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Abstract. Following earlier works, we attempt to bring out analogiesAeen some mechanical models and phase transitions
in thermodynamical systems. Keeping possible obstaclestiimg up such an experiment in mind, we discuss a genatialis

of such models where we introduce forces that closely mitaiticsfrictional force. The system is then studied by cansing

an effective potential. Analogies between this effectieéeptial and Landau’s theory of phase transition are estthl We

also make few comments on setting this up as an experimenit ilaboratory.

Communicated by L. Satpathy

1. INTRODUCTION

Phase transitions are central to our life and therefore rataieding them is one of the prime task of physicists.
Phase transitions of water are matters of every day expmrieExamples include boiling of water, the formation
of frost during winter time, melting of ice cubes and so on.alhnthese above examples water makes transition
from one phase to another. These crossovers involve alimogtemission of latent heat and are examples of the
first order phase transition. Such emission or absorptidreat provide us with an indication of radical change in
structure of the material around the phase transition p&héase transition may also occur where state of a system
changes continuously. These are examples of continuose ptamnsition and unlike the previous cases, crossover
from one phase to the other does not involve latent heat. Sxa@ples of this kind will be discussed at a later
stage of this report. Though there are no latent heat in sttsitions, certain detivatives of thermodynamic
guantities become discontinuous around the phase tramgitint. Specific heat is such a quantity in a second
order phase transition. In this paper, our aim will be to ustiand both kinds of transitions in terms of simpler
models provided by some mechanical systems. As we disciggsswae believe that such models can be set up in
our laboratory. In the rest of this section, we review a navay to undersand several features of phase transition.
In literature, this is called the Landau theory of phasedit@on. In the later sections, the framework will be used
extensively.

Many insights of phase transition can be gained from Lantdaary of phase transition [1]. In this theory,
phases are characterised by an order parameter. TypitiElyparameter is zero at high temperature and non-
zero at low temperature. Magnetisation of ferromagnetsifgifior water vapour transition are examples of this
kind. For magnetic systems, in the absence of external fld,temperaturé’ above a critical temperatuti.,
magnetisation is zero, while far < T, it is non-zero. It is a parameter that distinguishes d#fif¢mphases. To



describe phase transition with in the framework of Landaedrly, one constructs a Landau potentiafor the
system. This is an expansion in terms of order paramgetbr general, this has the form

V(n,T,P) = ao(T, P) + a1 (T, P)n + ax(T, P)n* + a3(T, P)n® + as(T, P)n* + ..... (1)

Herea;s are the coefficients that are in general non-zero and fumetf thermodynamic variables such as tem-
peraturel’, pressure” or chemical potentigl. While equilibrium states come from the solutions of
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on ’ (2)
stability of the states can be inferred fraPiV/on?. Typically, in a second order phase transition, the Landau
function has a form [1]

V(%T, P) = G’O(Ta P) + G’Q(T’ P)UQ + a’4(Ta P)774 +o (3)

with a4 > 0. We will have occasions to discuss this in some details aea fmrt of these report.

In this paper, we look into a mechanical system which pravigewith a direct analogue of a second order
phase transition [2], [3]. This is described in section 2hef teport. Our interest is to set up such an experiment
in laboratory. However, we find that before we do so we needltiyess few other issues. Among them the most
crucial one is to analyse the same mechanical system in #sepce of a friction. This is our prime focus in this
report. In the next section, we first introduce the mechamsigstem closly following [3] and bring out an analogy
with second order phase transition within the frameworkaftlau theory. In section 3, we discuss the possibilities
of implementing this as an experimentin our laboratory ded discuss the role of static friction. It turns out that,
in general, it is quite a complicated problem. We therefamgptify the model to take care of some effects of the
friction.We find that, after including these measures, #@ad order phase transition turns in to a first order one.
We then again analyse the phases in terms of a Landau funéioally, we end this report with a discussion of
our results, possible generalisations, and also discesscitpe of implementing our model as an experiment.

Figure 1. A half circlular loop of radiusr, kept vertical on a horizontal plane, is
rotating with angular frequency. A ball of massm is allowed to move along the
frictionless half-loop

2. AMECHANICAL MODEL AND SECOND ORDER PHASE TRANSION

Consider a half circlular loop of radiuswhich is kept vertical on a horizontal plane. Now we rotataldng its
diameter with an angular frequency This is shown in the figure 1. A ball of mass is free to move on this
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Figure 2. THe free body diagram

frictionless half-loop. The equilibrium position of thelbaan be inferred from the free-body diagram which is
shown in figure 2. The determining equations are given

2

Ncos @ =mg, N sinf =m wrsinf. 4)

In the above equationgy is the normal reaction anglis the gravitational constant. Solving this two equations,
we get

sin § = (sin 6 cos 0, )

where, we have defined = w?r/g. The solutions of this equation are as follows:
=0, for B <1,
=0y =cos ! [l}, for g > 1. (6)
B

As in [3], the behaviour can be described by an effective piaékthat follows from 5. It is given by

V(9)= /d9 (sin 6 — (3 sin 6 cos 9),

= —cosf — gsiHQG. (7

The behaviour of the effective potential for different vadof5 is shown in the figure 3. First of all, we note that,
for 8 < . = 1, the potential has a minimum @t= 0. However for3 > (., 6 = 0 is no longer a minimum, rather,
the location depends gn Infact, the location changes continuously from zero asngesiases. This provides an
analogy betweefi and the order parameter in continuous phase transition.

The potential (7) can be expanded in power8 okard = 0 and has the structure

V(G):—1+(%—2)92+(§—2—2)94+... @)

As expected, we have an expansion in term8.of his should be compared within (3). Furthermore we note,
comparing (3) and (8), thai;s are functions of. It immediately suggests thatplays the role of the temperature.
Furthermoref = 3. is the analogue of the critical temperatuie)
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Figure 3. Behaviour ofV/ () for various values off. The upper one is fof = .9, the
next one below is fog = 1.2 and the last one is fg8 = 1.8. Note that if we interprete
0 as an order parameter, the above diagram represents a serciamghase transition
with 6 changing continuously &% changes from below$. = 1to 8 > .

3. MODEL INCLUDING STATIC FRICTION

The question that we now ask ourselves is: can this simplesifmconstructed in our laboratory? Even if it is
possible, the immediate problem we face is the need to imcate static friction. It is rather difficult to construct

a model which does not have a friction between the ball anddhacircular ring. In this section we try to address
the changes that may occur one we take into account such ampleaon. It turns out that a complete treatment is
beyond the scope of present report. Static equations amatog5) is not enough to capture the complete ground
states. We comment more on that at the end of this sectiore, Merrather assume that there is an additional force
1IN along the direction of decreasirty Please see figure 4.. Hefé is the normal reaction force andis the
analogue of ‘frictional coefficient’. Due to this additiof @ friction like term what we find is the following. The
analogue of the continuous phase transition of the prewious into an analogue of first ouder phase transition.
In what follows, we will see that across the phase transpioinmt, the order parameté@rchanges discontinuously.
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Figure 4. Free body diagram in the presence of static friction

The free body diagram in this case is shown in figure 4. One caneddiately write the force balance
equations. They are as follows:

N cos 0 — N sin = mg,
N sin 6 + uN cos 6 = mw?r sin 6. 9)

Above equations can be simplified to a form



sin 6 4+ p cos 0

cosf —psind fsin 0. (10)
This can be rewritten as
tan (6 +1) = Bsin 6. (11)

Here we have introduced which is related tq: as

u = tan . (12)

As before, it is perhaps easiest to solve the equation ingefran effective potential. In the following, we
will assumey is small and expand (11) in. The resulting equation is:

sin 6 4+ 1 sec § = 3 sin 0 cos 0 (13)

An effective potential, from which the above equation falfoby minimisation, is given by
V(0)= /d@(sin 0 + 1) sec @ — [ sin 0 cos 0)

= —cosf — g sin?0 — 2¢ tanh ™! ( tan(g)). (14)

We notice that (14) reduces to (7) when we@eb zero. This is equivalent to setting friction to zero. Foradl 4,
we can expand (14) and get

V(@):—1+¢9+(%—§)92+%93+(—2—14+§)94+ ..... (15)

This has a general structure of (1). Comparing (1) and (1%9,now easy to read out the coefficients in (1).
We note that besidg$, some of thei;s now also depend an. A plot of V' for various and for fixedy is shown
in the figure 5. As can be seen from the figure, for smalt has a minimum

atd = 0 and the ball will stay there. As we increaseanother local minimum develops away fraéha= 0.
As we increasg further, this minimum becomes the global minimum. If we dibtthe ball a little which is sitting
atd = 0, it will reach the global minimum and settle there. Therefaas we cross a critical value of angular
velocity w, there will be a discontinuous change in the position of thik This is analogus to a first order phase
transition, where the order parameter changes disconisly@around the transition point. For a water-vapour
transition, for example, this order parameter is identifigih the densityV () also reminds us of a magnetisation
versus free energy curve. In a magnetic system, when thestextype is below,., the magnetisation{() is non-
zero. If a magnetic field is now applied in the direction/df, the magnetisation will increase. However, if the
magnetic field is applied in the opposite direction, the nadigation will discontinuously change from negative to
positive (assuming that there is no hystresis). This is amgte of first order phase transition. Here, magnetisation
is the relevant order parameter for the system. To summatiseto the inclusion of a friction like term, we see
that the order of the transition changes witileontinues to behave as an order parameter.

In our discussion above, we only tried to mimic the effect tattis friction by considering a force NV
pointing tangentially in the direction of reduciidgWe believe that a complete study of the effect of statidifsic
will be much more complicated and, perhaps, are not captongdby equations analogus to (11). To see this,
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Figure 5. Behaviour ofV for various3. We have set) = .001. The upper curve is

for 8 = 1, One below is for3 = 1.015 and the lowest one is fg8 = 1.02. Clearly,

as 3 increases froni, 0 jumps from zero value to a non-zero value. As the second
minima appear at a different value which is not continuouslgnected té = 0, there

a discontinuous change fraround the crossover. This is analogus to a first order phase
transition.

let us consider the ball left at a non-zero large valué.ofhe ball will then try to come down and the tangential
frictional force will be along the direction of increasifg Therefore, equation governing its equilibrium position
would be different from the one in (11). So, in general, bétawvof the ball would, depend on the boundary
conditions. We leave a detail analysis of various possiblenblary conditions and a subsequent study of possible
equilibrium positions for a future study.

We also notice that instead of working with a semi-circle,so@ld have studied the simlar problem with
a complete circle as well [3]. Conclusions of section 2 wdudgle been similar with only difference being that
in this case& could take positive or negative values. However, introduncof friction complicates the scenario.
Various possiblities then come up depending on the initisifion and perhaps the initial velocity of the ball as
well.

4. DISCUSSION

In this paper, we first analysed a mechanical model closdlitiyfing the work of [3]. In [3], the author has worked
with a rotating circular ring with a ball that is allowed to R@along the circumference of the ring. We rather
worked with a semicircle and worked out different equilibri positions of the ball. Calculation is similar to that
of [3]. The system provides a very close analogy with cordumiphase transition.

Can this model be constructed in our laboratory? We do notsgeorblem a priori except that we take
care of the effects due to friction. Construction of a seirgtdar channel is not difficult. It can also be made to
rotate with certain angular velocity via a motor. Currenttie motor can be adjusted in order to change the angular
velocity. We can then make a ball to move along the channed.efjuilibrium positions of the ball (as we change
w) can then be studied. However, what makes thing a bit moreticated is the friction between the ball and the
channel surface. Though, friction can be reduced to a lowesat can not be made zero.

Our attempt is to initiate a theoretical study of the systarnthe presence of static friction. It turned out
that the inclusion of friction, in complete generality, igfidult. Different boundary conditions come in to play.
We studied in this project only one among such scenarios. 8%d a force that mimics the frictional force which
acts tangentially at the point where the ball is touchingstindace of the semicircle. Furthermore, it acts along the
direction of decreasing. However, let us imagine the following possibility. The lialdropped neaé = /2.



The ball then will try to fall down. Consequently, the frigtial force will act along the direction of increasifig
The equation of for the equilibrium position will changeritg11) to

tan(f — ¢) = B sin 6. (16)

We can similarly consider other scenarios. In that senseuyinwork we have focussed into one such case.

Interestingly, we have found that even if we include a smitibn like term, the qualitative features change
considerably. We have seen in the previous section, the nttoeleshows close resemblance with first order phase
transition. Real test of our calculation can only be madéhanlaboratory and we look forward to constructing
such a model in the laboratory. We do not see any hindrance®. pr
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