∂iP

T
. (1.110)After substitution this in Eq.(1.108), we get

ui = − 1
m∑

I,J=1

ρIκ
−1
IJ ρI

(
ǫ+ P

T 2
)(∂iT − T

ǫ+ P
∂iP ) . (1.111)Therefore

T t i = (ǫ+ P )ui = − 1
m∑

I,J=1

ρIκ
−1
IJ ρJ

(
ǫ+ P

T
)2(∂iT − T

ǫ+ P
∂iP ). (1.112)In the non-relativisti
 
ase, heat �ow is proportional to temperature gradient,where as in the relativisti
 
ase, in addition we have pressure gradient. The pro-portionality 
oe�
ient is known as thermal 
ondu
tivity hen
e [48℄

κT =

(
ǫ+ P

T

)2
1

m∑
I,J=1

ρIκ
−1
IJ ρJ

. (1.113)Let us further note that for systems with a single 
onserved 
urrent[36℄, 1
ρIκ

−1
IJ ρJ

=
κ

ρ2
. Therefore one gets[36℄

κT =

(
ǫ+ P

ρT

)2

κ =

(
ǫ+ P

ρ

)2
σ

T
. (1.114)1.6.2 Kubo formula for various transport 
oe�
ientsThe set of transport 
oe�
ients η, the shear vis
osity, kT , the thermal 
ondu
tiv-ity, whi
h 
hara
terizes the hydrodynami
 regime and en
odes dissipation, 
an berelated to Greens fun
tion by using Kubo formula. This is dis
ussed below.Shear vis
osityLet us 
onsider �eld theory in �at spa
e-time and, on it, a spatially homoge-neous time dependent metri
 perturbation of the form [43, 49℄

gij(t, x) = δij + hij(t), hij ≪ 1.

g00(t, x) = −1, g0i(t, x) = 0. (1.115)30
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tionIn the rest frame, where uµ = (1, 0, 0, 0), the dissipative part of the energy mo-mentum tensor Eq.(1.105) is given by
Πµν = −2ησµν , (1.116)and up to the linearized order it takes the form (using Eq.(1.104))

Πxy = −η∂0hxy(t), (1.117)giving
⇒ Txy = − η∂0hxy(t). (1.118)Now by going to Fourier spa
e and 
omparing with Eq.(1.88) and Eq.(1.92), in thelow frequen
y limit and at zero spatial momentum, we get

GR
xy,xy(ω, 0) = −i

∫
dtd3xeiωtθ(t)〈[Txy, Txy]〉

= −iηω, (1.119)implying
η = − lim

ω→0

1

ω
ℑGR

xy,xy(ω). (1.120)Thermal 
ondu
tivityConsider putting the system in a slowly varying ba
kground gauge �elds (Aµ
I )whi
h 
ouple to 
onserved 
urrents. This �eld will indu
e a 
urrent, proportionalto ele
tri
 �eld as

J i
I = σIJE

i
J

= σIJ(∂
tAi

J − ∂iAt
J ), (1.121)where the 
oe�
ients σIJ represent the ele
tri
al 
ondu
tivity of the system. The�eld At

I 
an be identi�ed with the 
hemi
al potential µI . Now 
omparison betweenEq.(1.121) and Eq.(1.106) suggests σIJ = κIJ

T
and hen
e

J i
I =

κIJ

T
(∂tAi

J − ∂iAt
J). (1.122)In the Fourier spa
e, at zero spatial momentum and low frequen
y limit, with (spa-tially homogeneous) time dependent ba
kground �eld, above equation simpli�es to

J i
I = i

κIJ

T
ωAi

J . (1.123)31
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tionComparing with the relation J i
I = −GR

IJA
i
J , that follows from linear responsetheory, we get

Gx,x, IJ(ω, 0) =

∫
dtdxeiωtθ(t)〈[Jx,I , Jy,J ]〉

= −iκIJ

T
ω, (1.124)whi
h implies[36℄

κIJ

T
= σIJ = − lim

ω→0

1

ω
ℑGR

x,x,IJ(ω). (1.125)Now the thermal 
ondu
tivity 
an be related to above using Eq.(1.113).Given a weakly 
oupled �eld theory, in prin
iple we should be able to 
omputeusing perturbation te
hnique, the transport 
oe�
ients su
h as η,κ. However itturns out to be a di�
ult exer
ise [50, 51℄. Sin
e we are interested in the transport
oe�
ients of strongly 
oupled theories, the known te
hniques fails to provideany meaningful results. However for 
ertain 
lasses of strongly 
oupled gaugetheories su
h as N = 4 SYM, we 
an use their gravity duals to 
ompute transport
oe�
ients. This is what we dis
uss in the next se
tions.1.7 Computation of real time 
orrelators fromgauge/gravity dualityGauge/gravity duality allows us to 
ompute gauge theory 
orrelators using 
las-si
al supergravity 
omputations whi
h are other wise hard to 
ompute. We havedis
ussed in subse
tion (1.3.2) how AdS/CFT 
an be used to 
ompute the Eu-
lidean 
orrelator. However, for many purposes su
h as 
omputation of transport
oe�
ients, we need real time 
orrelators. One might argue that by doing ana-lyti
 
ontinuation of two point Eu
lidean 
orrelators, one 
an �nd retarded Green'sfun
tion. The relation between the retarded and the Eu
lidean two-point fun
tionsin momentum spa
e is given by
GR(ω,

−→
k ) = GE(−i(ω + iǫ),

−→
k ). (1.126)However in most 
ases, the Eu
lidean 
orrelation fun
tions 
an only be found nu-meri
ally. Consequently analyti
 
ontinuation to Lorentzian signature be
omesdi�
ult. In parti
ular, the problem that one fa
es in order to extra
t the hydro-dynami
 limit (ω, k → 0) of real time 
orrelators from Eu
lidean ones is that oneneeds to perform analyti
 
ontinuation from a dis
rete set of frequen
ies (Matsub-ara frequen
ies) having lowest value ω = 2πT to real and small frequen
ies su
hthat ω ≪ 2πT. Thus, it is important to be able to 
ompute real-time 
orrela-tion fun
tions dire
tly. A working pres
ription for the 
omputation of real time32
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tion
orrelator was given in [44, 1℄ and later on, in [52℄, it was established rigorously.An alternate way to 
ompute the real time 
orrelator was given in [4℄. Here wesummarize both the ways of 
omputation.1.7.1 Son, Starinets pres
ription for 
omputing real time
orrelatorsIn this subse
tion we shall brie�y des
ribe the re
ipe for 
omputing the real time
orrelator pres
ribed �rst by Son and Starinets in [44, 1℄. Suppose we are interestedin 
omputing the retarded two point 
orrelator
G(x− y) = −i〈T Θ(x) Θ(y)〉 (1.127)where Θ is some s
alar operator in the gauge theory side, whi
h is dual to somemassless s
alar �eld (φ) in the gravity side. The boundary value of φ a
ts as asour
e and we have

S → S +

∫
φ0Θ. (1.128)For the time being we shall 
onsider a generi
 bla
k hole ba
kground given by

ds2 = gtt(z)dt
2 + gzz(z)dz

2 + gxx(z)

d−1∑

i=1

(dxi)2, (1.129)where z is the radial 
oordinate. The a
tion for this s
alar �eld in this ba
kgroundis given by
S = −1

2

∫
dd−1xdt

∫ zH

z=0

dz
√−g[gzz(∂zφ)2 + gµν∂µφ∂νφ], (1.130)where zH is the lo
ation of horizon. The equation for s
alar �eld whi
h follow fromthis a
tion is

1√−g∂z(
√−ggzz∂zφ) + gµν∂µ∂νφ = 0, (1.131)where µ, ν runs in the �eld theory dire
tions. The above equation needs to besolved with the boundary 
ondition

lim
z→0

φ(z) → φ0. (1.132)In momentum spa
e we 
an write,
φ(z, x) =

∫
ddk

(2π)d
eik.xfk(z)φ0(k), (1.133)33
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tionwith fk(z → 0) = 1, whi
h upon using Eq.(1.131) redu
es to
1√−g∂z(

√−ggzz∂zfk) + gµν∂µ∂νfk = 0. (1.134)In order to get the retarded 
orrelator, we also need to put in
oming wave boundary
ondition at the horizon (this is natural, sin
e 
lassi
ally we do not expe
t thingsto 
ome out of the horizon). The on-shell a
tion therefore redu
es to
S = −1

2

∫
ddk

(2π)d
φ0(k)F (k, z)φ0(k)

∣∣∣
zH

z→0
, (1.135)where

F (k, z) =
√−ggzzf−k(z)∂zfk(z). (1.136)Now if we di�erentiate the above a
tion with respe
t to boundary value φ0, we get

G(k) = −1

2
F (k, z)

∣∣∣
zH

z→0
− 1

2
F (−k, z)

∣∣∣
zH

z→0
. (1.137)Now using Eq.(1.134) and the fa
t that, f ∗

k = f−k, we get
∂zℑ(F (k, z)) = 0, (1.138)so we 
an evaluate imaginary part of F at any radius. Consequently the imaginarypart of Greens fun
tion in Eq.(1.137) vanishes. To 
ir
umvent this problem, in[44, 1℄, the following proposal was put forward

GR(k) = −F (k, z → 0)

= −√−ggzzf−k(z)∂zfk(z). (1.139)In order to verify that the pres
ription works, in[44℄, retarded Greens fun
tionwas 
omputed in theories where it is known from other methods. Further theEq.(1.139) was established rigorously in [52℄, using 
onne
tion between 
losed timepath formulation of real time QFT with dynami
s of whole Penrose diagram ofbla
k hole. Although we have shown here the 
omputations for a s
alar �eld,above pres
ription 
an be followed for other �elds as well. We summarize this inthe following.Suppose we are interested in 
omputing retarded 
orrelator of some operator
O whose dual �eld in the gravity side is Ψ.1. Extra
t out the 
oe�
ient of kineti
 term A(z) from the 
lassi
al a
tion of�eld Ψ written in the gravity side. A(z) is de�ned as

Scl =
1

2

∫
dzddxA(z)(∂zΨ)2 + .... (1.140)34
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tion2. Find solution to the equation of motion with in-going boundary 
ondition atthe horizon and a 
onstant value Ψ(z, k) → Ψ0(k) at the boundary z → 0.Let us assume the solution in the Fourier spa
e has the form
Ψ(z, k) = fk(z)Ψ0(k), (1.141)where fk(z = 0) = 1.3. The pres
ription then tells that the retarded Greens fun
tion is

GR(k) = A(z)f−k∂zfk(z)
∣∣∣
z→0

. (1.142)We end this dis
ussion with the 
omputation of a few transport 
oe�
ients usingpres
ription mentioned above.Example : The shear vis
osityFirst we 
ompute the shear vis
osity of N = 4 SYM at �nite temperature T .The metri
 Eq.(1.57) in the 
oordinate system u = ( z
zH

)2 with zH = 1
πT
, 
an bewritten as

ds2 =
(πTL)2

u
(−f(u)dt2 + dx2 + dy2 + dz2) +

L2

4u2f(u)
du2, (1.143)where f(u) = 1 − u2, with u = 1 being horizon and u = 0 is the boundary. Theentropy for this 
ase is given by

s =
π2

2
N2T 3. (1.144)To 
ompute shear vis
osity, we need to take the ba
kground perturbation of theform

gxy → gxy + φ, (1.145)where φ = hxy . The a
tion and the equation of motion for φ is that of a masslesss
alar �eld in the ba
kground Eq.(1.143). With appropriate normalization, thea
tion is given by
S = − 1

32πG5

∫
d3xdt

∫
du

√−g[guu(∂uφ)2 + gµν∂µφ∂νφ]. (1.146)In the Fourier spa
e we write
φ(t, xi, u) =

∫
d4k

(2π)4
eik.xφk(u)φ0(k). (1.147)35
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tionThe obje
t that we want to 
ompute is Txy 
orrelator whi
h is related to shearvis
osity as dis
ussed in the previous se
tion. In order to �nd the Greens fun
tion,we now need to solve φk(u). The equation of motion takes the form
φ

′′

k −
1 + u2

uf(u)
φ

′

k +
ω2 − k2f

(2πT )2uf 2
φk = 0, (1.148)where prime denotes derivative with respe
t to radial 
oordinate u. This equation
an not be solved for all values of ω, q. However in the limit ω

T
, q
T
≪ 1, we 
anwrite a series solution in ω

T
, q
T
. There are two solution whi
h are 
omplex 
onjugateto ea
h other, whi
h represents in
oming and out going solutions at the horizon(u = 1). The in
oming solution at u = 1 
an be written as

φk = (1− u)−i ω
4πT

(
1− i

ω

4πT
ln
1 + u

2
+ O(ω2, q2)

)
. (1.149)Now using the pres
ription as summarized in Eq.(1.142) we get

GR
xy,xy(ω) = −πN

2T 3

8
iω, (1.150)where we have used the relation G5 =

πL3

2N2 as given in Eq.(1.53). Now the Kubo'sformula for η, immediately gives
η =

π

8
N2T 3. (1.151)So we see that

η

s
=

1

4π
. (1.152)Example : ele
tri
al 
ondu
tivityAs we have already dis
ussed, if we are interested in 
omputing 
urrent-
urrent
orrelator in N = 4 SYM, we then need to analyze linearized perturbation of U(1)gauge �eld Aµ on the dual gravity ba
k ground. The �ve dimensional Maxwella
tion in this ba
kground 
an be written as [44, 1℄

S = − N2

16π2L

∫
d5x

1

4

√−gFµνF
µν , (1.153)where Fµν = ∂µAν −∂νAµ. The gauge �elds Aµ obey Maxwell equation of the form

∂ν [
√−ggναgβγFαγ ] = 0. (1.154)36
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tionWe 
hoose the gauge where radial 
omponent of the gauge �eld is zero (Au = 0).As before, we work in the Fourier spa
e where,
Aµ(t, x, u) =

∫
d4k

(2π)4
e−iωt+i−→q .−→xAµ(ω, q, u). (1.155)For our purpose we 
hoose perturbation to be spatially homogeneous so that we
an set q = 0. Suppose we are interested in 
omputing 〈JxJx〉 
orrelator, thenwe should fo
us on Ax 
omponent of the gauge �eld in the bulk. The spatial
omponent of the gauge �eld Ax obeys the equation

A
′′

x +
f

′

f
A

′

x +
1

uf 2

ω2

4π2T 2
Ax = 0, (1.156)where prime denotes derivative with respe
t to radial 
oordinate u. Upto linearorder in ω, the solution to Eq.(1.156), takes the form

Ax(ω, u) = A0
x(1− u)−i ω

4πT

(
1 + i

ω

4πT
ln
1 + u

2
+ O(ω2, q2)

)
. (1.157)Finally, following the same pro
edure as for shear vis
osity along with the use ofappropriate Kubo's formula, we 
on
lude that the response fun
tion is given by

σ =
N2T

16π
. (1.158)A
tually to de�ne the above response fun
tion as the ele
tri
al 
ondu
tivity ofthe SYM, we need to �rst gauge the global U(1) symmetry of SYM with smallele
tromagneti
 gauge 
oupling (say e). This implies, the 
urrent operators aremultiplied with a fa
tor of e that is Jµ → eJµ and hen
e there will be a fa
tor of e2in the two point 
urrent 
orrelator [53, 3℄. However we shall drop that extra fa
torof e2 from our dis
ussion. Sin
e e is small, to the leading order in e, the e�e
t ofgauging 
an be negle
ted and response 
an be 
omputed from original theory. Fordetails see[53, 18℄.1.7.2 Iqbal-Liu pres
ription for 
omputing real time 
orre-latorIt turns out that the Son-Starinets pres
ription 
an be reformulated in terms ofboundary values of the 
anoni
al momenta of the bulk �eld by treating the AdSradial dire
tion as time. This reformulation has various advantages. For example,many of the boundary transport 
oe�
ients 
an be expressed in terms of quantitiesevaluated at the horizon. Universality of transport 
oe�
ients 
an therefore be37
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tionunderstood via 
ertain universal behavior of the bla
k hole horizon. A

ording toAdS/CFT, the one point fun
tion is de�ned as
〈Θ〉
∣∣∣
φ0

=
δ

δφ0

Scl[φ0], (1.159)where φ0 is the boundary value of the massless s
alar �eld dual to operator Θ.Let us note that, in the 
lassi
al me
hani
s derivative of an on-shell a
tion withrespe
t to boundary value of a �eld is simply equal to the 
anoni
al momentum
onjugate to the �eld evaluated at the boundary. For example
S =

∫ X(tf )

X(t0)

dt L, (1.160)and
δ

δX(tf )
Scl = P (tf), (1.161)where P (t) is the momentum 
onjugate to X(t). For the 
ase of s
alar �eld φ, we
an write

< Θ(x) >φ =
δ

δφ0

Scl[φ0]

= Π(z, x)
∣∣∣
z→0

, (1.162)where Π(z, x) is the 
anoni
al momentum 
onjugate to φ with respe
t to radial zfoliation. Equivalently in the Fourier domain, we 
an write
< Θ(k) >= Π(z, k)

∣∣∣
z→0

. (1.163)In the domain of linear response, we have
< Θ >= −Gret(ω, k) lim

z→0
φ(k, z), (1.164)This implies

Gret = −Π(z, k)

φ(z, k)

∣∣∣
z→0

, (1.165)whi
h upon using Eq.(1.93) gives,
χ = lim

ω,k→0

Π(z, k)

iωφ(z, k)

∣∣∣
z→0

. (1.166)For illustration, let us 
onsider the 
ase of massless s
alar �eld propagating in theba
kground
ds2 = gtt(z)dt

2 + gzz(z)dz
2 + gxx(z)

d−1∑

i=1

(dxi)2, (1.167)38
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tionwhere z is the radial 
oordinate. We have assumed full rotational symmetry in xidire
tions so that gij = gxxδij, where i, j run over all the indi
es ex
ept z, t. Wealso assume that metri
 
omponents depend only on radial 
oordinate. We assumethat the metri
 has an event horizon, where gtt has a �rst order zero and gzz hasa �rst order pole. We also require that all the other metri
 
omponents are �niteas well as non vanishing at the horizon. The a
tion for the s
alar �eld is same asgiven in Eq.(1.130). The 
anoni
al momenta for this 
ase is,
Π(z, k) = −√−ggzz∂zφ. (1.168)Using Eq.(1.131), we 
an 
ompute
∂zΠ(z, k) =

√−gk2φ(z, k). (1.169)In the limit k → 0, we have both
lim
k→0

∂zΠ(z, k) = 0, lim
k→0

∂z(ωφ(z, k)) = 0. (1.170)So in the limit k → 0, both ωφ(z) and Π(z, k) is independent of z, whi
h implies
χ(z → 0) = χ(z → zH). (1.171)In other words, the radial evolution of response fun
tion χ, whi
h we refer as�ow, is trivial. This 
an be used to show, in parti
ular that response fun
tion ofgauge theory dual to some gravity theory, 
an be expressed in terms of geometri
alquantities evaluated at the horizon. Let us note that, had we 
onsidered themassive s
alar �eld of mass m in the bulk, then

lim
k→0

∂zΠ(z, k) ∼ m2φ(k, z) 6= 0, (1.172)whi
h implies that there is a non-trivial �ow of the transport 
oe�
ient if wego from horizon to boundary. Hen
e evaluating response fun
tion at the horizonwill not give same result as boundary response fun
tion. One su
h example is, the
omputation of ele
tri
al 
ondu
tivity at �nite 
hemi
al potential. We shall dis
ussthis issue in later 
hapters. Following [4℄ and stret
hing the previous dis
ussion abit more, one 
an de�ne response fun
tion at any radial position z, through
χ(z) = lim

ω,k→0

Π(z, k)

iωφ(z, k)
(1.173)whi
h in the limit z → 0 gives AdS/CFT results. It is possible to 
omputeEq.(1.173) at the horizon and then, by solving �ow equation, we 
an relate it withAdS/CFT result whi
h is evaluated at the boundary. This leads to a 
onne
tionbetween dual gauge theory with the �
titious �uid living on the horizon. This goes39
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tionby the name membrane paradigm (for a brief dis
ussion on membrane paradigm,see Appendix). Following the Iqbal-Liu proposal, we end this se
tion with the
omputations of two transport 
oe�
ients. Both these two, however, have trivial�ow from the horizon to the boundary AdS.Example : The shear vis
osityIn order to �nd out the shear vis
osity, we need to look at �u
tuation φ = hxyof the metri
 �eld gxy , where x, y are the �eld theory dire
tions. As previouslydis
ussed, the shear �u
tuation mode de
ouples from rest of the �u
tuations andbehaves as massless s
alar �eld with the a
tion Eq.(1.146). As before we shall workwith spatially homogeneous �u
tuations, so that we 
an set −→q , the spatial part of
k zero and we shall also work in the limit where ω → 0. Evaluating the 
anoni
almomentum, we get

Π(z → 0, ω → 0, q = 0) = Π(z → zH , ω → 0, q = 0)

=

√−g
16πG

1√−gzzgtt

∣∣∣
zH
iωφ(zH , ω → 0, q = 0),(1.174)where G is the Newtons 
onstant and in the se
ond line of above equation we haveused in-going boundary 
ondition at the horizon, whi
h states

lim
z→zH

d

dz
φ(z) = −iω lim

z→zH

√
gzz
−gtt

φ(z) +O(ω2). (1.175)Now using de�nition of response fun
tion we get shear vis
osity η to be
η =

[√−g
16πG

1√−gzzgtt

]
zH
. (1.176)Entropy density of the bla
k hole is area of the horizon divided by 4G, whi
h gives

s =
1

4G

√−g√−gzzgtt

∣∣∣
zH
. (1.177)Now the shear vis
osity to entropy density ratio is given by

η

s
=

1

4π
. (1.178)This result 
oin
ides with Eq.(1.152), whi
h was 
omputed for parti
ular ba
kground dual to N = 4 SYM. So we already see, for large 
lass of gauge theorieswith gravity dual having metri
 of the form Eq.(1.167) subje
t to 
ertain 
onstraint,the shear vis
osity to entropy density ratio is 1

4π
and is universal. 40
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tionThe origin of Eq.(1.175), perhaps require some elaboration. Near the horizon,the metri
 
an be written as
gtt = −a(zH − z), gzz =

b

zH − z
. (1.179)In this region, at vanishing spatial momentum −→q = 0, the Eq.(1.134) takes theform √

a

b
(zH − z)∂z(

√
a

b
(zH − z)∂zφ) + ω2φ = 0, (1.180)whi
h has solutions of the form

φ ∝ e−iω(t±x), dx =

√
gzz
−gtt

dz. (1.181)The in falling boundary 
ondition on the horizon pi
ks up the positive sign in theexponent. This implies, the solution near the horizon takes the form
φ ∝ e−iωv, dv = dt+

√
gzz
−gtt

dz. (1.182)So solution 
an only depend on the non singular 
ombination v. This gives, nearthe horizon
(∂z −

√
gzz
−gtt

∂t)φ = 0. (1.183)This, in turn, means
lim
z→zH

d

dz
φ(z) = −iω lim

z→zH

√
gzz
−gtt

φ(z) +O(ω2). (1.184)Example : ele
tri
al 
ondu
tivityLet us 
onsider a Maxwell �eld propagating in the un
harged bla
k brane ba
k-ground. The Maxwell �eld a
tion is
S = −

∫
dd+1x

√−g 1

4g2d+1(z)
FMNF

MN , (1.185)where g2d+1(z) in general is a z dependent gauge 
oupling, where ba
kground valueof gauge �eld is zero and we take only nonzero 
omponent to be Ax. Here again one
an show that equation for Ax is same as that for massless �eld with a substitution
√−g → 1

g2d+1(z)

√−ggxx. (1.186)41
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tionNow using
〈Jx(k)〉 = σ(k) lim

z→0
Ex(z, k), Ex = −iωAx, (1.187)we get

σ =
J(zH)

−iωAx(zH)
=
[ 1

g2d+1(z)

√−g√−gzzgtt
gxx
]
zH
. (1.188)Applying this for N = 4 SYM (dual gravity ba
kground is the AdS5 S
hwarzs
hildbla
k hole) we get

σ =
1

g25
(πLT ) (1.189)whi
h is same as expression in Eq.(1.158) provided we make the identi�
ation

1
g25

= N2

16π2L
.Let us note that, in the above 
omputations, we have not assumed any par-ti
ular gravity ba
kground. Rather, we have only imposed few generi
 
onstraintson the gravity ba
kground. So, above results are appli
able to the gravity dualof N = 4 SYM at �nite temperature as well as any other gauge theory at �nitetemperature with a gravity dual and a few generi
 
onstraints. In fa
t we shallpush these ideas further and present 
omputations of transport 
oe�
ients for theba
kgrounds where Iqbal-Liu pres
ription might not be readily appli
able. Ourmain fo
us will again be on �nding features whi
h are independent of details ofthese parti
ular models. Though in some part of the thesis, we shall work withgravity ba
kgrounds for whi
h dual gauge theory might not always be well de�ned,we hope our results might be appli
able to situations where it is well de�ned. Withthis brief introdu
tion, in the next se
tion we dis
uss the plan of the thesis.1.8 Plan of the thesisThe plan of the thesis is as follows. In the next 
hapter, we 
ompute ele
tri
al
ondu
tivity in the presen
e of one and more 
hemi
al potentials for several models[48, 54℄. What we observe is that, in the presen
e of multiple 
hemi
al potentials,there is a nontrivial mixing between 
urrent operators whi
h, from the bulk pointof view, 
an be understood to be arising be
ause of intera
tions through graviton.We �nd that the boundary ele
tri
al 
ondu
tivity takes a universal form in thepresen
e of 
hemi
al potential for a large 
lass of bla
k branes whi
h in
lude R-
harged bla
k branes in various dimensions in asymptoti
ally AdS spa
es as wellas 
harged Dp branes in various dimensions. We also observe that the boundary
ondu
tivity is related to horizon 
ondu
tivity by thermodynami
 quantities. Wefurther note for Lifshitz like bla
k branes, the form of 
ondu
tivity is di�erent thanone observed for other examples. Subsequently, we fo
us on understanding relationbetween the 
ondu
tivity of the �uid des
ribed by membrane paradigm15. In order15In the appendix A, we give a brief a

ount of the membrane paradigm. 42
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tionto do that, we 
ompute 
ondu
tivity at arbitrary 
ut-o� out side the horizon forgauge theory dual to 
harged asymptoti
ally AdS bla
k hole and show that there isa smooth interpolation between 
ondu
tivity at the horizon and at the boundary.In the third 
hapter, we provide a proof that under general assumptions in thegravity side together with pre
ise 
ondition on the bulk stress tensor, the ele
tri-
al 
ondu
tivity is the same as one we observed in the se
ond 
hapter[55℄. Thisimmediately explains as to why the Lifshitz like theories does not have the form of
ondu
tivity as proposed sin
e the bulk stress tensor does not satisfy the 
onstraint.In this 
hapter we also give a general form of 
ondu
tivity matrix en
oding themixing between 
urrent operators, in the presen
e of multiple 
hemi
al 
hemi
alpotential.In the fourth 
hapter, we 
ompute thermal 
ondu
tivities for various �eld the-ories with gravity duals and observe that the thermal 
ondu
tivity to the shearvis
osity ratio is independent of number of 
hemi
al potentials. This observationtogether with observation that at zero 
hemi
al potential the above ratio remainsun
hanged, lead us to 
onje
ture that it is universal. Further, for CFT's with agravity dual, using thermodynami
 relations, one 
an express the above ratio interms of 
entral 
harges of the dual 
onformal �eld theories [56℄. We also observethat the thermal 
ondu
tivity to the vis
osity ratio is again universal for non 
on-formal theories. All these observations give us a way to express the 
ondu
tivitysolely in terms boundary thermodynami
 variables.We then turn our attention to study of transport 
oe�
ients of gauge theo-ries at zero temperature whi
h 
orresponds to extremal bla
k hole in the bulk, in
hapter �ve. We �nd that, for several examples, the form of 
ondu
tivity at zerotemperature is same. Under the general assumption that extremal bla
k brane hasdouble pole stru
ture at the horizon together with requirement that bulk stresstensor satis�es same 
onstraint as non extremal 
ases, we show that form of ele
-tri
al 
ondu
tivity is universal. We also provide a simple proof that shear vis
osityto entropy density ratio is 1
4π

even at zero temperature.In 
hapter six, we give a brief summary of the results presented in this thesis.In the appendix A, we give a brief a

ount of membrane paradigm, we also providedetails of R-
harged bla
k holes in various dimensions in appendix B.
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2Ele
tri
al 
ondu
tivity at �nite 
hemi
alpotential
2.1 Introdu
tionBased on several examples, we �nd out a general expression for ele
tri
al 
ondu
-tivity for gauge theories in the presen
e of 
hemi
al potentials having a gravitydual. It turns out that the ele
tri
al 
ondu
tivity 
an be determined in terms ofgeometri
al quantities evaluated at the horizon and thermodynami
 quantities.At �nite temperature and at large length s
ales, an intera
ting QFT is des
ribedby hydrodynami
s. In the gravity side, �nite temperature amounts to having abla
k hole and the long wave length physi
s of the �eld theory is governed by thenear horizon physi
s of the bla
k hole. This idea was employed in [4℄ to showthat, in the low frequen
y limit, the linear response of the boundary theory is
aptured 
ompletely by the near horizon physi
s. In [4℄, the authors studied thetransport 
oe�
ients whi
h 
orrespond to the massless modes in the bulk, resultingin trivial �ow from horizon to boundary. This in turn, gave an equality betweenthe boundary and the horizon transport 
oe�
ients. So when there is a nontrivial�ow from the horizon to the boundary (like massive bulk modes), horizon physi
swill no longer be able to 
apture the whole low frequen
y AdS/CFT response.Cal
ulation of ele
tri
al 
ondu
tivity in the presen
e of non-zero 
hemi
al potentialis one su
h example where 
orresponding mode in the bulk shows a non trivial �owfrom horizon to boundary. These �ows are in general governed by 
ompli
ateddi�erential equations (if more than one 
harge is present they are 
oupled as well)and, a priori, there is no reason that ele
tri
al 
ondu
tivity for di�erent theorieswill show some universal features. In spite of this, as we shall �nd, ele
tri
al
ondu
tivity does show some universal features.This 
hapter is stru
tured as follows. In se
tion 2 we dis
uss the e�e
tivea
tion approa
h in the gravity side to 
ompute ele
tri
al 
ondu
tivity following[48, 57℄. We set it up in way that allows us to study di�erent gravity ba
kgroundsin a uni�ed way. In se
tion 3, we take up several examples su
h as R-
harge44



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialbla
k hole in 4, 5 and 7 dimensions. We 
ompute ele
tri
al 
ondu
tivity for single
harge 
ase as well as multiple 
harge 
ases. For multiple 
harge 
ase, we observenon-trivial mixing between 
urrent operators. In se
tion 4 we demonstrate therelation between horizon and boundary 
ondu
tivity, based on these examples. Inse
tion 5 and 6, we 
he
k that the relation 
ontinues to hold for Reissner-NordstromAdS bla
k hole in arbitrary dimension and for bla
k Dp-branes, whi
h in general
orresponds to non-
onformal gauge theory. However in se
tion 7, we 
he
k thatLifshitz like bla
k holes do not satisfy the same relation. In se
tion 8, we studyradial evolution of ele
tri
al 
ondu
tivity. We end this 
hapter with a dis
ussionof our results.2.2 Holographi
 
omputation of ele
tri
al 
ondu
-tivity at �nite 
hemi
al potential: The pertur-bation equationWe start with a gauge theory at �nite temperature with multiple 
hemi
al poten-tials with a gravity dual. In the gravity side, this gauge theory 
orrespond to bla
kbranes 
harged under multiple U(1) gauge �elds. In the boundary theory one has
urrent operator dual to every U(1) bulk gauge �eld. At equilibrium, there areno mixing between the di�erent 
urrent operators. When perturbed away fromequilibrium, in general there might be nontrivial mixing between them. This mix-ing arises naturally in the 
ontext of gauge/gravity duality due to the presen
eof graviton in the bulk whi
h indu
es intera
tion between di�erent gauge �eldsmodes, hen
e nontrivial mixing. To understand that, we 
onsider the bulk a
tionof the form
S =

1

2κ2

∫
dd+1x

√−g(R− 1

4
GIJF

I
µνF

µν J + ....), (2.1)where dots 
ontains other bulk �elds su
h as neutral s
alar �elds. The metri
 thatwe take is of the form
ds2 = gtt(r)dt

2 + grr(r)dr
2 + gxx(r)

d−1∑

i=1

(dxi)2, (2.2)where r is the radial 
oordinate. We have assumed full rotational symmetry in
xi dire
tions so that16 gij = gxxδij , where i, j run over all the indi
es ex
ept r, t.We also assume that metri
 
omponents depend on radial 
oordinate only. Weshall work with the metri
 whi
h has an event horizon17, where gtt has a �rst orderzero and grr has a �rst order pole18. We also assume that all the other metri
16Let us note that, we are using the notation where gµν(r) ≡ gµν .17For 
harged bla
k holes, there exists inner horizons also.18Therefore it ex
ludes extremal bla
k holes 45



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potential
omponents are �nite as well as non vanishing at the horizon. The boundary ofthe spa
e time is at r = ∞. The gauge 
oupling GIJ may be 
onstant or in general
an be a fun
tion of r. The 
onstant κ is related to Newtons 
onstant. Maxwellequation 
an be written as
∂µ

(√−gGIJF
νµ
J

)
= 0. (2.3)If we 
onsider GIJ to be diagonal and only At(r) 
omponent to be non zero, we
an de�ne 
harge density to be,

ρI =
1

2κ2
√−gGIIg

rrgttF I
rt. (2.4)Sin
e our aim is to 
ompute the ele
tri
al 
ondu
tivity using Kubo formula, it issu�
ient to 
onsider perturbations in the tensor (metri
) and the ve
tor (gauge�elds) modes around the bla
k hole solution and keep other �elds su
h as s
alarsunperturbed. Therefore we 
onsider perturbation of the form

gµν = g(0)
µν + hµν , AI

µ = AI(0)
µ +AI

µ . (2.5)where g(0)
µν and A

I(0)
µ are ba
kground metri
 and gauge �elds. In order to determineele
tri
al 
ondu
tivity it is enough to 
onsider perturbations in (tx1) and (x1x2)
omponent of the metri
 tensor and x1 
omponent of the gauge �elds. Moreoverone 
an 
hoose the perturbations to depend on radial 
oordinate r, time t and oneof the spatial 
oordinates say x2. A 
onvenient ansatz, with the above restri
tionsin mind, is

htx1 = g0x1x1 T (r) e−iωt+iqx2

, hx2x1 = g0xx Z(r) e
−iωt+iqx2

,

AI
x1 = φI(r) e−iωt+iqx2

. (2.6)Here ω and q represent the frequen
y and the momentum in x2 dire
tion respe
-tively and we set perturbations in the other 
omponents to be equal to zero. Nextstep is to �nd linearized equations whi
h follow from the equations of motion. Itturns out that at the level of linearized equation and at zero momentum limit,metri
 perturbation Z(r) de
ouple from the rest [57, 58℄. The linearized equationthat we get are of the form
d

dr
(NI

d

dr
φI(r))− ω2NI grrg

ttφI(r) +NIgxxg
tt d

dr
(gxxhx1t) = 0. (2.7)with

NI =
√−gGIIg

xxgrr, (2.8)and
d

dr
(gxxhxt) =

m∑

J=1

GJJF
J
rtφJ . (2.9)46



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialWe observe that we 
an use Eq.(2.9) in Eq.(2.7) to get an equation only in termsof gauge �eld �u
tuations. Upon substitution we get
d

dr
(NI

d

dr
φI(r))− ω2NI grrg

ttφI(r) +

m∑

J=1

MIJφJ(r) = 0. (2.10)with
MIJ = F I

rt

√−gGIIg
xxgrrgttGJJF

J
rt. (2.11)Let us note that MIJ =MJI .Following [48℄, we now write down the e�e
tive a
tion whi
h reprodu
es theEq.(2.10) and extra
t out the expression for ele
tri
al 
ondu
tivity using Kuboformula.2.2.1 E�e
tive a
tion and expression for 
ondu
tivityThe ele
tri
al 
ondu
tivity is usually 
omputed from 
urrent-
urrent 
orrelator19

λ = − lim
ω→0

Gxx(ω, q = 0)

iω

= lim
ω→0

1

2ω

∫ ∞

−∞
dt e−iωt

∫
d~x〈[Jx(t, ~x), Jx(0,~0)]〉. (2.13)The 
urrent-
urrent 
orrelator 
an be 
omputed by taking se
ond derivative ofe�e
tive a
tion whi
h reprodu
es the Eq.(2.10) with respe
t to boundary �elds[44, 1℄. The expression for ele
tri
al 
ondu
tivity 
an formally be written as λ =

iσ0 + σ.19If there is more than one 
onserved 
urrent then one 
an de�ne 
ondu
tivity matrix using
λij = − lim

ω→0

Gij
xx(ω, q = 0)

iω

= lim
ω→0

1

2ω

∫
∞

−∞

dt e−iωt

∫
d~x〈[J i

x(t, ~x), J
j
x(0,~0)]〉, (2.12)where indi
es, i, j are for di�erent gauge �elds, for whi
h the 
urrents are de�ned.
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tri
al 
ondu
tivity at �nite 
hemi
al potential
• σ(= ℜ(λ)): In order to determine the real part of the 
ondu
tivity (σ), wefollow [48℄. E�e
tive a
tion 20 
an be written as

S =
1

2κ2

∫
ddq

(2π)d
dr
[1
2

m∑

I=1

NI(r)
d

dr
φI(r, ω, q)

d

dr
φI(r,−ω,−q)

+
1

2

m∑

I,J=1

MIJ(r)φI(r, ω, q)φJ(r,−ω,−q)
]
. (2.14)Boundary a
tion is given by

Sǫ = lim
r→∞

1

2κ2

∫
ddq

(2π)d

(
1

2

m∑

I=1

NI(r)
d

dr
φI(r, ω, q)φI(r,−ω,−q)

)

=

∫
ddq

(2π)d

m∑

I≥K,I,K=1

φ0
I(ω, q)FIK(ω, q)φ

0
K(−ω,−q). (2.15)where the boundary value of the �eld φI(r) is φ0

I(ω, q). Next, the retarded
orrelators are given by
GR =

{
−2FJK(ω, q) , J = K,

−FJK(ω, q) , J 6= K.
(2.16)The expression for diagonal and o� diagonal parts of the 
ondu
tivity 
anbe written as

σII = − lim
ω→0

ℑ
(
GR(ω, q = 0)

)

ω

=

2 ℑ
(
FII(ω → 0, q = 0)

)

ω
, (2.17)20One 
an obtain this e�e
tive a
tion, starting from the a
tion written in Eq.(2.1) and eval-uating it to the quardrati
 order in �u
tuations φ, T and using Eq.(2.9). Let us note that, ingeneral Eq.(2.1) in
ludes other parts su
h as 
ontributions 
oming from matter �elds other thanthe gauge �elds, whi
h are denoted by dots. However, they does not play any role in evaluatinge�e
tive a
tion.
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Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialand
σIJ = − lim

ω→0

ℑ
(
GR(ω, q = 0)

)

ω

=

ℑ
(
FIJ(ω → 0, q = 0)

)

ω
, (2.18)respe
tively.In order to �nd out ℑ(F), we need to 
ompute,

ℑ
[
lim
r→∞

1

2κ2

∫
ddq

(2π)d

(
1

2

m∑

I=1

NI(r)
d

dr
φI(r, ω, q)φI(r,−ω,−q)

)]
. (2.19)Now

d

dr
ℑ
( m∑

I=1

NI(r)
d

dr
φI(r, ω, q)φI(r,−ω,−q)

)

= ℑ
[ m∑

I=1

d

dr
(NI(r)

d

dr
φI(r, ω, q))φI(r,−ω,−q)

+
m∑

I=1

NI(r)
d

dr
φI(r, ω, q)

d

dr
φI(r,−ω,−q)

]
. (2.20)Using (2.10), right hand side of above equation redu
es to

ℑ
[
−

m∑

I,J=1

MIJ(r)φI(r, ω, q)φ
J(r,−ω,−q)+

m∑

I=1

NI(u)
d

dr
φI(r, ω, q)

d

dr
φI(r,−ω,−q)

]
,(2.21)whi
h is equal to zero sin
e the quantity in the bra
ket is real. Then (2.18)
an as well be 
al
ulated at the horizon i.e. at r = rh. This simpli�es
al
ulations signi�
antly. Regularity at the horizon implies

lim
r→rh

d

dr
φI(r) = −iω lim

r→rh

√
−grr
gtt
φI(r) +O(ω2). (2.22)Hen
e (2.18) redu
es to

ℑ
[
− iω lim

r→rh

1

2κ2

∫
ddq

(2π)d

√
−grr
gtt

(
1

2

m∑

I=1

NI(r)φI(r, ω, q)φI(r,−ω,−q)
)]

.(2.23)49



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialLet us note that, if we take the solutions of the form
φI(r, ω, q) =

m∑

A=1

ψI
A(r, ω, q)φ

0
A, (2.24)where

lim
r→∞

φI(r, ω, q) = φ0
I , (2.25)then we get

ℑ
(
FII

)
= ω

1

2κ2

√
−grr
gtt

m∑

A=1

1

2
NAψ

I
A(r)ψ

I
A(r)

∣∣∣∣∣
rh

, (2.26)and
ℑ
(
FIJ

)
= ω

1

2κ2

√
−grr
gtt

m∑

A=1

NAψ
I
A(r)ψ

J
A(r)

∣∣∣∣∣
rh

. (2.27)
• Single 
harge 
ase: For single 
harge 
ase, 
onsider φ(r) = ψ(r)φ0, thenwe get

ℑ
(
F
)
= ω

1

2κ2

√
−grr
gtt

1

2
N1ψ(r)ψ(r)

∣∣∣∣∣
rh

. (2.28)Using Eq.(2.16), we get
σ =

1

2κ2

√
−grr
gtt
N1ψ(r)ψ(r)

∣∣∣∣∣
rh

=
1

2κ2
G11(r) g

d−3
2

xx ψ2(r)
∣∣∣
r=rh

= σH ψ2(r)
∣∣∣
r=rh

, (2.29)where
σH =

1

2κ2
G11(r) g

d−3
2

xx

∣∣∣
r=rh

. (2.30)We 
an also 
ompute 
ondu
tivity at any arbitrary radius say at rc. This isgiven by
σ(rc) =

1

2κ2
G11(r) g

d−3
2

xx

∣∣∣
r=rh

[φ(r = rh)

φ(rc)

]2
. (2.31)Let us note that, at the horizon the expression for 
ondu
tivity (whi
h weshall 
all as horizon 
ondu
tivity) redu
es to σH , where as at the boundary
ondu
tivity is related to the horizon 
ondu
tivity by Eq.(2.28). 50
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• Imaginary part of 
ondu
tivity σ0(= ℑ(λ)): The imaginary part of the
ondu
tivity is

ℑ(λ) = 1

ωφ0
lim
r→∞

1

2κ2
N(r)

d

dr
φ(r). (2.32)Using Eq.(2.10) and Eq.(2.11), we 
an write

N(r)
d

dr
φ(r)|rh∞ = −(2κ2)2ρ2

∫ rh

∞
dr

grrgtt√−ggxx
φ(r), (2.33)whi
h implies 21

lim
r→∞

N(r)
d

dr
φ(r) = −(2κ2)2ρ2

∫ rh

∞
dr

grrgtt√−ggxx
φ(r). (2.34)De�ning φ(r) = ψ(r)φ0, we �nd

ℑ(λ) =
1

ωφ0
lim
r→∞

1

2κ2
N(r)

d

dr
φ(r)

= −2κ2ρ2
∫ rh

∞
dr

grrgtt√−ggxx
ψ(r). (2.35)In order to 
ompute imaginary part of 
ondu
tivity, we 
an use both Eq.(2.31)as well as Eq.(2.34).2.3 Ele
tri
al 
ondu
tivity for R-
harged bla
k holein 4,5,7 dimensions in asymptoti
ally AdS spa
eIn this se
tion we 
ompute ele
tri
al 
ondu
tivity for gauge theories dual to 4, 5, 7dimensional R-
harge bla
k branes22. We observe that the behavior of 
ondu
tivitywith temperature is σ ∼ T d−3 for d dimensional dual gauge theory whi
h alsofollows from dimensional analysis. For multi-
harge bla
k hole we get 
ondu
tivitymatrix whose o� diagonal parts 
omes solely due to e�e
tive intera
tion betweengauge �elds. We �rst 
ompute 
ondu
tivity with single 
hemi
al potential andthen turn to multiple 
hemi
al potential 
ases. In the following, we shall use radial
oordinate to be u for 
onvenien
e and we shall use notation κ2 = 8πGd+1 in d+1dimensions. In this 
oordinate system, u = 1 and u = 0 are respe
tively positionof horizon and boundary. The details of these ba
kground in 
oordinate system u
an be found in [34, 35, 33, 36℄ and are summarized in the Appendix.21Let us note that, N(r = rh) = 0, sin
e N(r) =

√−gG(r)gxxgrr and grr(r = rh) = 0, and atthe boundary if N(r → ∞) ∼ r1−n then φ(r → ∞) ∼ φ0 + φ1rn.22Bla
k branes in 4, 7 dimensions arise from rotating M2, M5 brane solutions in a similar as 5dimensional R-
harged bla
k brane arises whi
h is dis
ussed in 
hapter 1 se
tion 1.5.2. 51



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potential2.3.1 Single 
harge bla
k hole in various dimensionFor single 
harge bla
k hole one �nds
(φ1)

′′ +

(
f ′

f
+
H ′

1

H1
− c

u

)
(φ1)

′ − aub(1 + k1)

fH2
1

(
k1φ1

)
= 0. (2.36)The expression for 
ondu
tivity redu
es to

σ =
1

8πGd+1

[√
−guu
gtt

N(u)φ(u, ω, q)φ(u,−ω,−q)
(φ)0(φ)0

]

u→1,q→0

. (2.37)In this 
ase we have σH =
[

1
8πGd+1

√
−guu

gtt
N(u)

]
u→1

.

• D=4: In this 
ase one gets c = 0, a = 1, b = 2. Relevant parts are
σH =

N
3
2

24
√
2π

(1 + k)
3
2 , (2.38)

φ(u) = φ01 +
2ku
3

1 + ku
(2.39)whi
h implies

σ =
(3 + 2k)2N

3
2

63π
√
2(1 + k)

. (2.40)We see that for three dimensional gauge theory, 
ondu
tivity is independent oftemperature. Now we 
an 
ompare this result with the the result for µ = 0, 
ase.
σµ
σµ=0

=
(1 + 2k

3
)2√

1 + k
≥ 1. (2.41)Sin
e there exist a 
riti
al line k = 3

2
[58℄, one 
an not make 
ondu
tivityarbitrarily large. This dis
ussion also holds true for rest of the 
ases with onlydi�eren
e in lo
ation of 
riti
al line.

• D=5: Here c = 0, a = 1, b = 1 . Summary of the results are
σH =

N2T0(1 + k)
3
2

16π
, (2.42)

φ(u) = φ0

1 + ku
2

1 + ku
. (2.43)So one gets 
ondu
tivity

σ =
(2 + k)2N2T0

64π
√
(1 + k)

=
N2TH(2 + k)

32π
. (2.44)where TH = (2+k)T0

2
√
1+k

is the Hawking temperature of the bla
k hole. 52
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• D=7: In this 
ase c = −1, a = 4, b = 3 . Relevant parts are

σH =
4N3T 3

0 (1 + k)
3
2

81
, (2.45)

φ(u) = φ0

1 + ku2

3

1 + ku2
. (2.46)Condu
tivity in this 
ase is given by

σ =
4(3 + k)2N3T 3

0

36
√

(1 + k)
=

4N3T 3
H(1 + k)

27(3 + k)
. (2.47)where TH = (3+k)T0

3
√
1+k

is the Hawking temperature of the bla
k hole.2.3.2 Two 
harge bla
k hole in various dimensionNow we turn to 
ases where two 
hemi
al potentials are turned on in the boundarygauge theory. Di�erential equations are23
(φ1)

′′ +

(
f ′

f
+ 2

H ′
1

H1

− H′

H − c

u

)
(φ1)

′

−au
b(1 + k1)(1 + k2)

fH2
1

[
k1φ1 +

√
k1k2 φ2

]
= 0, (2.48)and

(φ2)
′′ +

(
f ′

f
+ 2

H ′
2

H2
− H′

H − c

u

)
(φ2)

′

−au
b(1 + k1)(1 + k2)

fH2
2

[
k2φ2 +

√
k1k2 φ1

]
= 0, (2.49)Note that σH,ii =

[
1

8πGd+1

√
−guu

gtt
Ni(u)

]
u→1

where Ni =
fH2

i

umH . Now we 
ompute
ase by 
ase.
• D=4: Here one has c = 0, a = 1, b = 2 . Solutions are

φ1 =
(a0 +

2a0k1−b0
√
k1k2

3
u)

1 + k1u
, φ2 =

(b0 +
2b0k2−a0

√
k1k2

3
u)

1 + k2u
, (2.50)and

σH,ii =
N

3
2 (1 + ki)

2

24π
√
2(1 + k1)(1 + k2)

. (2.51)23These form of equations are di�erent than the form written in [41℄ , be
ause as mentionedearlier that we have done a res
aling. 53



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialUsing these we get following form of 
ondu
tivity.



N
3
2 (9+(12+k2)k1+4k21)

63π
√

2(1+k1)(1+k2)
−2N

3
2
√
k1k2(3+k1+k2)

63π
√

2(1+k1)(1+k2)

−2N
3
2
√
k1k2(3+k1+k2)

63π
√

2(1+k1)(1+k2)

N
3
2 (9+(12+k1)k2+4k22)

63π
√

2(1+k1)(1+k2)


 .

• D=5: Here we have c = 0, a = 1, b = 1. In this 
ase solutions are
φ1 =

(a0 +
a0k1−b0

√
k1k2

2
u)

1 + k1u
, φ2 =

(b0 +
b0k2−a0

√
k1k2

2
u)

1 + k2u
. (2.52)Where as

σH,ii =
N2T0(1 + ki)

2

16π
√
(1 + k1)(1 + k2)

. (2.53)So we get 
ondu
tivity as



(4+k21+k1(4+k2))N2To

64π
√

(1+k1)(1+k2)
− (4+k1+k2)N2To

64π

√
k1k2

(1+k1)(1+k2)

− (4+k1+k2)N2To

64π

√
k1k2

(1+k1)(1+k2)

(4+k22+k2(4+k1))N2To

64π
√

(1+k1)(1+k2)


 .So σ in
reases linearly with TH .

• D=7: In this 
ase c = −1, a = 4, b = 3. Solutions are
φ1 =

(a0 +
a0k1−2b0

√
k1k2

3
u2)

1 + k1u2
, φ2 =

(b0 +
b0k2−2a0

√
k1k2

3
u2)

1 + k2u2
(2.54)Now

σH,ii =
4N3T 3

0 (1 + ki)
2

81
√
(1 + k1)(1 + k2)

. (2.55)Using these one �nds 
ondu
tivity matrix as



4(9+k1(k1+4k2+6))N3T 3
o

36
√

(1+k1)(1+k2)
− (6+k1+k2)N3T 3

o

36

√
k1k2

(1+k1)(1+k2)

− (6+k1+k2)N3T 3
o

36

√
k1k2

(1+k1)(1+k2)
4(9+k2(k2+4k1+6))N3T 3

o

36
√

(1+k1)(1+k2)


 .

• Noti
e that o� diagonal 
omponents of the 
ondu
tivity matrix are negativebut they are important, and plays 
ru
ial role.
• Observe that o� diagonal 
omponents goes as

σij ∼ ΩiΩjT
d−3, (2.56)54



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere Ωi =
µi

2πT
. So swit
hing o� one of the 
hemi
al potential will make itzero, where as diagonal parts of 
ondu
tivity goes as σii ∼ T d−3fii(Ω1,Ω2),where fii(0, 0) 6= 0 (µ = 0, implies total 
harge density is zero i.e. thereexist equal number of positive as well as negative 
harge and applying ex-ternal ele
tri
 �eld will indu
e �ow of both in opposite dire
tion whi
h will
ontribute to ele
tri
al 
urrent). Sin
e 
harged parti
les moves in oppositedire
tion, there will be 
ollisions among them and it ensures �nite 
ondu
-tivity. As one in
reases µ, 
ondu
tivity should in
rease as relative numberof 
ollisions between opposite 
harges are less 
ompared to zero 
hemi
alpotential 
ase.2.3.3 Three 
harge bla
k hole in various dimensionNow we turn to three 
harge bla
k hole 
ases. General form of di�erential equationsare

(φi)
′′ +

(
f ′

f
+ 2

H ′
i

Hi
− H′

H

)
(φi)

′ −
ub

3∏
j=1

(1 + kj)
√
ki

fH2
i

[ 3∑

j=1

√
kjφj

]
= 0, (2.57)where i takes value up to three.

• D=4: For this 
ase the one gets b = 2 . Relevant results in this 
ase are
φi =

[
3φ0

i +
√
ki

(
3
√
kiφ

0
i −

3∑
j=1

√
kjφ

0
j

)
u
]

3(1 + kiu)
, σH,ii =

N
3
2 (1 + ki)

2

24π

√
2

3∏
j=1

(1 + kj)

,(2.58)where φ0
i is the boundary value of ith perturbed gauge �eld.Let us introdu
e, σij = N

3
2

63π
√

2(1+k1)(1+k2)(1+k3)
σ0
ij , where σ0

ij , is given by




9 + (12 + k2 + k3)k1 + 4k21 −
√
k1k2(6 + 2k1 + 2k2 − k3) −

√
k1k3(6 + 2k1 + 2k3 − k2)

−
√
k1k2(6 + 2k1 + 2k2 − k3) 9 + (12 + k1 + k3)k2 + 4k22 −

√
k2k3(6 + 2k2 + 2k3 − k1)

−
√
k1k3(6 + 2k1 + 2k3 − k2) −

√
k2k3(6 + 2k2 + 2k3 − k1) 9 + (12 + k1 + k2)k3 + 4k23




.

• D=5: For this 
ase b = 1. Results needed for 
ondu
tivity 
al
ulation are
φi =

[
2φ0

i +
√
ki

(
2
√
kiφ

0
i −

3∑
j=1

√
kjφ

0
j

)
u
]

2(1 + kiu)
, σH,ii =

N2T0(1 + ki)
2

16π
√

(1 + k1)(1 + k2)(1 + k3)
.(2.59)55



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialDe�ning as before σij = N2T0

64π
√

(1+k1)(1+k2)(1+k3)
σ0
ij , where σ0

ij is given by




4 + k21 + k1(4 + k2 + k3) −
√
k1k2(4 + k1 + k2 − k3) −

√
k1k3(4 + k1 + k3 − k2)

−
√
k1k2(4 + k1 + k2 − k3) 4 + k22 + k2(4 + k1 + k3) −

√
k2k3(4 + k2 + k3 − k1)

−
√
k1k3(4 + k1 + k3 − k2) −

√
k2k3(4 + k2 + k3 − k1) 4 + k23 + k3(4 + k1 + k2)



2.3.4 Four 
harge bla
k holeDi�erential equations are
(φi)

′′ +

(
f ′

f
+ 2

H ′
i

Hi
− H′

H

)
(φi)

′ −
u2

4∏
j=1

(1 + kj)
√
ki

fH2
i

[ 4∑

j=1

√
kjφj

]
= 0, (2.60)and solutions are

φi =

[
3φ0

i +
√
ki

(
3
√
kiφ

0
i −

4∑
j=1

√
kjφ

0
j

)
u
]

3(1 + kiu)
, σH,ii =

N
3
2 (1 + ki)

2

24π

√
2

4∏
j=1

(1 + kj)

. (2.61)Using these we get following form of 
ondu
tivity.
σij =

N
3
2

63π
√
2(1 + k1)(1 + k2)(1 + k3)(1 + k4)

σ0
ij . (2.62)Where

σ0
ii = 9 +

(
12 +

4∑

j=1

kj

)
ki + 3k2i and σ0

ij = −
(
6−

4∑

l=1

kl + 3
(
ki + kj

))
.

• Some spe
ial 
ases : Using above results one 
an study spe
ial 
ases su
has e�e
t of small 
hemi
al potential or the 
ase with equal 
hemi
al poten-tial. Let us note that in the 
ase when all the 
hemi
al potential are equalthen there exist no se
ond order phase transition. In this 
ase, temperaturei.e. T ≥ 0 gives a 
onstraint on the possible maximum value of 
hemi
alpotential.Note that as T → 0, σ → 0 quadrati
ally in the parameter k, irrespe
tive ofwhi
h dimension we are in24.24Determinant of 
ondu
tivity matrix for general µ also vanishes in similar way on
e we ap-proa
h extremality even for M2 brane 
ase where 
ondu
tivity is independent of temperature. 56



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialDimension Constraint(T ≥ 0) σ5 k ≤ 2 3(2−k)2N2T0

32π(1+k)
3
24 k ≤ 3 (3−k)2N
3
2

27
√
2(1+k)2π7 k ≤ 3

16(3−k)2N3T 3
0

729(1+k)Table 2.1: Condu
tivity at equal 
harges2.4 Relating boundary and horizon ele
tri
al 
on-du
tivity:In this se
tion we re
onsider the examples of previous se
tion (all are asymptot-i
ally AdS spa
es) and show that for ea
h 
ase there exist a universal relationbetween boundary and horizon 
ondu
tivity. We tabulate the results below (see[54℄).Gravity theory in d+ 1 dimension σH σH(
sT
ǫ+P

)2 σBR-
harge bla
k hole in 4 + 1 dim. N2T (1+k)2

16π(1+ k
2
)

N2T (2+k)
32π

N2T (2+k)
32πR-
harge bla
k hole in 3 + 1 dim. N

3
2

24
√
2π
(1 + k)

3
2

(3+2k)2N
3
2

63π
√

2(1+k)

(3+2k)2N
3
2

63π
√

2(1+k)R-
harge bla
k hole in 6 + 1 dim. 4N3T 3(1+k)3

81(1+ k
3
)3

4N3T 3(1+k)
27(3+k)

4N3T 3(1+k)
27(3+k)Reissner-Nordstrom bla
k hole in 3 + 1 dim. 1

g2
1
g2
( sT
ǫ+P

)2 1
g2
( sT
ǫ+P

)2Table 2.2: Real part of ele
tri
al 
ondu
tivity at the horizon (σH) and at theBoundary (σB) are related by σB = σH

(
sT
ǫ+P

)2.
• Single 
harge: We propose based on the observation in Table 2.2 that forthe gauge theory with single 
hemi
al potential the expression for real partof the 
ondu
tivity is given by

σB =
1

2κ2
G11 g

d−3
2

xx

∣∣∣∣∣
rh

( sT

ǫ+ P

)2

= σH

( sT

ǫ+ P

)2
, (2.63)57



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere s, T, P, ǫ are entropy, temperature, pressure and energy density of theboundary �uid respe
tively. We observe that boundary 
ondu
tivity 
an beexpressed in terms of geometri
al quantities evaluated at the horizon andsome 
ombination of other thermodynami
 quantities.
• Multiple 
harge: For multiple 
harge 
ase (say there are m number of
hemi
al potential present in the gauge theory side), then boundary 
ondu
-tivity is m×m symmetri
 matrix (see [48℄) where as horizon 
ondu
tivity is
m×m diagonal matrix. One 
an 
he
k by expli
it 
omputation that in ea
h
ase the relation

1

ρIσ
−1
IJ ρJ

=
1

ρIσ
−1
H,IIρI

( sT

ǫ+ P

)2
, (2.64)holds where σIJ and σH,II are boundary and horizon 
ondu
tivity respe
-tively. For the a
tion of the form Eq.(2.1), the expression for horizon 
on-du
tivity 
an be written as

σH,II =
1

2κ2
GII g

d−3
2

xx

∣∣∣∣∣
rh

. (2.65)Let us note that this expression redu
es to Eq.(2.62) in the 
ase when single
hemi
al potential is present. As dis
ussed in se
tion 1.5 and Appendix.B.that, one 
an restri
t attention to the diagonal U(1) 
ase where one obtainsReissner-Nordstrom solution. In the next se
tion, we fo
us our attention ongeneral Reissner-Nordstrom solution where one 
an show that the form of
ondu
tivity is again given by Eq.(2.62). In other words, the 
ondu
tivityobtained from setting all the 
harges same for R-
harge bla
k hole is 
onsis-tent with that obtained from the Reissner-Nordstrom bla
k hole.2.5 Reissner-Nordstrom bla
k hole in arbitrary di-mension:In this se
tion our main fo
us will be on the Reissner-Nordstrom bla
k branes invarious dimensions. For 
omputation in four dimension see [32, 59, 60℄. Our mainaim is to 
he
k the validity of Eq.(2.62). A
tion for Reissner-Nordstrom 
ase isgiven by
S =

∫
dd+1x

√−g
[ 1

2k2
(R +

d(d− 1)

L2
)− 1

4g2
F 2
]
. (2.66)The expression for the metri
 and gauge �eld for Reissner-Nordstrom bla
k holein arbitrary dimension are

ds2 =
L2

r2

(
− f(r)dt2 +

dr2

f(r)
+

d−1∑

i=1

dxidxi
)
, (2.67)58



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialand
At = µ

[
1− (

r

r+
)d−2

]
, (2.68)where f(r) = 1 − (1 +

r2+µ2

γ2 )( r
r+
)d +

r2+µ2

γ2 ( r
r+
)2(d−1) and γ2 = (d−1)g2L2

(d−2)k2
. Let us notethat boundary is at r = 0 and µ and r+ are 
hemi
al potential and horizon radiusrespe
tively. Various thermodynami
 quantities are given by

P =
Ld−1

2k2rd+
(1 +

r2+µ
2

γ2
); ρ = (d− 1)

Ld−1

k2rd−2
+

µ

γ2
, (2.69)and

T =
1

4πr+

[
d− (d− 2)r2+µ

2

γ2

]
, s =

2π

k2
Ld−1

rd−1
+

. (2.70)In order to 
ompute the ele
tri
al 
ondu
tivity we have to solve the Eq.(2.10) forthis ba
k ground. The Eq.(2.10) takes the form (in ω → 0 limit)
d

dr
(
f(r)

rd−3

d

dr
φ(r)) +

2k2µ2(d− 2)2rd−1

g2L2r
2(d−2)
+

φ(r) = 0. (2.71)The solution takes the form
φ(r) = φ0

(
1− rd−2 2(d− 1)(d− 2) k2µ2r4−d

+

d [g2 L2 (d− 1) + (d− 2) k2µ2r2+]

)
, (2.72)where φ0 is the boundary value of the perturbed �eld φ(r). Now a

ording toEq.(2.28)

σ = σH

(
φ(r = rH)

φ0

)2

= σH

(
(d− 1)dg2L2 − (d− 2)2k2µ2r2+
d[(d− 1)g2L2 + (d− 2)k2µ2r2+]

)2

. (2.73)Now using the fa
t that ǫ = (d−1)P and the thermodynami
 quantities in Eq.(2.68)and Eq.(2.69) we 
an express right hand side of Eq.(2.72) as
σ = σH

(
sT

ǫ+ P

)2

. (2.74)So we have shown expli
itly that for Reissner-Nordstrom bla
k hole in any dimen-sion, the expression for 
ondu
tivity in Eq.(2.62) is valid. In the following we shall
he
k again whether the form of 
ondu
tivity in Eq.(2.62) holds if we 
onsidernon-
onformal boundary theory and its dual. 59



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potential2.6 Ele
tri
al 
ondu
tivity for non-
onformal bound-ary theoryAll the examples that we have dis
ussed till now are for asymptoti
ally AdS spa
etime whi
h 
orresponds to boundary theory to be 
onformal. In view of relationEq.(2.62), a natural question arises whether similar relation holds for other knowngravity theories whi
h is supposed to have gauge theory dual. Re
ently in [61℄,authors studied ele
tri
al 
ondu
tivity for 
harged D1 brane. In the following weshall 
he
k that their results does obey Eq.(2.62). However, before pro
edding letus note that for D1 brane, it is not possible to have perturbation like hx1x2 asde�ned in Eq.(??) sin
e there is only one spatial dimension. However, our analysis
ontinues to hold here sin
e as we saw, in the limit of zero spatial monetum hx1x2,does not play any role. After analysing D1 brane, we shall 
he
k expli
itly thevalidity of Eq.(2.62) and Eq.(2.63) for non-
onformal gauge theories dual to general
harged Dp brane.
• Ele
tri
al 
ondu
tivity for 
harged D1 brane: Let us 
onsider thefollowing a
tion

I =
1

16πG3

∫
d3x

√−g
[
R(g)− 8

9
∂µφ∂

µφ− 1

4
Ψ2e−

4
3
φFµνF

µν

− 1

2Ψ2
∂µΨ∂

µΨ+
2

3Ψ
∂µφ∂

µΨ+
12

L2
e

4
3
φ(1 + Ψ−1)

]
. (2.75)In the following dis
ussion, the radial 
oordinate is r and rh is the positionof horizon. The boundary is at r → ∞. The metri
, gauge �eld and s
alar�elds are given by

ds2 =
(
−c2Tdt2 + c2Xdz

2 + c2Rdr
2
)
, (2.76)

c2T =
( r
L

)8
K, c2X =

( r
L

)8
H, c2R =

H

K

( r
L

)2
,

At = − r30l

L2(r2 + l2)
, φ = −3 log

( r
L

)
, Ψ = 1 +

l2

r2
.Here H and K are de�ned as

H = 1 +
l2

r2
, K = 1 +

l2

r2
− r60
r6
. (2.77)Di�erent thermodynami
 quantities are given by,

T =
1

2πL3

r5h
r30
(3 + 2k), s =

1

4G3

r30rh
L4

, (2.78)60
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tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere k is given by
k =

l2

r2h
, (2.79)and rh is the radius of the horizon whi
h is given by the largest root of theequation

r6h + r4hl
2 − r60 = 0. (2.80)The energy density (ǫ) and the pressure (p) is given by

ǫ =
1

4πG3

r60
L7
, p =

1

8πG3

r60
L7

=
ǫ

2
. (2.81)The 
harge density ρ and its 
onjugate the 
hemi
al potential µ are given by

ρ =
1

8πG3

r30l

L5
, µ = At(r)

∣∣∣
r→∞

− At(r)
∣∣∣
rh

=
lr4h
L2r30

. (2.82)So 
ondu
tivity should be ,
σ =

1

16πG3

1

g2eff
g
− 1

2
xx

∣∣∣
r=rh

( sT

ǫ+ P

)2

=
1

16πG3

Ψ2e−
4
3
φg

− 1
2

xx

∣∣∣
r=rh

( sT

ǫ+ P

)2

=
1

16πG3

(2k + 3)2

9
√
1 + k

, (2.83)whi
h is same as the one 
omputed in [61℄. In that paper authors also
omputed ele
tri
al 
ondu
tivity for four equal 
harge 
ase. The resultsfollow from Eq.(2.62) in a straight forward manner.Now we shall 
he
k Eq.(2.62) and Eq.(2.63) for general Dp branes.2.6.1 Charged Dp braneLet us 
onsider the ba
kground obtained from Kaluza-Klein spheri
al redu
tion ofrotating bla
k Dp brane to d dimension (see for details [62, 63, 64℄).
ds2 = −(g r)

n+1
d−2 h−

d−3
d−2f(r)dt2 + (g r)

n+1
d−2 h

1
d−2

p∑

i=1

dx2i + (g r)1−n+n+1
d−2 h

1
d−2

1

f(r)
dr2,(2.84)where

f(r) = h− 2m

rn−1
, h =

b∏

i=1

(1 +Hi), Hi = 1 +
l2i
r2
, (2.85)61



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere b is the number of independent gauge �elds (whi
h is same as numberof independent rotations that a higher dimensional Dp brane 
an have before
ompa
ti�
ation). The a
tion is of the form
S =

1

16πG

∫
dp+2x

√−g
[
R− 1

4

b∑

i=1

1

X2
i

F i
µνF

i µν + all the other terms..
]
, (2.86)where

Xi = g
− a2(D−2)

4(d−2) r
− a2(D−2)

4(d−2) h
d−3

2(d−2)
1

Hi
, (2.87)and

Ai
t = −

√
2mg

n−3
2

1− 1
Hi

li
. (2.88)In the following we de�ne all the required thermodynami
 quantities. The expres-sion for 
harge density is,

ρi =
1

8πG

√
2mg

n+3
2 li, (2.89)the 
hemi
al potentials are given by

µi =
√
2mg

n−3
2

li
r2hHi(rh)

. (2.90)The Hawking temperature is given by
T =

√
m√

2πrh
g

n−1
2 (

n− 1

2
− 1

r2h

b∑

j=1

l2i
Hi(rh)

). (2.91)The expression for entropy and other required quantities are
s =

1

4G
g

n+1
2 rh

√
2m, ǫ+ P =

(n− 1)m

8πG
gn. (2.92)The equation25 that we have to solve in order to �nd out 
ondu
tivity is given by

d

dr
(Ni

d

dr
φi(r)) +

m∑

j=1

Mijφj(r) = 0. (2.93)where
Ni =

√−g 1

X2
i

gxxgrr, (2.94)and
Mij = F i

rt

√−g 1

X2
i

gxxgrrgtt
1

X2
j

F j
rt. (2.95)25Unless expli
itly mentioned, there is no sum over repeated indi
es i, j. 62



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialPlugging the ba
kground values we 
an show
Ni = g3r3f(r)H2

i

1

h
, Mij = −8m li ljg

3r−n 1

h
. (2.96)

• Single 
harge 
ase: Here one 
an easily 
he
k that
σ =

1

16πG

1

X2
g

p−2
2

xx

∣∣∣
rh

( sT

ǫ+ P

)2
. (2.97)

• Multi 
harge 
ase: The expression for ele
tri
al 
ondu
tivity at the horizonis given by,
σH,ii =

1

16πG
Gii(r) g

p−2
2

xx

∣∣∣
r=rh

=
1

16πG

1

X2
i

g
p−2
2

xx

∣∣∣
r=rh

=
g

7−n
2 r3hH

2
i (rh)

16
√
2m πG

. (2.98)For simpli
ity we just give example of D1 brane and a general result will bepresented in the next 
hapter.
• D1 brane with four unequal 
harges: In this 
ase, the 
oupled set ofequations for ith �eld are given by

d

dr
(Ni

d

dr
φi(r)) +

4∑

j=1

Mijφj(r) = 0, (2.99)where index i, 
an take value from 1 to 4 (there is no sum over i in the above)and
Ni = g3r3f(r)H2

i

1

h
, Mij = −8m li ljg

3r−7 1

h
, h =

4∏

i=1

(1 +Hi). (2.100)Demanding regularity (in going boundary 
ondition) at the horizon and atthe boundary φi = φ0
i , we get the solution to 4 
oupled equation to be
φi =

φ0
i +

li
6r2

(6liφ
0
i − 2

∑4
j=1 φ

0
j lj)

H2
i

. (2.101)The expression for diagonal part of ele
tri
al 
ondu
tivity is given by
σii =

9r4h + 12r2hl
2
i + 3l4i + l2i

∑4
j=1 l

2
j

144
√
2m πGrh

, (2.102)63



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere as o� diagonal part of the 
ondu
tivity is given by
σij = − lilj

144
√
2m πGrh

(6r2h +
4∑

k=1

l2k − 3(l2i + l2j )). (2.103)We 
an now expli
itly 
he
k that, for multi 
harge 
ase
ρiσ

−1
ij ρj = ρiσ

−1
H,iiρi

(
ǫ+ P

sT

)2

, (2.104)where
σH,ii =

r3hH
2
i (rh)

16
√
2m πG

, (2.105)is the ele
tri
al 
ondu
tivity evaluated at the horizon and depends only onthe geometri
al quantities evaluated at the horizon.To 
on
lude, we have 
he
ked that, at and away from 
onformality the form ofboundary 
ondu
tivity is given by Eq.(2.62) and Eq.(2.63). Next we shall 
he
kwhether the general form of 
ondu
tivity holds for Lifshitz like bla
k holes. Firstwe give a brief details of Lifshitz like bla
k holes and then we shall 
ompute 
on-du
tivity for both 
harged and un
harged 
ases.2.7 Lifshitz like bla
k holes:Due to possible appli
ations in 
ondensed matter systems, there have been lotsof work [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76℄ going on to understandtransport properties of gauge theories dual to both un
harged and 
harged Lifshitzlike bla
k holes. Motivated by this, our aim in this se
tion is to explore ele
tri
al
ondu
tivities for these 
lass of bla
k holes. This se
tion is organized as follows.First we review the geometry and thermodynami
s of un
harged Lifshitz like bla
kholes. Then we dis
uss transport 
oe�
ients su
h as ele
tri
al 
ondu
tivity. Forthe 
harged Lifshitz 
ase, after dis
ussing geometry and thermodynami
s, we fo
usour attention to the 
omputation of ele
tri
al 
ondu
tivity.2.7.1 Un
harged Lifshitz bla
k holes:The metri
 for this 
ase is given by
ds2 = L2[− r

2z
0

u2z
f(u)dt2 +

du2

u2f(u)
+
r20
u2

d∑

i=1

dx2i ], f(u) = 1− uz+d. (2.106)64



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialThe horizon is lo
ated at u = 1 and the boundary at u = 0. We take un
hargedLifshitz bla
k brane metri
 in Eq.(2.105) as the ba
kground and treat the Maxwella
tion
SF = − 1

4g2d+2

∫
dd+2x

√−gFµνF
µν (2.107)as perturbations. Here gd+2 denotes the gauge 
oupling 
onstant. The Maxwellequation is

1√−g∂µ(
√−gF µν) = 0. (2.108)The ele
tri
al 
ondu
tivity reads

σB =
1

g2d+1

G(u) g
d−3
2

xx

[φ(u)
φ0

]2∣∣∣
u=1

. (2.109)At ω → 0 , to get 
ondu
tivity we need to solve
d

du
(N

d

du
φ(u)) = 0, (2.110)where N(u) =

√−g 1
g2d+1

gxxguu. Solution of Eq.(2.109) that is regular at the horizonis given by φ(u) = φ0, where φ0 is the boundary value of the perturbed �eld. Sin
eat zero 
hemi
al potential, 
ondu
tivity at the horizon and at the boundary arethe same (as φ(u = 1) = φ(u = 0)), we get
σH = σB

=
1

g2d+2

g
d−2
2

xx

∣∣∣
u=1

, (2.111)whi
h upon using metri
 (2.105), gives
σ =

1

g2d+2

(Lr0)
d−2 = (

4π

z + d
)
d−2
z T

d−2
z . (2.112)Where we have used rz0 = 4π

z+d
T . Using the de�nition of ρ

µ
one �nds,

ρ

µ
=

[ ∫ ∞

r0

dr
grrgttg

2
d+1(r)√−g

]−1

=
Ld−2

g2d+2

(d− z)rd−z
0 . (2.113)For these 
lass of bla
k hole, we have

ǫ =
d

z
P, ǫ+ P = Ts. (2.114)65
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tri
al 
ondu
tivity at �nite 
hemi
al potentialTaking P = c
′

T
d+z
z we get s = c

′ z+d
z
T

d
z . Moreover rz0 = 4π

z+d
T , so that we 
an write

χ =
Ld−2

g2d+2

(d− z)(
4π

z + d
)
d−z
z T

d−z
z

= k
′

T
d−z
z . (2.115)In this notation the 
ondu
tivity 
an be expressed as

σ = k
′ 1

d− z
(

4π

z + d
)
z−2
z T

d−2
z

=
1

d− z
(

4π

z + d
)
z−2
z χ T

z−2
z . (2.116)2.7.2 Charged Lifshitz bla
k holes:It was noted in [70℄ that the following a
tion

S =
1

16πGd+2

∫
dd+2x

√−g(R− 2Λ− 1

4
F 2 − 1

2
m2A2) (2.117)admits (d+ 2)−dimensional Lifshitz spa
e-time with arbitrary z

ds2 = L2(−r2zdt2 + 1

r2
dr2 + r2

d∑

i=1

dx2i ) (2.118)as a solution. If one adds a se
ond Maxwell �eld (F1) i.e.
S =

1

16πGd+2

∫
dd+2x

√−g(R − 2Λ− 1

4
F 2 − 1

2
m2A2 − 1

4
F 2
1 ), (2.119)then the metri
 of the bla
k hole turns out to be ,

ds2 = L2(−r2zdt2 + 1

r2
dr2 + r2

d∑

i=1

dx2i ), f(r) = 1− q2

2d2rz
. (2.120)The mass parameter and the 
osmologi
al 
onstant are given by

m2 =
zd

L2
, Λ = − 1

2L2
[z2 + z(d− 1) + d2], (2.121)while the massive ve
tor �eld and the se
ond Maxwell �eld strength are given by

At =

√
2(z − 1)

z
Lrzf(r), F1 rt = qLrz−d−1. (2.122)66



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialLet us note that in the above z = 2d and rz0 ≡ q2/2d2.When z = 1, the above ansatz leads to
ds2 = L2[−r2f(r)dt2 + dr2

r2f(r)
+ r2

d∑

i=1

dx2i ], f(r) = 1− m

rd+1
+

q2

2d(d− 1)r2d
,(2.123)and

At = 0, Frt = 0, (2.124)whi
h is nothing but asymptoti
ally AdS bla
k brane. The se
ond Maxwell �eldand the 
osmologi
al 
onstant are given by
F1 rt =

qL

rd
, Λ = −d(d+ 1)

2L2
. (2.125)In order to 
omplete our dis
ussion on 
harged Lifshitz bla
k hole, we nowdis
uss thermodynami
s of these solutions. The temperature and entropy are givenby

T =
z

4π
rz0, SBH =

LdVd
4Gd+2

rd0, (2.126)where rz0 ≡ q2/2d2 and Vd denotes the volume of the d−dimensional spatial part.Let us note that
χ =

ρ

µ

=
1

16πGd+2
(z − d)Ld−2rd−z

0

=
1

16πGd+2
(z − d)Ld−2(

4π

z
)
d−z
z T

d−z
z , (2.127)and

ρµ =
1

16πGd+2

q2Ld

z − d
rz−d
0 . (2.128)Now assuming that the �rst law of thermodynami
s is satis�ed we get,

ǫ+ P =
1

8πGd+2

zLdr3d0 . (2.129)2.7.3 Ele
tri
al 
ondu
tivityFor 
onvenien
e we shall use the 
oordinates u = ( r0
r
)
z
2 . In this 
oordinate, f(u) =

1− u2. Using the di�erential Eq.(2.10) we rea
h at,
d2

du2
φ(u) + (

1

f(u)

df(u)

du
+

4− 2z

zu
)φ(u)− 2

f(u)
φ(u) = 0. (2.130)67



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialThe solution that satis�es regularity at the horizon takes the form
φ(u) = −φ0

u
−4+3z

z Γ
[
−1

2
+ 2

z

]
Γ
[
5
4
− 1

z
−

√
16−8z−7z2

4z

]
Γ
[
5
4
− 1

z
+

√
16−8z−7z2

4z

]

Γ
[
5
2
− 2

z

]
Γ
[
−1

4
+ 1

z
−

√
16−8z−7z2

4z

]
Γ
[
−1

4
+ 1

z
+

√
16−8z−7z2

4z

]

2F1

[
5

4
− 1

z
−

√
16− 8z − 7z2

4z
,
5

4
− 1

z
+

√
16− 8z − 7z2

4z
,
5

2
− 2

z
, u2
] (2.131)

+φ0 2F1

[
−1

4
+

1

z
−

√
16− 8z − 7z2

4z
,−1

4
+

1

z
+

√
16− 8z − 7z2

4z
,−1

2
+

2

z
, u2
]
,where φ0 is the boundary value of φ(u). The boundary 
ondu
tivity is given by

σB = σH(
φ(u = 1)

φ(u = 0)
)2

=
1

16πGd+2

(Lr0)
d−2(

φ(u = 1)

φ(u = 0)
)2. (2.132)To 
ompute 
ondu
tivity we need to 
al
ulate (φ(u=1)

φ(u=0)
)2.

• z = 4, d = 2: In this 
ase (φ(u=1)
φ(u=0)

)2 ≈ 0.24, so that 
ondu
tivity is given by
σB = 0.24 σH

=
0.24

16πGd+2
. (2.133)

• z = 6, d = 3: Here (φ(u=1)
φ(u=0)

)2 ≈ 0.27, whi
h gives
σB = 0.27 σH

=
0.27

16πGd+2
(Lr0)

=
0.27

16πGd+2
L(

2π

3
)
1
6T

1
6 . (2.134)In general the 
ondu
tivity 
an be written as

σB = C χ (
4π

z
)
z−2
z T

z−2
z , (2.135)where C = (φ(u=1)

φ(u=0)
)2. It is important to note that above expressions only depends ontemperature (no dependen
e in 
hemi
al potential), sin
e 
harge and temperatureare related by T = q2

2πz
. 68



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialLet us note that using Eq.(2.125) and Eq.(2.128), Eq.(2.62) gives
σBoundary =

(sT )2

(ǫ+ P )2
σHorizon

= 0.25 σH , (2.136)whi
h is independent of z, d. What we observe is that, ele
tri
al 
ondu
tivityof 
harged Lifshitz like bla
k holes given in Eq.(2.132) and in Eq.(2.133) di�ersslightly from Eq.(2.135).2.8 Radial evolution of ele
tri
al 
ondu
tivityThe aim of this se
tion is to study ele
tri
al 
ondu
tivity at any radial position
r. To make life simple, we shall 
onsider single 
harged asymptoti
ally AdS bla
khole to �nd out the form of 
ondu
tivity. As we shall see, at any radial position
r, the 
ondu
tivity is given by a simple expression whi
h interpolates smoothlybetween the one 
omputed at the horizon and at the boundary.2.8.1 Relation between universal 
ondu
tivity of stret
hedhorizon and boundary 
ondu
tivityConsider the Maxwell part of the a
tion of the form

S = −
∫
dd+1x

√−g 1

4g2d+1(r)
FMNF

MN , (2.137)where g2d+1(r) in general is a r dependent 
oupling26. The ele
tri
al 
ondu
tivityat any radius is given by (see Eq.(2.30) and for further details see [57, 48℄)
σ(rc) =

(
1

4g2d+1(r)
g

d−3
2

xx

)

r=rh

[φ(r = rh)

φ(rc)

]2
. (2.138)Let us note that at the horizon 
ondu
tivity is

σ(rc = rh) =

(
1

4g2d+1(r)
g

d−3
2

xx

)

r=rh

, (2.139)whi
h is entirely given by geometri
al quantities evaluated at the horizon. In orderto understand radial evolution of 
ondu
tivity we 
onsider the 
ases with vanishingand non-vanishing 
hemi
al potential separately.26Let us note that, in the notation used in Eq.(1.69), 1
4g2

d+1
(r)

≡ G(r) 69



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potential2.8.2 Radial evolution of 
ondu
tivity at zero 
hemi
al po-tentialLet us note that at vanishing 
hemi
al potential, the term M(r) = 0 in Eq.(2.10).If we impose in going boundary 
ondition at the horizon and impose φ(r → ∞) =
φ0, at the boundary , then one 
an show that solution to Eq.(2.10) is given by
φ(r) = φ0, at any radius i.e. φ is a 
onstant. Now using Eq.(2.137) we get,

σµ=0(rc) =

(
1

4g2d+1(r)
g

d−3
2

xx

)

r=rh

= σµ=0(rh). (2.140)So we 
on
lude that at vanishing 
hemi
al potential boundary and horizon 
on-du
tivity is the same.
• Relation with universal 
ondu
tivity of the stret
hed horizon: Theuniversal 
ondu
tivity of the stret
hed horizon is given by (see [4℄) σmb =

1
g2d+1(rh)

. Now we see
σCFT,µ=0 = σmb g

d−3
2

xx (rh), (2.141)where fa
tor g d−3
2

xx (rh) 
onverts the length s
ale in CFT to proper length s
aleat horizon [4, 57℄ (let us note that in d dimension, 
ondu
tivity has a massdimension d− 3).2.8.3 Cuto� dependen
e of 
ondu
tivity at �nite 
hemi
alpotential:At �nite 
hemi
al potential, boundary and horizon 
ondu
tivity are no longersame. In this se
tion we study how 
ondu
tivity evolves radially in this 
ase. In[77℄, it was demonstrated that there is a simple relation even interpolation betweenthe �uid at the horizon de�ned by membrane paradigm and �uid at the boundaryde�ned by gauge/gravity duality. The authors in that paper introdu
ed �uid atany arbitrary radius r outside horizon whi
h redu
es to gauge/gravity �uid as
r → ∞. For 
onvenien
e we take the metri
 and gauge �elds as taken in [77℄. Theasymptoti
ally AdS bla
k 
harged p-brane solution are of the form

ds2p+2 = −h(r)dt2 + dr2

h(r)
+ e2t(r)dxidxi,

At =
Qrh
p− 1

(
1− rp−1

h

rp−1

)
, (2.142)70



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere
h(r) =

r2

L2

(
1− (1 + αQ2)

rp+1
h

rp+1
+ αQ2 r

2p
h

r2p

)
,

et =
r

rh
. (2.143)What we observe is that these are Reissner-Nordstrom bla
k hole in p+2 dimensionwith gauge 
oupling set to one and α = L2κ2

p(p−1)
. Let us 
onsider a 
uto� at radius

r = rc outside the horizon. One 
an de�ne thermodynami
 quantities there. Ifthe hawking temperature is TH , the lo
al temperature at the 
uto� radius 
anexpressed as
Tc ≡ T (rc) =

TH√
h(rc)

, TH =
h

′

(rh)

4π
. (2.144)The entropy density of the �uid at rc is given by s = 2π

κ2 e
−pt(r), whi
h redu
es to

s = 2π
κ2 as rc → rh. One 
an �nd out lo
al Brown-York stress tensor27to de�ne

ǫ+ P =

√
h

κ2

(
h

′

2h
− t

′

)
, (2.147)where ǫ and P are energy density and pressure of the �uid at rc. Let us note thatfor rc → rh

ǫ+ P = sTc. (2.148)The 
hemi
al potential at rc is
µ =

At√
h
, (2.149)whi
h vanishes at the horizon. So that the thermodynami
 relation

ǫ+ P = sTc + ρµ, (2.150)holds at any arbitrary radius. In order to �nd out ele
tri
al 
ondu
tivity we need tosolve Eq.(2.10) for this ba
k ground and then use Eq.(2.30) to �nd out 
ondu
tivity27For a hypersurfa
e Σ with unit normal n, Brown-York stress tensor is de�ned as
tab =

1

κ2
(γabK −Kab + Cγab), (2.145)with γab = gab − nanb, where gab is the spa
e-time metri
. Let us note that tab is ambiguousupto a 
onstant multiple of indu
ed metri
 γab on the hypersurfa
e. However this dependen
edoes not appear in the 
ombination ǫ+ P. The extrinsi
 
urvature Kab is de�ned as
Kab =

1

2
Lnγab, (2.146)where Ln is the Lie derivative along n. 71



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialat radius rc. The solution 
an be obtained easily and 
ondu
tivity 
an be writtendown at any radius rc. But here we follow a slightly di�erent route whi
h mightbe helpful to generalize the results in more general ba
kground. We propose thatthe form of 
ondu
tivity at any radius rc is given by
σc =

(
sT

ǫ+ P

)2∣∣∣∣∣
rc

σH , (2.151)where σc ≡ σ(rc), and σH ≡ σ(rh). The expression for σH is same as given inEq.(2.29). Let us note that, at the boundary Eq.(2.150) reprodu
es the desiredresult where as at the horizon, be
ause of Eq.(2.147), σc redu
es to σH whi
h itshould. Comparing Eq.(2.150) with Eq.(2.30), we get
φ(rc)

φ(rh)
=

ǫ+ P

sT

∣∣∣∣∣
rc

=
sT + ρµ

sT

∣∣∣∣∣
rc

= 1 +
ρµ

sT

∣∣∣∣∣
rc

, (2.152)where ρ and s, the 
harge and entropy densities are related to total 
harge Q andentropy S by a multipli
ative fa
tor of volume respe
tively. So we get ρ
s
= Q

S
.It was also noted in [77℄, that S,Q are independent of 
uto� radius rc. UsingEq.(2.143) and Eq.(2.148) we get28

φ(rc)

φ(rh)
= 1 +

ρ

sTH
At(rc)

= 1 +
Q

STH
At(rc). (2.153)Now only work that is remaining is to �nd whether the solution of the form givenin Eq.(2.152) solves Eq.(2.10) for the parti
ular ba
kground that we are interestedin. One 
an very easily 
he
k that this is indeed the 
ase (more general 
ases willbe dis
ussed in the next 
hapter). So to summarize, the solution to Eq.(2.10) forthis parti
ular ba
kground is given by

φ(r) =
ǫ+ P

sT

∣∣∣∣∣
r

φ(rh)

=

(
1 +

ρ

sT
At(r)

)

r

(
sT

ǫ+ P

)

r→∞

φ0, (2.154)28For the 
ases where At(rh) 6= 0, the solution takes the the form φ(rc)
φ(rh)

= 1 + ρ
sTH

[At(rc) −
At(rh)]. 72



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialwhere r → ∞ is the boundary and φ0 is the boundary value of φ. The ele
tri
al
ondu
tivity for the �uid at any radius rc is given by
σc =

(
sT

ǫ+ P

)2∣∣∣∣∣
rc

σH . (2.155)
• Relation with universal 
ondu
tivity of the stret
hed horizon at �-nite 
hemi
al potential: Again the universal 
ondu
tivity of the stret
hedhorizon is given by σmb =

1
g2d+1(rh)

. On
e again we observe that,
σµ6=0(rh) = σmb g

d−3
2

xx (rh), (2.156)and
σCFT,µ6=0(r → ∞) = σmb g

d−3
2

xx (rh)

(
sTH
ǫ+ P

)2

. (2.157)Let us note that at µ = 0, Eq.(2.156) redu
es to Eq.(2.140).2.8.4 Imaginary part of 
ondu
tivity σ0 = ℑ(λ):In order to gain full knowledge of 
urrent-
urrent 
orrelator we need to determinethe imaginary part of the ele
tri
al 
ondu
tivity. As we will see, this part of the
ondu
tivity also behave in a universal way. Using Eq.(2.153) and Eq.(2.151) we
an write,
d

dr
φ(r) =

(
sT

ǫ+ P

)

r→∞

(
ρ

sT

)

r→∞

A
′

t(r) φ0

=

(
ρ

ǫ+ P

)

r→∞

A
′

t(r) φ0, (2.158)where primes denote derivative with respe
t to r. At the boundary, imaginary partof the 
ondu
tivity is given by
ℑ(λ) = 1

ωφ0
lim
r→∞

1

2κ2
N(r)

d

dr
φ(r). (2.159)Using Eq.(2.8) and ρ = − 1

2κ2

√−gG11g
ttgrrA

′

t(r), we get
ℑ(λ) = − 1

ω

ρ2

ǫ+ P
. (2.160)It is interesting to 
ompare Eq.(2.159) with Eq.(2.34). Up on 
omparison we �nd,

1

ǫ+ P
= 2κ2

∫ 1

0

dr
grrgtt√−ggxx

φ(r)

φ0
. (2.161)73



Chapter 2. Ele
tri
al 
ondu
tivity at �nite 
hemi
al potentialLet us note that, in the 
ase when µ = 0, φ(r)
φ0

= 1. So we get
1

ǫ+ P
= 2κ2

∫ 1

0

du
guugtt√−ggxx

, (2.162)whi
h is the result reported in [4℄.Again one 
an study the 
uto� dependen
e of imaginary part of the 
ondu
-tivity. Rather than providing details, here we write the result
ℑ(λ)rc = − 1

ω

(
gtt
gxx

)

rc

(
ρ2

ǫ+ P

)

r→∞

. (2.163)So at the horizon, imaginary part of the 
ondu
tivity vanishes (sin
e gtt(rh) =
0). To summarize, we see that there emerges a ni
e and simple pi
ture. Theboundary 
ondu
tivity 
an expressed in terms of geometri
al quantities evaluatedat the horizon and thermodynami
 quantities. At any radial position rc outside thehorizon the expression for 
uto� dependent ele
tri
al 
ondu
tivity (σ(rc)), whi
hinterpolates smoothly between horizon 
ondu
tivity σH(rc → rh) and boundary
ondu
tivity σB(rc → ∞).2.9 Dis
ussionWe 
on
lude that the boundary ele
tri
al 
ondu
tivity takes a universal form inthe presen
e of 
hemi
al potential for a large 
lass of bla
k branes whi
h in
lude
R−
harged bla
k branes in various dimensions in asymptoti
ally AdS spa
es aswell as 
harged Dp branes in various dimensions. As dis
ussed already, presen
e of
hemi
al potential brings limitations on the use of Iqbal, Liu results[4℄. In fa
t, wehave expli
itly seen, boundary and horizon results are no longer the same. In fa
t,we have seen that there is a smooth interpolation between them. The imaginarypart of 
ondu
tivity 
an be written as

ℑ(λ) = − ρ2

ǫ+ P

1

ω
, (2.164)where ρ, ǫ and P are the 
harge density, energy density and pressure of the �uidrespe
tively. Let us mention here that the imaginary part of the 
ondu
tivity hasa pole at ω → 0 limit be
ause of the translational invarian
e of the system. Theappearan
e of pole will further be dis
ussed in the next 
hapter, where we shall alsoshow that the Eq.(2.163) is in fa
t valid for a wide 
lass of gauge theory with gravitydual. We have also seen that the Lifshitz like bla
k brane does not satisfy theuniversal form. The question therefore arises: what is the most general ba
kgroundfor whi
h the form of boundary 
ondu
tivity as in Eq.(2.62) and Eq.(2.63) aresatis�ed? In the next 
hapter we look for an answer to this question. 74



3Universality in ele
tri
al 
ondu
tivity
3.1 Introdu
tionThe �uid/gravity 
orresponden
e provides us with two distin
t �uids dual to agiven bla
k hole geometry: �rst, the �uid given by membrane paradigm (dis
ussedin the appendix A), whi
h is des
ribed by quantities at the bla
k hole horizon andse
ond, the �uid at the boundary of the spa
e time known from gauge/gravityduality and is des
ribed by quantities at the boundary. By exploiting the fa
t that
hanging radial position in the bulk 
orresponds to RG �ow in the boundary �uid,authors of [4, 77℄ proposed a number of relations and even interpolation betweenthem. For example, radial independen
e of 
ertain quantities is used to show that,the shear vis
osity (η) to entropy density (s) ratio (η

s
) for both the �uids on themembrane and at the boundary are the same. It 
an also be shown that the lowfrequen
y limit of ele
tri
al 
ondu
tivities of these two �uids 
omputed at zero
hemi
al potential, are related[4℄. However, the situation 
hanges signi�
antly at�nite 
hemi
al potential in the boundary theory (whi
h 
orresponds to 
hargedbla
k hole in the bulk), where radial independen
e, exploited earlier in relatingele
tri
al 
ondu
tivities of these two �uids, gets 
ompletely destroyed. One needsto solve �ow equations in order to relate 
ondu
tivities of these two �uids. Inthe last 
hapter we have seen, for several examples, the ele
tri
al 
ondu
tivity isuniversal and that there exists a simple relation between the 
ondu
tivities of the�uids at horizon and at boundary. It was also dis
ussed in the previous 
hapterthat at any radial position r, the 
ondu
tivity is given by a simple expressionwhi
h interpolates smoothly between the one 
omputed at the horizon and atthe boundary. However, for gauge theories dual to 
harged Lifshitz like gravityba
kgrounds, the above mentioned universality does not hold. The purpose of this
hapter is to �nd out the most general ba
kground for whi
h the form of boundary
ondu
tivity as in Eq.(2.62) and Eq.(2.63) are satis�ed.This 
hapter is stru
tured as follows. Se
tion 2 is a review of the earlier 
hapter.This se
tion also serves us to �gure out, what we should show in order to provethe universality of ele
tri
al 
ondu
tivity. In se
tion 3, we �nd the 
ondition onthe gravity side energy momentum tensor under whi
h the dual gauge theory will75



Chapter 3. Universality in ele
tri
al 
ondu
tivityshow the universality. This se
tion also dis
usses several examples, whi
h in
ludetheories at and away from 
onformality. This se
tion also explains as to whythe Lifshitz like theories do not show the universality. In se
tion 4, we work withgauge theories at multiple 
hemi
al potentials and give general form of the ele
tri
al
ondu
tivity matrix. In appendix 5, we elaborate upon the 
ondition that we geton energy momentum tensor. Finally we summarize our results of this 
hapter inse
tion 6.3.2 What to prove?Consider a
tion of the form
S =

1

2κ2

∫
dd+1x

√−g(R − 1

4g2eff(u)
FµνF

µν +Other terms), (3.1)and the metri
 of the form
ds2 = gtt(u)dt

2 + guu(u)du
2 + gxx(u)

d−1∑

i=1

(dxi)2, (3.2)The perturbed gauge �eld satis�es
d

dr
(N(r)

d

dr
φ(r))− ω2N(r) grrg

ttφ(r) +M(r)φ(r) = 0, (3.3)with
N(r) =

√−g 1

g2eff
gxxgrr, (3.4)and

M(r) =
( 1

g2eff

)2√−ggxxgrrgttFrtFrt. (3.5)We 
an rewrite M(r) in a better way as
M(r) = (2κ2)2ρ2

grrgtt√−ggxx
. (3.6)where,

ρ =
1

2κ2g2eff

√−ggrrgttFrt. (3.7)Let us note that the Maxwell equations 
an be written as,
∂µ

( 1

g2eff

√−gF νµ
)
= 0, (3.8)76



Chapter 3. Universality in ele
tri
al 
ondu
tivityand we 
hoose the gauge where only At(r) 
omponent of the ba
kground gauge�eld is non zero (we work with ele
tri
ally 
harged bla
k hole).For evaluating the 
ondu
tivity in the low frequen
y limit and for non-extremalba
kgrounds, we only need to solve equations up to zeroth order in ω. To thatorder one �nds,
d

dr
(N(r)

d

dr
φ(r)) +M(r)φ(r) = 0. (3.9)The expression for ele
tri
al 
ondu
tivity is given by (see [54, 48, 57℄ for details ),

σ =
1

2κ2

(√
grr
gtt
N(r)

)

r=rh

(
φ(rh)

φ(r → ∞)

)2

=
1

2κ2

(
1

g2eff
g

d−3
2

xx

)

r=rh

(
φ(rh)

φ(r → ∞)

)2

= σH

(
φ(rh)

φ(r → ∞)

)2

, (3.10)where σH is the 
ondu
tivity evaluated at the horizon and its expression is givenby,
σH =

1

2κ2g2eff
g

d−3
2

xx

∣∣∣
r=rh

. (3.11)we have dis
ussed in the previous 
hapter, that boundary 
ondu
tivity is given by
σ = σH

(
φ(rh)

φ(r → ∞)

)2

= σH

(
sT

ǫ+ P

)2

. (3.12)Suppose we take the solution of Eq.(3.9) to be
φ(r)

φ(rh)
= 1 +

ρ

sT
(At(r)−At(rh)), (3.13)where Eq.(3.13) at the boundary redu
es to

φ(r → ∞)

φ(rh)
= 1 +

ρ

sT
µ

=
ǫ+ P

sT
. (3.14)So we 
on
lude that proposed form of solution in Eq.(3.13) reprodu
es exa
t formof 
ondu
tivity both at horizon and at the boundary. So in order to show Eq.(3.12)we need to prove Eq.(3.13). In the next se
tion we show that Eq.(3.13) indeed, isthe solution to Eq.(3.9). 77



Chapter 3. Universality in ele
tri
al 
ondu
tivity3.3 Proof for Singly 
harged bla
k braneThe way we shall pro
eed is, �rst we shall assume that the solution to Eq.(3.9) isgiven by Eq.(3.13). Then we shall use Einstein equation to �nd out the 
onstraintthat our assumption leads to. Then we show how this 
onstraints 
an be expressedin a 
ompa
t form in terms of the stress energy momentum tensor of the matter
ontent of the system. We shall also dis
uss possible meaning of this 
onstraint inthe boundary gauge theory.We start by plugging Eq.(3.13) in Eq.(3.9). This gives
d

dr

(√−g 1

g2eff
gxxgrr

ρ

sT

d

dr
At(r)

)
+(2κ2)2ρ2

grrgtt√−ggxx

(
1 +

ρ

sT

(
At(r)− At(rh)

))
= 0.Using Frt =

d
dr
At and de�nition of 
harge density as in Eq.(3.7) we obtain

2κ2
ρ2

sT

d

dr
(gxxgtt) + (2κ2)2ρ2

grrgtt√−ggxx
(
1 +

ρ

sT

(
At(r)− At(rh)

))
= 0,

or,
1

2κ2

√−ggxx
grrgtt

d

dr
(gxxgtt) = −sT

(
1 +

ρ

sT

(
At(r)− At(rh)

))
. (3.15)Evaluating Eq.(3.15) at r = rh,we get

1

2κ2

√−ggxx
grrgtt

d

dr
(gxxgtt)

∣∣∣∣∣
rh

= −sT. (3.16)Subtra
ting Eq.(3.15) from Eq.(3.16) we get
√−ggxx
grrgtt

d

dr
(gxxgtt)

∣∣∣∣∣

r

rh

= −2κ2ρ
(
At(r)−At(rh)

)

⇒
[
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

]r

rh

= −2κ2ρAt

∣∣∣∣∣

r

rh

. (3.17)Now we use Einstein equations to �nd out 
onditions under whi
h Eq.(3.17) isvalid. Let us 
onsider the ba
kground of the form given in Eq.(A.2). The Einsteinequation is given by
Rµν −

1

2
gµνR = TE.M.

µν + TMatter
µν

=
1

2g2eff

(
FµλF

λ
ν − 1

4
gµνFρσF

ρσ

)
+ TMatter

µν , (3.18)78



Chapter 3. Universality in ele
tri
al 
ondu
tivitywhere TMatter
µν (r), will in
lude all the other stu�s whi
h may 
ome from s
alar�elds, 
osmologi
al 
onstant or any other �elds present in the theory. Sin
e only

At(r) is non-zero, we have Frt 6= 0. Using Eq.(3.18), we 
an write
Rt

t −
1

2
gttR =

1

2g2eff

(
FtrF

tr − 1

4
gttFρσF

ρσ

)
+ T t, Matter

t , (3.19)
Rx

x −
1

2
gxxR = − 1

2g2eff

1

4
gxxFρσF

ρσ + T x, Matter
x . (3.20)After subtra
ting Eq.(3.19) from Eq.(3.20), we get

√−gRt
t −

√−gRx
x =

1

2g2eff

√−gF rtFrt +
√−g(T t, Matter

t (r)− T x, Matter
x (r)). (3.21)For the metri
 of the form in Eq.(A.2), following relations hold

√−gRt
t = − d

dr


g

d−1
2

xx
d
dr
gtt

2g
1
2
rrg

1
2
tt


 , (3.22)

√−gRx
x = − d

dr

(
g

d−3
2

xx g
1
2
tt

2g
1
2
rr

d

dr
gxx

)
, (3.23)whi
h, after substituting in Eq.(3.21), we get,

− d

dr

(
g

d−1
2

xx

2g
1
2
rrg

1
2
tt

d

dr
gtt

)
+

d

dr

(
g

d−3
2

x g
1
2
tt

2g
1
2
rr

d

dr
gxx

)
=

1

2g2eff

√−gF rtFrt

+
√−g(T t,Matter

t − T x,Matter
x ).(3.24)Upon further simpli�
ation, this redu
es to

− d

dr

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

)
= 2κ2ρ

d

dr
At + 2

√−g(T t, Matter
t (r)− T x, Matter

x (r)).(3.25)Integrating above equation we get
(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

) ∣∣∣∣∣

r

rh

= −2κ2ρAt

∣∣∣∣∣

r

rh

+ 2

∫ r

rh

dr
√−g(T t, Matter

t (r)− T x, Matter
x (r)).(3.26)Thus, if we impose the 
ondition that

T t, Matter
t (r) = T x, Matter

x (r), (3.27)79



Chapter 3. Universality in ele
tri
al 
ondu
tivitythen we get (
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

)∣∣∣∣∣

r

rh

= −2κ2ρAt

∣∣∣∣∣

r

rh

, (3.28)whi
h29 is same as Eq.(3.17). Hen
e we have shown that, if the gravity ba
kgroundsatis�es Eq.(3.27), then the dual gauge theory will satisfy Eq.(3.10). We suspe
tthat whenever the boundary theory is in the Minkowski spa
e, the 
ondition im-posed by Eq.(3.27) on the stress-energy tensor (barring the ele
tromagneti
 part)will hold true. This was also observed in [78, 79℄ in the 
ontext of proving the uni-versality of shear vis
osity. In the following se
tion, we elaborate upon the above
ondition 
onsidering several examples.3.3.1 ExamplesIn all of our examples in this se
tion we will take the metri
, gauge �elds andother form �elds as the fun
tions of 
oordinate r only. It was observed in [78, 79℄that if the s
alar and other form �elds are fun
tions of the 
oordinate r only andif the boundary theory lives on the Minkowski spa
e, then T Matter
µν ∼ gµν(· · · ),(where µ, ν are gauge theory indi
es) whi
h in turn implies the 
ondition given byEq.(3.27). In what follows, in this se
tion, we �rst dis
uss the boundary theorieswhi
h live on Minkowski spa
e-time where we will �nd expli
itly that the Eq.(3.27)holds good. Next, we dis
uss one example where the boundary theory does not liveon the Minkowski spa
e-time, namely the asymptoti
ally Lifshitz like spa
e-time,where the 
ondition in Eq.(3.27) does not hold.

• Boundary theories living on Minkowski spa
e-time� Conformal boundary theories: Let us note that Reissner Nordströmand R-
harged bla
k holes in various dimensions in asymptoti
ally AdSspa
e (as already 
he
ked in [54℄) and in the previous se
tion as well asany other ba
kground whi
h satis�es Eq.(3.27), should satisfy Eq.(3.10).� Non-
onformal boundary theory: Non-
onformal theories su
h asgauge theory dual to 
harged Dp brane satis�es both Eq.(3.27) andEq.(3.10).29For the ba
kgrounds whi
h satis�es Eq.(3.27), it is interesting to note that, if we set r → ∞,and use �rst law of thermodynami
s as well as the fa
t that sTH = 1
2κ2

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d
dr
(gxxgtt)

) ∣∣∣∣∣
rh

,we have ǫ + P = 1
2κ2

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d
dr
(gxxgtt)

) ∣∣∣∣∣
r→∞

from Eq.(3.17). Let us note that we should addthe Gibbons-Hawking term and 
ounter terms (see [37℄) in order to get �nite values. 80
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tri
al 
ondu
tivity
• Boundary theory dual to 
harged Lifshitz like bla
k hole: For this
ase it was shown in previous 
hapter and in [54℄ that

σB 6= σH

( sT

ǫ+ P

)2
. (3.29)Now the above result 
an be understood easily. Let us 
onsider the followinga
tion in (d+ 2)-dimensional spa
e time (see for details in [70, 75℄)

S =
1

16πGd+2

∫
dd+2x

√−g(R− 2Λ− 1

4
F 2 − 1

2
m2A2 − 1

4
F 2
1 ). (3.30)The 
orresponding equations of motion are given as follows,

∂µ(
√−gF µν) = m2

√−gAν , ∂µ(
√−gF µν

1 ) = 0,

Rµν =
2

d
Λgµν +

1

2
FµλFν

λ +
1

2
F1,µλF

λ
1,ν +

1

2
m2AµAν

− 1

4d
F 2gµν −

1

4d
F 2
1 gµν . (3.31)From the above equation we 
an �nd the energy momentum tensor. Let uswrite it in the form T total

µν = TE.M.
µν + TMatter

µν , where TE.M.
µν 
ontains 
ontribu-tion from gauge �eld F1,µν whereas other �elds 
ontributes to TMatter

µν . Let usnote that the massive gauge �eld Aµ, was introdu
ed to get the Lifshitz likes
aling. If we take only non-vanishing 
omponents of gauge �eld to be At,then it is easy to see that
T t,Matter
t − T x,Matter

x =
1

2
FtrF

tr +
1

2
m2AtA

t

6= 0, (3.32)where Frt =
d
dr
At and also note that gtt = gxx = 1. This provides us with anexplanation of Eq.(3.29).3.4 Universality of ele
tri
al 
ondu
tivity with mul-tiple 
hargesNow we turn our attention to multiple 
harged bla
k brane. For 
onvenien
e weon
e again write down th equation that governs the perturbed gauge �eld. Wehave

d

dr
(NI

d

dr
φI(r))− ω2NI grrg

ttφI(r) +
m∑

J=1

MIJφJ(r) = 0, (3.33)with
MIJ = F I

rt

√−gGIIg
xxgrrgttGJJF

J
rt. (3.34)81



Chapter 3. Universality in ele
tri
al 
ondu
tivityLet us note that MIJ = MJI . One 
an show that, the solution to the Eq.(3.33)
an be written as
φi = φ0

i

(
1− ρi

ǫ+ p
(Ai

t(r)− Ai
t(r = 0))

)
− Ai

t(r)− Ai
t(r = 0)

ǫ+ p

m∑

J=1

ρjφ
0
j , (3.35)where φ0

i is the boundary value of i'th perturbed gauge �eld and again the 
onditionon bulk energy momentum tensor as stated as in Eq.(3.27), has to be satis�ed30.Here we write the diagonal and o� diagonal terms of the 
ondu
tivity matrix.
σii =

1

8πG
g

d−3
2

xx

∣∣∣
r=rh

[
Gii(rh)(1−

2µiρi
ǫ+ p

) + ρ2i

m∑

j=1

Gjj(rh)µ
2
j

(ǫ+ p)2

]
, (3.36)and o� diagonal 
omponents with i 6= j, we have

σij =
1

16πG
g

d−3
2

xx

∣∣∣
r=rh

[
−Gii(rh)

2µiρj
ǫ+ p

−Gjj(rh)
2µjρi
ǫ+ p

+ρiρj

m∑

j=1

Gjj(rh)µ
2
j

(ǫ+ p)2

]
. (3.37)One 
an now easily 
he
k that,

ρiσ
−1
ij ρj = ρiσ

−1
H,iiρi

(
ǫ+ P

sT

)2

, (3.38)as well as
µiσijµj = µiσH,iiµi

(
sT

ǫ+ P

)2

. (3.39)One 
an also �nd out the imaginary part of 
ondu
tivity and it is given by
ℑ(λ(ω)ij) = − i

ω

(
gtt
gxx

)

r→∞

1

16πG

ρiρj
ǫ+ P

. (3.40)3.5 Condition on energy momentum tensorLet us 
onsider a 
onstant r hyper surfa
e outside the horizon. The unit normalve
tor to that hyper surfa
e is nµ∂µ = nr∂r, where nr =
√
grr. One 
an de�ne theextrinsi
 
urvature Θµν of the hyper surfa
e to be

Θµν = −1

2
(▽µnν +▽νnµ). (3.41)30To be more spe
i�
, the matter part of the energy momentum tensor that needs to satisfyEq.(3.27), does not in
lude the any of the U(1) gauge �eld. 82



Chapter 3. Universality in ele
tri
al 
ondu
tivityUsing the form of the metri
 as in Eq.(A.2), we get
Θtt = −1

2

√
grr

d

dr
gtt , Θxx = −1

2

√
grr

d

dr
gxx. (3.42)Using Eq.(3.20) and Eq.(3.19), we 
an write

√
gRt

t =
d

dr
(
√
hΘt

t),
√
gRx

x =
d

dr
(
√
hΘx

x), (3.43)where h is the determinant of the indu
ed metri
 on the hyper surfa
e. The indu
edmetri
 on the 
onstant r hyper surfa
e is given by
ds2∑ = httdt

2 + hxx

d−1∑

i=1

(dxi)2

= gttdt
2 + gxx

d−1∑

i=1

(dxi)2. (3.44)Let us de�ne a tangent null ve
tor lµ∂µ =
√−gtt∂t +

√
gxx∂x. Now we 
an writeEq.(3.21) and 
onsequently Eq.(3.26) as

√−gRµν l
µlν =

√−gT Total
µν lµlν

=
√−gTE.M.

µν lµlν +
√−gTMatter

µν lµlν , (3.45)
√
−hΘµνl

µlν
∣∣∣
r

rh
=

∫ r

rh

dr
√−gTE.M.

µν lµlν +

∫ r

rh

dr
√−gTMatter

µν lµlν

= −κ2ρAt

∣∣∣
r

rh
+

∫ r

rh

dr
√−gTMatter

µν lµlν , (3.46)respe
tively. Upon using the Einstein equation (3.18) and the fa
t that for themetri
 of the form given in Eq.(A.2), the Rxt 
omponent of the Ri

i tensor iszero, we get TMatter
tx = 0, sin
e TE.M.

tx = 0. So the 
ondition that we get on theenergy momentum tensor31 in Eq.(3.27) 
an be written as
TMatter
µν lµlν = 0. (3.47)31A

ording to null energy 
ondition, T total
µν lµlν ≥ 0, with lµ a null ve
tor. Sin
e TE.M

µν lµlν ≥
0, the 
ontribution from the matter part TMatter

µν lµlν may be negative as well. However itis interesting to note that, if we take a limit where 
harge of the bla
k hole vanishes then
TE.M
µν lµlν = 0, so that null energy 
ondition gives TMatter

µν lµlν ≥ 0. So if we are interested in theba
kgrounds where matter se
tor does not a
t as a sour
e for ele
tromagneti
 �eld, it appearsthat TMatter
µν lµlν ≥ 0, irrespe
tive of the presen
e of gauge �elds. 83



Chapter 3. Universality in ele
tri
al 
ondu
tivityWe get a better understanding of the Eq.(3.27), by looking for simplest 
ase of nobla
k hole and un
harged solution. The Eq.(3.25) redu
es to,
− d

dr

(
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(gxxgtt)

)
= 2

√−g(T t, Matter
t (r)− T x, Matter

x (r)). (3.48)So if we demand
T t, Matter
t (r)− T x, Matter

x (r) = 0, (3.49)then we get gxxgtt ∼ −1. This might be related to the fa
t that va
uum of dualgauge theory being Lorentz invariant.3.6 Dis
ussionWe have shown that, for µ 6= 0, given that the form of Maxwell part of the a
tionis
S = −

∫
dd+1x

√−g 1

4g2eff
FMNF

MN , (3.50)the ele
tri
al 
ondu
tivity at the boundary is given by
σB =

1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2

= σH
(sT )2

(ǫ+ P )2
, (3.51)where σH = 1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

, is the ele
tri
al 
ondu
tivity evaluated radially at thehorizon. We 
an argue that on
e the real part of the 
ondu
tivity is known,the imaginary part of 
ondu
tivity is automati
ally �xed. To summarize, in thepresen
e of 
hemi
al potential the ele
tri
al 
ondu
tivity 
an be expressed as
λ = − i

ω

(
gtt
gxx

)

r→∞

ρ2

ǫ+ P
+

1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2
. (3.52)Let us mention here that the imaginary part of the 
ondu
tivity has a pole at

ω → 0 limit be
ause of the translational invarian
e of the system. If one uses theKrammers-Kronig relation
ℑ(λ(ω)) = −1

π
P
∫ ∞

−∞

ℜ(λ(ω′))

ω′ − ω
dω′, (3.53)then one 
an �nd that the real part of the 
ondu
tivity 
ontains a delta fun
tionif the imaginary part has a pole. As we have found a pole in the imaginary part of84



Chapter 3. Universality in ele
tri
al 
ondu
tivitythe 
ondu
tivity, it follows that real part has a delta fun
tion singularity at ω = 0.So, stri
tly speaking DC 
ondu
tivity that we have 
omputed is low frequen
ylimit of AC 
ondu
tivity or more pre
isely expression for 
ondu
tivity is valid for
ω → 0+, see [32, 61℄ for a ni
e dis
ussion.It is interesting to note that the 
uto� dependent 
ondu
tivity 
an be 
omputedand it interpolates smoothly between the results at the horizon and at the bound-ary. At any 
uto� rc the expression for ele
tri
al 
ondu
tivity32 
an be writtenas

λ = − i

ω

(
gtt
gxx

)

rc

(
ρ2

ǫ+ P

)

r→∞

+
1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2

∣∣∣
r=rc

, (3.54)where r → ∞ is the boundary of the spa
e time. It is interesting to 
ompare ourresults with the results obtained from the membrane paradigm arguments. Wehave seen, that irrespe
tive of the theory, the horizon 
ondu
tivity is given by
σH =

1

g2eff
g

d−3
2

xx

∣∣∣
r=rh

, (3.55)whereas the universal 
ondu
tivity of the membrane is given by
σmembrane =

1

g2eff

∣∣∣
r=rh

. (3.56)So we 
on
lude that the horizon 
ondu
tivity is given by,
σH = σmemg

d−3
2

xx

∣∣∣
r=rh

. (3.57)We have also seen that for the ba
kgrounds that satis�es Eq.(3.27), the bound-ary ele
tri
al 
ondu
tivity 
an be related to horizon 
ondu
tivity using thermody-nami
 quantities. More pre
isely we 
an write,
σB = σH

(sT )2

(ǫ+ P )2

= σmem g
d−3
2

xx

∣∣∣
r=rh

(sT )2

(ǫ+ P )2
. (3.58)32Let us note that, at any radius rc, the lo
al temperature and the 
hemi
al potential 
an begiven by Tc =

TH√
gtt(rc)

and µc =
At(rc)−At(rh)√

gtt(rc)
respe
tively. Assuming �rst law of thermodynami
s

ǫ(rc) + P (rc) = sTc + ρµc to hold at and radius and using Eq.(3.13) we get
φ(rc)

φ(rh)
=

sT

ǫ+ P

∣∣∣
r=rc

,and 
onsequently Eq.(3.54). 85



Chapter 3. Universality in ele
tri
al 
ondu
tivitySin
e mass dimension of ele
tri
al 
ondu
tivity is d − 3, one 
an understand thefa
tor g d−3
2

xx as the 
onverter of the length s
ale of the boundary to the proper lengthat the horizon [4, 57℄. It would be very interesting to understand the meaningof extra fa
tor ( sT
ǫ+P

)2 that appears in the formula due to presen
e of 
hemi
alpotential. At this moment it is not quite 
lear to us how to interpret it dire
tlyfrom the 
onstraint Eq.(3.27) whi
h appears to be related to Lorentz invarian
e ofthe va
uum of the �eld theory. Let us note that, at zero 
hemi
al potential
σB = σH

= σmem g
d−3
2

xx

∣∣∣
r=rh

, (3.59)as was shown in [4℄.In our result of the ele
tri
al 
ondu
tivity, σH is given entirely in terms of thegeometri
al quantities evaluated at the horizon. A natural question that arises,whether it is possible to give an intrinsi
 meaning to the expression of 
ondu
tivityin terms of �eld theory quantities? This will bring the formula for ele
tri
al 
on-du
tivity in the same footing as 
elebrated universal result for η
s
. Answer to this
omes from the expression of thermal 
ondu
tivity to vis
osity ratio. As it wasshown in [48℄ and will be dis
ussed in the next 
hapter that, ele
tri
al 
ondu
tivity
an be expressed in terms of the �eld theory quantities alone.
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4Universality in thermal 
ondu
tivity tovis
osity ratio
4.1 Introdu
tionIn the previous 
hapter we have shown that ele
tri
al 
ondu
tivity 
an be expressedin terms of geometri
al quantities evaluated at the horizon and thermodynami
variables. A natural question therefore arises: is it possible to give an expression forele
tri
al 
ondu
tivity solely in terms of boundary gauge theory variables? In this
hapter we provide an a�rmative answer to this question. With supports 
omingfrom various examples, we further 
on
lude that the thermal 
ondu
tivity alsoshows some universal behavior. More pre
isely, we propose that for a d dimensionalstrongly 
oupled gauge theory

κT
ηT

m∑

j=1

(µj)2 =
d2

d− 2

( c′

k′

)
= 8π2 d− 1

d3(d+ 1)

c

k
, (4.1)where κT is the thermal 
ondu
tivity (the heat 
urrent response to thermal gra-dient in the absen
e of ele
tri
al 
urrent), T is the temperature, µ the 
hemi
alpotential, η the shear vis
osity and c, k are 
entral 
harges of dual gauge theory.The dimensionless 
onstants c′ and k

′ are roughly related to total and 
hargeddegrees of freedom and are related to to pressure and 
harge sus
eptibility of thesystem at equlibrium. We test our proposal against several examples. However ageneral proof of this result is still la
king. Using this universality we also �nd outele
tri
al 
ondu
tivity in terms of boundary thermodynami
 variables.This 
hapter is organized as follows. In the next se
tion, thermal 
ondu
tivityand thermal 
ondu
tivity to vis
osity ratio is 
omputed for several examples. In thethird se
tion, after reviewing the standard result for vis
osity to 
ondu
tivity ratioat vanishing 
hemi
al potential, we show that Eq.(4.1) holds at µ = 0.33 Then,based on few examples, we 
onje
ture that Eq.(4.1) holds true even for arbitrary33Let us note that in the presen
e of equal number of positive and negative 
harges, 
hemi
alpotential is zero. 87



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity rationonzero 
hemi
al potential. Subsequently in se
tion 4, using Eq.(4.1), we providea way to 
ompute ele
tri
al 
ondu
tivity in terms of thermodynami
al quantitiesalone even in the presen
e of non-zero 
hemi
al potential. In se
tion 5, we 
omputethermal 
ondu
tivity to vis
osity ration for several non-
onformal gauge theoriesand observe that they again behave universally. We end this 
hapter with a briefsummary of the results.4.2 Thermal 
ondu
tivityOne of the aim of this se
tion is to study thermal 
ondu
tivity (κT ) as de�ned inEq.(1.113). In the following we shall start with the examples of 
omputation ofthe thermal 
ondu
tivity and thermal 
ondu
tivity to vis
osity ratio (κT

ηT

m∑
j=1

(µj)2)for R−
harged bla
k holes in 4, 5, 7 dimensions.4.2.1 Single 
harge bla
k holeNote that for single 
harge bla
k hole 1
ρiκ

−1
ij ρj

= κ

ρ2
. So that one gets

κT =

(
ǫ+ P

ρT

)2

κ =

(
ǫ+ P

ρ

)2
σ

T
(4.2)Rather than providing details we here tabulate the thermal 
ondu
tivity and di-mension less ratio κTµ2

ηT
, where η is the shear vis
osity.Dimension κT

κTµ2

ηT5 (1+k)2N2T 2π
k(2+k)

8π24 2
√
2(1+k)3/2N3/2Tπ

3k
32π27 8(1+k)3N3T 4π2

3k(3+k)3
2π2Table 4.1: Thermal 
ondu
tivity to shear vis
osity ratio for single 
harge bla
khole
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Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratio4.2.2 Two 
harge bla
k holeIn the ratio κTµ2

ηT
, µ2 is repla
ed by µ2

1 + µ2
2. Note that µi → −µi is a symmetry 34whi
h implies reversing the sign of 
harge density.Dimension κT

κT (µ2
1+µ2

2)

ηT5 N2T 2π(
2+

2∑
j=1

kj

)(
2∑

j=1

kj

(1+kj)
2

) 8π24 (2N)
3
2 Tπ(

2∑
j=1

3kj

(1+kj )
2

)√
2∏

i=1
(1+ki)

32π2

7 (2N)3T 4π2
2∏

i=1
(1+ki)

(
2∑

j=1

3kj

(1+kj )
2

)(
3+

2∑
j=1

kj−
2∏

j=1
kj

)3 2π2Table 4.2: Thermal 
ondu
tivity to shear vis
osity ratio for two 
harge bla
k hole
4.2.3 Three 
harge bla
k holeIn this 
ase the results are summarized below4.2.4 Four 
harge bla
k hole (4 Dimensional bla
k hole)The thermal 
ondu
tivity is given by

κT =
(2N)

3
2Tπ

( 4∑
j=1

3kj
(1+kj)2

)√ 4∏
i=1

(1 + ki)

, (4.3)and
κT (µ

2
1 + µ2

2 + µ2
3 + µ2

4)

ηT
= 32π2. (4.4)34The expression for κT in Eq.(1.113) is invariant under SO(m) rotation among ρi's. 89



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratioDimension κT
κT (µ2

1+µ2
2+µ2

3)

ηT5 N2T 2π(
2+

3∑
j=1

kj−
3∏

j=1
kj

)(
3∑

j=1

kj

(1+kj)
2

) 8π24 (2N)
3
2 Tπ(

3∑
j=1

3kj

(1+kj )
2

)√
3∏

i=1
(1+ki)

32π2Table 4.3: Thermal 
ondu
tivity to shear vis
osity ratio for three 
harge bla
khole
• µ 6= 0 : We observe that irrespe
tive of number of 
hemi
al potential turnedon, thermal 
ondu
tivity to vis
osity ratio shows same value although expres-sion for thermal 
ondu
tivity 
hanges with number of 
hemi
al potentials.
• µ = 0 : We also observe that as µ → 0 i.e. ρ → 0, thermal 
ondu
tivitygiven in Eq.(4.2), diverges whi
h implies �nite, non de
aying momentum. Inspite of this divergen
e, we shall observe in the next se
tion that thermal
ondu
tivity to vis
osity ratio remains same as in the non zero 
hemi
alpotential 
ase. In the following we shall �rst 
on
entrate at zero 
hemi
alpotential 
ase.4.3 Universality in thermal 
ondu
tivity to vis
os-ity ratioIn the following we �rst review the relation between ele
tri
al 
ondu
tivity andshear vis
osity at vanishing 
hemi
al potential [3℄. In a CFT, short distan
e physi
sis des
ribed by singularities of 
orrelation fun
tions where 
entral 
harges of thetheory appear expli
itly (in this energy s
ale e�e
ts of temperature are irrelevant).For example let us 
onsider 
orrelation fun
tions of energy momentum tensor Tµνand U(1) 
onserved 
urrent Jµ

〈J(x)J(0)〉 ∼ k

x2(d−1)
, 〈T (x)T (0)〉 ∼ c

x2d
, (4.5)where 
entral 
harges c, k measure the number of total degrees of freedom andthe number of 
harged degree of freedom of the system35 respe
tively. We alsoknow that at long distan
es physi
s is des
ribed by thermodynami
s and transport35So we expe
t k ≤ c. 90



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratio
oe�
ients. In this s
ale, the e�e
t of temperature be
omes important. To des
ribeequilibrium at T 6= 0, we look at pressure and 
harge sus
eptibility χ = ρ
µ
where

ρ(T, µ) is the 
harge density . If T is the only s
ale in the theory 36, then
P = c

′

T d, χ = k
′

T d−2, (4.6)where c′, k′ measure the number of total degree of freedom and number of 
hargeddegree of freedom at that s
ale. For d > 2, in general there is no relation between
c, c

′ and k, k′. But it was shown in [3℄ that for CFT's whi
h admit gravity duals,there exist su
h relation and are given by
c
′

c
=

1

4π
d
2

(4π
d

)dΓ(d/2)3
Γ(d)

d− 1

d(d− 1)
,

k
′

k
=

1

2π
d
2

(4π
d

)d−2Γ(d/2)3

Γ(d)
(4.7)where37d ≥ 3.It is well known that, in this 
lass of CFT's, even 
ertain transport 
oe�
ientsare determined in-terms of thermodynami
al quantities (for example η = s
4π
).Other su
h relation between vis
osity and 
ondu
tivity (σ) at vanishing 
hemi
alpotential (µ = 0) is

η

σT 2
= (d− 2)

( c′

k′

)
= 8π2 (d− 1)

(d− 2)d(d+ 1)

c

k
. (4.8)Eq.(4.8) implies at vanishing 
hemi
al potential i.e. at µ = 0, ele
tri
al 
ondu
-tivity 
an be 
omputed in terms of 
entral 
harges only. Using Eq.(4.8), (4.6) and

s = d c
′

T d−1 one gets
η =

d

4π
c
′

T d−1, σ =
1

d− 2

d

4π
k

′

T d−3. (4.9)Sin
e thermodynami
s is determined by the 
entral 
harges, we 
on
lude that themomentum (η) and 
harge (σ) transport are �xed by thermodynami
s38. Existen
e36to de�ne χ, one 
an introdu
e small 
hemi
al potential and see the e�e
t in ρ .37In our notation d is the dimension of gauge theory.38As an aside lets review membrane paradigm arguments. It was shown in [4℄ using membraneparadigm arguments that at µ = 0, ele
tri
al 
ondu
tivity 
an be determined in terms of geometryonly. If we use the results in [4℄, we immediately rea
h at
η

σT 2
=

1

T 2

g2d+1

16πGN

gxx(r0). (4.10)As an example 
onsider a CFT with the gravity dual given by AdSd+1 with d 6= 3, whi
h has ametri

ds2 =

r2

R2

(
− f(r)dt2 + dx2

1 + · · ·+ dx2
d−1

)
+

R2

f(r)r2
dr2, (4.11)91



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratioof su
h relations between thermodynami
s and transport 
oe�
ient are interest-ing 39, sin
e transport 
oe�
ients are 
hara
terized by inelasti
 
ollisions amongthermally ex
ited 
arriers (of energy ∼ T ) hen
e they are not �xed in terms ofthermodynami
s. What we 
on
lude from above dis
ussion is that, at non zerotemperature and at µ = 0, 
ertain transport 
oe�
ients are determined by ther-modynami
s. It is interesting to ask whether for µ 6= 0 and at �nite temperature,transport 
oe�
ients 
an be determined from thermodynami
s. We note that inthis 
ase it is already known that η
s
= 1

4π
still holds i.e. momentum transport
an be determined solely by thermodynami
s. It would be interesting if one 
anexpress the ele
tri
al 
ondu
tivity whi
h en
odes the 
harge transport, in terms ofthermodynami
s.We now pro
eed to provide eviden
es in favor of Eq.(4.1). In what follows, we�rst derive equation for µ = 0 and then provide support for 
ases with µ 6= 0.

• Derivation of Eq.(4.1) for µ = 0 : Let us 
onsider theory at small (single)
hemi
al potential and 
onsider the ratio κT

ηT
µ2. Using the relation40 κT =(

ǫ+P
ρ

)2
σ
T
, one obtains

κT
ηT

µ2 =
(
ǫ+ P

)2 1
(

ρ
µ

)2
1(
η

σT 2

) 1

T 4
. (4.13)Now taking µ→ 0, using ǫ = (d− 1)P , χ = ρ

µ
we immediately get

κT
ηT

µ2 =
d2

d− 2

( c′

k′

)
= 8π2 d− 1

d3(d+ 1)

c

k
. (4.14)with f(r) = 1− ( r0

r
)d and hawking temperature is TH = d

4π
r0
R2 where r0 and R are the positionof horizon and AdS 
urvature s
ale respe
tively. Using the above relations we obtain,

η

σT 2
=

π

d2
R2g2d+1

Gd+1
(4.12)whi
h is same as reported in [3℄.39We note that hydrodynami
s des
ription is valid in the energy range ω ≪ T whi
h is 
ollisiondominated regime [80, 81℄40Let us note that, at µ = 0, the 
harge density vanishes su
h that ρ

µ
remains �nite. So,in this limit, the thermal 
ondu
tivity diverges, whi
h implies �nite non-de
aying momentum.Naively, one 
an understand this in the following way. At �nite 
hemi
al potential, there is a net
harge density. Now we imagine having a temperature gradient, under whi
h there will be �ow of
harges from lower temperature to higher temperature region. This will imply a net 
urrent. So,one needs to apply voltage gradient in order to have zero 
urrent, whi
h will e�e
tively resultsin de
aying momenta due to 
ollision. In the 
ase when there is no net 
hrage, there is nonet 
urrent �ow under temperature gradient and hen
e one does not require to apply a voltagegradient. This 
ause a �nite but non-de
aying momenta (see[80, 81℄, for further details). 92
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ondu
tivity to vis
osity ratio
• Support for Eq.(4.1) for µ 6= 0 : For non zero 
hemi
al potential, were
all some of the results already reported in the literature. In ea
h 
asewe show that they follow Eq.(4.1). Here we tabulate the results for strongly
oupled gauge theories having gravity duals in the presen
e of single non zero
hemi
al potential [32, 36, 48℄.Gravity theory in d+ 1 dimension κTµ2

ηT
d2

d−2

(
c
′

k′

)R-
harge B.H. in 4 + 1 dim. 8π2 8π2R-
harge B.H. in 3 + 1 dim. 32π2 32π2R-
harge B.H. in 6 + 1 dim. 2π2 2π2Reissner-Nordstrom B.H. in 3 + 1 dim. 4π2γ2 4π2γ2Table 4.4: Thermal 
ondu
tivity to vis
osity ratio at �nite 
hemi
al potentialIt was further reported in [48℄ that for the R-
harged bla
k holes in �ve,four and seven dimensions the appropriate ratio of thermal 
ondu
tivity andvis
osity, regardless of the number of 
harge 
ontents, are 8π2, 32π2 and
2π2 respe
tively. Based on these observations we propose that, even in thepresen
e of �nite 
hemi
al potential (and arbitrary number of them) we 
anwrite

κT
ηT

m∑

j=1

(µj)2 =
d2

d− 2

( c′

k′

)
= 8π2 d− 1

d3(d+ 1)

c

k
. (4.15)In the next se
tion we use (4.15) to express ele
tri
 
ondu
tivity in terms ofthe thermodynami
al quantities alone.4.4 Ele
tri
al 
ondu
tivityLet us �rst write down various expressions for thermodynami
al quantities, trans-port 
oe�
ients su
h as vis
osity, ele
tri
al 
ondu
tivity in the presen
e of single
hemi
al potential. In our de�nition, χ = ρ

µ
. In 
ase of nonzero 
hemi
al potentialwe expe
t di�erent thermodynami
al quantities and transport 
oe�
ients to getmodi�ed from that of Eq.(4.6), (4.9) . In general these 
an be written as

P = c
′

T dfp(m), χ = k
′

T d−2fχ(m), (4.16)and
σ =

1

d− 2

d

4π
k

′

T d−3fσ(m), η =
d

4π
c
′

T d−1fη(m), (4.17)93



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratiowhere m = µ
T
and f(m)'s are de�ned su
h that f(m = 0) = 1. Now using

κTµ
2

ηT
=

(
(ǫ+ P )µ

ρ

)2
σ

ηT 2
=

d2

d− 2

( c′

k′

)
, (4.18)we get an important 
onstraint between the fun
tion f(m)'s

f 2
p fσ

f 2
χfη

= 1, (4.19)whi
h gives fσ =
f2
χfη
f2
p
. We then obtain expression for 
ondu
tivity41

σ =
1

d− 2

d

4π
k

′

T d−3
f 2
χfη

f 2
p

, (4.20)whi
h is entirely �xed in terms of 
entral 
harges (and thermodynami
 quantities).4.4.1 ExamplesHere we present 
omputations whi
h led to the results of Table 3 in the previousse
tion. We shall also illustrate with an example, how to use Eq.(4.20) to determine
ondu
tivity.
• AdS4 Reissner-Nordstrom bla
khole: The a
tion is

S =

∫
d4x

√−g
[ 1

2κ2
(R +

6

L2
)− 1

4g2
F 2
]
. (4.21)Metri
 is given by (for details see [32℄)

ds2 =
L2

r2
(−f(r)dt2 + dr2

f(r)
+ dxidxi). (4.22)Thermodynami
al quantities are given by

T =
1

4πr+
(3− r2+µ

2

γ2
), P =

L2

2κ2r3+
(1 +

r2+µ
2

γ2
) (4.23)and

S =
2π

κ2
L2

r2+
, χ =

ρ

µ
=

2L2

κ2
1

r+γ2
(4.24)41We may also write it as, σ = d2

d−2

(
c
′

k
′

)
χ2 ηT 2

(ǫ+P )2 , where χ = ρ
µ
. 94



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratiowhere r+ is the horizon radius and γ2 = 2g2L2

κ2 . To �nd out c′ and k′ best isto set µ to zero (then express r+ in terms of T) and 
ompare with Eq.(4.6).After doing this one �nds
c
′

=
L2

2κ2
(
4π

3
)3, k

′

=
8π

3

L2

κ2γ2
. (4.25)For this ba
kground with nonzero 
hemi
al potential, ele
tri
al 
ondu
tivityis given by σ = (sT )2

(ǫ+P )2
1
g2
. Using this result we 
an �nd out thermal 
ondu
-tivity. On evaluating the ratio κTµ2

ηT
one �nds it to be equal to 4π2γ2. Up onevaluating the ratio d2

d−2

(
c
′

k′

) we get the same result (note that here d=3).Let us note that, as for the spe
ial 
ase of setting all the R-
harges equalfor R-
harged bla
k hole, one obtains Reissner-Nordstrom bla
k hole withthe identi�
ation γ2 = 8 (see Appendix.B.). So we get κTµ2

ηT
= 32π2 whi
hmat
hes with that written for R-
harged bla
k hole in four dimensions (seeTable.4.4).

• Five dimensional R-
harged bla
k hole: Vis
osity and various thermo-dynami
al quantities are given by
T =

2 + κ1

2
√

(1 + κ1)
T0 , (4.26)

η =
πN2T 3

8

(1 + κ1)
2

(1 + κ1

2
)2
, (4.27)

P =
π2N2T 4

8

(1 + κ1)
3

(1 + κ1

2
)4
. (4.28)where T0 is the temperature at vanishing κ1 i.e. at vanishing 
hemi
al po-tential. The 
harge density is given by

ρ =
πN2T 3

0

8

√
2κ1(1 + κ1)

1/2 . (4.29)The 
hemi
al potential 
onjugate to ρ is de�ned as
µ = At(u)

∣∣∣∣∣
u=1

=
πT0

√
2κ1

(1 + κ1)
(1 + κ1)

1/2 , (4.30)so that sus
eptibility is given by
χ =

ρ

µ
=
N2T 2

8

(1 + κ1)
2

(1 + κ1

2
)2
, (4.31)95



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratiowhere we have used Eq.(4.26) to express T0 in terms of T .Upon 
omparing Eq.(4.16) and Eq.(4.17) with Eq.(4.27), Eq.(4.28) and Eq.(4.31)we get
fχ(m) =

(1 + κ1)
2

(1 + κ1

2
)2
, fη(m) =

(1 + κ1)
2

(1 + κ1

2
)3
, fp(m) =

(1 + κ1)
3

(1 + κ1

2
)4
, (4.32)and

c
′

=
π2N2

8
, k

′

=
N2

8
. (4.33)Using Eq.(4.20) and fχ, fη, fp and k

′ written in the above equations, weobtain
σ = N2T

(2 + κ1
32π

)
, (4.34)where κ1 
an be expressed in terms of m. This is same as the result reportedin the literature [58, 48℄.

• 4 and 7 dimensional R-
harge bla
k holes: In order to avoid repetition,here we just list values of c′ and k′ whi
h were used in the Table 3. In fourdimensions we have k′

= N
3
2

18
√
2
, and c′ = √

2π2

3

(
2
3

)3
N3/2. In seven dimensionswe have k′

=
(
2
3

)5
N3π, and c′ = π3

2

(
2
3

)7
N3.4.5 Away from 
onformalityIn the above dis
ussion we 
onsidered 
ases where bulk geometries are asymptot-i
ally AdS. Now we turn our attention to the 
ases where bulk geometries areasymptoti
ally non AdS. We show that, in this 
ase as well the ratio κT

ηT

m∑
j=1

(µj)2is independent of number of 
hemi
al potential and same as un
harged 
ases. Theexamples that we have in mind is 
harged and un
harged Dp branes. The relevantdetails of geometry was dis
ussed in the se
ond 
hapter. We �rst dis
uss un
harged
ases. The ele
tri
al 
ondu
tivity is given by
σ =

1

16πG

1

g2eff
g

p−2
2

xx

∣∣∣
rh

=
1

16πG
(grh)

7−n
2 . (4.35)It is easy to see that,

DR =
σ

χ

=
7− p

8πT
, (4.36)96



Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratioas was shown in [5℄, where
χ =

ρ

µ

=
1

8πG
g3r2h. (4.37)Let us note that, though ρ and µ go to zero separately for un
harged Dp brane,

χ in Eq.(4.37), remains non-zero. Now using expression for thermal 
ondu
tivity,
κT = (ǫ+p)2σ

ρ2T
, we get

κT
ηT

µ2 = 4π

(
σ

χ

)2
s

σ

=
4π2

g2
. (4.38)Note that, from Eq.(4.38), we see that thermal 
ondu
tivity to vis
osity ratio issame for any un
harged Dp brane. Also note, to mat
h with 
harged D1 brane,repla
e η by bulk vis
osity and g = 1

L
.Our next aim is to see whether for 
harged non-
onformal theories dual to
harged Dp brane, thermal 
ondu
tivity to vis
osity ratio remains 4π2

g2
.

• Single 
harge 
ase: Here we have
σ =

1

16πG

1

X2
g

p−2
2

xx

∣∣∣
rh

( sT

ǫ+ P

)2
. (4.39)Next using the fa
t that,

ρ

µ
=

1

8πG
g3r2hH(rh), (4.40)we get

KTµ
2

ηT
=

4π2

g2
, (4.41)whi
h is same as we get for un
harged 
ase.

• Multi 
harge 
ase: For multi 
harge 
ase
ρiσ

−1
ij ρj = ρiσ

−1
H,iiρi

(
ǫ+ P

sT

)2

, (4.42)
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Chapter 4. Universality in thermal 
ondu
tivity to vis
osity ratiowhere σ−1
H,ii is the inverse of ele
tri
al 
ondu
tivity evaluated at the horizonand only depends on geometri
al quantities evaluated at the horizon. Theexpression for ele
tri
al 
ondu
tivity at the horizon is given by,

σH,ii =
1

16πG
Gii(r) g

p−2
2

xx

∣∣∣
r=rh

=
1

16πG

1

X2
i

g
p−2
2

xx

∣∣∣
r=rh

=
g

7−n
2 r3hH

2
i (rh)

16
√
2m πG

. (4.43)Using this result, it 
an be easily shown that,
KT

∑b
i=1 µ

2
i

ηT
=

4π2

g2
. (4.44)For D1 brane η is repla
ed by s

4π
( whi
h is same as bulk vis
osity for single
harge 
ase or equally 
harged D1 brane 
ase as shown in [61℄).4.6 Dis
ussionIn this 
hapter we have dis
ussed the universality of thermal 
ondu
tivity to vis-
osity ratio at and away from 
onformality. We have proved this in the 
ase ofvanishing 
hemi
al potential, though general proof at non zero 
hemi
al potentialis still la
king. At �nite 
hemi
al potential, the ratio is

κT
ηT

µ2 = 8π2 1

2κ2g2eff(r)
gd−2
xx

∣∣∣
r=rH

1

( ρ
µ
)2
. (4.45)Right hand side of above equation should be independent of T, µ and some universalnumber. Although we have 
he
ked it against several examples, we 
ould notprovide a general proof of the result. Using the proposed universality in Eq.(4.1),we have also dis
ussed how ele
tri
al 
ondu
tivity 
an be expressed solely in termsof boundary data.
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5Universality of transport 
oe�
ients atextremality
5.1 Introdu
tionSo far, our dis
ussions on previous 
hapters 
on
erned bla
k holes away from ex-tremality. This was assumed expli
itly by 
onsidering only those metri
 whose
omponent along the radial dire
tion has single pole at the horizon. Our empha-size in this se
tion will be on extremal bla
k holes. This in turn means that wewill study the behavior of various transport 
oe�
ients of gauge theories at zerotemperature.Extremal bla
k holes are spe
ial in many ways. Often, various 
omputationstend to break down as one tries to extra
t out results asso
iated with extremalbla
k holes via `extremal limit' of non-extremal bla
k holes. One su
h examplere
ently has appeared in the 
al
ulation of shear vis
osity (η) to entropy (s) ratiofor gauge theory that is dual to extremal bulk geometry. In parti
ular, in the lowfrequen
y limit ( ω → 0 limit or in other words the IR limit of the boundary gaugetheory), used for non extremal ba
k ground in previous se
tion , the perturbationin ω breaks down. In [82℄, a pres
ription was given whi
h 
an be used to treatthese extremal holes. Subsequently, in [83℄42, following this pres
ription, η/s, 
on-du
tivity (σ) was 
omputed for four dimensional Reissner-Nördtstrom bla
k holesin AdS. The result for η

s
turned out to be 1/(4π); same as their non-extremalpartners. It was further argued that, regardless of the dimensions of spa
e-time,the result would remain un
hanged for Reissner-Nördtstrom bla
k hole.En
ouraged by these developments, in the following we provide a 
omputationof ele
tri
al 
ondu
tivity (σ) and η/s for a generi
 extremal bla
k hole in arbitrarydimensions having metri
 of the form

ds2d+1 = gttdt
2 + guudu

2 + gijdx
idxj , (5.1)42For 
ertain 
lass of bla
k holes on AdS5, a dis
ussion on η/s 
an be found in [84℄.
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Chapter 5. Universality of transport 
oe�
ients at extremalitywith
gtt = −(1 − u)2γ0(u), guu =

γu(u)

(1− u)2
. (5.2)In terms of 
oordinate u, the horizon is lo
ated at u = 1 while the boundaryis at u = 0. We take fun
tions γ0(u), γu(u) to be �nite on the horizon. Extremalnature of this geometry shows up in the double pole at the horizon. We assumethat these gravity ba
kgrounds have an asso
iated gauge theory on the boundary.Among others, this 
lass of metri
 in
ludes asymptoti
ally AdS spa
es. Besidesthe metri
 in Eq.(5.1), there might be gauge �elds and s
alars. The detail formsof these quantities will not be required for the following dis
ussion. As will beshown, the knowledge of the metri
 near the horizon is su�
ient for determinationof various quantities of interest. The geometry is 
hara
terized by the fa
t thatits entropy is �nite even though the temperature is zero [85℄. We now pro
eed to
ompute η/s and the ele
tri
al 
ondu
tivity asso
iated with this geometry.5.2 Shear vis
osity to entropy density ratio at ex-tremalityFirst, to 
ompute the shear vis
osity, one 
onsiders some spe
i�
 �u
tuations ofthe metri
 and uses Kubo formula as in [44, 36, 83℄. This formula relates thevis
osity to the 
orrelation fun
tion of the stress-energy tensor at zero spatialmomentum.Take the perturbation of the form g

′

µν = gµν + hµν with gµν given inEq.(5.1), and Einstein equation leads to the following equation for hxy (whi
h turnsout to be same as that of massless real s
alar �eld. In what follows, we 
all it Φ.)
∂µ

(√−g gµν∂ν
)
Φ = 0. (5.3)Further, using the ansatz Φ = e−iωtφ(u), we get

∂2uφ+ ∂uln(g
uu
√−g)∂uφ− gtt

guu
ω2φ = 0. (5.4)Using expli
it forms of gtt, guu, we �nally rea
h at an equation of the form

∂2uφ+ ∂uln
(√−g(1− u)2

γu

)
∂uφ− ω2γu

(1− u)4γ0
φ = 0. (5.5)We solve the above equation in the inner region (near the horizon) as well as inthe outer region (away from the horizon). We then mat
h both at the so 
alledmat
hing region [83℄. We �rst look for solution in the inner region.Due to the double pole singularity in guu(u), the usual low frequen
y (ω) ex-pansion of φ be
omes subtle [82, 83℄. One then de�nes ξ as u = 1 − ω/ξ and100



Chapter 5. Universality of transport 
oe�
ients at extremalityorganizes the solution as an expansion in ω where ω → 0 and ξ → 0 in su
h a waythat ω/ξ → 0, see [82, 83, 87, 88, 86℄ for details. The Eq.(5.5) then simpli�es to(keeping only zeroth order in ω)
∂2φ

∂ξ2
+
γu
γ0
φ = 0, (5.6)Next, de�ning α = γu

γ0
ξ above equation redu
es to standard form in AdS2

∂2φ

∂α2
+ φ = 0. (5.7)The in
oming wave solution is then

φin = a0Ie
iα ∼ a0I(1 + iα) = a0I +

g(ω)

1− u
a0I . (5.8)with

g(ω) = i

√
γu
γ0
ω. (5.9)In Eq.(5.8), a0I is a 
onstant. Sin
e Eq.(5.8) represents in
oming solution near thehorizon, this is often 
alled the solution in the inner region or the solution in theIR of the boundary gauge theory.As for the solution in the outer region or in other words away from the horizon,we go ba
k to Eq.(5.5). Note that in this 
ase, to zeroth order in ω, we get

∂2uφ+ ∂uln(g
uu
√−g)∂uφ = 0. (5.10)Integrating on
e,

∂uφ = c1
guu√−g , (5.11)where c1 is a 
onstant. This implies

φout = c2 + c1

[ γu(u)

(1− u)
√−g −

∫ (γu(u)√−g
)′ 1

1− u
du
]
, (5.12)In Eq.(5.12), c2 is an integration 
onstant. In order to get the 
omplete lowfrequen
y pro�le of φ, we need to mat
h Eq.(5.12) and Eq.(5.8) at u → 1. Outerregion solution gives

φout = c2 + c1B + c1
γu

(1− u)
√
−g(u = 1)

, (5.13)with
B =

[
−
∫ (γu(u)√−g

)′ 1

1− u
du
]
u→1

(5.14)101



Chapter 5. Universality of transport 
oe�
ients at extremalityNow 
omparing Eq.(5.13) with Eq.(5.8), we get
c1 =

√−gg(ω)
γu

a0I , c2 = a0I

(
1− B

√−gg(ω)
γu

)
. (5.15)Substituting these 
onstants in Eq.(5.12)

φout = a0I

(
1− B

√−gg(ω)
γu

)
+ a0IB

√−gg(ω)
γu

+ a0I

√−gg(ω)
γu

γu

(1− u)
√
−g(u = 1)

. (5.16)Hen
e
∂uφout = a0I

√−gg(ω)
γu

guu√−g . (5.17)Now it is straightforward to 
ompute the boundary a
tion and then the 
orrelationfun
tion following [44℄. As for the boundary a
tion, we get
Sboundary = −1

2

1

16πG

[
guu

√−gφout∂uφout

]
u=ǫ→0

= −g(ω)
√−g(a0I)2

32πGγu
. (5.18)Hen
e, to �rst order in ω

Gxy,xy =
∂Sboundary

∂a0I∂a
0
I

= −g(ω)
√−g

16πGγu
= − iω

16πG

[√ −g
gttguu

]
u=1

. (5.19)Here G is the d+ 1 dimensional Newton's 
onstant. In the last line we have usedthe form of g(ω) given in Eq.(5.9). Now the Kubo formula gives us the shearvis
osity 43
η =

1

16πG

[√ −g
guugtt

]

u=1

. (5.20)Sin
e the entropy density of bla
k hole is given by
s =

√
detgij

∣∣∣
u=1

4G
=

1

4G

[√ −g
guugtt

]
u=1

(5.21)we get
η

s
=

1

4π
. (5.22)In the following we give a di�erent derivation of the η

s
= 1

4π
in the same spiritof [4℄). Let us note that in [4℄, the single pole stru
ture of the metri
 played a43We observe that the form of η is same as that obtained in the non-extremal 
ases [4℄. Thestru
tural similarity leads us to spe
ulate that there might be a Iqbal-Liu like pres
ription[86℄for extremal bla
k holes having non-zero entropy. 102



Chapter 5. Universality of transport 
oe�
ients at extremality
ru
ial role in determining transport 
oe�
ient, where as we are 
onsidering thedouble pole stru
ture. In spite of this di�eren
e, as we will see below, one 
anapply argument similar to that in [4℄. Consider the bulk a
tion for a masslesss
alar Φ:
Sbulk =

1

2

∫
dd+1x

√−g∂AΦ∂
AΦ

16πG
(5.23)Using linear response theory one 
an write the transport 
oe�
ient as

χ = lim
ω→0

lim
u→0

(
ΠΦ(u, ω)

iωΦ(u, ω)

)
, (5.24)where ΠΦ(u, t) = ∂Lbulk

∂(∂uΦ)
[4℄. Note that ΠΦ(u, ω) is the Fourier transform of thefun
tion ΠΦ(u, t). If we take Φ(u, t) = hxy , then we get η as the transport 
oe�
ient.Following our previous dis
ussion, we note that the �eld momentum is of the form

ΠΦ(u, ω) =

√−g
16πG

guu∂uφ. (5.25)Now using the fa
t that
∂uφI = i

∂α

∂u
φI = i

ω

(1− u)2

√
γu
γt
φI , (5.26)and Eq.(5.17), we see

η = lim
ω→0

lim
u→0

(
ΠΦ(u, ω)

iωΦ(u, ω)

)
= lim

ω→0
lim
u→1

(
ΠΦ(u, ω)

iωΦ(u, ω)

)
=

1

16πG

√ −g
guugtt

∣∣∣
u→1

. (5.27)This is same as what we got previously Eq.(5.20). To evaluate the above expression,we have used Eq.(5.26) for φ in u → 1 region and Eq.(5.17) for u → 0 region. Soin spite of double pole nature of the geometry, membrane paradigm like argumentgives the same result.5.2.1 Radial independen
e of the response fun
tionWe have seen that the response fun
tion (χ(u, ω) = Π(u,ω)
iωφ(u,ω)

) for shear vis
osityevaluates to same value whether one 
omputes it at the horizon or at the boundary.In fa
t one 
an 
onvin
e oneself that the response fun
tion is independent of radialdire
tion. To show that, let us de�ne Σ(u, ω) = 1
16πG

√
−g

guugtt
. Now following [4℄and using Eq.(??) we 
an write

∂uχ = iω

√
guu
gtt

( χ2

Σφ
− Σφ

)
. (5.28)103



Chapter 5. Universality of transport 
oe�
ients at extremalityNear the horizon we have already 
he
ked that χ = Σ where as away from horizonbe
ause of expli
it ω dependen
e in the above equation, in the limit ω → 0, we get
∂uχ = 0, and hen
e radial independen
e. To strenthen the argument further let us
ompute the response fun
tion in the outer region at arbitrary radial position.Using Eq.(5.9,5.17) one obtains

Π = a0I

√ −g
guugtt

∣∣∣
u→1

+O(ω2) (5.29)and using Eq.(??) we get
ωφ = ωa0I +O(ω2) (5.30)and hen
e

χ =
1

16πG

√ −g
guugtt

∣∣∣
u→1

(5.31)and radially independent.5.3 Condu
tivity for extremal bla
k holeIn this se
tion we 
ompute ele
tri
al 
ondu
tivity for extremal ba
kground. Weshall �rst give some examples whi
h motivate us to determine 
ondu
tivity formore general 
ases. At extremality metri
 in the vi
inity of horizon takes the form
gtt = −(1− u)2γ0, guu =

γu
(1− u)2

, (5.32)where γ0 = γ0(u = 1) and γu = γu(u = 1). Near the horizon Eq.(2.10) redu
es to
d2

du2
φi(u)−

2

1− u

d

du
φi(u) +

γu
γ0

ω2

(1− u)4
φi(u)−

ci
(1− u)2

(
m∑
j=1

djφj(u))

γ0
= 0 (5.33)Note that ci = F i

ut(u = 1) and dj = Gjj(u)F
j
ut(u) at u = 1. Following [82, 83℄ letus de�ne u = 1− ω

ξ
. In this 
oordinate system Eq.(5.29) redu
es to
d2

dξ2
φi(ξ) +

γu
γ0
φi(ξ)−

ci
ξ2

(
m∑
j=1

djφj(ξ))

γ0
= 0 (5.34)Above equation is in general a 
ompli
ated 
oupled di�erential equation. To solveit we observe that

d2

dξ2
φi(ξ) +

γu
γ0
φi(ξ)

ci
=

(
m∑
j=1

djφj(ξ))

γ0ξ2
(5.35)104



Chapter 5. Universality of transport 
oe�
ients at extremalityIn the 
ase when more than one �eld is present then we get
d2

dξ2
φ1(ξ) +

γu
γ0
φ1(ξ)

c1
=

d2

dξ2
φ2(ξ) +

γu
γ0
φ2(ξ)

c2
= .... (5.36)We take solution of the form

φ1(ξ)

c1
=
φ2(ξ)

c2
= .... (5.37)Plugging Eq.(5.33) in Eq.(5.30) one obtains

d2

dξ2
φi(ξ) +

γu
γ0
φi(ξ)−

(
m∑
j=1

djcj)

γ0ξ2
φi(ξ) = 0 (5.38)Introdu
e η =

√
γu
γ0
ξ and a =

(
m∑

j=1
djcj)

γ0
, so that one gets ( from Eq.(5.34))

d2

dη2
φi(η) + φi(η)−

a

η2
φi(η) = 0 (5.39)The in
oming solution to Eq.(5.35) takes the form

φi(η) = CH1
ν (η), (5.40)where H1

ν (η) is Henkel fun
tion and ν =
√
1+4a
2

. Taking η → 0 limit one gets
lim
η→0

φi(η) = η
1
2
+ν2−ν(

1

Γ[1 + ν]
− i

cos(πν)Γ[−ν]
π

)− iη
1
2
−ν2ν

Γ[ν]

π
(5.41)Using η =

√
γu
γ0

ω
(1−u)

, and some properties of Gamma fun
tions as well as doingsome re s
aling one �nds
φi(u→ 1) = A0

[ 1

(1− u)
1
2
−ν

+ (

√
γu
γ0

)2ν(
ω

2
)2ν
π(i− cot(νπ))

Γ[1 + ν]Γ[ν]

1

(1− u)
1
2
+ν

]
. (5.42)Again using properties of Gamma fun
tions we get

φi(u→ 1) = A0

[ 1

(1− u)
1
2
−ν

− (

√
γu
γ0

)2ν(
ω

2
)2ν

Γ[1− ν]

Γ[1 + ν]

e−iνπ

(1− u)
1
2
+ν

]

= A0

[ 1

(1− u)
1
2
−ν

+ g(ω)
1

2ν(1− u)
1
2
+ν

]
, (5.43)105



Chapter 5. Universality of transport 
oe�
ients at extremalitywhere for notational simpli
ity we introdu
ed
g(ω) = −2νe−iνπ(

√
γu
γ0

)2ν(
ω

2
)2ν

Γ[1− ν]

Γ[1 + ν]
. (5.44)Following the standard pro
edure, we obtain 
ondu
tivity to be proportionalto

σ ∝ lim
ω→0

1

ω
ℑ[g(ω)] ∝ (ω)2ν−1, (5.45)where

2ν =
√
1 + 4a

=

√√√√1 + (
4

γ0
)

m∑

j=1

djcj

=

√√√√1 + (
4

γ0
)

m∑

j=1

Gjj(F
j
ut)

2. (5.46)In the above expression every quantity is 
al
ulated at the horizon (u = 1). Hen
e,we see only way to get non-zero 
ondu
tivity in the limit ω → 0 at extremality is
ν ≤ 1

2
where as σ → 0 if ν > 1

2
.

• To obtain above form of g(ω), we have only assumed that extremal bla
k holeexhibits double pole. So the expression for operator dimension in generalfollows only from 
riteria of extremality i.e. it is independent of parti
ularba
kground. In all the examples 
onsidered below (see Appendix for detailsabout bulk geometry) we �nd ν = 3
2
⇒ δ = ν + 1

2
= 2. There are other
lasses of bla
k hole as well (dialatoni
 bla
k hole [89, 90, 91, 92, 93, 94, 95℄)where one �nds δ = 2.

• R-
harged bla
k brane in four dimension: In this 
ase
2ν =

√√√√√√√√
1 + 4

4∏
i=1

(1 + ki)

3 +
4∑

j=1

kj +
4∏

i=1

ki

( 4∑

j=1

ki
(1 + ki)2

) (5.47)Using extremality 
ondition44(see appendix) we get 2ν = 3.44k1 = 3+2(k2+k3+k4)+k2(k3+k4)+k3k4

k2k3k3−2−k2−k3−k4 106



Chapter 5. Universality of transport 
oe�
ients at extremality
• R-
harged bla
k brane in �ve dimension: In this 
ase

2ν =

√√√√√√√1 + 4

3∏
i=1

(1 + ki)

1 +
3∏

i=1

ki

( 3∑

j=1

ki
(1 + ki)2

) (5.48)Using extremality 
ondition45 one �nds 2ν = 3. Whi
h implies δ = ν+ 1
2
= 2.Note that above result also appli
able for 5d Reissner-Nordstrom bla
k hole(for whi
h k1 = k2 = k3) 
onsidered in other pla
es [82℄.

• R-
harged bla
k brane in seven dimension: In this 
ase
2ν =

√
1 + 4

4(1 + k1)(1 + k2)

3 + k1k2
(

k1
(1 + k1)2

+
k2

(1 + k2)2
) (5.49)Now extremality 
ondition implies k1 = 3+k2

k2−1
. So one gets 2ν = 3.

• Above results implies that for bla
k hole at extremality obeys
(
1

γ0
)

m∑

j=1

Gjj(F
j
ut)

2 = 2. (5.50)It would be interesting to �nd out under what 
onditions extremal ba
k-grounds obeys this relation.What we observe is that, form of 
ondu
tivity is insensitive to the details of ge-ometry and mostly determined by the fa
t that the metri
 has double pole orzero.We 
onsider metri
 with near horizon behavior to be
ds2 = −(1 − u)2γ0dt

2 +
γu

(1− u)2
du2 + γx

d−1∑

i=1

(dxi)2, (5.51)and gauge 
oupling has no zero or pole as we approa
h horizon. For this bulk ba
kground, temperature is zero but the entropy is �nite.The Einstein equation is given by
Rµν −

1

2
gµνR = TE.M.

µν + TMatter
µν

=
1

2g2eff

(
FµλF

λ
ν − 1

4
gµνFρσF

ρσ

)
+ TMatter

µν , (5.52)45k3 = 2+k1+k2
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Chapter 5. Universality of transport 
oe�
ients at extremalitywhere TMatter
µν (u), will in
lude all the other stu�s whi
h may 
ome from s
alar�elds, 
osmologi
al 
onstant or any other �elds present in the theory. Sin
e only

At(u) is non-zero, we have Fut 6= 0. Using Eq.(5.48), we 
an write
Rt

t −
1

2
gttR =

1

2g2eff

(
FtuF

tu − 1

4
gttFρσF

ρσ

)
+ T t, Matter

t , (5.53)
Rx

x −
1

2
gxxR = − 1

2g2eff

1

4
gxxFρσF

ρσ + T x, Matter
x . (5.54)After subtra
ting Eq.(5.49) from Eq.(5.50), we get

√−gRt
t−

√−gRx
x =

1

2g2eff

√−gF utFut+
√−g(T t, Matter

t (u)−T x, Matter
x (u)). (5.55)For the metri
 of the form in Eq.(A.2), following relations hold

√−gRt
t = − d

du


g

d−1
2

xx
d
du
gtt

2g
1
2
uug

1
2
tt


 , (5.56)

√−gRx
x = − d

du

(
g

d−3
2

xx g
1
2
tt

2g
1
2
uu

d

du
gxx

)
, (5.57)whi
h, after substituting in Eq.(5.51), we get,

− d

du

(
g

d−1
2

xx

2g
1
2
uug

1
2
tt

d

du
gtt

)
+

d

du

(
g

d−3
2

xx g
1
2
tt

2g
1
2
uu

d

du
gxx

)
=

1

2g2eff

√−gF utFut

+
√−g(T t,Matter

t − T x,Matter
x ).(5.58)If we impose the 
ondition that

T t, Matter
t (u) = T x, Matter

x (u), (5.59)then we get
− d

du

(
g

d+1
2

xx

g
1
2
ttg

1
2
uu

d

du
(gxxgtt)

)
=

1

g2eff

√−gF utFut. (5.60)In the near horizon limit we get
1

g2eff(u = 1)

F 2
ut(u = 1)

γ0
= − γu√−g

d

du

(
g

d+1
2

xx

g
1
2
ttg

1
2
uu

d

du
(gxxgtt)

) ∣∣∣∣∣
u=1

= 2. (5.61)108



Chapter 5. Universality of transport 
oe�
ients at extremalitySo we have proved that
σ ∼ ω2for the metri
 with double pole in guu and double zero in gtt. The 
ase of multiply
harged extremal bla
k brane is totally analogues and 
an be shown that under thesame 
ondition on the energy momentum tensor of bulk spa
e time, the form of
ondu
tivity is again ω2. Let us note that, the 
ondition on the energy momentumtensor Eq.(5.55), has the interpretation that dual gauge theory va
uum is Lorentzinvariant as was the 
ase for non extremal 
ase.5.3.1 Imaginary part of the 
ondu
tivityWe 
an even �nd out the imaginary part of 
ondu
tivity. This is given by

ℑ(σ) = − 1

ω

ρ2

ǫ+ P
= − 1

ω

ρ

µ
. (5.62)Let us note that, this is very similar to �nite temperature 
ase and has a pole as

ω goes to zero.5.4 Dis
ussionWe have shown that the vis
osity to entropy ratio as well as the ele
tri
al 
ondu
-tivity are insensitive to many details of the extremal bla
k brane geometry. For our
omputation, we only required the double pole nature of guu and double zero of gttat the horizon. Rest of the quantities asso
iated with the metri
 are only assumedto be �nite and non-zero on the horizon. Given these information, we argued thatele
tri
al 
ondu
tivity goes as ω2. We have also seen that analyti
 expression forshear vis
osity and the vis
osity to entropy ratio remain same as that of manynon-extremal bla
k holes where near horizon geometry is radi
ally di�erent. Wehave also observed that a analog of Iqbal-Liu like arguments for 
omputation ofthe shear vis
osity go through in the extremal 
ase with double pole nature ofmetri
, even though the 
omputations of [4℄ seem to depend 
ru
ially on the thesingle pole nature of the geometry.
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6Summary
The gauge/gravity duality allows us to gain insights into various properties ofstrongly 
oupled gauge theories both at zero and non-zero temperature. In parti
-ular, the transport 
oe�
ients of strongly 
oupled gauge theories, whi
h are hardto 
ompute otherwise, 
an now be 
omputed using gauge/gravity duality. Further-more, for many 
ases, in the low frequen
y limit, at the level of linear response, thehorizon geometry of the gravity dual determines the behavior of the gauge theory.This 
an, in parti
ular, be used to show that the shear vis
osity to entropy densityratio for strongly 
oupled gauge theories at �nite temperature with a gravity dualis universal and takes value 1

4π
. One 
an further show that, the ele
tri
al 
ondu
-tivity of the gauge theory at �nite temperature but zero 
hemi
al potential 
an bedetermined in terms of geometri
al quantities evaluated at the horizon. This is sobe
ause the response fun
tion in the low frequen
y limit evolves in a very simplemanner as we go away from the horizon along the radial dire
tion. However, theintrodu
tion of a 
hemi
al potential primarily brings in several non-trivialities inthe evolution of response fun
tion from the horizon to the boundary. Althoughthe shear vis
osity 
an still be 
omputed solely in terms of horizon data, for the
omputation of ele
tri
al 
ondu
tivity, horizon data is not enough. Nevertheless,our analysis reveals that if the stress-energy tensor related to the matter 
ontentof the bulk satis�es a 
ompa
t relation among its spa
e and time 
omponents, theboundary 
ondu
tivity at low frequen
ies is universal and 
an be written in termsof geometri
al quantities evaluated at the horizon and thermodynami
 quantities.In this thesis, we also have shown that at any radial position out side the horizon,the 
ondu
tivity is given by a simple expression whi
h interpolates smoothly be-tween the one 
omputed at the horizon and at the boundary. We also 
omputedthe ele
tri
al 
ondu
tivity in the presen
e of more than one 
hemi
al potentialsfor several models. What we observe is that, in the presen
e of multiple 
hemi
alpotentials, there is a nontrivial mixing between 
urrent operators whi
h, from thebulk point of view, 
an be understood to be arising be
ause of the intera
tionsthrough graviton. We have also shown that one 
an write a general expression for
ondu
tivity matrix in the presen
e of multiple 
hemi
al potentials provided dualgravity ba
kground satis�es some 
onstraints. By using the relation with ele
tri
al110



Chapter 6. Summary
ondu
tivity, we have also 
omputed the thermal 
ondu
tivity and observed thatthermal 
ondu
tivity to shear vis
osity ratio (κT
∑n

i=1 µ
2
i

ηT
) is independent of the num-ber of 
hemi
al potentials turned on. This ratio remains same even in the limit ofzero 
hemi
al potential. We also dis
ussed, how for CFT's with gravity dual, thisratio 
an be expressed in terms of 
entral 
harges of the CFT. Using these results,we 
ould express the ele
tri
al 
ondu
tivity solely in terms of the thermodynami
quantities of the gage theory. We then turn our attention to study of transport
oe�
ients of gauge theories at zero temperature whi
h 
orresponds to extremalbla
k hole in the bulk. We have shown that ele
tri
al 
ondu
tivity goes as ω2.We have also seen that analyti
 expression for shear vis
osity and the vis
osity toentropy ratio remain same as that of many non-extremal bla
k holes where nearhorizon geometry is radi
ally di�erent.We hope that our explorations regarding the universalities of various trans-port 
oe�
ients will be useful in understanding generi
 behaviour of the strongly
oupled quantum �eld theories at zero and non-zero temperature.
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AMembrane paradigm
To an external observer, a bla
k hole appears as dynami
al �uid membrane sit-ting at the horizon, with me
hani
al and ele
tri
al properties. They also showdissipation and one 
an 
ompute quantities su
h as 
ondu
tivity, shear vis
osity.In the following we shall give a brief introdu
tion to membrane paradigm in thespirit of [4, 96℄. See [5℄ and [97, 98, 99, 100, 101, 102℄ for dis
ussion on same topi
.Classi
ally an outside observer does not see inside the horizon. E�e
tively, for anexternal observer one 
an write

Seff = Sout + Ssurf , (A.1)where Sout is the part of a
tion de�ned out side the horizon where as Ssurf representse�e
tively the e�e
t of bla
k hole to external universe. Ssurf is a boundary term tothe horizon, and 
an be determined by demanding Seff to be stationary with respe
tto solution to the equation of motion. Rather than putting the membrane exa
tlyat the horizon, one 
an put it slightly away and thus avoiding 
omplexity thatarises due to null hypersurfa
e. In the following we shall dis
uss brie�y ele
tri
aland me
hani
al properties of the membrane.A.1 Ele
tri
al properties of the membraneLet us 
onsider the metri
 of the form
ds2 = gtt(r)dt

2 + grr(r)dr
2 + gxx(r)

d−1∑

i=1

(dxi)2, (A.2)where r is the radial 
oordinate. We have assumed full rotational symmetry in xidire
tions so that gij = gxxδij , where i, j run over all the indi
es ex
ept r, t. Wealso assume that metri
 
omponents depend on radial 
oordinate only. We shallwork with the metri
 whi
h has an event horizon, where gtt has a �rst order zeroand grr has a �rst order pole. We also assume that all the other metri
 
omponents
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Appendix A. Membrane paradigmare �nite as well as non vanishing at the horizon. Consider a bulk U(1) gauge �eldfor whi
h the a
tion is of the form
SOut = −

∫

r>rh

dd+1x
√−g 1

4g2d+1(r)
FMNF

MN . (A.3)Now varying this a
tion we get,
δSout = −2

∫

r>rh

dd+1x
√−g 1

4g2d+1(r)
δFMNF

MN

= −4

∫

r>rh

dd+1x
√−g▽M (

1

4g2d+1(r)
δANF

MN)

+ 4

∫

r>rh

dd+1x
√−gδAN ▽M (

1

4g2d+1(r)
FMN). (A.4)Using Maxwell equation

▽M(
1

4g2d+1(r)
FMN) = 0, (A.5)and the fa
t that for any ve
tor V A, we have

▽MV
M =

1√−g∂A(
√−gV A), (A.6)we get

δSout = −
∫
ddx

√−g 1

g2d+1

δAMF
rM
∣∣∣
r→∞

r=rh
. (A.7)Using the fa
t that at the boundary δAB = 0, and staying slightly away from thehorizon we get,

δSout = −
∫
ddx

√
−h
(√−g√

−h
1

g2d+1

δAMF
rM
)
r=rh+ǫ

= −
∫
ddx

√
−hδAMJ

M
membrane(x). (A.8)where hµν is the indu
ed metri
 at the stret
hed horizon and

JB
membrane =

√
grr

g2d+1

F rB
∣∣∣
r=rh+ǫ

. (A.9)In order to have a well de�ned variational prin
iple, we need to 
an
el the boundaryterm. For that purpose we add SSurf su
h that
δSSurf = −δSOut. (A.10)113



Appendix A. Membrane paradigmOne 
an write SSurf , as
SSurf =

∫
ddx

√
−hδAMJ

M
membrane(x). (A.11)Let us note that Maxwell equation 
an be written as

▽M(
√−g 1

g2d+1

F rM) = 0

⇒ ▽MJ
M
membrane = 0, (A.12)where JM

membrane 
an be interpreted as the membrane 
urrent. Total integral of
J0
membrane over the horizon will give 
harge of the bla
k hole. The spatial 
omponentof the membrane 
urrent is given by

J i
membrane =

√
grr

g2d+1

F ri
∣∣∣
r=rh+ǫ

. (A.13)In order to pro
eed further, let us 
hoose the gauge Ar = 0. Sin
e horizon is aregular pla
e for an in falling observer, the Ai should be regular at the horizon.This implies that, gauge �eld should only depend on a non singular 
ombination
v with

dv = dt+

√
grr
−gtt

dr. (A.14)This gives,
(∂r −

√
grr
−gtt

∂t)Ai = 0

⇒ Fri =

√
grr
−gtt

Fti. (A.15)Plugging it in Eq.(A.13) we get,
J i
mem =

1

g2d+1

√
−gttF i

t =
1

g2d+1

Êi, (A.16)where Êi is the ele
tri
 �eld measured in an orthonormal frame of a physi
alobserver hovering just outside of the bla
k hole. J i
mem 
an be interpreted as theresponse of the membrane to ele
tri
 �eld Êi. Now 
omparing with −→

J = σ
−→
E weget

σmem =
1

g2d+1(rh)
, (A.17)where σ is the ele
tri
al 
ondu
tivity of the membrane. 114



Appendix A. Membrane paradigmA.2 Me
hani
al properties of the membraneFlu
tuation of gravitational �eld will indu
e energy momentum tensor T µν in themembrane. To illustrate this with an example, let us 
onsider a metri
 �u
tuation
h12(x). The a
tion of this to the quadrati
 order is that of a free mass less s
alar�eld ,

Sgrav
out =

1

2

∫
dd+1x

√−g 1

16πGN
(▽φ)2, (A.18)with φ = h12. Following previous dis
ussion, we need to add a surfa
e term

Ssurf =

∫

horizon

ddx
√
−hΠr(x)√

−h φ(x), (A.19)with Πr =
√−ggrr∂rφ

16πGN
. This will indu
e a 
urrent J(x) in the membrane J(x) ∝ T 1

2 .Regularity implies
∂rφ =

√
grr
−gtt

∂tφ, (A.20)so that one 
an write
Πmem =

Πr(x)√
−h
∣∣∣
rh

= − 1√
gtt

1

16πGN
∂tφ

= − 1

16πGN
∂t̂φ. (A.21)In the last line, we again have passed to ortho-normal basis. As in the ele
tromag-neti
 
ase (see Eq.(A.11)), we 
an interpret Πmem in Eq.(A.18) as the membraneresponse of the �eld φ, with response fun
tion η = 1

16πG
, the shear vis
osity sin
e

Πmem = (Tmem)
x
y . Sin
e the entropy density (s) per unit volume of membrane �uidis smem = 1

4G
, we get

η

s
=

1

4π
. (A.22)So we see that one 
an 
onsider horizon as �uid with response �u
tuations su
has ηmem, σmem. Let us note that 
omputation done using gauge gravity duality forboundary �uid also shows

η

s
=

1

4π
. (A.23)
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BR-
harged bla
k holes in variousdimensions
Here we 
olle
t all the relevant information about four and seven dimensionalR-
harged bla
k hole [33℄. The 
ase of �ve dimensional bla
k hole was alreadydis
ussed in the introdu
tion. The R-
harged bla
k hole solutions in asymptoti-
ally AdS4 and AdS7 
an be obtained by doing dimensional redu
tion of rotating
M2 brane and M5 branes on S7 and S4 respe
tively. The relevant part of theLagrangian is

L√−g = R− 1

4
GijF

i
µνF

µν j −Gij∂µX
i∂µXj + ..... (B.1)B.1 Four dimensional bla
k holeMetri
 and gauge �elds in this 
ase are

ds24 =
16(πT0L)

2

9u2
H1/2

(
− f

Hdt2 + dx2 + dz2
)
+

L2

fu2
H1/2 du2 , (B.2)

Ai
t =

4

3
πT0

√√√√2κi

4∏

i=1

(1 + κi)
u

Hi
, Hi = 1 + kiu , (B.3)

H =
4∏

i=1

Hi, f = H−
4∏

i=1

(1 + κi)u
3. (B.4)Thermodynami
 quantities are given by
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Appendix B. R-
harged bla
k holes in various dimensions
ǫ =

√
2π2

(
2

3

)4

N3/2 T 3
0

4∏

i=1

(1 + κi) , P =

√
2 π2

3

(
2

3

)3

N3/2 T 3
0

4∏

i=1

(1 + κi) ,(B.5a)
s =

√
2π2

(
2

3

)3

N3/2 T 2
0

4∏

i=1

√
1 + κi , T =

T0

(
3 + 2

4∑
j=1

ki +
4∑

j>i,i,j=1

kikj −
4∏

i=1

ki

)

3

√
4∏

i=1

(1 + κi)(B.5b)
ρi =

√
2π

(
1

3

)3

N3/2 T 2
0

√√√√2 ki

4∏

j=1

(1 + κj) , µi =
4π T0
3

1

1 + ki

√√√√2 κi

4∏

i=1

(1 + κi) ,(B.5
)Other relevant expressions are
Gij =

L2

2
diag [(X1)−2, (X2)−2, (X3)−2, (X4)−2

]
X i =

H1/4

Hi(u)
. (B.6)and 1

16πG4
= N

3
2

24
√
2L2 . As was dis
ussed in se
tion (1.5.2), in this 
ase as well, one
an go to a 
ase where one has diagonal U(1) of the group U(1)4. In this 
ase, allthe s
alar �eld vanishes and one is left with the a
tion of the form

S4 =
1

16πG4

∫
d4x

√−g(R − 1

4
F 2 + ...) (B.7)whi
h is exa
tly same as with Resinner-Nordstrom bla
k hole in four dimension.Now 
omparing this a
tion Eq.(??) gives us 1

2κ2 = 1
16πG4

and γ2 = 8.B.2 Seven dimensional bla
k hole
ds27 =

4(πT0L)
2

9u
H1/5

(
− f

Hdt2 + dx21 + · · ·+ dx24 + dz2
)
+

L2

4fu2
H1/5 du2 , (B.8)

At =
2

3
πT0

√√√√2κi

2∏

i=1

(1 + κi)
u2

Hi

, Hi = 1 + κiu
2 , (B.9)117



Appendix B. R-
harged bla
k holes in various dimensions
Hi = 1 + κiu

2 , H =
2∏

i=1

Hi, f = H−
2∏

i=1

(1 + κi)u
3 , (B.10)Thermodynami
 quantities are given by

ǫ =
5 π3

2

(
2

3

)7

N3 T 6
0

2∏

i=1

(1+κi) , P =
π3

2

(
2

3

)7

N3 T 6
0

2∏

i=1

(1+κi) , (B.11)
s = 3 π3

(
2

3

)7

N3 T 5
0

√√√√
2∏

i=1

(1 + κi) , T =
T0 (3 + κ1 + κ2 − κ1κ2)

3

√
2∏

i=1

(1 + κi)

, (B.12)
ρi = π2

(
2

3

)6

N3 T 5
0

√√√√2 κi

2∏

i=1

(1 + κi) , µi =
2π T0

3(1 + κi)

√√√√2 κi

2∏

i=1

(1 + κi) .(B.13)Other relevant results are
Gij =

L2

2
diag [(X1)−2, (X2)−2

]
, X i =

H2/5

Hi(u)
, (B.14)and 1

16πG7
= N3

6π3L5 .B.3 R-
harged bla
k holes at extremalityAbove bla
k holes at extremality was 
onstru
ted in [85℄. Take
ḡtt = −f(u)A1(u), ḡuu = A2(u)f

−1(u), f(u) = (1− u)2V (u). (B.15)Here we just give relevant information about f .Dimension Extremality 
ondition V (u)5 2 + κ1 + κ2 + κ3 − κ1κ2κ3 = 0 (1 + κ1κ2κ3u)4 3 +
4∑

j=1

ki +
4∑

i<j,i,j=1

kikj −
4∏

i=1

ki = 0 (1 + (2 +
4∑

j=1

ki)u+
4∏

i=1

kiu
2)7 3 + κ1 + κ2 − κ1κ2 = 0 (1 + 2u+ κ1κ2u

2)
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