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Abstract. Our present understanding of the evolution of the univeeties upon the Friedmann-Robertson-
Walker cosmological models. We give a simple method to redtitedmann equations to a second order
linear differential equation when it is supplemented wittiree dependent equation of state. Furthermore, as
illustrative examples, we solve this equation for some gijgettme dependent equation of states.
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1INTRODUCTION

Our present understanding of the evolution of the univeeties upon the Friedmann-Robertson-
Walker (FRW) cosmological models. This model is so suceggbht it is now being considered
as the Standard Model of Cosmology [1]. One of the fundanéeddures of the standard model
of cosmology is the expansion of the universe. This was di@ul around 1920 from red shift
measurements of galaxy spectra. It was also found thatge Erale, our universe is isotropic and
homogenous. The evidence of our universe being isotrofimaie from uniformity of temperature
of the Cosmic Microwave Background Radiation— commoniywnas CMBR. Finally, the large
scale homogeneity follows from the ‘peculiar velocity fielfithe universe. See [1] for more detail.
Considering the importance of FRW cosmological models ideustanding the time evolution
of our universe, in this paper, we try to study some basicufestof this model. In particular, we
review the Friedmann equations for isotropic and homogsnmiverse following [2]. This is done
in section 2 of the paper. Friedmann equations lead to d@aelaetween the energy density of the
universe with its size when an equation of state is suppléaderiVe review this behaviour for a
general equation of state of the fopn= wp. Here,p andp are energy density and pressure of
the universe respectively. This equation of state includesases of radiation, matter and vacuum
dominated era. In section 3, we simplify the Friedmann dquoatto a single linear second order
differential equation fotime dependent equation of state = w(t)p. Heret parametrises the time.
Time dependent equation of state arises in various modadlsflafions and also in string theory.
Our method here is a generalization of [3]. In [3], a similguation was constructed fdime

78



independent equation of state. In section 4, we solve our linear diffie¢equation for some specific
time dependent’s. It should be noted that, though we give a few examples, ieréarge number
of different time dependent(t), the differential equation can be explicitly solved. Thisturn,
would allow us to explicitly figure out the time dependencehasf radius of the universe - perhaps
otherwise it would have been difficult. This paper ends witlriaf summary of our results.

2 FRIEDMANN EQUATIONS

In this section, we review the Friedmann equations whiclm ighé heart of the standard model of
cosmology. We find out behaviour of the universe as a funaifdime when Friedmann equations
are supplemented with time independent equation of gtatevp. In this section we closely follow
[2].

Friedmann-Robertson-Walker metric for an isotropic anchbgenous universe is given by

dr?

1— kr?

ds? = —di® + R(t) [ +r2de? + r2sin29d¢2} , L
wheret, r, 0, ¢ are the coordinates arfé{¢t) is the scale factor. The parametetakes values, 0, —1

for closed, flat and open universe respectively. Friedmapummtons relates the time dependence of
the scale factor with the pressug and the energy density) of the universe. These equations are
given by:

1 (dR\2 8xGp  k
mla) 5 = 2)
and

d*R _ 47G(p+3p)R

dt2 3
Now, given a relation between the energy density and presgius possible to solve the Fried-
mann equations. This, in turn, tells us how the energy dgo$ithe universe changes as a function
of the size of the universe. For matter dominated univense gxpects that as a sphere expands, the
energy due to the presence of matter does not change. Ther mially spreads. That leads to

®3)

d(R3 pm)
dt

Or in other words,

—0. (4)

constant
R
However, Einstein mass-energy relation tells us (writtean unit such that = 1)

Pm = (5)

dm =dE = —pdV. (6)
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Sincedm = 0 for matter dominated universe ad@l” = 0, it follows p,, = 0. Substituting these in
(2,3), we get fork = 0:

R o t3. (7)

Similarly, for radiation dominated universe, we know

1
Dy = gﬂv- (8)
Now since
d 4 _ d 3
or we have,
d, 4 d, 4 3 d
ad - R —R. 1
dt(R 2 Rdt(R py) + R P'ydtR (10)
Furthermore, using (6) and (8), we get
d 4
il —0. 11
dt (R P'y) 0 (11)
Or, in other words, we have
constant
Py= " (12)
Substituting this in (3), we get
R x V. (13)

In general, the equation of state has the form

As we have seen previously, for matter dominated universe0, for radiation dominated universe
w = 1/3. Similarly, during the time of inflationary period, the ueise was vacuum dominated and
the value ofv during this period was-1. Thus, in general, during different epochstakes different
values. Proceeding as before, one gets, for flat universe,

1
Po = p3tsa- (15)
and consequently, from (8), it follows
R x 7. (16)
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3 SIMPLIFYING FRIEDMAN EQUATIONS FOR TIME DEPENDENT EQUATION OF
STATES

In this section, we will try to simplify the Friedmann equats for given time dependent equation
of state of the form

p=w(t)p. 17)

We will keep our study general enough to allow all three valoi:. Beginning with the Friedmann
Equations

3
and
2

R= 8”6;)” L (19)
Now, multiplying (19) with a constant, say and adding to (18), we get

R R ke —4nG(p+3p) 8rnGpc

LR A . 2

R RTR 3 T3 (20)
Using the equation of state (17), the above equation becomes

R R ke —47G(p + 3wp)  8wGpc

o 2 ) 21

R RTR 3 T3 (1)
We now choose such that the right hand side of the above equation vanidtnesleads to

o= 1E3w) (22)

2

Hence, finally we have

R R ke

S 2 2

7 + iz + Iz 0 (23)
To further simplify the above equation, we defimsuch that

R(n)dn = dt. (24)
or,

dn 1

il R 25

dt  R(n) (25)
All the ¢ derivatives onRk can now be re-written in terms of derivativesipls

. dR dR\ /dn 1 /dR

= () () = (2=, 26
R dt (dn)(dt) R(dn) (26)
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This gives,
. —1/7dR\2 1 d?R
R—[ﬁ(d—n) + ) @27)

Substituting the values d¢ andR in the equation (23), we get

1 —17dR\2 1 d°R ¢ 1dR,, ke

(== niedietel DN it b 2

R[R3(dn) Ear T Ry T (28)
Simplifying further, we get

1 &R c¢—1 /dR\2 kc

—_—— —_— —_— = . 2

Rap R (dn) i (29)
Now we change variable as= % fi—fj, such that

du d /1dR -1 /dR\2 1 d?°R

- n\ww) 7 (&) trar (30)
Hence

1d’R  du 1 /dR\,, du 9

o (22 22 31

R dn? d77+[R(d77)] d77+u (31)
Substituting the values in equation (29), we arrive at

du 9

n + ce(n)u® + ke(n) = 0. (32)

This is known as Riccati equation. By using suitable vagalilis possible to bring this to a linear
differential equation. Now defining such that, = %% we get

y:%, (33)
a0t ®
fi—z:%d% (1+23w) %[_yyz/2+%”]' (39)

Upon simplifying the above equation, we get
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d 1 _6 !, ! 1 1 12
_“:_iJr_(y__y_), 37)
dny (1+3w)?> c\y y?

Substituting the value 03% in equation (32) we get
1 —6y’w’ 1 y// y/2 1 y/2
-t - [ === - = +4+kec=0 38
y(1+3w)2+c(y y2)+cy2+c (38)
Simplifying the above equation, we get the final expressgn a

!
I 3w

gy k (1+3w)2y20 (39)
1+ 3w '

4

For equation of state of the form= wp, ¢(n) reduces to a constant. In that case (39) simplifies
to

y' 4+ kcty = 0. (40)

This case was studied in [3]. Solutions of this equatiorifet 1 is

y(n) =sin(cn). (41)
This leads to
R(n) = sin(cn) 75, (42)

So fork = 1, universe starts from a singularity at= 0, reaches to a maximum size and ends at a
singularity.
Similarly for k = —1, we get

y" — 2y =0. (43)
The solution is

y(n) = cisinh(cn). (44)
Proceeding exactly same as before we end up with a solutraR &s

R =sinh(cn) === (45)

Here, unlike theé: = 1 models, universe starts out with a zero sizg at 0 and keeps growing to an
infinite size at late time.

What we have learned so far is the following. For time depenhéguation of state (17), it is
possible to bring Friedmann equations to a single lineaors@order differential equation. This
equation is now much easier to handle. In the next sectiorsolve this equation for some specific
time dependent. Though we only work out a couple of examples for the purpdsiustration,
it should be noted that large number of different cases casolwed starting from (39). This would
have been difficult to achieve starting from complicatedpted Friedmann equations given in (2)
and (3).
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4 SOME ILLUSTRATIVE EXAMPLES

We will now try to solve equation (39) for some given formwf Solution ofy as a function of
will allow us to find exact) dependence of the radius of the univefsaNe will only consider open
and closed universe as for flat universe, (39) reduces to & wiowlified form.

First example

The first example that we would solve is where

1 1
w:\fﬁ_g. (46)

As 7 runs from0 to oo, w takes the valueo > w > —1/3.
To proceed, all we will have to do is to fi% and% (1+ 3w)? and substitute in equation (39).
We then get

1 9k 1
y,,+2_y,+__y: . (47)
n 4 7

y=0. (48)

The solution of this equation is given by

y[n] = c1 cosh[3/n] + c2 sinh[3./7]. (49)

For simplicity, we choose; = 1 andcy =0

y[n] = cosh[3/n]. (50)
Thus
N
y'[nl = NG sinh[3/7] (51)
and
c= % (52)

We know thaty = =L % Therefore

c

u = —tanh[3./7]. (53)
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Our interest is to find? and it is defined as

1 dR
= — 54
Y R dn (54)

We therefore get after an integration

R = —(n+ % /7 Log[1 + eap(—6:/7)] — %PolyLog[Q, p———» (55)

which can, in turn, be written as

RO1) = Bxp[~(1 + 5 i Logll + Exp(—6/7)] — gPolyLogl2, Bxp(~6y7))
(56)

Behaviour ofR is shown in figure (1).

R(n)
0.5

0.4

0.3

0.1

| L L L | L L L | n
2 4 6 3

Figure 1. The behaviour ofR? as a function of; is shown above. This follows from
equation (56).

It turns out that whew is given by (46), even though there are real solutions of {88¢losed
universe, one does not get a real solutionforSo, we believe that fok = 1, given (46), closed
universe would not exist.
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Second Example

The second case that we would solve is where

11
=3
Again, we first focus on to the cage= —1. Forw = % -1
3w —1
1+3w 7
and
9
(1+3w)? = =.
772

We take the help of (39) to write our equation in the form a®gibelow,

¥ () + %y'm) - };ym) )

The solution of the above equation is of the form

y(n) = 1 coshl3 log(n)] + ez sinh[log ()]

Assuming for simplicityc; = 1 andca = 0 we get
3
y(n) = cosh[Slog(1)).

’ -
Sou = ‘71% now is,

u= —tanh[glog(n)].
To know then dependence ak we make use of the earlier definition,
u_ LdR
 Rdp’

On solving forR we get

2ArcTan] 71+277]

2 1
Lt Slog[L 4] + gloglL £ 7))

So finally we get,

2ArcTan| _1\;;’7]
V3 3

The right hand side of the above equation is plotted in FigRye
As before, fork = 1, here also there does not exist a real solution/¢u).

R = Exp[—(n —
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+ 3log[1 +n] + log[l —n + n’])].

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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Figure 2. The behaviour ofR as a function of; is shown above. This follows from
equation (66).

5 CONCLUSION

To conclude, in this paper, we have briefly reviewed the Fniadn equations of standard model
of cosmology. We have also reviewed a way to solve these ieqsatvhen they are supplemented
with the equation of state of the form= wp. Furthermore, we generalized this method for time
dependent equation of state of the fopm= w(t)p. As some illustrative examples, we figured out
the time evolution of the universe for some explicit time degentv’s.
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