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Abstract. Following earlier works, we attempt to bring out analogies between some mechanical models and phase transitions
in thermodynamical systems. Keeping possible obstacles insetting up such an experiment in mind, we discuss a generalisation
of such models where we introduce forces that closely mimic static frictional force. The system is then studied by constructing
an effective potential. Analogies between this effective potential and Landau’s theory of phase transition are establised. We
also make few comments on setting this up as an experiment in our laboratory.

Communicated by L. Satpathy

1. INTRODUCTION

Phase transitions are central to our life and therefore understanding them is one of the prime task of physicists.
Phase transitions of water are matters of every day experience . Examples include boiling of water, the formation
of frost during winter time, melting of ice cubes and so on. Inall these above examples water makes transition
from one phase to another. These crossovers involve absorption or emission of latent heat and are examples of the
first order phase transition. Such emission or absorption ofheat provide us with an indication of radical change in
structure of the material around the phase transition point. Phase transition may also occur where state of a system
changes continuously. These are examples of continuous phase transition and unlike the previous cases, crossover
from one phase to the other does not involve latent heat. Someexamples of this kind will be discussed at a later
stage of this report. Though there are no latent heat in such transitions, certain detivatives of thermodynamic
quantities become discontinuous around the phase transition point. Specific heat is such a quantity in a second
order phase transition. In this paper, our aim will be to understand both kinds of transitions in terms of simpler
models provided by some mechanical systems. As we discuss later, we believe that such models can be set up in
our laboratory. In the rest of this section, we review a novelway to undersand several features of phase transition.
In literature, this is called the Landau theory of phase transition. In the later sections, the framework will be used
extensively.

Many insights of phase transition can be gained from Landau theory of phase transition [1]. In this theory,
phases are characterised by an order parameter. Typically,this parameter is zero at high temperature and non-
zero at low temperature. Magnetisation of ferromagnet, density for water vapour transition are examples of this
kind. For magnetic systems, in the absence of external field,at a temperatureT above a critical temperatureTc,
magnetisation is zero, while forT < Tc, it is non-zero. It is a parameter that distinguishes different phases. To

0



describe phase transition with in the framework of Landau Theory, one constructs a Landau potentialV for the
system. This is an expansion in terms of order parameterη. In general, this has the form

V (η, T, P ) = a0(T, P ) + a1(T, P )η + a2(T, P )η2 + a3(T, P )η3 + a4(T, P )η4 + ..... (1)

Hereais are the coefficients that are in general non-zero and functions of thermodynamic variables such as tem-
peratureT , pressureP or chemical potentialµ. While equilibrium states come from the solutions of

∂V

∂η
= 0, (2)

stability of the states can be inferred from∂2V/∂η2. Typically, in a second order phase transition, the Landau
function has a form [1]

V (η, T, P ) = a0(T, P ) + a2(T, P )η2 + a4(T, P )η4 + ..... (3)

with a4 > 0. We will have occasions to discuss this in some details at a later part of these report.

In this paper, we look into a mechanical system which provides us with a direct analogue of a second order
phase transition [2], [3]. This is described in section 2 of the report. Our interest is to set up such an experiment
in laboratory. However, we find that before we do so we need to address few other issues. Among them the most
crucial one is to analyse the same mechanical system in the presence of a friction. This is our prime focus in this
report. In the next section, we first introduce the mechanical system closly following [3] and bring out an analogy
with second order phase transition within the framework of Landau theory. In section 3, we discuss the possibilities
of implementing this as an experiment in our laboratory and also discuss the role of static friction. It turns out that,
in general, it is quite a complicated problem. We therefore simplify the model to take care of some effects of the
friction.We find that, after including these measures, the second order phase transition turns in to a first order one.
We then again analyse the phases in terms of a Landau function. Finally, we end this report with a discussion of
our results, possible generalisations, and also discuss the scope of implementing our model as an experiment.

Figure 1. A half circlular loop of radiusr, kept vertical on a horizontal plane, is
rotating with angular frequencyω. A ball of massm is allowed to move along the
frictionless half-loop

2. A MECHANICAL MODEL AND SECOND ORDER PHASE TRANSION

Consider a half circlular loop of radiusr which is kept vertical on a horizontal plane. Now we rotate italong its
diameter with an angular frequencyω. This is shown in the figure 1. A ball of massm is free to move on this
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Figure 2. THe free body diagram

frictionless half-loop. The equilibrium position of the ball can be inferred from the free-body diagram which is
shown in figure 2. The determining equations are given

Ncos θ = mg, N sin θ = m ω2r sin θ. (4)

In the above equations,N is the normal reaction andg is the gravitational constant. Solving this two equations,
we get

sin θ = β sin θ cos θ, (5)

where, we have definedβ = ω2r/g. The solutions of this equation are as follows:

θ= 0, for β < 1,

= θ0 = cos−1

[ 1

β

]

, for β ≥ 1. (6)

As in [3], the behaviour can be described by an effective potential that follows from 5. It is given by

V (θ)=

∫

dθ
(

sin θ − β sin θ cos θ
)

,

= −cos θ −
β

2
sin2θ. (7)

The behaviour of the effective potential for different values ofβ is shown in the figure 3. First of all, we note that,
for β < βc = 1, the potential has a minimum atθ = 0. However forβ > βc, θ = 0 is no longer a minimum, rather,
the location depends onβ. Infact, the location changes continuously from zero as we increaseβ. This provides an
analogy betweenθ and the order parameter in continuous phase transition.

The potential (7) can be expanded in powers ofθ nearθ = 0 and has the structure

V (θ) = −1 +
(1

2
−
β

2

)

θ2 +
(β

6
−

1

24

)

θ4 + ... (8)

As expected, we have an expansion in terms ofθ. This should be compared withη in (3). Furthermore we note,
comparing (3) and (8), thatais are functions ofβ. It immediately suggests thatβ plays the role of the temperature.
Furthermore,β = βc is the analogue of the critical temperature (Tc).
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Figure 3. Behaviour ofV (θ) for various values ofβ. The upper one is forβ = .9, the
next one below is forβ = 1.2 and the last one is forβ = 1.8. Note that if we interprete
θ as an order parameter, the above diagram represents a secondorder phase transition
with θ changing continuously asβ changes from belowβc = 1 to β > βc

3. MODEL INCLUDING STATIC FRICTION

The question that we now ask ourselves is: can this simple model be constructed in our laboratory? Even if it is
possible, the immediate problem we face is the need to incorporate static friction. It is rather difficult to construct
a model which does not have a friction between the ball and thesemicircular ring. In this section we try to address
the changes that may occur one we take into account such a phenomenon. It turns out that a complete treatment is
beyond the scope of present report. Static equations analogus to (5) is not enough to capture the complete ground
states. We comment more on that at the end of this section. Here, we rather assume that there is an additional force
µN along the direction of decreasingθ. Please see figure 4.. HereN is the normal reaction force andµ is the
analogue of ‘frictional coefficient’. Due to this addition of a friction like term what we find is the following. The
analogue of the continuous phase transition of the previousturns into an analogue of first ouder phase transition.
In what follows, we will see that across the phase transitionpoint, the order parameterθ changes discontinuously.

Figure 4. Free body diagram in the presence of static friction

The free body diagram in this case is shown in figure 4. One can immediately write the force balance
equations. They are as follows:

N cos θ − µN sin θ = mg,

N sin θ + µN cos θ = mω2r sin θ. (9)

Above equations can be simplified to a form
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sin θ + µ cos θ

cos θ − µ sin θ
= β sin θ. (10)

This can be rewritten as

tan (θ + ψ) = β sin θ. (11)

Here we have introducedψ which is related toµ as

µ = tan ψ. (12)

As before, it is perhaps easiest to solve the equation in terms of an effective potential. In the following, we
will assumeµ is small and expand (11) inψ. The resulting equation is:

sin θ + ψ sec θ = β sin θ cos θ (13)

An effective potential, from which the above equation follows by minimisation, is given by

V (θ)=

∫

dθ(sin θ + ψ sec θ − β sin θ cos θ)

= − cos θ −
β

2
sin2θ − 2ψ tanh−1

(

tan(
θ

2
)
)

. (14)

We notice that (14) reduces to (7) when we setψ to zero. This is equivalent to setting friction to zero. For small θ,
we can expand (14) and get

V (θ) = −1 + ψ θ +
(1

2
−
β

2

)

θ2 +
ψ

6
θ3 +

(

−
1

24
+
β

6

)

θ4 + ..... (15)

This has a general structure of (1). Comparing (1) and (15), it is now easy to read out the coefficientsais in (1).
We note that besidesβ, some of theais now also depend onψ. A plot of V for variousβ and for fixedψ is shown
in the figure 5. As can be seen from the figure, for smallβ, it has a minimum

atθ = 0 and the ball will stay there. As we increaseβ, another local minimum develops away fromθ = 0.
As we increaseβ further, this minimum becomes the global minimum. If we disturb the ball a little which is sitting
at θ = 0, it will reach the global minimum and settle there. Therefore, as we cross a critical value of angular
velocityω, there will be a discontinuous change in the position of the ball. This is analogus to a first order phase
transition, where the order parameter changes discontinuously around the transition point. For a water-vapour
transition, for example, this order parameter is identifiedwith the density.V (θ) also reminds us of a magnetisation
versus free energy curve. In a magnetic system, when the temperature is belowTc, the magnetisation (M ) is non-
zero. If a magnetic field is now applied in the direction ofM , the magnetisation will increase. However, if the
magnetic field is applied in the opposite direction, the magnetisation will discontinuously change from negative to
positive (assuming that there is no hystresis). This is an example of first order phase transition. Here, magnetisation
is the relevant order parameter for the system. To summarise, due to the inclusion of a friction like term, we see
that the order of the transition changes whileθ continues to behave as an order parameter.

In our discussion above, we only tried to mimic the effect of static friction by considering a forceµN
pointing tangentially in the direction of reducingθ. We believe that a complete study of the effect of static friction
will be much more complicated and, perhaps, are not capturedonly by equations analogus to (11). To see this,
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Figure 5. Behaviour ofV for variousβ. We have setψ = .001. The upper curve is
for β = 1, One below is forβ = 1.015 and the lowest one is forβ = 1.02. Clearly,
asβ increases from1, θ jumps from zero value to a non-zero value. As the second
minima appear at a different value which is not continuouslyconnected toθ = 0, there
a discontinuous change inθ around the crossover. This is analogus to a first order phase
transition.

let us consider the ball left at a non-zero large value ofθ. The ball will then try to come down and the tangential
frictional force will be along the direction of increasingθ. Therefore, equation governing its equilibrium position
would be different from the one in (11). So, in general, behaviour of the ball would, depend on the boundary
conditions. We leave a detail analysis of various possible boundary conditions and a subsequent study of possible
equilibrium positions for a future study.

We also notice that instead of working with a semi-circle, wecould have studied the simlar problem with
a complete circle as well [3]. Conclusions of section 2 wouldhave been similar with only difference being that
in this caseθ could take positive or negative values. However, introduction of friction complicates the scenario.
Various possiblities then come up depending on the initial position and perhaps the initial velocity of the ball as
well.

4. DISCUSSION

In this paper, we first analysed a mechanical model closely following the work of [3]. In [3], the author has worked
with a rotating circular ring with a ball that is allowed to move along the circumference of the ring. We rather
worked with a semicircle and worked out different equilibrium positions of the ball. Calculation is similar to that
of [3]. The system provides a very close analogy with continuous phase transition.

Can this model be constructed in our laboratory? We do not seeany porblem a priori except that we take
care of the effects due to friction. Construction of a semi-circular channel is not difficult. It can also be made to
rotate with certain angular velocity via a motor. Current inthe motor can be adjusted in order to change the angular
velocity. We can then make a ball to move along the channel. The equilibrium positions of the ball (as we change
ω) can then be studied. However, what makes thing a bit more complicated is the friction between the ball and the
channel surface. Though, friction can be reduced to a low value, it can not be made zero.

Our attempt is to initiate a theoretical study of the system in the presence of static friction. It turned out
that the inclusion of friction, in complete generality, is difficult. Different boundary conditions come in to play.
We studied in this project only one among such scenarios. We used a force that mimics the frictional force which
acts tangentially at the point where the ball is touching thesurface of the semicircle. Furthermore, it acts along the
direction of decreasingθ. However, let us imagine the following possibility. The ball is dropped nearθ = π/2.
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The ball then will try to fall down. Consequently, the frictional force will act along the direction of increasingθ.
The equation of for the equilibrium position will change from (11) to

tan(θ − ψ) = β sin θ. (16)

We can similarly consider other scenarios. In that sense, inour work we have focussed into one such case.

Interestingly, we have found that even if we include a small friction like term, the qualitative features change
considerably. We have seen in the previous section, the model then shows close resemblance with first order phase
transition. Real test of our calculation can only be made in the laboratory and we look forward to constructing
such a model in the laboratory. We do not see any hindrance a priori.
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