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Abstract. Our present understanding of the evolution of the universe relies upon the Friedmann-Robertson-
Walker cosmological models. We give a simple method to reduce Friedmann equations to a second order
linear differential equation when it is supplemented with atime dependent equation of state. Furthermore, as
illustrative examples, we solve this equation for some specific time dependent equation of states.
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1 INTRODUCTION

Our present understanding of the evolution of the universe relies upon the Friedmann-Robertson-
Walker (FRW) cosmological models. This model is so successful that it is now being considered
as the Standard Model of Cosmology [1]. One of the fundamental features of the standard model
of cosmology is the expansion of the universe. This was discovered around 1920 from red shift
measurements of galaxy spectra. It was also found that at large scale, our universe is isotropic and
homogenous. The evidence of our universe being isotropic follows from uniformity of temperature
of the Cosmic Microwave Background Radiation– commonly known as CMBR. Finally, the large
scale homogeneity follows from the ‘peculiar velocity fieldof the universe. See [1] for more detail.

Considering the importance of FRW cosmological models in understanding the time evolution
of our universe, in this paper, we try to study some basic features of this model. In particular, we
review the Friedmann equations for isotropic and homogenous universe following [2]. This is done
in section 2 of the paper. Friedmann equations lead to a relation between the energy density of the
universe with its size when an equation of state is supplemented. We review this behaviour for a
general equation of state of the formp = ωρ. Here,ρ andp are energy density and pressure of
the universe respectively. This equation of state includesthe cases of radiation, matter and vacuum
dominated era. In section 3, we simplify the Friedmann equations to a single linear second order
differential equation fortime dependent equation of statep = ω(t)ρ. Heret parametrises the time.
Time dependent equation of state arises in various models ofinflations and also in string theory.
Our method here is a generalization of [3]. In [3], a similar equation was constructed fortime
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independent equation of state. In section 4, we solve our linear differential equation for some specific
time dependentω’s. It should be noted that, though we give a few examples here, for large number
of different time dependentω(t), the differential equation can be explicitly solved. This,in turn,
would allow us to explicitly figure out the time dependence ofthe radius of the universe - perhaps
otherwise it would have been difficult. This paper ends with abrief summary of our results.

2 FRIEDMANN EQUATIONS

In this section, we review the Friedmann equations which is in the heart of the standard model of
cosmology. We find out behaviour of the universe as a functionof time when Friedmann equations
are supplemented with time independent equation of statep = ωρ. In this section we closely follow
[2].

Friedmann-Robertson-Walker metric for an isotropic and homogenous universe is given by

ds2 = −dt2 + R2(t)
[ dr2

1 − kr2
+ r2dθ2 + r2sin2θdφ2

]

, (1)

wheret, r, θ, φ are the coordinates andR(t) is the scale factor. The parameterk takes values1, 0,−1

for closed, flat and open universe respectively. Friedmann equations relates the time dependence of
the scale factor with the pressure(p) and the energy density(ρ) of the universe. These equations are
given by:

1

R2

(dR

dt

)2

− 8πGρ

3
= − k

R2
, (2)

and

d2R

dt2
= −4πG(ρ + 3p)R

3
. (3)

Now, given a relation between the energy density and pressure, it is possible to solve the Fried-
mann equations. This, in turn, tells us how the energy density of the universe changes as a function
of the size of the universe. For matter dominated universe, one expects that as a sphere expands, the
energy due to the presence of matter does not change. The matter only spreads. That leads to

d(R3ρm)

dt
= 0. (4)

Or in other words,

ρm =
constant

R3
. (5)

However, Einstein mass-energy relation tells us (written in an unit such thatc = 1)

dm = dE = −pdV. (6)
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Sincedm = 0 for matter dominated universe anddV 6= 0, it follows pm = 0. Substituting these in
(2,3), we get fork = 0:

R ∝ t
2
3 . (7)

Similarly, for radiation dominated universe, we know

pγ =
1

3
ργ . (8)

Now since

d

dt
(R4ργ) =

d

dt
[(R3ργ)R], (9)

or we have,

d

dt
(R4ργ) = R

d

dt
(R3ργ) + R3ργ

d

dt
R. (10)

Furthermore, using (6) and (8), we get

d

dt
(R4ργ) = 0. (11)

Or, in other words, we have

ργ =
constant

R4
. (12)

Substituting this in (3), we get

R ∝
√

t. (13)

In general, the equation of state has the form

p = ωρ. (14)

As we have seen previously, for matter dominated universeω = 0, for radiation dominated universe
ω = 1/3. Similarly, during the time of inflationary period, the universe was vacuum dominated and
the value ofω during this period was−1. Thus, in general, during different epochs,ω takes different
values. Proceeding as before, one gets, for flat universe,

ρω =
1

R3+3ω
, (15)

and consequently, from (8), it follows

R ∝ t
2

3+3ω . (16)
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3 SIMPLIFYING FRIEDMAN EQUATIONS FOR TIME DEPENDENT EQUATION OF
STATES

In this section, we will try to simplify the Friedmann equations for given time dependent equation
of state of the form

p = ω(t)ρ. (17)

We will keep our study general enough to allow all three values ofk. Beginning with the Friedmann
Equations

R̈ = −4πG(ρ + 3p)R

3
(18)

and

Ṙ =
8πGρR2

3
− k. (19)

Now, multiplying (19) with a constant, sayc, and adding to (18), we get

R̈

R
+

Ṙ2

R2
+

kc

R2
=

−4πG(ρ + 3p)

3
+

8πGρc

3
. (20)

Using the equation of state (17), the above equation becomes

R̈

R
+

Ṙ2

R2
+

kc

R2
=

−4πG(ρ + 3ωρ)

3
+

8πGρc

3
. (21)

We now choosec such that the right hand side of the above equation vanishes.This leads to

c =
(1 + 3ω)

2
. (22)

Hence, finally we have

R̈

R
+

Ṙ2

R2
+

kc

R2
= 0 (23)

To further simplify the above equation, we defineη such that

R(η)dη = dt. (24)

or,

dη

dt
=

1

R(η)
. (25)

All the t derivatives onR can now be re-written in terms of derivatives ofη as

Ṙ =
dR

dt
=

(dR

dη

)(dη

dt

)

=
1

R

(dR

dη

)

. (26)
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This gives,

R̈ = [
−1

R3

(dR

dη

)2

+
1

R2

d2R

dη2
]. (27)

Substituting the values of̈R andṘ in the equation (23), we get

1

R
[
−1

R3

(dR

dη

)2

+
1

R2

d2R

dη2
] +

c

R2
[
1

R

dR

dη
]2 +

kc

R2
= 0 (28)

Simplifying further, we get

1

R

d2R

dη2
+

c − 1

R2

(dR

dη

)2

+
kc

R2
= 0. (29)

Now we change variable asu = 1

R
dR
dη

, such that

du

dη
=

d

dη

( 1

R

dR

dη

)

=
−1

R2

(dR

dη

)2

+
1

R

d2R

dη2
. (30)

Hence

1

R

d2R

dη2
=

du

dη
+ [

1

R

(dR

dη

)

]2 =
du

dη
+ u2 (31)

Substituting the values in equation (29), we arrive at

du

dη
+ c(η)u2 + kc(η) = 0. (32)

This is known as Riccati equation. By using suitable variable, it is possible to bring this to a linear
differential equation. Now definingy such thatu = 1

c
y′

y
we get

y′ =
dy

dη
, (33)

du

dη
=

d

dη
[
1

c

y′

y
], (34)

du

dη
=

y′

y

d

dη

(1

c

)

+
1

c

d

dη

(y′

y

)

, (35)

du

dη
=

y′

y

d

dη

( 2

1 + 3ω

)

+
1

c
[
−y′2

y2
+

y′′

y
]. (36)

Upon simplifying the above equation, we get
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du

dη
=

1

y

−6y′ω′

(1 + 3ω)2
+

1

c

(y′′

y
− y′2

y2

)

. (37)

Substituting the value ofdu
dη

in equation (32) we get

1

y

−6y′ω′

(1 + 3ω)2
+

1

c

(y′′

y
− y′2

y2

)

+
1

c

y′2

y2
+ kc = 0 (38)

Simplifying the above equation, we get the final expression as

y′′ − 3ω′

1 + 3ω
y′ +

k

4

(

1 + 3ω
)2

y = 0. (39)

For equation of state of the formp = ωρ, c(η) reduces to a constant. In that case (39) simplifies
to

y′′ + kc2y = 0. (40)

This case was studied in [3]. Solutions of this equation fork = 1 is

y(η) = sin(c η). (41)

This leads to

R(η) = sin(cη)
2

1+3ω , (42)

So fork = 1, universe starts from a singularity atη = 0, reaches to a maximum size and ends at a
singularity.

Similarly for k = −1, we get

y′′ − c2y = 0. (43)

The solution is

y(η) = c1sinh(cη). (44)

Proceeding exactly same as before we end up with a solution for R as

R = sinh(c η)
2

1+3ω . (45)

Here, unlike thek = 1 models, universe starts out with a zero size atη = 0 and keeps growing to an
infinite size at late time.

What we have learned so far is the following. For time dependent equation of state (17), it is
possible to bring Friedmann equations to a single linear second order differential equation. This
equation is now much easier to handle. In the next section, wesolve this equation for some specific
time dependentω. Though we only work out a couple of examples for the purpose of illustration,
it should be noted that large number of different cases can besolved starting from (39). This would
have been difficult to achieve starting from complicated coupled Friedmann equations given in (2)
and (3).
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4 SOME ILLUSTRATIVE EXAMPLES

We will now try to solve equation (39) for some given form ofω. Solution ofy as a function ofη
will allow us to find exactη dependence of the radius of the universeR. We will only consider open
and closed universe as for flat universe, (39) reduces to a much simplified form.

First example

The first example that we would solve is where

ω =

√

1

η
− 1

3
. (46)

As η runs from0 to∞, ω takes the value∞ ≥ ω ≥ −1/3.
To proceed, all we will have to do is to find3ω′

1+3ω
andk

4
(1 + 3ω)2 and substitute in equation (39).

We then get

y′′ +
1

2η
y′ +

9k

4

1

η
y = 0. (47)

First, we consider the open universe withk = −1. We therefore have

y′′ +
1

2η
y′ − 9

4

1

η
y = 0. (48)

The solution of this equation is given by

y[η] = c1 cosh[3
√

η] + c2 sinh[3
√

η]. (49)

For simplicity, we choosec1 = 1 andc2 = 0

y[η] = cosh[3
√

η]. (50)

Thus

y′[η] =
3

2
√

η
sinh[3

√
η] (51)

and

c =
3

2
√

η
. (52)

We know thatu = −1

c

y′

y
. Therefore

u = −tanh[3
√

η]. (53)
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Our interest is to findR and it is defined as

u =
1

R

dR

dη
. (54)

We therefore get after an integration

lnR = −(η +
2

3

√
η Log[1 + exp(−6

√
η)] − 1

9
PolyLog[2, exp(−6

√
η)]), (55)

which can, in turn, be written as

R(η) = Exp[−(η +
2

3

√
η Log[1 + Exp(−6

√
η)] − 1

9
PolyLog[2, Exp(−6

√
η)])]

(56)

Behaviour ofR is shown in figure (1).

Figure 1. The behaviour ofR as a function ofη is shown above. This follows from

equation (56).

It turns out that whenω is given by (46), even though there are real solutions of (39)for closed
universe, one does not get a real solution forR. So, we believe that fork = 1, given (46), closed
universe would not exist.
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Second Example

The second case that we would solve is where

ω =
1

η
− 1

3
. (57)

Again, we first focus on to the casek = −1. Forω = 1

η
− 1

3
.

3ω′

1 + 3ω
=

−1

η
. (58)

and

(1 + 3ω)2 =
9

η2
. (59)

We take the help of (39) to write our equation in the form as given below,

y′′(η) +
1

η
y′(η) − 9

4η2
y(η) = 0. (60)

The solution of the above equation is of the form

y(η) = c1 cosh[
3

2
log(η)] + c2 sinh[

3

2
log(η)]. (61)

Assuming for simplicityc1 = 1 andc2 = 0 we get

y(η) = cosh[
3

2
log(η)]. (62)

Sou = −1

c
y′

y
now is,

u = −tanh[
3

2
log(η)]. (63)

To know theη dependence ofR we make use of the earlier definition,

u =
1

R

dR

dη
. (64)

On solving forR we get

lnR = [−(η −
2ArcTan[−1+2η√

3
]

√
3

+
2

3
log[1 + η] +

1

3
log[1 − η + η2])]. (65)

So finally we get,

R = Exp[−(η −
2ArcTan[−1+2η√

3
]

√
3

+
2

3
log[1 + η] +

1

3
log[1 − η + η2])]. (66)

The right hand side of the above equation is plotted in Figure(2).
As before, fork = 1, here also there does not exist a real solution forR(η).
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Figure 2. The behaviour ofR as a function ofη is shown above. This follows from

equation (66).

5 CONCLUSION

To conclude, in this paper, we have briefly reviewed the Friedmann equations of standard model
of cosmology. We have also reviewed a way to solve these equations when they are supplemented
with the equation of state of the formp = ωρ. Furthermore, we generalized this method for time
dependent equation of state of the formp = ω(t)ρ. As some illustrative examples, we figured out
the time evolution of the universe for some explicit time dependentω’s.
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